JP4010869B2 - Local SAR measuring apparatus and method - Google Patents

Local SAR measuring apparatus and method Download PDF

Info

Publication number
JP4010869B2
JP4010869B2 JP2002143326A JP2002143326A JP4010869B2 JP 4010869 B2 JP4010869 B2 JP 4010869B2 JP 2002143326 A JP2002143326 A JP 2002143326A JP 2002143326 A JP2002143326 A JP 2002143326A JP 4010869 B2 JP4010869 B2 JP 4010869B2
Authority
JP
Japan
Prior art keywords
wireless device
electromagnetic
local sar
electromagnetic field
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002143326A
Other languages
Japanese (ja)
Other versions
JP2003332999A (en
Inventor
芳雄 小柳
裕 斎藤
晃一 小川
正一 梶原
晃弘 尾崎
叔孝 浅山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002143326A priority Critical patent/JP4010869B2/en
Priority to CZ20041124A priority patent/CZ20041124A3/en
Priority to PCT/JP2003/005848 priority patent/WO2003098238A1/en
Priority to CNB038169991A priority patent/CN100360946C/en
Priority to AU2003235922A priority patent/AU2003235922A1/en
Publication of JP2003332999A publication Critical patent/JP2003332999A/en
Application granted granted Critical
Publication of JP4010869B2 publication Critical patent/JP4010869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/245Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with means for shaping the antenna pattern, e.g. in order to protect user against rf exposure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3833Hand-held transceivers
    • H04B1/3838Arrangements for reducing RF exposure to the user, e.g. by changing the shape of the transceiver while in use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3833Hand-held transceivers
    • H04B1/3838Arrangements for reducing RF exposure to the user, e.g. by changing the shape of the transceiver while in use
    • H04B2001/3844Arrangements for reducing RF exposure to the user, e.g. by changing the shape of the transceiver while in use with means to alert the user that a certain exposure has been reached

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、携帯電話機等の小型の無線装置における局所SARを測定するための局所SAR測定装置及び方法に関する。
【0002】
【従来の技術】
近年、携帯電話機などの携帯無線機の急速な需要拡大に伴い、生体への電磁波安全性の視点から、人体に対する電磁波の放射量を規制する動きが世界的に強まっている。特に、携帯電話機では、電磁波発生源となるアンテナを使用者の頭部に近接して使用するので人体に及ぼす有害な影響が懸念され、各国において局所SARの上限値を定めて規制、管理している。これに伴い、携帯電話機の生産工程においても製品の局所SAR値を管理した上で出荷する必要があり、迅速かつ高精度に局所SARを検査する測定手段が求められている。
【0003】
SAR(Specific Absorption Rate)とは、人体が電磁界に曝された際の単位体重当たりの吸収電力であり、旧郵政省の電気通信技術審議会答申における「電波利用における人体の防護指針」などで指針値が示され、また同答申における「人体側頭部で使用する携帯電話端末等に対する比吸収率の測定方法」では、形状・寸法、頭部組織の電気的特性を人体に模擬させた人体(ファントム)を使用し、人体内に生ずるであろうSARを実験的に推定することが示されている。
【0004】
一般に、携帯無線機の使用者の頭部における電磁波吸収を想定した局所SARは、頭部の形状や寸法、頭部組織の電気的特性を人体に模擬させたファントムを使用して実験的に推定される。ここでは、携帯無線機を近接させたファントム内部に励起される電界強度分布を電界プローブを用いて測定し、その測定値からSAR値を次の(1)式により算出している。
【0005】
【数1】

Figure 0004010869
【0006】
ただし、σはファントムの導電率、ρは人体組織の密度である。
【0007】
また、簡易的にSARを推定する方法として、ファントム表面における磁界強度Hより局所SARを実験的に求める方法が提案されている(例えば、N. Kuster and Q. Balzano, "Energy absorption mechanism by biological bodies in the near field of dipole ant-ennas above 300MHz", IEEE Trans. Veh. Tech., vol. 41, no.1, pp.17-23, Feb. 1992 など)。この方法によれば、人体表面上に発生する局所SARの分布には、次の(2)式の関係式が成り立つことが確認されている。
【0008】
【数2】
Figure 0004010869
【0009】
ファントム内に発生する電界強度E、或いはファントム表面における磁界強度Hは、携帯無線機の送信出力、アンテナの形状、ファントムとの位置関係などによって変化するため、局所SAR評価にはファントムを用いた電界強度分布あるいは磁界強度分布の測定が必要となる。
【0010】
従来、局所SAR測定装置としては、例えば図7に示すように、電界プローブ62、プローブ走査装置63、ファントム64を有して構成され、保持器65上に保持された携帯無線機61を測定する内部電界検出式の装置が知られている。この装置によれば、最も高精度に局所SARを測定することが可能である。
【0011】
また別の従来例として、例えば図8に示すように、ファントムを用いることなく、電界プローブ72を局所SARの最大値が発生する部位付近に固定し、保持器75上に保持された携帯無線機71から放射される自由空間における近傍電磁界を測定する近傍電界検出式の局所SAR測定装置が知られている。この装置は構成が単純であり、プローブ走査を行わないので、短時間に測定することが可能であり、量産工程に導入するのに適している。
【0012】
さらに、例えば特許第2737661号公報や特許第2790103号公報には、アンテナから放射された電磁界の内、ファントム表面で反射された磁界を検出する、近傍磁界検出式の構成が開示されている。この構成では、電磁プローブを移動、回転させることにより、高精度に磁界分布を測定し、測定した磁界分布から局所SARを推定するようになっている。これによれば、比較的簡単な構成で局所SARを推定することが可能である。
【0013】
また、特開平11−133079号公報には、電波吸収体を内壁に配置したシールド箱内に進行波アンテナを複数配置し、アンテナ群で収集した電磁界を位相合成する合成器と、加算した電磁界を放射電力として読み取る手段を備えた電磁波結合装置の例(電磁波結合方式)が開示されている。この電磁波結合方式の装置では、被測定物である携帯無線機アンテナから放射された電磁波を生産工程で安定して測定することができる。
【0014】
【発明が解決しようとする課題】
しかしながら、上記した従来例の内部電界検出式、近傍電界検出式、近傍磁界検出式の局所SAR測定装置は、ファントムの局所SAR値を測定する必要性からアンテナの極近傍にプローブ手段を配置しており、測定対象となる携帯無線機の位置や置き方、或いはアンテナの位置や向きによって測定データがバラツキ易いという課題がある。
【0015】
ここで、極近傍界のSAR測定において、測定データにバラツキが発生し易い要因について説明する。図9はアンテナの最も基礎的な単位となる微小ダイポールアンテナから放射される電磁界成分を説明する図である。微小ダイポールアンテナの波源を原点としたときに、距離R離れた位置C点における電磁界は、次の(3)式〜(7)式のように示される。
【0016】
【数3】
Figure 0004010869
【0017】
ここで、λは波長、kは波数、Iは微小ダイポールアンテナの電流、Lは微小ダイポールアンテナの長さ、εは伝搬空間の誘電率、μは伝搬空間の透磁率、である。
【0018】
上式によると、アンテナから放射される電磁界は、アンテナ近傍から離れるに従って、距離Rに反比例した成分(放射電磁界)が支配的になるが、距離Rが小さいところでは、距離の二乗に反比例した項(誘導電磁界)や三乗に反比例した項(準静電界)が支配的になる。このため、一般的に電磁界を取り扱う場合には、約λ/100より近傍で準静電界成分が支配的になる領域を極近傍界、約5λより遠方で放射電磁界成分が支配的になる領域を遠方界、その間の領域をフレネル領域と呼び、それぞれの領域を区別している。
【0019】
つまり、アンテナに対し約λ/100より近傍の極近傍界においては、距離の三乗に反比例した準静電界成分が支配的となるため、このような領域での測定では、ごく僅かな相対位置の差が電磁界の大きな誤差になってしまう問題点がある。
【0020】
携帯電話システムで一般的に運用されている800MHz帯の周波数では、λ/100は約0.4cmに相当する。図7の内部電界検出式や図8の近傍電界検出式、或いは近傍磁界検出式の局所SAR測定装置では、こうした極近傍界にプローブ手段を配置して局所SARを測定している。これは、実際の使用状態における携帯無線機の本体やアンテナが、人体に極めて近接して使用されるため、ファントム表面と電磁界発生源とを非常に近接して評価しなければならないためである。また、アンテナから放射された電磁界がファントム表面に誘導電流を発生させ、その電流から2次的にファントム内部に電界が発生するため、これを測定するにはファントム表面近傍の電磁界を測定する必要があり、従って極近傍界での測定を行っている。
【0021】
図7の内部電界検出式の装置では、位置精度による測定誤差を低減するために、産業用ロボット等を用いたプローブ走査装置により位置精度を保つとともに、局所SARが最大となる付近を複数個所走査することによって、測定精度の向上を図っている。しかし、この構成は、測定精度を向上させるために測定個所を増やせば増やすほど、測定時間が長くなってしまうため、量産工程で用いるには不向きである。
【0022】
また、図8の近傍電界検出式の装置、特許第2737661号公報や特許第2790103号公報に記載の近傍磁界検出式の装置では、通常1個所だけの計測であるため、測定時間は短くできる一方、位置のバラツキやアンテナからの放射パターンの微小なバラツキが原因で測定結果に誤差が生じ、測定精度を保つことが困難であるという問題点がある。
【0023】
また、特開平11−133079号公報に記載の電磁波結合方式の装置は、測定対象のアンテナから少し離れた遠方界における電磁界を測定するものであり、アンテナ近傍におけるSAR測定に対応させることは困難である。
【0024】
本発明は、上記事情に鑑みてなされたもので、その目的は、携帯電話機等の小型の無線装置の生産ライン上において、短時間かつ高精度に局所SARを推定することが可能な局所SAR測定装置及び方法を提供することにある。
【0025】
【課題を解決するための手段】
本発明の局所SAR測定装置は、無線装置から放射される電磁波のフレネル領域における電磁界レベルを測定する複数の電磁プローブと、前記電磁プローブで得られる電磁界レベルを処理して局所SAR値を算出する信号処理部と、前記電磁プローブと前記無線装置との相対的位置関係を調整する位置調整手段とを備え、前記電磁プローブにおいて、予め局所SAR値が分かっている基準無線装置と測定対象の無線装置のそれぞれの電磁界レベルを測定し、前記信号処理部において、SAR値が電磁界レベルに比例することを利用して、予め分かっている前記基準無線装置の局所SAR値から前記測定対象の無線装置の局所SAR値を推定して求めることを特徴とする。
【0026】
上記構成によれば、無線装置のアンテナ近傍の極近傍界より離れたフレネル領域において電磁界レベルを測定し、既知の局所SAR値をもつ基準無線装置との比例関係の演算により局所SAR値を推定することによって、携帯電話機等の小型の携帯型の無線装置を製造する生産ライン上において、測定対象の無線装置の局所SAR値を短時間かつ高精度に推定して求めることが可能となる。このため、多数の無線装置についても局所SAR値の測定を生産ライン上で短時間に実行可能である。
【0027】
また、前記位置調整手段は、前記無線装置からの電磁界放射パターンに応じて前記電磁プローブと前記無線装置の少なくとも一方を移動させて両者の相対的位置関係を調整することを特徴とする。
【0028】
上記構成によれば、無線装置から放射される電磁界の放射パターンに応じて、電磁界レベルの測定位置を最適な位置に調整することが可能となり、高精度の測定が実現可能となる。
【0029】
また、前記位置調整手段は、前記無線装置からの電磁界放射パターンが送信周波数に応じて複数存在する場合に、前記送信周波数によって前記電磁プローブと前記無線装置の少なくとも一方を移動させて両者の相対的位置関係を変化させることを特徴とする。
【0030】
上記構成によれば、複数の運用周波数帯域をもつ無線装置などの測定において、送信周波数によって異なる電磁界放射パターンに応じて電磁界レベルの測定位置を最適な位置に調整することが可能となり、各周波数帯域で高精度の測定が実現可能となる。
【0031】
本発明の局所SAR測定方法は、予め局所SAR値が分かっている基準無線装置の電磁界レベルを、前記無線装置から放射される電磁波のフレネル領域において測定するステップと、測定対象の無線装置の電磁界レベルを前記無線装置から放射される電磁波のフレネル領域において測定するステップと、前記測定した電磁界レベルに基づき、SAR値が電磁界レベルに比例することを利用して、予め分かっている前記基準無線装置の局所SAR値から前記測定対象の無線装置の局所SAR値を推定して求めるステップと、を有することを特徴とする。
【0032】
上記手順によれば、携帯電話機等の小型の携帯型の無線装置を製造する生産ライン上において、測定対象の無線装置の局所SAR値を短時間かつ高精度に推定して求めることが可能となる。
【0033】
また、前記無線装置からの電磁界放射パターンが送信周波数に応じて複数存在する場合に、前記送信周波数に応じて前記電磁界レベルを測定する電磁プローブと前記無線装置の少なくとも一方を移動させて両者の相対的位置関係を変化させるステップをさらに有することを特徴とする。
【0034】
上記手順によれば、複数の運用周波数帯域をもつ無線装置などの測定において、送信周波数によって異なる電磁界放射パターンに応じて電磁界レベルの測定位置を最適な位置に調整することが可能となり、各周波数帯域で高精度の測定が実現可能となる。
【0035】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を説明する。
本実施形態では、小型の無線装置における局所SARを測定する装置として、携帯電話機の生産ラインにおいてアンテナ近傍の受信電力の測定に基づいて局所SARを推定する局所SAR測定装置の構成及び動作の一例を示す。
【0036】
始めに、本実施形態における局所SARの測定方法の概略を説明する。
携帯電話機の生産工程のように、同一規格の製品を多量に生産する場面では、1台の携帯電話機について局所SARの値が把握できれば、そのバラツキ要因を把握して相対比較することにより、他の製品の局所SAR値を推定することが可能となる。そこで、先ず携帯電話機の生産バラツキ要因について、図2を用いて説明する。
【0037】
図2は、携帯電話機の無線回路からアンテナへ供給される電力の様子を示す概念図であり、アンテナエレメント91、整合回路92、送信機93からなる。アンテナの等価回路は整合回路92を含み、送信機93の内部インピーダンスZgの電源Vgによって励振されているものとする。アンテナエレメント91の入力端子から見た入力インピーダンスZinが、電源の内部インピーダンスZgと互いに共役整合しているものとすると、Zin=Zg*が成り立つ。ここで(*)は複素共役を表す。
【0038】
この状態でアンテナエレメント91に印加される入力電力Pinは次の(8)式で表される。
【0039】
【数4】
Figure 0004010869
【0040】
ここで、I1はアンテナエレメント91に流れる電流であり、I1=Vg/(Zg+Zin)で表される。
【0041】
また、アンテナへの入力電力は全て電源Vgから供給されるので、次の(9)式、(10)式で表される。
【0042】
【数5】
Figure 0004010869
【0043】
ここで、Re(X)はXの実部を、Pinは電源の有能電力を表す。また、Sはアンテナへ供給される電力と電源の有能電力との比を表わし、共役整合状態ではS=1である。
【0044】
また、アンテナから空間への放射電力Prは、次の(11)式で表される。
【0045】
【数6】
Figure 0004010869
【0046】
上式において、Paはアンテナエレメント91を構成する金属線の高周波抵抗によって生じる損失電力、Pcは整合回路の損失抵抗rcによって生じる電力損失、Pmはインピーダンス不整合による損失電力であり、Pm=(1−S)Pavで表される。これらの式から、次の(12)式が導かれる。
【0047】
【数7】
Figure 0004010869
【0048】
生産工程における製品のバラツキ要因を考えた時、PcとPaは部品のバラツキとして僅かであると見なせる。このため、生産バラツキが支配的な要因は、送信機内の部品バラツキによって発生する電源の有能電力の偏差と、その調整バラツキが最も支配的であると考えられる。そこで、アンテナ空間への放射電力Prとアンテナエレメント上の電流I1との間に、次の(13)式で表される関係があることが導かれる。
【0049】
【数8】
Figure 0004010869
【0050】
アンテナエレメント上の電流I1は、その近傍に磁界Hを発生させ、その関係はアンペールの法則によってH∝Iとなる。ここで、アンテナエレメントの構造や電流分布形状が変化しない限り、近傍に発生する磁界分布の形状も変化しない。これから、次の(14)式が導かれる。
【0051】
【数9】
Figure 0004010869
【0052】
そして、上記の(7)式及び(14)式から、次の(15)式の関係が得られる。
【0053】
【数10】
Figure 0004010869
【0054】
つまり、アンテナエレメントの構造や電流分布形状が変化しない条件下では、放射電力Prを管理すれば、局所SARのバラツキを管理できることになる。
【0055】
放射電力Prは遠方界の放射指向性の全立体積分で求められるが、実際の生産工程で遠方界を測定するには、測定装置に大きな占有スペースが必要となり、現実的でない。そこで、極近傍界より測定精度が確保し易いフレネル領域となる領域に多数の電磁プローブを配置し、放射電力Prの一部を受信するようにすればよい。
【0056】
電磁プローブの受信レベルPxと放射電力Prが高い相関を持つようにするためには、特開平11−133079号公報における電磁波結合装置に示されるように、電磁プローブを複数配置するとともに、各々の電磁プローブの電力を合成する手法が有効である。しかしながら、より高精度に測定するには、電磁プローブの配置をできるだけ放射電力が最大となる方向にしなければ、受信レベルPxと放射電力Prの間に高い相関が確保できず、局所SARを管理できるほどの高精度な測定を実現できない。
【0057】
発明者はこのような点に鑑みて鋭意検討した結果、携帯電話機等の小型の無線装置における局所SARを測定するに際し、極近傍界ではなく、比較的高精度に電磁界レベルの測定が可能であるフレネル領域の電磁界レベルを測定し、かつ放射電力の最大方向に電磁プローブを配置できるように工夫した。これにより、生産ライン上において適用可能なように、短時間かつ高精度に局所SARを推定できる局所SAR測定装置が実現可能となった。
【0058】
本発明では、2つ以上の電磁プローブを具備し、各々の電磁プローブからの測定レベルを合成して、電磁界レベルとして読み取る手段を有するとともに、電磁プローブと測定対象となる無線装置との相対的位置関係を変化させる手段を設けることにより、放射電力最大方向での受信電力レベル測定を可能とし、この受信電力レベルPxと予め局所SARの値が分かっている基準無線装置の受信電力レベルPoとの相対比較により、被測定装置である無線装置の局所SARの値を推定するものである。
【0059】
図1は本発明の一実施形態に係る局所SAR測定装置の構成を示す構成説明図である。
【0060】
局所SAR測定装置は、電磁プローブ1、合成器2、信号処理部3を有して構成され、測定対象である携帯電話機の携帯電話機アンテナ12から放射される電磁波を測定するようになっている。携帯電話機アンテナ12は、携帯電話機本体11内部の無線回路13に接続されており、無線回路13から送信電力が供給される。
【0061】
電磁プローブ1は、電磁波を検出するアンテナにより構成され、電界検出型のアンテナとして、例えば微小ダイポールアンテナ、微小モノポールアンテナ、ノーマルモードヘリカルアンテナ、逆Fアンテナなどを使用できる。また、磁界検出型のアンテナとして、微小ループアンテナ、シールデッドループアンテナ、スロットアンテナなども使用可能である。或いは複数のアンテナ素子をアレー化した進行波アンテナなども使用することができる。本実施形態では、複数の電磁プローブ1を設けており、図1では携帯電話機アンテナ12の電磁放射パターン14に応じて2つ設けた例を示している。
【0062】
合成器2は、複数の電磁プローブ1で検出された電磁波の受信電力を合成するものである。例えば2つの電磁プローブ1による受信電力を合成する2信号結合器を複数用い、入出力をトーナメント図式に組み合わせていくことで、2の階乗個の電磁プローブ1からの受信電力を合成することが可能である。
【0063】
本実施形態では、被測定装置である携帯電話機の受信電力を、局所SARの値が予め分かっている基準携帯電話機の受信電力と相対比較を行うことにより、被測定装置における局所SARの値を推定する。例えば、基準携帯電話機の受信電力がP0のときの局所SARの値がSAR0であり、測定対象の携帯電話機を測定して得た受信電力がPxであれば、そのときの局所SARの値SARxは、上記の(15)式から次の(16)式により求めることが可能である。
【0064】
【数11】
Figure 0004010869
【0065】
複数の電磁プローブ1はいずれも携帯電話機本体11からフレネル領域となる位置に配置される。携帯電話機アンテナ12から放射される送信電力は、フレネル領域にある複数の電磁プローブ1で受信される。それぞれの電磁プローブ1で受信された携帯電話機からの電磁波による受信電力は、合成器2によって電力合成された後、信号処理部3に入力されて局所SARの推定に関する処理が行われる。
【0066】
なお、ここでのフレネル領域とは、電磁波放射源からの放射電磁界成分が支配的となる領域のうち、距離に反比例した放射電磁界成分あるいは距離の三乗に反比例した準静電界成分が支配的とならない領域であって、主に距離の二乗に反比例した誘導電磁界成分が支配的となる領域であり、電磁波放射源からの距離が約λ/100から5λとなる距離の領域をいう。
【0067】
例えば、携帯電話機の送信周波数が800MHz帯の場合は、その波長は約38cmであるので、フレネル領域は携帯電話機アンテナ12からの距離が約0.38〜190cmの範囲となる。また、携帯電話機の送信周波数が1.5GHz帯の場合は、波長が約20cmであるため、フレネル領域は携帯電話機アンテナ12からの距離が約0.2〜100cmの範囲となる。
【0068】
図1に示した例では、測定対象の携帯電話機において運用周波数帯域として800MHz帯と1.5GHz帯のいずれも使用される場合を想定して、電磁プローブ1は携帯電話機アンテナ12から1〜5cm離して複数配置している。遠方界よりも近い領域に2つの電磁プローブ1を配置することにより、測定系全体の大きさは20×20×50cm程度で構成することが可能となり、生産ラインに適するよう測定装置の専有スペースを省スペース化できる。
【0069】
各電磁プローブ1の出力から合成して得られた受信電力Pxをできるだけ放射電力Prに近づけるためには、電磁プローブ1の位置は電磁界放射パターン14の最大方向に配置されることが望ましい。(3)式〜(7)式で示した微小ダイポールアンテナからから放射される電磁界成分から明らかなように、フレネル領域における電磁界放射パターンは、必ずしも遠方界の電磁界放射パターンと一致しない。しかしながら、極近傍界に比較してフレネル領域における電磁界放射パターンは遠方界に近く、距離を離すほどその最大放射方向は一致するようになる。従って、フレネル領域では極近傍界での測定と異なり、電磁界放射パターンの最大方向に電磁プローブ1を配置することより安定した測定が可能となる。
【0070】
また、本実施形態の局所SAR測定装置では、電磁プローブ1と携帯電話機本体11との相対的位置関係を変化させて位置調整するための位置調整手段としてプローブ移動部15を備えている。位置調整手段としては、このプローブ移動部15のように、2つの電磁プローブ1を静止した携帯電話機本体11に対してそれぞれ別々に移動させるものでもよいし、これ以外に、複数の電磁プローブ1を同時に同方向に平行移動させるものであってもよい。或いは、2つの電磁プローブ1を固定して携帯電話機本体11を平行移動させるものでもよい。
【0071】
上記位置調整手段として、例えば、円形状又は方形状に形成したフレームに複数の電磁プローブ1を円周上或いは方形上に一体的に配置し、このフレームの中心に携帯電話機本体11を配置して、フレーム全体又は携帯電話機本体11を左右に可動できるようにした構成で実現できる。また、例えば携帯電話機本体11を配置する可動台を設け、可動台の位置をコンピュータによる制御で自動的に移動させる構成とすることにより、測定作業全体を自動化することもできる。
【0072】
なお、それぞれの電磁プローブ1は、フレネル領域の範囲内であれば、携帯電話機本体11に対して必ずしも等しい距離又は平行に配置する必要はなく、電磁界放射パターン14の形状に応じて最適な位置或いは向きになるように配置すればよい。
【0073】
次に、本実施形態の局所SAR測定装置を用いて被測定携帯電話機の局所SARを推定する手順を、図3のフローチャートを用いて説明する。図3において、破線で囲んだものが図1の装置において実行する手順である。
【0074】
まず、ステップS31において、基準となる携帯電話機(基準携帯無線機)の局所SAR値であるSAR0を、測定時間は長くかかるが測定精度の高い、例えば図7に示した内部電界検出式の測定装置を用いて測定する。なお、局所SARは周波数帯域毎に異なることが一般的であるので、測定対象の携帯電話機の運用周波数帯域が複数存在する場合は、各周波数帯域毎に測定する。
【0075】
次いで、ステップS32において、図1の局所SAR測定装置を用いて基準携帯電話機(基準携帯無線機)の受信電力P0を測定する。このとき、局所SAR測定装置の電磁プローブ1と携帯電話機本体11との相対的位置関係は、事前に受信電力P0の測定バラツキができるだけ少なくなるように調整しておく。
【0076】
続いて、ステップS33において、被測定携帯電話機(被測定携帯無線機)の受信電力Pxを測定する。このとき、被測定携帯電話機の運用周波数帯域が複数ある場合は、各周波数帯域毎に受信電力Pxを測定する。そして、ステップS34において、基準携帯電話機と被測定携帯電話機について測定した各受信電力P0、Pxを上記の(16)式に代入して計算し、被測定携帯電話機の局所SARの値であるSARxを求める。そしてステップS35では、引き続き測定すべき携帯電話機の有無を確認し、他に被測定携帯電話機がある場合はステップS33、S34の処理を繰り返す。
【0077】
以上の手順により、被測定携帯電話機の受信電力Pxの測定を極めて短時間で行うことができるので、多数の被測定携帯電話機を短時間に測定することが可能となる。
【0078】
図4は、電磁プローブ1の位置と電磁波放射指向性の関係を示す図であり、携帯電話機アンテナ12から2つの異なる電磁界放射パターン14a、14bが発生する様子を示している。携帯電話機における電磁界放射パターンは、その送信周波数帯や、携帯電話機本体の長さ、アンテナの長さ等に応じて、様々な形状となることが多い。例えば、2つの周波数帯を共用して使用する携帯電話機の場合では、800MHz帯と1.5GHz帯というように、全く異なる周波数帯域を一つのアンテナで共用して使用する場合がある。この場合、例えば800MHz帯では破線で示す電磁界放射パターン14aとなり、また1.5GHz帯では実線の電磁界放射パターン14bとなり、その形状は異なる。
【0079】
図4において、電磁プローブ1の位置がA点にあれば、電磁界放射パターン14aに対しては安定した受信電力を得ることが可能となるが、電磁界放射パターン14bに対してはヌル付近での観測となるため、受信レベルが低くなるとともに、位置のバラツキ等による測定の再現性も悪くなると予想される。逆に電磁プローブ1の位置がB点にあれば、電磁界放射パターン14bに対しては安定した受信電力を得ることが可能となるが、電磁界放射パターン14aに対してはヌル付近での観測となるため、受信レベルが低く測定の再現性が悪くなる。さらに、電磁プローブ1の位置がC点にあると、電磁界放射パターン14a、14bいずれに対しても、測定の再現性が悪くなることが予想される。これらのことから、基準携帯電話機及び被測定携帯電話機のそれぞれの放射電磁界による受信電力の測定に際し、電磁プローブ1の配置が重要となる。以下、実際に測定して得たデータ例に基づいて説明する。
【0080】
図5は、図1に示した本実施形態の局所SAR測定装置を用いて測定した受信電力と、局所SARの相関を示すデータの例である。被測定携帯電話機には、同一の構造で生産された製品20台を使用し、相関をより分かりやすくするために、送信機の有能電力を±1.5dB程度故意にばらつかせている。図5の縦軸は、図7に示した従来例の測定装置を用いて測定した局所SARのデータ、横軸は、本実施形態の局所SAR測定装置で測定した受信電力の値である。なお、ここでは電磁プローブ1の位置が、電磁界放射パターン14の最大方向に配置されるように、携帯電話機11の位置を調整している。
【0081】
図5の相関データから、受信電力と局所SARとは比例関係にあり、受信電力の測定値によって局所SARが推定可能であることがわかる。本例のデータでは、受信電力と局所SARの相関係数が0.94となっており、量産工程において簡易的に局所SARを推定するには十分な精度が得られている。
【0082】
一方、図6は、図1に示した本実施形態の局所SAR測定装置を用い、被測定携帯電話機の位置を電磁界放射パターン14の最大方向の位置から60mmずらして配置した場合の、受信電力Pxと局所SARとの相関を示すデータの例である。この例では、測定に使用した携帯電話機と局所SARの値は図5の場合と同じであるが、被測定携帯電話機に対する電磁プローブ1の位置が電磁界放射パターン14の最大方向からずれているので、極めて低い受信レベルになっている。さらに、受信電力に対する局所SARの値はばらついており、相関係数も0.53と低く、局所SARを推定するには十分な精度が得られていない様子が分かる。
【0083】
このように、電磁プローブ1と携帯電話機本体11及び携帯電話機アンテナ12との相対的位置関係を最適に選ぶことが、高精度な局所SARの推定には必要不可欠である。最適な位置関係の決定には、例えば局所SARの値が予め分かっている複数台数の基準携帯電話機による事前測定を行い、図5に示したように相関が高くなる位置関係を調べることで決定することができる。そして、この最適な設定値に基づき、プローブ移動部15などの位置調整手段によって電磁プローブ1と携帯電話機本体11及び携帯電話機アンテナ12との相対的位置関係を調整する。
【0084】
また、例えば図5のような相関データのグラフを複数台数の基準携帯電話機から予め作成し、グラフの近似直線の傾きから上記(16)式の比例係数SAR0を求めることにより、高精度に被測定携帯電話機の局所SARを推定することができる。
【0085】
なお、電磁界放射パターン14は携帯電話機アンテナ12に流れる電流分布が変化しない限り変化しないので、最適な相対的位置関係は製品毎に一義的に決定でき、生産工程で製品毎に電磁プローブ1と携帯電話機本体11の相対位置関係を調整する必要はない。従って、測定は短時間に行うことが可能であり、多数の製品を測定するのに適している。
【0086】
さらに、複数の周波数帯域を共用する携帯電話機の場合には、位置調整手段として生産ライン上で電磁プローブ1或いは携帯電話機本体11の位置を任意に移動できる変位機構を設けることにより、それぞれの周波数帯域において最適な位置で受信電力Pxを評価でき、高精度な局所SARの推定が可能である。
【0087】
上述したように本実施形態によれば、携帯電話機等の小型の携帯型の無線装置を製造する生産ラインに適した小さいスペースの中で、測定対象の小型無線装置の局所SARを短時間、かつ高精度に測定することができる。また、複数の周波数帯域を共用する無線装置についても、それぞれの周波数帯域において異なる電磁界放射パターンに応じて電磁プローブと被測定装置との相対位置関係を調整することで、局所SARを高精度に推定することが可能である。
【0088】
【発明の効果】
以上説明したように本発明によれば、携帯電話機等の小型の無線装置の生産ライン上において、短時間かつ高精度に局所SARを推定することが可能な局所SAR測定装置及び方法を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る局所SAR測定装置の構成を示す構成説明図
【図2】携帯電話機の無線回路からアンテナへ供給される電力の様子を示す概念図
【図3】本実施形態の局所SAR測定装置を用いて被測定携帯電話機の局所SARを推定する手順を示すフローチャート
【図4】電磁プローブの位置と電磁波放射指向性の関係を示す説明図
【図5】本実施形態の局所SAR測定装置を用いて、電磁界放射パターンの最大方向の位置で測定した場合の受信電力と局所SARとの相関データを示す特性図
【図6】本実施形態の局所SAR測定装置を用いて、電磁界放射パターンの最大方向の位置から60mmずらして測定した場合の受信電力と局所SARとの相関データを示す特性図
【図7】従来の内部電界検出式のSAR測定装置の構成を示す説明図
【図8】従来の近傍電界検出式のSAR測定装置の構成を示す説明図
【図9】微小ダイポールアンテナから放射される電磁界成分を示す説明図
【符号の説明】
1 電磁プローブ
2 合成器
3 信号処理部
11 携帯電話機本体
12 携帯電話機アンテナ
13 無線回路
14、14a、14b 電磁界放射パターン
15 プローブ移動部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a local SAR measurement apparatus and method for measuring local SAR in a small wireless device such as a mobile phone.
[0002]
[Prior art]
In recent years, with the rapid increase in demand for portable wireless devices such as mobile phones, the movement to regulate the radiation amount of electromagnetic waves to the human body from the viewpoint of electromagnetic wave safety to living bodies has been strengthened worldwide. In particular, mobile phones use antennas that generate electromagnetic waves close to the user's head, so there are concerns about harmful effects on the human body. In each country, the upper limit of local SAR is set and regulated and managed. Yes. Along with this, it is necessary to manage the local SAR value of the product in the production process of the mobile phone before shipment, and a measuring means for inspecting the local SAR quickly and with high accuracy is required.
[0003]
SAR (Specific Absorption Rate) is the absorbed power per unit body weight when a human body is exposed to an electromagnetic field. In the report of the Telecommunications Technology Council of the former Ministry of Posts and Telecommunications The guideline values are shown, and the “Measurement method of specific absorption rate for mobile phone terminals etc. used on the human side of the head” in the report reports that the human body simulates the shape / size and electrical characteristics of the head tissue. (Phantom) has been shown to experimentally estimate the SAR that will occur in the human body.
[0004]
In general, a local SAR assuming electromagnetic wave absorption in the head of a portable radio user is experimentally estimated using a phantom that simulates the shape and dimensions of the head and the electrical characteristics of the head tissue. Is done. Here, the electric field intensity distribution excited inside the phantom where the portable wireless device is brought close is measured using an electric field probe, and the SAR value is calculated from the measured value by the following equation (1).
[0005]
[Expression 1]
Figure 0004010869
[0006]
Where σ is the conductivity of the phantom and ρ is the density of the human tissue.
[0007]
As a simple method for estimating the SAR, a method for experimentally obtaining a local SAR from the magnetic field intensity H on the phantom surface has been proposed (for example, N. Kuster and Q. Balzano, “Energy absorption mechanism by biological bodies”). in the near field of dipole ant-ennas above 300MHz ", IEEE Trans. Veh. Tech., vol. 41, no.1, pp.17-23, Feb. 1992, etc.). According to this method, it has been confirmed that the following relational expression (2) holds for the distribution of the local SAR generated on the surface of the human body.
[0008]
[Expression 2]
Figure 0004010869
[0009]
The electric field strength E generated in the phantom or the magnetic field strength H on the surface of the phantom varies depending on the transmission output of the portable wireless device, the shape of the antenna, the positional relationship with the phantom, etc. Therefore, the electric field using the phantom is used for local SAR evaluation. Measurement of intensity distribution or magnetic field intensity distribution is required.
[0010]
Conventionally, as a local SAR measuring device, for example, as shown in FIG. 7, a portable wireless device 61 configured to include an electric field probe 62, a probe scanning device 63, and a phantom 64 and held on a holder 65 is measured. An internal electric field detection type device is known. According to this apparatus, it is possible to measure the local SAR with the highest accuracy.
[0011]
As another conventional example, for example, as shown in FIG. 8, a portable radio device in which the electric field probe 72 is fixed near the portion where the maximum value of the local SAR occurs without using a phantom and is held on the holder 75. A near field detection type local SAR measurement device for measuring a near electromagnetic field in a free space radiated from 71 is known. Since this apparatus has a simple configuration and does not perform probe scanning, it can measure in a short time and is suitable for introduction into a mass production process.
[0012]
Further, for example, Japanese Patent No. 2737661 and Japanese Patent No. 2790103 disclose a configuration of a near magnetic field detection type that detects a magnetic field reflected from a phantom surface among electromagnetic fields radiated from an antenna. In this configuration, the magnetic field distribution is measured with high accuracy by moving and rotating the electromagnetic probe, and the local SAR is estimated from the measured magnetic field distribution. According to this, it is possible to estimate the local SAR with a relatively simple configuration.
[0013]
Japanese Patent Laid-Open No. 11-133079 discloses a synthesizer in which a plurality of traveling wave antennas are arranged in a shield box in which a radio wave absorber is arranged on the inner wall, and the electromagnetic field collected by the antenna group is phase-synthesized. An example of an electromagnetic wave coupling device (electromagnetic wave coupling method) provided with means for reading a field as radiated power is disclosed. In this electromagnetic wave coupling type apparatus, it is possible to stably measure the electromagnetic wave radiated from the portable wireless device antenna, which is the object to be measured, in the production process.
[0014]
[Problems to be solved by the invention]
However, the local SAR measurement device of the above-described conventional example of the internal electric field detection type, the near electric field detection type, and the near magnetic field detection type has a probe unit arranged in the very vicinity of the antenna because of the necessity of measuring the local SAR value of the phantom. In addition, there is a problem that measurement data easily varies depending on the position and placement of the portable wireless device to be measured or the position and orientation of the antenna.
[0015]
Here, factors that are likely to cause variations in measurement data in the SAR measurement of the near field will be described. FIG. 9 is a diagram for explaining an electromagnetic field component radiated from a minute dipole antenna which is the most basic unit of the antenna. When the wave source of the minute dipole antenna is used as the origin, the electromagnetic field at the position C separated by the distance R is expressed as the following equations (3) to (7).
[0016]
[Equation 3]
Figure 0004010869
[0017]
Here, λ is the wavelength, k is the wave number, I is the current of the minute dipole antenna, L is the length of the minute dipole antenna, ε is the dielectric constant of the propagation space, and μ is the permeability of the propagation space.
[0018]
According to the above equation, as the electromagnetic field radiated from the antenna is farther away from the vicinity of the antenna, a component (radiated electromagnetic field) that is inversely proportional to the distance R becomes dominant, but where the distance R is small, it is inversely proportional to the square of the distance. The term (induction electromagnetic field) and the term inversely proportional to the cube (quasi-electrostatic field) become dominant. For this reason, in general, when handling electromagnetic fields, the region where the quasi-electrostatic field component dominates in the vicinity of about λ / 100 becomes the pole near field, and the radiated electromagnetic field component dominates in the region farther than about 5λ. The area is called the far field, and the area between them is called the Fresnel area, and each area is distinguished.
[0019]
In other words, in the near-field near to the antenna from about λ / 100, the quasi-electrostatic field component that is inversely proportional to the cube of the distance is dominant, so that in the measurement in such a region, the relative position is very small. There is a problem that the difference between the two becomes a large error in the electromagnetic field.
[0020]
At a frequency of 800 MHz band that is generally used in a mobile phone system, λ / 100 corresponds to about 0.4 cm. In the local SAR measurement apparatus of the internal electric field detection type in FIG. 7, the near electric field detection type in FIG. 8, or the near magnetic field detection type, the probe means is arranged in such a pole near field to measure the local SAR. This is because the main body and antenna of the portable radio device in actual use are used very close to the human body, and the phantom surface and the electromagnetic field generation source must be evaluated very closely. . In addition, an electromagnetic field radiated from the antenna generates an induced current on the phantom surface, and an electric field is generated secondarily inside the phantom from the current. To measure this, the electromagnetic field near the phantom surface is measured. Therefore, measurement is performed in the near field.
[0021]
In the internal electric field detection type apparatus of FIG. 7, in order to reduce measurement errors due to position accuracy, the position accuracy is maintained by a probe scanning device using an industrial robot or the like, and a plurality of locations where the local SAR is maximized are scanned. By doing so, the measurement accuracy is improved. However, this configuration is not suitable for use in a mass production process because the measurement time becomes longer as the number of measurement points is increased in order to improve measurement accuracy.
[0022]
Further, in the near electric field detection type apparatus shown in FIG. 8 and the near magnetic field detection type apparatus described in Japanese Patent No. 2737661 and Japanese Patent No. 2790103, since the measurement is usually performed at only one place, the measurement time can be shortened. However, there is a problem in that it is difficult to maintain measurement accuracy due to errors in measurement results due to variations in position and minute variations in the radiation pattern from the antenna.
[0023]
In addition, the electromagnetic wave coupling type device described in Japanese Patent Application Laid-Open No. 11-133079 measures an electromagnetic field in a far field slightly away from the antenna to be measured, and is difficult to cope with SAR measurement in the vicinity of the antenna. It is.
[0024]
The present invention has been made in view of the above circumstances, and an object of the present invention is to perform local SAR measurement capable of estimating a local SAR in a short time and with high accuracy on a production line of a small wireless device such as a mobile phone. It is to provide an apparatus and method.
[0025]
[Means for Solving the Problems]
The local SAR measurement device of the present invention calculates a local SAR value by processing a plurality of electromagnetic probes that measure electromagnetic field levels in the Fresnel region of electromagnetic waves radiated from a wireless device, and the electromagnetic field levels obtained by the electromagnetic probes. A signal processing unit that adjusts a relative positional relationship between the electromagnetic probe and the wireless device, and a reference wireless device whose local SAR value is known in advance in the electromagnetic probe and a wireless device to be measured Each of the electromagnetic field levels of the apparatus is measured, and the signal processing unit uses the fact that the SAR value is proportional to the electromagnetic field level, and uses the local SAR value of the reference wireless apparatus, which is known in advance, to determine the wireless of the measurement target. The local SAR value of the apparatus is estimated and obtained.
[0026]
According to the above configuration, the electromagnetic field level is measured in the Fresnel region near the antenna near the antenna of the wireless device, and the local SAR value is estimated by calculating the proportional relationship with the reference wireless device having a known local SAR value. This makes it possible to estimate and determine the local SAR value of the wireless device to be measured in a short time and with high accuracy on a production line for manufacturing a small portable wireless device such as a mobile phone. For this reason, the measurement of the local SAR value can be executed in a short time on the production line even for a large number of wireless devices.
[0027]
Further, the position adjusting means adjusts the relative positional relationship between the electromagnetic probe and the wireless device by moving at least one of the electromagnetic probe and the wireless device according to an electromagnetic field radiation pattern from the wireless device.
[0028]
According to the above configuration, the measurement position of the electromagnetic field level can be adjusted to the optimum position according to the radiation pattern of the electromagnetic field radiated from the wireless device, and high-precision measurement can be realized.
[0029]
In addition, when there are a plurality of electromagnetic field radiation patterns from the wireless device according to the transmission frequency, the position adjusting unit moves at least one of the electromagnetic probe and the wireless device according to the transmission frequency, and makes the relative relationship between the two. It is characterized by changing the target positional relationship.
[0030]
According to the above configuration, in the measurement of a wireless device having a plurality of operating frequency bands, it is possible to adjust the measurement position of the electromagnetic field level to the optimum position according to the electromagnetic field radiation pattern that varies depending on the transmission frequency. High-precision measurement can be realized in the frequency band.
[0031]
The local SAR measurement method of the present invention includes a step of measuring an electromagnetic field level of a reference wireless device whose local SAR value is known in advance in a Fresnel region of an electromagnetic wave radiated from the wireless device, and an electromagnetic wave of a wireless device to be measured. The step of measuring the field level in the Fresnel region of the electromagnetic wave radiated from the wireless device, and based on the measured electromagnetic field level, using the fact that the SAR value is proportional to the electromagnetic field level, the reference that is known in advance And estimating the local SAR value of the measurement target wireless device from the local SAR value of the wireless device.
[0032]
According to the above procedure, the local SAR value of the wireless device to be measured can be estimated and determined in a short time with high accuracy on a production line for manufacturing a small portable wireless device such as a mobile phone. .
[0033]
Further, when there are a plurality of electromagnetic field radiation patterns from the wireless device according to the transmission frequency, both the electromagnetic probe for measuring the electromagnetic field level according to the transmission frequency and at least one of the wireless device are moved to both The method further includes the step of changing the relative positional relationship between the two.
[0034]
According to the above procedure, in the measurement of a wireless device having a plurality of operating frequency bands, it becomes possible to adjust the measurement position of the electromagnetic field level to the optimum position according to the electromagnetic field radiation pattern that varies depending on the transmission frequency. High-precision measurement can be realized in the frequency band.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In this embodiment, as an apparatus for measuring a local SAR in a small wireless device, an example of the configuration and operation of a local SAR measurement apparatus that estimates a local SAR based on the measurement of received power in the vicinity of an antenna in a mobile phone production line Show.
[0036]
First, an outline of the local SAR measurement method in the present embodiment will be described.
In the case of producing a large amount of products of the same standard as in the production process of a mobile phone, if the local SAR value can be grasped for one mobile phone, other factors can be obtained by grasping the variation factor and making a relative comparison. It is possible to estimate the local SAR value of the product. First, the cause of variation in production of mobile phones will be described with reference to FIG.
[0037]
FIG. 2 is a conceptual diagram showing a state of power supplied from the radio circuit of the mobile phone to the antenna, and includes an antenna element 91, a matching circuit 92, and a transmitter 93. The equivalent circuit of the antenna includes a matching circuit 92 and is excited by a power source Vg having an internal impedance Zg of the transmitter 93. If the input impedance Zin viewed from the input terminal of the antenna element 91 is conjugate-matched with the internal impedance Zg of the power source, Zin = Zg * is established. Here, (*) represents a complex conjugate.
[0038]
In this state, the input power Pin applied to the antenna element 91 is expressed by the following equation (8).
[0039]
[Expression 4]
Figure 0004010869
[0040]
Here, I1 is a current flowing through the antenna element 91 and is represented by I1 = Vg / (Zg + Zin).
[0041]
Further, since all the input power to the antenna is supplied from the power source Vg, it is expressed by the following equations (9) and (10).
[0042]
[Equation 5]
Figure 0004010869
[0043]
Here, Re (X) represents the real part of X, and Pin represents the available power of the power supply. S represents the ratio between the power supplied to the antenna and the available power of the power source, and S = 1 in the conjugate matching state.
[0044]
Further, the radiated power Pr from the antenna to the space is expressed by the following equation (11).
[0045]
[Formula 6]
Figure 0004010869
[0046]
In the above equation, Pa is the power loss caused by the high frequency resistance of the metal wire constituting the antenna element 91, Pc is the power loss caused by the loss resistance rc of the matching circuit, Pm is the power loss due to impedance mismatch, and Pm = (1 -S) Represented by Pav. From these equations, the following equation (12) is derived.
[0047]
[Expression 7]
Figure 0004010869
[0048]
When considering the factors of product variation in the production process, Pc and Pa can be regarded as slight variations in parts. For this reason, it is considered that the factor that the production variation is dominant is the deviation of the available power of the power source caused by the component variation in the transmitter and the adjustment variation thereof. Therefore, it is derived that there is a relationship expressed by the following equation (13) between the radiation power Pr to the antenna space and the current I1 on the antenna element.
[0049]
[Equation 8]
Figure 0004010869
[0050]
The current I1 on the antenna element generates a magnetic field H in the vicinity thereof, and the relationship is H∝I according to Ampere's law. Here, as long as the structure of the antenna element and the current distribution shape do not change, the shape of the magnetic field distribution generated in the vicinity does not change. From this, the following equation (14) is derived.
[0051]
[Equation 9]
Figure 0004010869
[0052]
And the relationship of following (15) Formula is obtained from said (7) Formula and (14) Formula.
[0053]
[Expression 10]
Figure 0004010869
[0054]
That is, under conditions where the structure of the antenna element and the current distribution shape do not change, the variation in the local SAR can be managed by managing the radiated power Pr.
[0055]
Although the radiated power Pr is obtained by the total solid integration of the radiation directivity of the far field, in order to measure the far field in the actual production process, a large occupied space is required in the measuring apparatus, which is not realistic. Therefore, a large number of electromagnetic probes may be arranged in a region that is a Fresnel region where it is easier to ensure measurement accuracy than the near field, and a part of the radiated power Pr may be received.
[0056]
In order to have a high correlation between the reception level Px of the electromagnetic probe and the radiated power Pr, as shown in the electromagnetic wave coupling device in Japanese Patent Laid-Open No. 11-1333079, a plurality of electromagnetic probes are arranged and each electromagnetic wave is arranged. A technique for synthesizing the probe power is effective. However, in order to measure with higher accuracy, unless the electromagnetic probe is arranged in the direction that maximizes the radiated power, a high correlation cannot be secured between the reception level Px and the radiated power Pr, and the local SAR can be managed. It is not possible to achieve such high-precision measurements.
[0057]
As a result of intensive investigations in view of such points, the inventor can measure the electromagnetic field level with relatively high accuracy rather than the near field when measuring a local SAR in a small wireless device such as a mobile phone. The electromagnetic field level in a certain Fresnel region was measured, and an electromagnetic probe was arranged in the maximum direction of radiated power. As a result, a local SAR measurement apparatus capable of estimating the local SAR in a short time and with high accuracy can be realized so as to be applicable on the production line.
[0058]
In the present invention, two or more electromagnetic probes are provided, and a measurement level from each electromagnetic probe is combined and read out as an electromagnetic field level, and the relative relationship between the electromagnetic probe and the wireless device to be measured is provided. By providing means for changing the positional relationship, it is possible to measure the received power level in the direction of maximum radiated power, and the received power level Px and the received power level Po of the reference wireless device whose local SAR value is known in advance. The value of the local SAR of the wireless device that is the device to be measured is estimated by relative comparison.
[0059]
FIG. 1 is an explanatory diagram showing the configuration of a local SAR measurement apparatus according to an embodiment of the present invention.
[0060]
The local SAR measuring device includes an electromagnetic probe 1, a synthesizer 2, and a signal processing unit 3, and measures electromagnetic waves radiated from a mobile phone antenna 12 of a mobile phone that is a measurement target. The mobile phone antenna 12 is connected to a radio circuit 13 inside the mobile phone body 11, and transmission power is supplied from the radio circuit 13.
[0061]
The electromagnetic probe 1 is configured by an antenna that detects electromagnetic waves, and as a field detection type antenna, for example, a minute dipole antenna, a minute monopole antenna, a normal mode helical antenna, an inverted F antenna, or the like can be used. Further, as a magnetic field detection type antenna, a minute loop antenna, a shielded loop antenna, a slot antenna, or the like can be used. Alternatively, a traveling wave antenna in which a plurality of antenna elements are arrayed can be used. In this embodiment, a plurality of electromagnetic probes 1 are provided, and FIG. 1 shows an example in which two are provided according to the electromagnetic radiation pattern 14 of the mobile phone antenna 12.
[0062]
The synthesizer 2 synthesizes the received power of the electromagnetic waves detected by the plurality of electromagnetic probes 1. For example, it is possible to synthesize received power from 2 factorial electromagnetic probes 1 by using a plurality of two-signal couplers that combine received power from two electromagnetic probes 1 and combining input and output in a tournament diagram. Is possible.
[0063]
In this embodiment, the local SAR value in the device under test is estimated by comparing the received power of the mobile phone as the device under test with the received power of a reference mobile phone whose local SAR value is known in advance. To do. For example, when the received power of the reference mobile phone is P0, the local SAR value is SAR0, and if the received power obtained by measuring the mobile phone to be measured is Px, the local SAR value SARx at that time is The following equation (16) can be obtained from the above equation (15).
[0064]
[Expression 11]
Figure 0004010869
[0065]
Each of the plurality of electromagnetic probes 1 is arranged at a position that becomes a Fresnel region from the mobile phone body 11. Transmission power radiated from the mobile phone antenna 12 is received by a plurality of electromagnetic probes 1 in the Fresnel region. The received power of the electromagnetic waves from the mobile phone received by each electromagnetic probe 1 is combined by the synthesizer 2 and then input to the signal processing unit 3 for processing related to the estimation of the local SAR.
[0066]
Note that the Fresnel region here is the region where the radiated electromagnetic field component from the electromagnetic radiation source is dominant, the radiated electromagnetic field component inversely proportional to the distance, or the quasi-electrostatic field component inversely proportional to the cube of the distance. This is a region that is not targeted, and is a region in which an induced electromagnetic field component that is mainly in inverse proportion to the square of the distance is dominant, and is a region in which the distance from the electromagnetic wave radiation source is about λ / 100 to 5λ.
[0067]
For example, when the transmission frequency of the mobile phone is in the 800 MHz band, the wavelength is about 38 cm, so the distance from the mobile phone antenna 12 in the Fresnel region is about 0.38 to 190 cm. Further, when the transmission frequency of the mobile phone is in the 1.5 GHz band, the wavelength is about 20 cm, so that the distance from the mobile phone antenna 12 in the Fresnel region is about 0.2 to 100 cm.
[0068]
In the example shown in FIG. 1, the electromagnetic probe 1 is separated from the mobile phone antenna 12 by 1 to 5 cm, assuming that both the 800 MHz band and the 1.5 GHz band are used as the operating frequency band in the mobile phone to be measured. Are arranged. By arranging two electromagnetic probes 1 in a region closer to the far field, it is possible to configure the entire measurement system with a size of about 20 × 20 × 50 cm. Space can be saved.
[0069]
In order to make the received power Px obtained by combining the outputs of the electromagnetic probes 1 as close to the radiated power Pr as possible, the position of the electromagnetic probe 1 is preferably arranged in the maximum direction of the electromagnetic field radiation pattern 14. As is clear from the electromagnetic field component radiated from the minute dipole antenna expressed by the equations (3) to (7), the electromagnetic field radiation pattern in the Fresnel region does not necessarily match the electromagnetic field radiation pattern in the far field. However, the electromagnetic radiation pattern in the Fresnel region is closer to the far field than the pole near field, and the maximum radiation direction coincides with the distance. Therefore, unlike the measurement in the near-field, in the Fresnel region, stable measurement is possible by arranging the electromagnetic probe 1 in the maximum direction of the electromagnetic field radiation pattern.
[0070]
In addition, the local SAR measurement apparatus according to the present embodiment includes a probe moving unit 15 as position adjusting means for adjusting the position by changing the relative positional relationship between the electromagnetic probe 1 and the mobile phone body 11. As the position adjusting means, the two electromagnetic probes 1 may be moved separately with respect to the stationary mobile phone main body 11 as in the probe moving unit 15. In addition, a plurality of electromagnetic probes 1 may be used. Simultaneous translation in the same direction may also be possible. Alternatively, the two electromagnetic probes 1 may be fixed and the mobile phone body 11 may be moved in parallel.
[0071]
As the position adjusting means, for example, a plurality of electromagnetic probes 1 are integrally arranged on a circumference or a rectangle in a frame formed in a circular shape or a rectangular shape, and a mobile phone body 11 is arranged in the center of the frame. In addition, it can be realized with a configuration in which the entire frame or the mobile phone body 11 can be moved left and right. Further, for example, by providing a movable base on which the mobile phone main body 11 is disposed and moving the position of the movable base automatically by control by a computer, the entire measurement work can be automated.
[0072]
Each electromagnetic probe 1 does not necessarily need to be arranged at the same distance or parallel to the mobile phone body 11 as long as it is within the Fresnel region, and is optimally positioned according to the shape of the electromagnetic field radiation pattern 14. Or what is necessary is just to arrange | position so that it may become direction.
[0073]
Next, the procedure for estimating the local SAR of the mobile phone to be measured using the local SAR measurement device of the present embodiment will be described using the flowchart of FIG. In FIG. 3, what is surrounded by a broken line is a procedure executed in the apparatus of FIG.
[0074]
First, in step S31, SAR0, which is a local SAR value of a reference mobile phone (reference mobile radio), takes a long measurement time but has a high measurement accuracy, for example, an internal electric field detection type measurement apparatus shown in FIG. Use to measure. Since the local SAR is generally different for each frequency band, when there are a plurality of operating frequency bands for the mobile phone to be measured, measurement is performed for each frequency band.
[0075]
Next, in step S32, the received power P0 of the reference mobile phone (reference mobile radio) is measured using the local SAR measurement device of FIG. At this time, the relative positional relationship between the electromagnetic probe 1 of the local SAR measurement device and the mobile phone body 11 is adjusted in advance so that the variation in measurement of the received power P0 is as small as possible.
[0076]
Subsequently, in step S33, the received power Px of the measured mobile phone (measured portable radio) is measured. At this time, when there are a plurality of operating frequency bands of the mobile phone to be measured, the received power Px is measured for each frequency band. In step S34, the received powers P0 and Px measured for the reference mobile phone and the measured mobile phone are substituted into the above equation (16) and calculated, and the local SAR value of the measured mobile phone is set as SARx. Ask. In step S35, the presence / absence of a mobile phone to be measured is confirmed. If there is another mobile phone to be measured, the processes in steps S33 and S34 are repeated.
[0077]
According to the above procedure, the reception power Px of the measured mobile phone can be measured in a very short time, so that a large number of measured mobile phones can be measured in a short time.
[0078]
FIG. 4 is a diagram showing the relationship between the position of the electromagnetic probe 1 and the electromagnetic radiation radiation directivity, and shows how two different electromagnetic field radiation patterns 14 a and 14 b are generated from the mobile phone antenna 12. The electromagnetic field radiation pattern in a mobile phone often has various shapes depending on the transmission frequency band, the length of the mobile phone body, the length of the antenna, and the like. For example, in the case of a mobile phone that uses two frequency bands in common, a completely different frequency band such as 800 MHz band and 1.5 GHz band may be shared and used by one antenna. In this case, for example, in the 800 MHz band, the electromagnetic radiation pattern 14a indicated by a broken line is obtained, and in the 1.5 GHz band, the electromagnetic radiation pattern 14b is indicated by a solid line, and the shapes thereof are different.
[0079]
In FIG. 4, if the position of the electromagnetic probe 1 is at point A, stable received power can be obtained for the electromagnetic field radiation pattern 14a, but near the null for the electromagnetic field radiation pattern 14b. Therefore, it is expected that the reception level will be lowered and the reproducibility of the measurement due to the position variation etc. will deteriorate. Conversely, if the position of the electromagnetic probe 1 is at point B, it is possible to obtain a stable received power for the electromagnetic field radiation pattern 14b, but for the electromagnetic field radiation pattern 14a, observation near the null. Therefore, the reception level is low and the reproducibility of the measurement is deteriorated. Furthermore, when the position of the electromagnetic probe 1 is at the point C, it is expected that the reproducibility of the measurement is deteriorated for both the electromagnetic field radiation patterns 14a and 14b. For these reasons, the arrangement of the electromagnetic probe 1 is important when measuring the received power of the reference mobile phone and the mobile phone to be measured by the radiated electromagnetic fields. Hereinafter, explanation will be given based on data examples obtained by actual measurement.
[0080]
FIG. 5 is an example of data indicating the correlation between the received power measured using the local SAR measuring apparatus of the present embodiment shown in FIG. 1 and the local SAR. For the mobile phone to be measured, 20 products produced with the same structure are used, and the available power of the transmitter is intentionally varied by about ± 1.5 dB in order to make the correlation easier to understand. The vertical axis in FIG. 5 is the local SAR data measured using the conventional measurement apparatus shown in FIG. 7, and the horizontal axis is the received power value measured by the local SAR measurement apparatus of this embodiment. Here, the position of the mobile phone 11 is adjusted so that the position of the electromagnetic probe 1 is arranged in the maximum direction of the electromagnetic field radiation pattern 14.
[0081]
From the correlation data in FIG. 5, it can be seen that the received power and the local SAR are in a proportional relationship, and the local SAR can be estimated from the measured value of the received power. In the data of this example, the correlation coefficient between the received power and the local SAR is 0.94, and sufficient accuracy is obtained to easily estimate the local SAR in the mass production process.
[0082]
On the other hand, FIG. 6 shows the received power when the local SAR measurement apparatus of this embodiment shown in FIG. 1 is used and the position of the mobile phone to be measured is shifted by 60 mm from the position in the maximum direction of the electromagnetic radiation pattern 14. It is an example of the data which shows the correlation with Px and local SAR. In this example, the mobile phone used for measurement and the value of the local SAR are the same as in FIG. 5, but the position of the electromagnetic probe 1 with respect to the mobile phone to be measured is shifted from the maximum direction of the electromagnetic field radiation pattern 14. The reception level is extremely low. Furthermore, the value of the local SAR with respect to the received power varies, and the correlation coefficient is as low as 0.53. It can be seen that sufficient accuracy is not obtained to estimate the local SAR.
[0083]
Thus, optimal selection of the relative positional relationship between the electromagnetic probe 1, the mobile phone main body 11, and the mobile phone antenna 12 is indispensable for highly accurate estimation of the local SAR. The optimum positional relationship is determined by, for example, performing preliminary measurement using a plurality of reference mobile phones whose local SAR values are known in advance, and examining the positional relationship that increases the correlation as shown in FIG. be able to. Based on this optimum set value, the relative positional relationship between the electromagnetic probe 1, the mobile phone body 11, and the mobile phone antenna 12 is adjusted by the position adjusting means such as the probe moving unit 15.
[0084]
Further, for example, a graph of correlation data as shown in FIG. 5 is created in advance from a plurality of reference mobile phones, and the proportionality coefficient SAR0 of the above equation (16) is obtained from the inclination of the approximate straight line of the graph, thereby measuring with high accuracy The local SAR of the mobile phone can be estimated.
[0085]
Since the electromagnetic field radiation pattern 14 does not change unless the current distribution flowing through the mobile phone antenna 12 changes, the optimum relative positional relationship can be uniquely determined for each product, and the electromagnetic probe 1 and the electromagnetic probe 1 for each product in the production process. It is not necessary to adjust the relative positional relationship of the mobile phone body 11. Therefore, the measurement can be performed in a short time and is suitable for measuring a large number of products.
[0086]
Further, in the case of a mobile phone sharing a plurality of frequency bands, a displacement mechanism that can arbitrarily move the position of the electromagnetic probe 1 or the mobile phone main body 11 on the production line as a position adjusting means is provided. , The received power Px can be evaluated at the optimum position, and the local SAR can be estimated with high accuracy.
[0087]
As described above, according to the present embodiment, the local SAR of the small wireless device to be measured can be reduced in a short time in a small space suitable for a production line for manufacturing a small portable wireless device such as a mobile phone. It can be measured with high accuracy. In addition, with respect to wireless devices that share a plurality of frequency bands, the local SAR can be obtained with high accuracy by adjusting the relative positional relationship between the electromagnetic probe and the device under measurement according to different electromagnetic field radiation patterns in each frequency band. It is possible to estimate.
[0088]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a local SAR measurement apparatus and method capable of estimating a local SAR in a short time and with high accuracy on a production line of a small wireless device such as a mobile phone.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the configuration of a local SAR measurement apparatus according to an embodiment of the present invention.
FIG. 2 is a conceptual diagram showing a state of power supplied from a radio circuit of a mobile phone to an antenna.
FIG. 3 is a flowchart showing a procedure for estimating the local SAR of the mobile phone to be measured using the local SAR measurement apparatus of the present embodiment.
FIG. 4 is an explanatory diagram showing the relationship between the position of an electromagnetic probe and electromagnetic wave radiation directivity.
FIG. 5 is a characteristic diagram showing correlation data between received power and local SAR when measured at the position in the maximum direction of the electromagnetic field radiation pattern using the local SAR measurement device of the present embodiment.
FIG. 6 is a characteristic diagram showing correlation data between received power and local SAR when measured using the local SAR measurement apparatus of the present embodiment with a shift of 60 mm from the position in the maximum direction of the electromagnetic field radiation pattern.
FIG. 7 is an explanatory diagram showing a configuration of a conventional internal electric field detection type SAR measuring apparatus.
FIG. 8 is an explanatory diagram showing the configuration of a conventional near-field detection type SAR measurement apparatus;
FIG. 9 is an explanatory diagram showing an electromagnetic field component radiated from a minute dipole antenna.
[Explanation of symbols]
1 Electromagnetic probe
2 Synthesizer
3 Signal processor
11 Mobile phone body
12 Mobile phone antenna
13 Radio circuit
14, 14a, 14b Electromagnetic field radiation pattern
15 Probe moving part

Claims (5)

無線装置から放射される電磁波のフレネル領域における電磁界レベルを測定する複数の電磁プローブと、前記電磁プローブで得られる電磁界レベルを処理して局所SAR値を算出する信号処理部と、前記電磁プローブと前記無線装置との相対的位置関係を調整する位置調整手段とを備え、
前記電磁プローブにおいて、予め局所SAR値が分かっている基準無線装置と測定対象の無線装置のそれぞれの電磁界レベルを測定し、前記信号処理部において、SAR値が電磁界レベルに比例することを利用して、予め分かっている前記基準無線装置の局所SAR値から前記測定対象の無線装置の局所SAR値を推定して求めることを特徴とする局所SAR測定装置。
A plurality of electromagnetic probes for measuring electromagnetic field levels in a Fresnel region of electromagnetic waves radiated from a wireless device, a signal processing unit for calculating a local SAR value by processing the electromagnetic field levels obtained by the electromagnetic probes, and the electromagnetic probes And a position adjusting means for adjusting a relative positional relationship between the wireless device and the wireless device,
The electromagnetic probe measures the electromagnetic field level of each of the reference wireless device whose local SAR value is known in advance and the wireless device to be measured, and uses the fact that the SAR value is proportional to the electromagnetic field level in the signal processing unit. Then, the local SAR measurement device is characterized in that the local SAR value of the measurement target wireless device is estimated from the local SAR value of the reference wireless device known in advance.
前記位置調整手段は、前記無線装置からの電磁界放射パターンに応じて前記電磁プローブと前記無線装置の少なくとも一方を移動させて両者の相対的位置関係を調整することを特徴とする請求項1に記載の局所SAR測定装置。The position adjustment means adjusts the relative positional relationship between the electromagnetic probe and the wireless device by moving at least one of the electromagnetic probe and the wireless device according to an electromagnetic field radiation pattern from the wireless device. The local SAR measurement apparatus described. 前記位置調整手段は、前記無線装置からの電磁界放射パターンが送信周波数に応じて複数存在する場合に、前記送信周波数によって前記電磁プローブと前記無線装置の少なくとも一方を移動させて両者の相対的位置関係を変化させることを特徴とする請求項1に記載の局所SAR測定装置。When there are a plurality of electromagnetic field radiation patterns from the wireless device according to the transmission frequency, the position adjusting unit moves at least one of the electromagnetic probe and the wireless device according to the transmission frequency, thereby relative position of both. The local SAR measurement apparatus according to claim 1, wherein the relationship is changed. 予め局所SAR値が分かっている基準無線装置の電磁界レベルを、前記無線装置から放射される電磁波のフレネル領域において測定するステップと、
測定対象の無線装置の電磁界レベルを前記無線装置から放射される電磁波のフレネル領域において測定するステップと、
前記測定した電磁界レベルに基づき、SAR値が電磁界レベルに比例することを利用して、予め分かっている前記基準無線装置の局所SAR値から前記測定対象の無線装置の局所SAR値を推定して求めるステップと、
を有することを特徴とする局所SAR測定方法。
Measuring the electromagnetic field level of a reference wireless device whose local SAR value is known in advance in the Fresnel region of electromagnetic waves radiated from the wireless device;
Measuring an electromagnetic field level of a wireless device to be measured in a Fresnel region of electromagnetic waves radiated from the wireless device;
Based on the measured electromagnetic field level, the local SAR value of the measurement target wireless device is estimated from the previously known local SAR value of the reference wireless device using the fact that the SAR value is proportional to the electromagnetic field level. Step to ask
A local SAR measurement method characterized by comprising:
前記無線装置からの電磁界放射パターンが送信周波数に応じて複数存在する場合に、前記送信周波数に応じて前記電磁界レベルを測定する電磁プローブと前記無線装置の少なくとも一方を移動させて両者の相対的位置関係を変化させるステップをさらに有することを特徴とする請求項4に記載の局所SAR測定方法。When there are a plurality of electromagnetic field radiation patterns from the wireless device according to the transmission frequency, the electromagnetic probe for measuring the electromagnetic field level according to the transmission frequency and at least one of the wireless device are moved to make a relative relationship between them. The local SAR measurement method according to claim 4, further comprising a step of changing the target positional relationship.
JP2002143326A 2002-05-17 2002-05-17 Local SAR measuring apparatus and method Expired - Fee Related JP4010869B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002143326A JP4010869B2 (en) 2002-05-17 2002-05-17 Local SAR measuring apparatus and method
CZ20041124A CZ20041124A3 (en) 2002-05-17 2003-05-09 Apparatus for and method of measuring local specific absorption range SAR
PCT/JP2003/005848 WO2003098238A1 (en) 2002-05-17 2003-05-09 Local sar measurement device and method
CNB038169991A CN100360946C (en) 2002-05-17 2003-05-09 Apparatus for and method of measuring local specific absorption range SAR
AU2003235922A AU2003235922A1 (en) 2002-05-17 2003-05-09 Local sar measurement device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002143326A JP4010869B2 (en) 2002-05-17 2002-05-17 Local SAR measuring apparatus and method

Publications (2)

Publication Number Publication Date
JP2003332999A JP2003332999A (en) 2003-11-21
JP4010869B2 true JP4010869B2 (en) 2007-11-21

Family

ID=29545012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002143326A Expired - Fee Related JP4010869B2 (en) 2002-05-17 2002-05-17 Local SAR measuring apparatus and method

Country Status (5)

Country Link
JP (1) JP4010869B2 (en)
CN (1) CN100360946C (en)
AU (1) AU2003235922A1 (en)
CZ (1) CZ20041124A3 (en)
WO (1) WO2003098238A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100462461B1 (en) * 2002-08-23 2004-12-17 주식회사 이레테크 A standard signal source supply device for effectiveness test of the sar measure system
JP2006078237A (en) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd Power measuring method of wireless device
JP4657032B2 (en) * 2005-07-07 2011-03-23 パナソニック株式会社 Method and apparatus for measuring electromagnetic wave of electronic equipment
JP5669337B2 (en) * 2006-10-23 2015-02-12 株式会社Nttドコモ System and method for measuring specific absorption rate
TWI369084B (en) * 2008-02-15 2012-07-21 King Yuan Electronics Co Ltd Automatic detecting device for radio frequency environment
CN101800786A (en) * 2010-03-12 2010-08-11 中兴通讯股份有限公司 Mobile terminal capable of balancing specific absorption rate and total radiated power and implementation method thereof
CN102467595B (en) * 2010-11-12 2015-04-01 中兴通讯股份有限公司 Method and device for processing laptop device model
CN104702346A (en) * 2015-02-02 2015-06-10 深圳市共进电子股份有限公司 Near-field multi-machine testing system and method
CN105611610B (en) * 2015-12-28 2019-10-29 联想(北京)有限公司 A kind of information processing method and electronic equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2630222B2 (en) * 1993-09-20 1997-07-16 日本電気株式会社 SAR measuring device and measuring method
US5754054A (en) * 1996-06-28 1998-05-19 Siemens Rolm Communications Inc. Apparatus and method for determining the source and strength of electro-magnetic emissions
CN1142441C (en) * 2000-01-19 2004-03-17 郑宏兴 Radiation and conduction measuring system
JP2001318112A (en) * 2000-05-10 2001-11-16 Hitachi Ltd Apparatus or method for measurement of electromagnetic field and manufacturing method for electronic component or electronic device using it

Also Published As

Publication number Publication date
WO2003098238A1 (en) 2003-11-27
CZ20041124A3 (en) 2005-10-12
AU2003235922A1 (en) 2003-12-02
JP2003332999A (en) 2003-11-21
CN1668930A (en) 2005-09-14
CN100360946C (en) 2008-01-09

Similar Documents

Publication Publication Date Title
Icheln et al. Use of balun chokes in small-antenna radiation measurements
KR101360280B1 (en) Multichannel absorberless near field measurement system
US20040017115A1 (en) Apparatus for measuring specific absorption rate based on near magnetic field for use in radio apparatus
KR20090029978A (en) Apparatus and method for measuring antenna radiation patterns
JP7329085B2 (en) High-speed OTA production line test platform
JP4010869B2 (en) Local SAR measuring apparatus and method
Gregson et al. Examination of the effect of common CATR quiet zone specifications on antenna pattern measurement uncertainties
Van Hoang et al. 3D voltage pattern measurement of a 2.45 GHz rectenna
Joseph et al. The influence of the measurement probe on the evaluation of electromagnetic fields
Barani et al. Integrated-antenna over-the-air testing for millimeter-wave applications: An overview of systems and uncertainty [measurements corner]
Weinzierl et al. Simulation and measurement of dielectric antennas at 150 GHz
Nesterova et al. Evaluating power density for 5G applications
Franek et al. Numerical modeling of a spherical array of monopoles using FDTD method
Jomaa et al. Development of a 3D scanning system for magnetic near-field characterization
Foegelle Antenna pattern measurement: concepts and techniques
Faruque et al. New low specific absorption rate (SAR) antenna design for mobile handset
JP2006208019A (en) Electromagnetic wave coupling apparatus
Parini et al. Computational electromagnetic modelling of compact antenna test range quiet zone probing: A comparison of simulation techniques
JP3593566B2 (en) Antenna measuring method and antenna measuring device
Flint A biomimetic antenna in the shape of a bat's ear
Wang et al. Review of SAR Measurement Methods in Relation to Wearable Devices.
JP5170955B2 (en) Electromagnetic wave measuring method and electromagnetic wave measuring device
Krishna et al. Patch antenna array designs for wireless communication applications inside jet engines
Alexander et al. The design of dipole and monopole antennas with low uncertainties
JP2004239887A (en) Specific absorption rate measuring apparatus for wireless device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees