JP4012275B2 - Directional silicon steel sheet for transformers with low residual magnetic flux density - Google Patents

Directional silicon steel sheet for transformers with low residual magnetic flux density Download PDF

Info

Publication number
JP4012275B2
JP4012275B2 JP30995696A JP30995696A JP4012275B2 JP 4012275 B2 JP4012275 B2 JP 4012275B2 JP 30995696 A JP30995696 A JP 30995696A JP 30995696 A JP30995696 A JP 30995696A JP 4012275 B2 JP4012275 B2 JP 4012275B2
Authority
JP
Japan
Prior art keywords
concentration
magnetic flux
flux density
steel sheet
residual magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30995696A
Other languages
Japanese (ja)
Other versions
JPH10140300A (en
Inventor
芳一 高田
弘憲 二宮
操 浪川
多津彦 平谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP30995696A priority Critical patent/JP4012275B2/en
Publication of JPH10140300A publication Critical patent/JPH10140300A/en
Application granted granted Critical
Publication of JP4012275B2 publication Critical patent/JP4012275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、偏磁による突入電流が問題となるトランス方向性けい素鋼板に関し、特に低残留磁束密度のトランス用方向性けい素鋼板に関する。
【0002】
【従来の技術】
従来、トランスには、小型化および高効率化のため、いわゆるGoss方位を有する一方向性けい素鋼板が使用されている。方向性けい素鋼板は、磁束密度が高く、低鉄損であるため、小型化および高効率化には適した材料である。しかしながら、方向性けい素鋼板は残留磁束密度が高いため、トランスに偏磁が生じ、トランスの再起動時に定格電流の数十倍もの突入電流が発生し、ブレーカーが作動してトランスの起動が不可能となることがある。
【0003】
このような突入電流を防止するため、トランスの設計動作磁束密度を下げるか、または磁路にギャップを設けることが行われている。しかし、前者の場合はトランスが大型化し、後者の場合は組立コストが増大するという問題が生じる。
【0004】
【発明が解決しようとする課題】
本発明はかかる事情に鑑みてなされたものであって、機器の大型化やコスト増大をもたらすことなく偏磁による突入電流を防止することができる低残留密度のトランス用方向性けい素鋼板を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく検討を重ねた結果、方向性けい素鋼板において厚さ方向にSiの濃度勾配を形成することにより残留磁束密度を著しく低下させることができることを知見した。
【0006】
本発明は、このような知見に基づいて完成されたものであって、第1に、板厚方向にSiの濃度勾配を有し、表層のSi濃度のほうが板厚中心部のSi濃度より高く、表層のSi濃度と板厚中心近傍の最低のSi濃度との差が0.5wt%以上であり、Si濃度の板厚方向全体の平均値が3〜7wt%(ただし、6.2wt%以上を除く)であることを特徴とする低残留磁束密度のトランス用方向性けい素鋼板を提供するものである。
【0007】
第2に、上記鋼板において、表層のSi濃度が7.5wt%以下であることを特徴とする低残留磁束密度のトランス用方向性けい素鋼板を提供するものである。
【0008】
【発明の実施の形態】
以下、本発明について詳細に説明する。
方向性鋼板の板厚方向にSiの濃度勾配をつけた場合の残留磁束密度(Br)の変化を図1に示す。サンプルとしては、0.3mm板厚の3.1wt%Si一方向性けい素を浸珪処理して作製したものを用いた。浸珪処理においては、1200℃に加熱した鋼板と、20vol%のSiCl4 と80vol%のN2 との混合ガスとを反応させ、鋼板表面からSiを浸透させ、その後N2 中で均熱してSiを板中心部へ拡散浸透させた。ここでは、Si浸透時間と拡散時間とを変化させ、種々に濃度勾配を有するサンプルを作製し、磁気特性を測定した。
【0009】
図1は50Hzで1.4Tまで磁化した時の残留磁束密度を測定した結果を示すものであり、横軸は、サンプルの断面についてX線マイクロアナライザーでSiを定量分析し、その最高値と最低値との差(ΔSi)をとったものである。
【0010】
この図に示すように、Siの濃度勾配を形成し、ΔSiが増加すると残留磁束密度は単調に低下する。また、図より、残留磁束密度を10%以上低下させるためにはΔSiを0.5%以上とすることが必要であることがわかる。ΔSiを増加させると残留磁束密度が低下する原因は完全には解明されていないが、Siの添加とともに格子定数が小さくなることから、Siの濃度勾配を形成することにより板内に張力が発生するためと推定される。
【0011】
したがって、本発明では、Siの濃度勾配を形成し、板厚中心近傍の最低のSi濃度が表層のSi濃度よりも0.5wt%以上低いことを要件としている。
なお、この場合において、板厚方向のSi濃度を測定する方法は特に限定されないが、X線マイクロアナライザーで測定することが好適である。
【0012】
このように鋼板の厚さ方向にSiの濃度勾配をつけること自体は、特開昭62−227033号から227036号まで、特開昭62−227077号、および特開平4−246157号の各公報に開示されている。しかし、これらの目的は、浸珪処理法で高けい素鋼板を製造する際に、拡散処理時間を短くするため、途中で拡散処理を中断することにあり、その結果としてSiの濃度勾配が形成されるのであり積極的にSiの濃度勾配を形成するという思想は含まれていない。これらにおいて拡散処理を中断する時間は鉄損が劣化しない範囲で決められている。鉄損は種々の要因で決定されるが、これを低下させるためには残留磁束密度を高くすることが必要であり、上記各公報の技術は残留磁束密度があまり低下しない範囲で、Siの濃度勾配の許容値を求めたものであるといえる。これに対して本発明は残留磁束密度を低下させるために積極的にSiの濃度勾配を形成したものであり、上記各公報の技術とはSiの濃度勾配の意味合いが全く異なる。
【0013】
本発明で対象とする方向性けい素鋼板としては、典型的には一方向性であり、その例としてはGoss方位を有するものが挙げられるが、これに限るものではない。
【0014】
素材の方向性けい素鋼板は、板厚方向の全体の平均値Si濃度が3wt%以下であるとGoss方位等の形成が困難となるため、3wt%以上であることが好ましい。一方、平均値Si濃度が高くなると、これに伴って表層Siも高くなり、加工性が劣化する。加工性の点からは、表層Si濃度が7.5wt%以下であることが好ましく、その結果、平均値Si濃度は7wt%以下とすることが好ましい。したがって、本発明では、好ましいSiの平均値濃度として、3〜7wt%を規定し、さらに表層のSi濃度の好ましい値として、7.5wt%以下を規定している。
なお、本発明において、Si以外の元素は特に規定されず、他の元素は通常の方向性けい素鋼板に含有される量であれば許容される。
【0015】
【実施例】
以下、本発明の実施例について説明する。
表1に示す組成の0.23mm厚のGoss方位を持つ方向性けい素鋼板を連続浸珪処理ラインで浸珪・拡散処理して板厚方向にSiの濃度勾配を形成した。浸珪処理ラインとしては、加熱・浸珪・拡散・冷却帯および絶縁皮膜コーティング装置からなるものを用いた。浸珪ラインでは、1200℃まで加熱後、SiCl4ガスと鋼板とを反応させ鋼板表面にFe3Siを形成し、その後拡散均熱してSiを板中心部に拡散させ、Siの濃度勾配を形成した。この際に、SiCl4ガス濃度と均熱時間を変えて種々のSiプロファイルを有する鋼板を製造した。なお、この鋼板の浸珪前後でのSi以外の成分量はほぼ同一であった。
【0016】
【表1】

Figure 0004012275
【0017】
このようにして得られた鋼板を用い、単相50Hz、1kVAのトランスを作製し、位相制御のもとで突入電流の測定を実施した。その際の残留磁束密度、磁束密度B8、突入電流比の値を表2に示す。残留磁束密度は、50Hzで1.4Tまで磁化したときの値である。また、突入電流はトランスを1.4Tまで磁化したときの値であり、定格電流との比で評価した。ΔSi、表層Si濃度、平均Si濃度、残留磁束密度、磁束密度B8、および突入電流比を表2に示す。
【0018】
【表2】
Figure 0004012275
【0019】
この表に示すように、本発明の範囲内であれば、残留磁束密度が低く、そのため突入電流特性に優れていることが明らかとなった。このことから、本発明により、突入電流の低いトランス用の方向性けい素鋼板が得られることが確認された。
なお、No.3はSi量が多いため、加工性に劣っていた。
【0020】
【発明の効果】
以上説明したように、本発明によれば、板厚方向にSiの濃度勾配を有し、表層のSi濃度のほうが板厚中心部のSi濃度より高く、表層のSi濃度と板厚中心近傍の最低のSi濃度との差を0.5wt%以上とし、Si濃度の板厚方向全体の平均値を3〜7wt%(ただし、6.2wt%以上を除く)とすることにより、低残留磁束密度のトランス用方向性けい素鋼板を得ることができる。したがって、機器の大型化やコスト増大等をもたらすことなく偏磁による突入電流を防止することができる。
【図面の簡単な説明】
【図1】鋼板のΔSiと残留磁束密度との関係を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transformer oriented silicon steel sheet rush current becomes a problem due to magnetic bias, regarding transformer oriented silicon steel sheet particularly low residual magnetic flux density.
[0002]
[Prior art]
Conventionally, unidirectional silicon steel sheets having a so-called Goss orientation have been used for transformers for miniaturization and high efficiency. The grain oriented silicon steel sheet is a material suitable for miniaturization and high efficiency because of its high magnetic flux density and low iron loss. However, the grain-oriented silicon steel sheet has a high residual magnetic flux density, so that the transformer is demagnetized, an inrush current several tens of times higher than the rated current is generated when the transformer is restarted, and the circuit breaker is activated to prevent the transformer from starting. It may be possible.
[0003]
In order to prevent such an inrush current, the design operation magnetic flux density of the transformer is lowered or a gap is provided in the magnetic path. However, in the former case, the transformer becomes large, and in the latter case, the assembly cost increases.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and provides a low residual density directional silicon steel sheet for transformers that can prevent inrush current due to magnetic bias without increasing the size and cost of equipment. The purpose is to do.
[0005]
[Means for Solving the Problems]
As a result of repeated studies to solve the above problems, the present inventors have found that the residual magnetic flux density can be remarkably reduced by forming a Si concentration gradient in the thickness direction in the directional silicon steel sheet. .
[0006]
The present invention has been completed based on such knowledge. First, it has a Si concentration gradient in the plate thickness direction, and the Si concentration in the surface layer is higher than the Si concentration in the central portion of the plate thickness. The difference between the Si concentration of the surface layer and the lowest Si concentration in the vicinity of the center of the plate thickness is 0.5 wt% or more, and the average value of the Si concentration in the plate thickness direction is 3 to 7 wt% ( however, 6.2 wt% or more) And a directional silicon steel sheet for transformers having a low residual magnetic flux density.
[0007]
Secondly, the present invention provides a transformer- oriented directional silicon steel sheet having a low residual magnetic flux density, wherein the surface layer has a Si concentration of 7.5 wt% or less.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
FIG. 1 shows a change in residual magnetic flux density (Br) when a Si concentration gradient is provided in the thickness direction of the grain-oriented steel plate. As a sample, a sample prepared by subjecting a 3.1 mm thick Si unidirectional silicon having a thickness of 0.3 mm to a siliconization treatment was used. In the siliconizing treatment, a steel sheet heated to 1200 ° C. is reacted with a mixed gas of 20 vol% SiCl 4 and 80 vol% N 2 to infiltrate Si from the steel sheet surface, and then soaked in N 2. Si was diffused and penetrated into the center of the plate. Here, samples having various concentration gradients were prepared by changing the Si infiltration time and the diffusion time, and the magnetic characteristics were measured.
[0009]
FIG. 1 shows the result of measuring the residual magnetic flux density when magnetized to 1.4T at 50 Hz, and the horizontal axis shows quantitative analysis of Si with an X-ray microanalyzer on the cross section of the sample. The difference (ΔSi) from the value is taken.
[0010]
As shown in this figure, when a Si concentration gradient is formed and ΔSi increases, the residual magnetic flux density decreases monotonously. Further, it can be seen from the figure that ΔSi must be 0.5% or more in order to reduce the residual magnetic flux density by 10% or more. The reason why the residual magnetic flux density decreases when ΔSi is increased has not been completely clarified, but since the lattice constant decreases with the addition of Si, tension is generated in the plate by forming a Si concentration gradient. It is estimated that.
[0011]
Therefore, in the present invention, a Si concentration gradient is formed, and the minimum Si concentration near the center of the plate thickness is required to be 0.5 wt% or more lower than the Si concentration of the surface layer.
In this case, the method for measuring the Si concentration in the plate thickness direction is not particularly limited, but it is preferable to measure with an X-ray microanalyzer.
[0012]
In this way, the Si concentration gradient in the thickness direction of the steel sheet itself is disclosed in JP-A-62-227033 to 227036, JP-A-62-227077, and JP-A-4-246157. It is disclosed. However, these objectives are to interrupt the diffusion process in the middle to shorten the diffusion process time when manufacturing high silicon steel sheet by the siliconization process, resulting in the formation of Si concentration gradient. The idea of positively forming a Si concentration gradient is not included. In these, the time for suspending the diffusion treatment is determined in such a range that the iron loss does not deteriorate. The iron loss is determined by various factors. In order to reduce the iron loss, it is necessary to increase the residual magnetic flux density. In the techniques of the above publications, the concentration of Si is within a range where the residual magnetic flux density does not decrease so much. It can be said that the tolerance value of the gradient is obtained. On the other hand, in the present invention, a Si concentration gradient is positively formed in order to reduce the residual magnetic flux density, and the meaning of the Si concentration gradient is completely different from the techniques of the above publications.
[0013]
The grain-oriented silicon steel sheet that is the subject of the present invention is typically unidirectional, and examples thereof include those having a Goss orientation, but are not limited thereto.
[0014]
The directional silicon steel sheet of the material is preferably 3 wt% or more because formation of Goss orientation and the like becomes difficult when the overall average Si concentration in the plate thickness direction is 3 wt% or less. On the other hand, when the average value Si concentration increases, the surface layer Si also increases accordingly, and the workability deteriorates. From the viewpoint of workability, the surface layer Si concentration is preferably 7.5 wt% or less, and as a result, the average value Si concentration is preferably 7 wt% or less. Therefore, in the present invention, 3 to 7 wt% is specified as a preferable average value concentration of Si, and 7.5 wt% or less is specified as a preferable value of the Si concentration of the surface layer.
In addition, in this invention, elements other than Si are not prescribed | regulated in particular, Other elements are accept | permitted if it is the quantity contained in a normal grain-oriented silicon steel plate.
[0015]
【Example】
Examples of the present invention will be described below.
A directional silicon steel sheet having a Goss orientation with a thickness of 0.23 mm having the composition shown in Table 1 was subjected to a siliconizing / diffusion process in a continuous siliconization processing line to form a Si concentration gradient in the thickness direction. As the siliconization processing line, a heating / siliconizing / diffusion / cooling zone and an insulating film coating apparatus were used. In the siliconization line, after heating up to 1200 ° C, the SiCl 4 gas reacts with the steel sheet to form Fe 3 Si on the steel sheet surface, then diffusion soaking and diffusing Si to the center of the sheet to form a Si concentration gradient did. At this time, steel sheets having various Si profiles were manufactured by changing the SiCl 4 gas concentration and the soaking time. In addition, the amount of components other than Si before and after siliconization of this steel sheet was almost the same.
[0016]
[Table 1]
Figure 0004012275
[0017]
Using the steel plate thus obtained, a single-phase 50 Hz, 1 kVA transformer was produced, and the inrush current was measured under phase control. Table 2 shows values of residual magnetic flux density, magnetic flux density B8, and inrush current ratio. The residual magnetic flux density is a value when magnetized to 1.4 T at 50 Hz. The inrush current is a value when the transformer is magnetized to 1.4T, and was evaluated by a ratio with the rated current. Table 2 shows ΔSi, surface Si concentration, average Si concentration, residual magnetic flux density, magnetic flux density B8, and inrush current ratio.
[0018]
[Table 2]
Figure 0004012275
[0019]
As shown in this table, it was revealed that the residual magnetic flux density is low within the range of the present invention, and therefore, the inrush current characteristics are excellent. From this, it was confirmed that the grain-oriented silicon steel sheet for transformers having a low inrush current can be obtained by the present invention.
In addition, No. 3 was inferior in workability because of a large amount of Si.
[0020]
【The invention's effect】
As described above, according to the present invention, there is a Si concentration gradient in the plate thickness direction, the Si concentration of the surface layer is higher than the Si concentration of the center portion of the plate thickness, and the Si concentration of the surface layer and the vicinity of the plate thickness center. Low residual magnetic flux density by setting the difference from the lowest Si concentration to 0.5 wt% or more and the average value of the Si concentration in the whole plate thickness direction to 3 to 7 wt% (excluding 6.2 wt% or more ) Directional silicon steel sheets for transformers can be obtained. Therefore, an inrush current due to biasing can be prevented without increasing the size of the device or increasing the cost.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between ΔSi of a steel plate and residual magnetic flux density.

Claims (2)

板厚方向にSiの濃度勾配を有し、表層のSi濃度のほうが板厚中心部のSi濃度より高く、表層のSi濃度と板厚中心近傍の最低のSi濃度との差が0.5wt%以上であり、Si濃度の板厚方向全体の平均値が3〜7wt%(ただし、6.2wt%以上を除く)であることを特徴とする低残留磁束密度のトランス用方向性けい素鋼板。It has a Si concentration gradient in the plate thickness direction, the Si concentration in the surface layer is higher than the Si concentration in the center of the plate thickness, and the difference between the Si concentration in the surface layer and the lowest Si concentration in the vicinity of the plate thickness center is 0.5 wt%. A transformer-oriented directional silicon steel sheet having a low residual magnetic flux density , wherein the average value of the Si concentration in the whole plate thickness direction is 3 to 7 wt% (excluding 6.2 wt% or more ). 表層のSi濃度が7.5wt%以下であることを特徴とする請求項1に記載の低残留磁束密度のトランス用方向性けい素鋼板。  The directional silicon steel sheet for transformers with low residual magnetic flux density according to claim 1, wherein the surface layer has a Si concentration of 7.5 wt% or less.
JP30995696A 1996-11-07 1996-11-07 Directional silicon steel sheet for transformers with low residual magnetic flux density Expired - Fee Related JP4012275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30995696A JP4012275B2 (en) 1996-11-07 1996-11-07 Directional silicon steel sheet for transformers with low residual magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30995696A JP4012275B2 (en) 1996-11-07 1996-11-07 Directional silicon steel sheet for transformers with low residual magnetic flux density

Publications (2)

Publication Number Publication Date
JPH10140300A JPH10140300A (en) 1998-05-26
JP4012275B2 true JP4012275B2 (en) 2007-11-21

Family

ID=17999387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30995696A Expired - Fee Related JP4012275B2 (en) 1996-11-07 1996-11-07 Directional silicon steel sheet for transformers with low residual magnetic flux density

Country Status (1)

Country Link
JP (1) JP4012275B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0987341A4 (en) 1998-03-12 2006-04-05 Jfe Steel Corp Silicon steel sheet and method for producing the same
KR100900661B1 (en) * 2002-11-11 2009-06-01 주식회사 포스코 Coating composition, and method for manufacturing high silicon electrical steel sheet using thereof
JP5446377B2 (en) * 2008-03-31 2014-03-19 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
CN110607496B (en) * 2018-06-14 2021-03-26 东北大学 Preparation method of Fe-Si alloy with Goss texture

Also Published As

Publication number Publication date
JPH10140300A (en) 1998-05-26

Similar Documents

Publication Publication Date Title
KR100859737B1 (en) A Fe-Cr Soft Magnetic Material and a Method of Manufacturing Thereof
Fish et al. Frequency dependence of core loss in rapidly quenched Fe‐6.5 wt.% Si
US5993568A (en) Soft magnetic alloy sheet having low residual magnetic flux density
JP4012275B2 (en) Directional silicon steel sheet for transformers with low residual magnetic flux density
JP2560580B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
JP3210776B2 (en) Magnetic material using amorphous magnetic alloy, method for producing magnetic material
JPH10140298A (en) Nonoriented silicon steel sheet with low noise and low residual magnetic flux density
JP2000045053A (en) Grain-oriented silicon steel sheet low in core loss
Kobayashi et al. Heatproof domain refining method using combination of local strain and heat treatment for grain oriented 3% Si-Fe
EP0947596B1 (en) Silicon steel having low residual magnetic flux density
JPH10140301A (en) Grain oriented silicon steel sheet having low residual magnetic flux density and low in noise
JPH11293417A (en) Silicon steel sheet excellent in magnetic aging property and low in residual magnetic flux density
JP4269350B2 (en) Method for producing high silicon steel sheet
JP2006124809A (en) Nonoriented magnetic steel sheet having excellent iron core after stress relieving annealing and its production method
JPH10140302A (en) Nonoriented silicon steel sheet having low residual magnetic flux density and low in core loss, its production and transformer low in rush current and core loss
JP3890790B2 (en) High silicon steel sheet
JP3460569B2 (en) Silicon steel sheet with low residual magnetic flux density
ATE17376T1 (en) NON-CORE-ORIENTED ELECTRICAL SHEET WITH LOW WATTLESS AND HIGH MAGNETIC FLUX DENSITY AND METHOD FOR ITS MANUFACTURE.
JP4056102B2 (en) Silicon steel sheet with low residual magnetic flux density
Moses et al. Improvement of magnetic properties of electrical steels using a surface diffusion technique
JP4192403B2 (en) Electrical steel sheet used under DC bias
KR900005380B1 (en) Making process for silicon plate
JP2007204787A (en) Electrical steel sheet for permanent magnet motor and permanent magnet motor
JP2002194434A (en) Method for producing low core less grain oriented electrical steel sheet having excellent high frequency magnetic characteristic and film characteristic
JP3964964B2 (en) Method for producing semi-processed non-oriented electrical steel sheet with excellent low magnetic field characteristics B1

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees