JP4011240B2 - Waveguide line - Google Patents

Waveguide line Download PDF

Info

Publication number
JP4011240B2
JP4011240B2 JP22729099A JP22729099A JP4011240B2 JP 4011240 B2 JP4011240 B2 JP 4011240B2 JP 22729099 A JP22729099 A JP 22729099A JP 22729099 A JP22729099 A JP 22729099A JP 4011240 B2 JP4011240 B2 JP 4011240B2
Authority
JP
Japan
Prior art keywords
waveguide
engineering plastic
waveguide line
plastic member
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22729099A
Other languages
Japanese (ja)
Other versions
JP2001053509A (en
Inventor
利幸 前山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
KDDI Corp
KDDI R&D Laboratories Inc
Original Assignee
Kyocera Corp
KDDI Corp
KDDI R&D Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, KDDI Corp, KDDI R&D Laboratories Inc filed Critical Kyocera Corp
Priority to JP22729099A priority Critical patent/JP4011240B2/en
Publication of JP2001053509A publication Critical patent/JP2001053509A/en
Application granted granted Critical
Publication of JP4011240B2 publication Critical patent/JP4011240B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、通信、放送などの送受信機、或いは自動車における衝突防止用レーダーの送受信機等に用いる伝送線路に好適な導波管線路及びその製造方法に係わり、特にアンテナや高周波回路基板の周辺回路部材も一体に形成可能な導波管線路及びその製造方法の改良に関する。
【0002】
【従来の技術】
電磁波を送信する伝送回路については、金属の鋼管で構成された導波管やプラスチック等の誘電体基板で構成されたストリップ線路や表面波線路など幾つかの試みがなされ実用化されている。
【0003】
【発明が解決しようとする課題】
低損失の高周波伝送方法として金属の鋼管で構成された導波管が一般的に使用されているが、その製造方法は金属を引き抜き加工によって成形し、必要とする長さで切断し、接続用コネクタをロウ付けする製造方法としているので、大量生産に向かないし、また高価でもある。また、高周波回路基板やアンテナとは、材料が異なるため一体での成形は不可能であり、生産性が悪いという問題がある。
【0004】
また、ストリップ線路や表面波線路などは、同じ基板材料を用いることが可能なので、高周波回路基板との一体成形ができ生産性は高い。しかし、この伝送路は、基板材料を構成する誘電体の損失の影響が、特に高周波に成る程大きく表われるので、低損失の伝送線路としての問題、低損失の基板材料開発という問題がある。
【0005】
本発明の目的は上記従来技術の課題を解決するため、安価かつ製造が容易で大量生産に好適で、しかもアンテナや高周波回路基板等の周辺回路部材も一体に成形可能な導波管線路及びその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明の導波管線路は、エンジニアリングプラスチック部材に、所望する伝送させるべき電磁波の周波数に対応する高さと幅の中空路を形成し、かつ該中空路の全内周面に金属メッキ層を設けた導波管線路であり、所望の高周波回路基板が前記エンジニアリングプラスチック部材によって前記導波管線路と一体に成形されており、前記高周波回路基板からの高周波信号を前記導波管線路に給電する高周波給電用プローブを設けたことを要旨とする。
【0007】
導波管線路の製造方法の一実施の態様によれば、断面が凹型の形状を有する第1のエンジニアリングプラスチック部材と、板状の形状を有する第2のエンジニアリングプラスチック部材を成形し、第1のエンジニアリングプラスチック部材の凹型の全内周面及び第2のエンジニアリングプラスチック部材の上記凹型に対応する内面部分に金属層をメッキし、上記第1及び第2のエンジニアリングプラスチック部材を組み合わせて、所望する伝送させるべき電磁波の周波数に対応する高さと幅を有しかつ全内周面に金属メッキ層が設けられた中空導電路を形成する。
【0008】
導波管線路の製造方法の一実施の態様によれば、断面がL字形の形状を有するエンジニアリングプラスチック部材で、かつ、同じ形状のものを2個成形し、該各エンジニアリングプラスチック部材の全内周面に金属層をメッキし、上記2個のエンジニアリングプラスチック部材を組み合わせて所望する伝送させるべき電磁波の周波数に対応する高さと幅を有しかつ全内周面に金属メッキ層が設けられた中空導電路を形成することを要旨とする。
【0009】
導波管線路の製造方法の一実施の態様によれば、所望する伝送させるべき電磁波の周波数に対応する高さと幅の中空路を有するエンジニアリングプラスチック部材を押し出し成形により成形し、該中空路の全内周面に金属層をメッキして中空導電路を形成することを要旨とする。
【0010】
導波管線路の製造方法の一実施の態様によれば、長さが同一で、幅の異なる2対の板状のエンジニアリングプラスチック部材を成形し、各エンジニアリングプラスチック部材の一面全面に金属層をメッキし、上記2対のエンジニアリングプラスチック部材を組み合わせて所望する伝送させるべき電磁波の周波数に対応する高さと幅を有しかつ全内周面に金属メッキ層が設けられた中空導電路を形成することを要旨とする。
【0011】
導波管線路の製造方法の一実施の態様によれば、前記金属層のメッキ加工方法は、無電解メッキ加工と電解メッキ加工から成り、メッキ対象となる面に、まず所定の薬品処理をしてから無電解メッキ加工を行って電気的に導電性をもたせ、次いで、電解メッキ加工により規定の膜厚となるように処理することを要旨とする。
【0015】
なお、請求項1の発明の導波管線路において、所望のアンテナを前記エンジニアリングプラスチック部材によって導波管線路と一体に成形することも可能である。
【0016】
【発明の実施の形態】
本発明は、上述したように導波管構造の大部分をエンジニアリングプラスチック部材で構成し、その中空導電路として中空路の全内周面に金属メッキ層を設けることにより、従来のストリップ線路等における伝送損失の問題を改善する。更に導波管構造部と、高周波回路部及び又はアンテナ部等のその周辺回路部を同一のエンジニアリングプラスチック部材によって一体成形することにより、従来の金属製導波管と高周波回路との一体化の問題を改善し、コストダウンと生産性の向上を図っている。
【0017】
以下、図面に示す本発明の各実施例を説明する。
図1は本発明の導波管線路の一実施例を示す。同図において、1は導波管線路本体を構成するように成形されたエンジニアリングプラスチック部材で、方形の中空路2が形成されている。中空路2は、所望する伝送すべき電磁波の周波数に対応する高さHと幅Wを有し、その全内周面には所定の金属メッキ層3が形成されている。
【0018】
エンジニアリングプラスチック部材1のプラスチック材料としては、例えば、金属メッキに対応しうる高精度のポリプラスチック社製の液晶ポリマーのベークライトC810ないしC820を用い得る。
【0019】
そのメッキ加工方法としては、例えば、メッキ対象となる面に、まず所定の薬品処理をしてから無電解メッキ加工を行って電気的に導電性をもたせ、次いで、電解メッキ加工により規定の膜厚となるように処理する。なお、金属層を設ける方法としてはこれのみに限定されないこと勿論である。
【0020】
前記導波管線路本体を構成する中空路2を有するエンジニアリングプラスチック部材1は金属メッキに対応しうるエンジニアリングプラスチックを押し出し成形により成形し、中空路2の全内周面に金属層3をメッキすればよい。
【0021】
前記導波管線路本体の製造方法としては、種々の方法があるが、製造及びメッキ加工の容易さ等を勘案して下記のような方法がある。
【0022】
(a)図2に示すように、1aは断面が凹型状を有する第1のエンジニアリングプラスチック部材で成形された導波管線路基板凹部、1bは板状の第2のエンジニアリングプラスチック部材で成形された導波管線路基板部で、凹型の溝2aの全内周面及びこれに対応する基板部1bの内面部分2bに金属メッキ層3a,3bを形成する。この場合、基板1bの内面全体に金属メッキ層を設けてもよい。
次に上記基板凹部1aと基板部1bを組み合わせて、所望する伝送させるべき電磁波の周波数に対応する高さH及び幅Wを有し、全内周面に金属メッキ層3が設けられた中空路2を形成する。この中空路2は導波管として機能するもので、その長さ方向Lに所定の周波数の電磁波を、H,Wの寸法で構成される金属メッキされた壁面に案内されて伝搬する。上記金属メッキ層3は、例えば、前記導電性をもたせるための無電解メッキ加工及び規定の金属厚を得るための電解メッキ加工で処理し、また第1及び第2のエンジニアリングプラスチック部材は射出成形法で成形する。
【0023】
(b)図3において、1c,1dは断面がL字型の形状を有するプラスチック部材で射出成形もしくは押し出し成形したL型基板部で、その内周面に金属メッキ層3c,3dを形成する。
次に上記2個のL型基板部1c,1dを組み合わせて所望する伝送させるべき電磁波の周波数に対応する高さH及び幅Wを有し、全内周面に金属メッキ層3が設けられた中空路2を形成する。
【0024】
(c)図4において、12,13は夫々長さLが同一で、幅W1,W2が異なる2対の板状のエンジニアリングプラスチック部材で成形した導波管線路基板で、その一面全面に金属メッキ層3e,3fを形成する。
次に上記2対の基板12,13を組み合わせて所望する伝送すべき電磁波の周波数に対応する高さH及び幅Wを有し、全内周面に金属メッキ層3が設けられた中空路2を形成する。
【0025】
(d)従来の導波管は金属を引き抜き加工により成形し、夫々の導波管の接続用金具を夫々にロウ付けしていた。しかし本発明の方法によると、エンジニアリングプラスチック部材を射出成形する金型として、導波管基板部と接続用金具部を接続し一体に成形し得るものを用いることにより、接続用金具と導波管を一体の形で成形できる。
【0026】
(e)図5において、4は導波管線路基板部1bの外面に形成された高周波回路部で第2のエンジニアリングプラスチック部材を射出成形する金型として、導波管基板部1bと高周波回路部4を一体とした形で成形可能なものを用いて成形することにより、高周波回路と導波管を一体で成形することができる。
高周波回路部4には、所望の高周波回路パターンを形成して、各種IC等を実装すると共に高周波給電用プローブ5により高周波回路部4からの高周波信号を導波管部6に給電し所定の伝送を行う。
【0027】
(f)図6において、7は一般的な導波管アンテナである側面にスリット構造8を有するアンテナ部で、エンジニアリングプラスチック部材を射出成形する金型として導波管線路9とアンテナ部7を一体として成形可能なものを用いて成形することにより、アンテナと導波管を一体で成形することができる。
【0028】
(g)図7において、10はアンテナ部、11は高周波回路部で、エンジニアリングプラスチック部材を射出成形する金型として導波管線路9、アンテナ部10及び高周波回路部11を一体として成形可能なものを用いて成形することにより、アンテナ、高周波回路及び導波管を一体で成形することができる。
【0029】
【発明の効果】
以上説明したように本発明によれば、エンジニアリングプラスチック部材を用いて導波管線路を成形するので、加工が容易となり、大量生産が可能で安価になる。また導波管部だけでなく、高周波回路部、アンテナ部等も一体に容易に成形可能となり、全体構成の簡略化、小型化及び軽量化を達成できる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す斜視図である。
【図2】本発明の他の実施例を示す斜視図である。
【図3】本発明の更に他の実施例を示す斜視図である。
【図4】本発明の更に他の実施例を示す斜視図である。
【図5】本発明の更に他の実施例を示す斜視図である。
【図6】本発明の更に他の実施例を示す斜視図である。
【図7】本発明の更に他の実施例を示す斜視図である。
【符号の説明】
1 導波管線路本体
2 中空路
3 金属メッキ層
1a 導波管線路基板凹部
1b 導波管線路基板部
2a 溝
2b 基板部の内面部分
1c,1d L型エンジニアリングプラスチック部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a waveguide line suitable for a transmission line used for a communication / broadcasting transmitter / receiver or a collision-preventing radar transmitter / receiver in an automobile, and a manufacturing method thereof. The present invention relates to an improvement in a waveguide line that can be formed integrally with a member and a manufacturing method thereof.
[0002]
[Prior art]
Transmission circuits that transmit electromagnetic waves have been put to practical use after several attempts, such as a waveguide composed of a metal steel tube, a strip line composed of a dielectric substrate such as plastic, and a surface wave line.
[0003]
[Problems to be solved by the invention]
A waveguide made of metal steel pipe is generally used as a low-loss high-frequency transmission method, but its manufacturing method is to form metal by drawing, cut it to the required length, and connect Since the manufacturing method is to braze the connector, it is not suitable for mass production and is also expensive. Further, since the material is different from that of the high-frequency circuit board and the antenna, there is a problem that the molding cannot be performed integrally and the productivity is poor.
[0004]
In addition, since the same substrate material can be used for the strip line, the surface wave line, etc., it can be integrally formed with the high-frequency circuit board and the productivity is high. However, this transmission line has a problem of a low-loss transmission line and a development of a low-loss substrate material because the influence of the loss of the dielectric material constituting the substrate material is particularly large as the frequency becomes high.
[0005]
An object of the present invention is to solve the above-mentioned problems of the prior art, and is inexpensive, easy to manufacture, suitable for mass production, and a waveguide line capable of integrally forming peripheral circuit members such as an antenna and a high-frequency circuit board, and the like It is to provide a manufacturing method.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a waveguide line according to the first aspect of the present invention forms a hollow path having a height and a width corresponding to a desired frequency of an electromagnetic wave to be transmitted in an engineering plastic member. A waveguide line having a metal plating layer on the entire inner peripheral surface , and a desired high-frequency circuit board is formed integrally with the waveguide line by the engineering plastic member, and a high-frequency signal from the high-frequency circuit board A high-frequency power supply probe for supplying power to the waveguide line is provided .
[0007]
According to one embodiment of the method for manufacturing a waveguide line, the first engineering plastic member having a concave cross section and the second engineering plastic member having a plate shape are molded, and the first A metal layer is plated on the entire inner peripheral surface of the concave shape of the engineering plastic member and the inner surface portion corresponding to the concave shape of the second engineering plastic member, and the first and second engineering plastic members are combined for desired transmission. A hollow conductive path having a height and a width corresponding to the frequency of the power electromagnetic wave and having a metal plating layer provided on the entire inner peripheral surface is formed.
[0008]
According to one embodiment of the method for manufacturing a waveguide line, two engineering plastic members having an L-shaped cross section and the same shape are formed, and the entire inner circumference of each engineering plastic member A hollow conductive plate having a height and width corresponding to the desired frequency of the electromagnetic wave to be transmitted by plating the metal layer on the surface and combining the two engineering plastic members, and having a metal plating layer on the entire inner peripheral surface. The gist is to form a road.
[0009]
According to one embodiment of a method for manufacturing a waveguide line, an engineering plastic member having a hollow path having a height and width corresponding to a desired frequency of an electromagnetic wave to be transmitted is formed by extrusion molding, and the entire hollow path is formed. The gist is to form a hollow conductive path by plating a metal layer on the inner peripheral surface.
[0010]
According to one embodiment of the method for manufacturing a waveguide line, two pairs of plate-shaped engineering plastic members having the same length and different widths are formed, and a metal layer is plated on the entire surface of each engineering plastic member. And combining the two pairs of engineering plastic members to form a hollow conductive path having a height and width corresponding to the desired frequency of the electromagnetic wave to be transmitted and having a metal plating layer on the entire inner peripheral surface. The gist.
[0011]
According to an embodiment of the method for manufacturing a waveguide line, the metal layer plating method includes electroless plating and electrolytic plating, and a predetermined chemical treatment is first performed on a surface to be plated. The gist of the present invention is to perform electroless plating to make it electrically conductive, and then to treat the film to a specified thickness by electrolytic plating.
[0015]
In the waveguide line according to the first aspect of the present invention, a desired antenna can be formed integrally with the waveguide line by the engineering plastic member.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, as described above, most of the waveguide structure is formed of an engineering plastic member, and a metal plating layer is provided on the entire inner peripheral surface of the hollow path as the hollow conductive path, thereby allowing the conventional strip line or the like to be used. Improve the transmission loss problem. Furthermore, the conventional structure of the metal waveguide and the high-frequency circuit can be integrated by integrally forming the waveguide structure portion and the peripheral circuit portion such as the high-frequency circuit portion and / or the antenna portion with the same engineering plastic member. To reduce costs and improve productivity.
[0017]
Embodiments of the present invention shown in the drawings will be described below.
FIG. 1 shows an embodiment of a waveguide line according to the present invention. In the figure, reference numeral 1 denotes an engineering plastic member molded so as to constitute a waveguide line body, and a rectangular hollow path 2 is formed. The hollow path 2 has a height H and a width W corresponding to a desired frequency of an electromagnetic wave to be transmitted, and a predetermined metal plating layer 3 is formed on the entire inner peripheral surface thereof.
[0018]
As the plastic material of the engineering plastic member 1, for example, high-precision liquid crystal polymer bakelites C810 to C820 that can be used for metal plating can be used.
[0019]
As the plating method, for example, the surface to be plated is first subjected to a predetermined chemical treatment, and then electroless plating is performed to make it electrically conductive, and then the specified film thickness is obtained by electrolytic plating. Process so that Of course, the method of providing the metal layer is not limited to this.
[0020]
The engineering plastic member 1 having the hollow path 2 constituting the waveguide line main body is formed by extruding an engineering plastic capable of supporting metal plating, and the metal layer 3 is plated on the entire inner peripheral surface of the hollow path 2. Good.
[0021]
There are various methods for manufacturing the waveguide line body, and there are the following methods in consideration of the ease of manufacturing and plating.
[0022]
(A) As shown in FIG. 2, 1a is a waveguide line substrate recess formed by a first engineering plastic member having a concave cross section, and 1b is formed by a plate-like second engineering plastic member. In the waveguide line substrate portion, metal plating layers 3a and 3b are formed on the entire inner peripheral surface of the concave groove 2a and the inner surface portion 2b of the substrate portion 1b corresponding thereto. In this case, a metal plating layer may be provided on the entire inner surface of the substrate 1b.
Next, by combining the substrate concave portion 1a and the substrate portion 1b, a hollow path having a height H and a width W corresponding to a desired frequency of the electromagnetic wave to be transmitted and the metal plating layer 3 provided on the entire inner peripheral surface 2 is formed. The hollow path 2 functions as a waveguide, and propagates an electromagnetic wave having a predetermined frequency in the length direction L while being guided by a metal-plated wall surface having dimensions of H and W. The metal plating layer 3 is processed by, for example, an electroless plating process for providing conductivity and an electrolytic plating process for obtaining a specified metal thickness, and the first and second engineering plastic members are formed by an injection molding method. Molded with.
[0023]
(B) In FIG. 3, reference numerals 1c and 1d denote L-shaped substrate portions which are injection-molded or extrusion-molded with a plastic member having an L-shaped cross section, and metal plating layers 3c and 3d are formed on the inner peripheral surface thereof.
Next, the two L-shaped substrate portions 1c and 1d are combined to have a height H and a width W corresponding to the desired frequency of the electromagnetic wave to be transmitted, and the metal plating layer 3 is provided on the entire inner peripheral surface. A hollow path 2 is formed.
[0024]
(C) In FIG. 4, 12 and 13 are waveguide line substrates formed of two pairs of plate-shaped engineering plastic members having the same length L and different widths W1 and W2, and the entire surface is metal-plated. Layers 3e and 3f are formed.
Next, a hollow path 2 having a height H and a width W corresponding to a desired frequency of electromagnetic waves to be transmitted by combining the two pairs of substrates 12 and 13 and having a metal plating layer 3 provided on the entire inner peripheral surface. Form.
[0025]
(D) In the conventional waveguide, metal is formed by drawing, and the connecting fittings of each waveguide are brazed to each other. However, according to the method of the present invention, the metal mold for injection-molding the engineering plastic member is a mold that can be molded integrally by connecting the waveguide substrate part and the metal part for connection. Can be molded in one piece.
[0026]
(E) In FIG. 5, 4 is a high-frequency circuit unit formed on the outer surface of the waveguide line substrate unit 1b. As a mold for injection-molding the second engineering plastic member, the waveguide substrate unit 1b and the high-frequency circuit unit The high frequency circuit and the waveguide can be integrally molded by molding using a material that can be molded integrally with 4.
A desired high-frequency circuit pattern is formed in the high-frequency circuit unit 4, various ICs are mounted, and a high-frequency signal from the high-frequency circuit unit 4 is fed to the waveguide unit 6 by a high-frequency power feeding probe 5 and is transmitted in a predetermined manner. I do.
[0027]
(F) In FIG. 6, reference numeral 7 denotes an antenna portion having a slit structure 8 on a side surface which is a general waveguide antenna, and the waveguide line 9 and the antenna portion 7 are integrated as a mold for injection molding an engineering plastic member. As a result, the antenna and the waveguide can be formed integrally.
[0028]
(G) In FIG. 7, 10 is an antenna section, 11 is a high-frequency circuit section, and the waveguide line 9, the antenna section 10 and the high-frequency circuit section 11 can be integrally molded as a mold for injection molding an engineering plastic member. The antenna, the high-frequency circuit, and the waveguide can be integrally formed by molding using
[0029]
【The invention's effect】
As described above, according to the present invention, since the waveguide line is formed using the engineering plastic member, processing becomes easy, mass production becomes possible, and the cost becomes low. Further, not only the waveguide part but also the high-frequency circuit part, the antenna part and the like can be easily molded integrally, and the overall configuration can be simplified, reduced in size and reduced in weight.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of the present invention.
FIG. 2 is a perspective view showing another embodiment of the present invention.
FIG. 3 is a perspective view showing still another embodiment of the present invention.
FIG. 4 is a perspective view showing still another embodiment of the present invention.
FIG. 5 is a perspective view showing still another embodiment of the present invention.
FIG. 6 is a perspective view showing still another embodiment of the present invention.
FIG. 7 is a perspective view showing still another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Waveguide line main body 2 Hollow path 3 Metal plating layer 1a Waveguide line board | substrate recessed part 1b Waveguide line board | substrate part 2a Groove 2b The inner surface part 1c of a board | substrate part, 1d L-type engineering plastic member

Claims (1)

エンジニアリングプラスチック部材に、所望する伝送させるべき電磁波の周波数に対応する高さと幅の中空路を形成し、かつ該中空路の全内周面に金属メッキ層を設けた導波管線路であり、
所望の高周波回路基板が前記エンジニアリングプラスチック部材によって前記導波管線路と一体に成形されており、
前記高周波回路基板からの高周波信号を前記導波管線路に給電する高周波給電用プローブを設けたことを特徴とする導波管線路。
The engineering plastic member is a waveguide line in which a hollow path having a height and a width corresponding to a desired frequency of an electromagnetic wave to be transmitted is formed, and a metal plating layer is provided on the entire inner peripheral surface of the hollow path,
A desired high-frequency circuit board is formed integrally with the waveguide line by the engineering plastic member,
A waveguide line comprising a high-frequency power supply probe for supplying a high-frequency signal from the high-frequency circuit board to the waveguide line.
JP22729099A 1999-08-11 1999-08-11 Waveguide line Expired - Fee Related JP4011240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22729099A JP4011240B2 (en) 1999-08-11 1999-08-11 Waveguide line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22729099A JP4011240B2 (en) 1999-08-11 1999-08-11 Waveguide line

Publications (2)

Publication Number Publication Date
JP2001053509A JP2001053509A (en) 2001-02-23
JP4011240B2 true JP4011240B2 (en) 2007-11-21

Family

ID=16858504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22729099A Expired - Fee Related JP4011240B2 (en) 1999-08-11 1999-08-11 Waveguide line

Country Status (1)

Country Link
JP (1) JP4011240B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11233305B2 (en) 2019-03-04 2022-01-25 Molex, Llc Waveguide comprising a conductor layer formed on a resin tube including fittings held by the resin tube and a method for forming the waveguide

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003005482A1 (en) * 2001-07-06 2003-01-16 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing waveguide, and waveguide
US6624787B2 (en) * 2001-10-01 2003-09-23 Raytheon Company Slot coupled, polarized, egg-crate radiator
JP4827800B2 (en) * 2007-06-27 2011-11-30 三菱電機株式会社 Waveguide switch and single pole multiple throw waveguide switch
JP5065839B2 (en) * 2007-10-04 2012-11-07 オリンパス株式会社 Wiring board manufacturing method
US8461944B2 (en) 2007-12-20 2013-06-11 Telefonaktiebolaget L M Ericsson (Publ) First and second U-shape waveguides joined to a dielectric carrier by a U-shape sealing frame
JP5474925B2 (en) 2008-03-19 2014-04-16 コーニンクレッカ フィリップス エヌ ヴェ Waveguide and computed tomography system with waveguide
JP2010252092A (en) * 2009-04-16 2010-11-04 Tyco Electronics Japan Kk Waveguide
US8500066B2 (en) * 2009-06-12 2013-08-06 The Boeing Company Method and apparatus for wireless aircraft communications and power system using fuselage stringers
CN114122656B (en) * 2020-08-31 2022-12-13 台湾禾邦电子有限公司 Electronic device, waveguide structure thereof and manufacturing method of waveguide structure
CN115922258B (en) * 2023-02-07 2023-05-09 河南工学院 Casting and milling integrated forming manufacturing method for terahertz metal coating hollow rectangular waveguide cavity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11233305B2 (en) 2019-03-04 2022-01-25 Molex, Llc Waveguide comprising a conductor layer formed on a resin tube including fittings held by the resin tube and a method for forming the waveguide

Also Published As

Publication number Publication date
JP2001053509A (en) 2001-02-23

Similar Documents

Publication Publication Date Title
JP4011240B2 (en) Waveguide line
JP2006352915A (en) Method for manufacturing waveguide slot antenna
EP0569017B1 (en) Molded metallized plastic microwave components and processes for manufacture
CN108963402B (en) Transmission structure for manufacturing radio frequency microwave device and antenna and manufacturing method
US20100238085A1 (en) Plastic waveguide slot array and method of manufacture
JP3123386B2 (en) Strip line cable with integrated antenna
US6592021B2 (en) Circuit board bonding method, branch circuit and its designing method, waveguide-microstrip transition, and application to HF circuit, antenna and communication system
JP2005318632A (en) Non-contact transition part element between waveguide and microstrip feed line
US10096880B2 (en) Waveguide comprising first and second components attachable together using an extruding lip and an intruding groove
US20150342028A1 (en) Signal line and manufacturing method therefor
CN214797676U (en) Waveguide circulator
MXPA05007249A (en) Transition between a rectangular waveguide and a microstrip line.
CN214706234U (en) 5G antenna oscillator and 5G antenna based on integrated into one piece and printed copper technology
CN111180904B (en) 5G millimeter wave antenna and manufacturing method thereof
CN111082222B (en) Antenna device and antenna radiation unit
EP1221181A1 (en) Feed structure for electromagnetic waveguides
JP2518823Y2 (en) Inverted F printed antenna with integrated main plate
CN116683167A (en) Plastic electroplated waveguide antenna and manufacturing method thereof
CN110943283B (en) Manufacturing method of composite antenna material, composite antenna and manufacturing method thereof
JP2001185915A (en) Microstrip line structure
Gjokaj et al. A Semi-Hemispherical High Q-Factor Resonators Fabricated using a Hybrid Rigid-Flex Process
JPH04323905A (en) Plane antenna and on-vehicle antenna
JPH1041739A (en) Microstrip line and microstrip antenna forming the same
JPH04113703A (en) Microwave circuit
CN117673713A (en) 5G antenna and terminal

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070905

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees