JP4657032B2 - Method and apparatus for measuring electromagnetic wave of electronic equipment - Google Patents

Method and apparatus for measuring electromagnetic wave of electronic equipment Download PDF

Info

Publication number
JP4657032B2
JP4657032B2 JP2005198441A JP2005198441A JP4657032B2 JP 4657032 B2 JP4657032 B2 JP 4657032B2 JP 2005198441 A JP2005198441 A JP 2005198441A JP 2005198441 A JP2005198441 A JP 2005198441A JP 4657032 B2 JP4657032 B2 JP 4657032B2
Authority
JP
Japan
Prior art keywords
measurement
electromagnetic wave
measured
reception
measurement distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005198441A
Other languages
Japanese (ja)
Other versions
JP2007017250A (en
Inventor
裕史 小坂
和彦 池田
正一 梶原
博之 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005198441A priority Critical patent/JP4657032B2/en
Priority to US11/482,063 priority patent/US7541818B2/en
Publication of JP2007017250A publication Critical patent/JP2007017250A/en
Application granted granted Critical
Publication of JP4657032B2 publication Critical patent/JP4657032B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子機器の電磁波計測方法と装置に関し、詳しくは、電磁波を発生させる電子機器ないしはその構成要素や周辺機器からの電磁波、主として近傍電磁界での不要電磁波成分を計測する電子機器の電磁波計測方法と装置に関する。 The present invention relates to an electromagnetic wave measurement method and apparatus for an electronic device, and more particularly, to an electromagnetic wave of an electronic device that measures an electromagnetic wave from an electronic device that generates an electromagnetic wave, or its constituent elements and peripheral devices, mainly an unwanted electromagnetic wave component in a nearby electromagnetic field. The present invention relates to a measurement method and apparatus.

近年、各種の電子機器から発生する不要輻射により他機器の妨害となったり生体に有害となったりするのを抑えるために、多くの国で規制が設けられている。例えば、海外ではFCC(アメリカ連邦通信委員会)、CISPR(国際無線障害特別委員会)、VDE(ドイツ電気技術者協会)などの規格が設けられている。我が国でも、VCCI(情報処理装置等電波障害自主規制協働議会)の自主規制規格が決められている。   In recent years, regulations have been established in many countries in order to prevent unwanted radiation generated from various electronic devices from interfering with other devices or being harmful to living bodies. For example, standards such as FCC (Federal Communications Commission), CISPR (International Special Committee on Radio Interference), and VDE (German Electrical Engineers Association) are established overseas. Even in Japan, the voluntary regulation standards of VCCI (Council for Voluntary Regulation of Radio Wave Interference) are established.

これらの不要輻射、つまり不要電磁波の規制は、一般に、30MHz〜1GHzの広範囲に亘って周波数別に制定されており、送電線での50Hz〜60Hzの超低周波である電磁界、電磁調理器での超長波からテレビ、電子レンジ、携帯電話での極超短波までの電波を含んでいる。 The regulation of these unnecessary radiations, that is, unnecessary electromagnetic waves, is generally established for each frequency over a wide range of 30 MHz to 1 GHz. Radio waves from ultra-long waves of TV to microwaves and mobile phones are included.

電磁波は電界と磁界が一対になって振動し、電磁エネルギーを空間に伝える波動であり、不要電磁波の計測はその発生源である電子機器から所定の距離を隔てた位置での電界強度を対象とする近傍電磁波強度として測定して行なわれ、外来ノイズを遮断するなど測定環境や測定機器は特殊なものになる。このため、その測定にはかなりの専門技術を必要とし、時間も掛かる。 An electromagnetic wave is a wave that vibrates as a pair of an electric field and a magnetic field, and transmits electromagnetic energy to the space.Measurement of unwanted electromagnetic waves targets the electric field strength at a predetermined distance from the electronic device that is the source. The measurement environment and measurement equipment are special, such as by measuring the intensity of electromagnetic waves in the vicinity and blocking external noise. For this reason, the measurement requires considerable technical skill and takes time.

そこで、近時では電子機器のプリント基板回路など種々な回路装置から放射される近傍電磁波強度を測定する電磁波測定装置を用いて、計測の時間とコストの低減が図られている。そのような計測機器として、例えば、電子機器の近傍を電界あるいは磁界センサを用いて電界あるいは磁界強度を測定し、その磁界強度の最大値による周波数スペクトラムを作成し、その最大値周波数スペクトラムで強度の強い周波数の電磁界強度分布を作成し、放射ノイズ源の探索、放射ノイズ発生メカニズム解析、対策効果の確認などを行うことが知られている(例えば、特許文献1参照。)。また、被測定物と間隔を介して配したアンテナで被測定物から放射された電磁波を受信して、その受信情報から被測定物からの電磁波放射パターンを検出するのに、複数のアンテナ素子を配したアンテナアレーを用いることにより、測定時間が短縮するようにしたものも知られている(例えば、特許文献2参照。)。   Therefore, in recent years, measurement time and cost have been reduced by using an electromagnetic wave measuring device that measures the intensity of a nearby electromagnetic wave radiated from various circuit devices such as a printed circuit board circuit of an electronic device. As such a measuring device, for example, an electric field or magnetic field strength is measured in the vicinity of an electronic device using an electric field or magnetic field sensor, a frequency spectrum is created based on the maximum value of the magnetic field strength, It is known to create an electromagnetic field intensity distribution with a strong frequency and search for a radiation noise source, analyze a radiation noise generation mechanism, confirm a countermeasure effect, and the like (see, for example, Patent Document 1). In addition, a plurality of antenna elements are used to receive an electromagnetic wave radiated from a measured object with an antenna arranged with a distance from the measured object, and to detect an electromagnetic radiation pattern from the measured object from the received information. There is also known a technique in which the measurement time is shortened by using an arranged antenna array (for example, see Patent Document 2).

いずれにしても、電子機器から放射される不要電磁波につき、その発生原因や発生箇所を特定するには、指向性のある1つまたは限られた数の受信部を用いて、被測定物からの近傍電磁界域の全範囲を走査して計測する必要があり、特許文献1、2に記載されているように被測定物からの近傍磁界範囲における一定の距離を隔てた位置にて走査するようにしている。
特開2002−372558号公報 特開2004−77336号公報
In any case, in order to identify the cause and location of unwanted electromagnetic waves radiated from electronic devices, use one or a limited number of receiving units with directivity from the object to be measured. It is necessary to scan and measure the entire range of the near electromagnetic field, and as described in Patent Documents 1 and 2, scan at a position separated by a certain distance in the near magnetic field range from the object to be measured. I have to.
JP 2002-372558 A JP 2004-77336 A

ところで、図9に示すように計測距離Dに応じ被測定物aに対する受信域が広がる特許文献2に記載のもののようなアンテナbを用いた場合の不要電磁波の計測につき説明すると、電磁波強度は距離の二乗倍に反比例するので、図9(a)に示すように計測距離 S
が小さい程アンテナbにより受信しやすく計測の分解能を高められるが、受信域、つまり受信域 S と小さくなる。受信域 S と小さくなるということは計測域の全範囲を走査し計測する回数Nがn(図9(c)に示す模式図上n=48)と勢い増大して計測に長い時間t=Tnと手間が掛かる。これを、図9(b)に示すように計測距離DLと近傍電磁界
範囲内ではあるが大きく設定すると、受信域ALが増大して走査の回数Nはm(図9(c
)に示す摸式図に対応してm=12)と低減し計測の時間がt=Tmと手間共に低減する。しかし、受信する電磁波の強度が勢い低下して計測の分解能も低下するので高精度な計測ができない。
By the way, the measurement of unnecessary electromagnetic waves when using an antenna b such as that described in Patent Document 2 in which the reception range for the object to be measured a widens according to the measurement distance D as shown in FIG. 9 will be described. As shown in FIG. 9A, the measured distance D S
While increased the resolution of the received easily measured by the smaller antenna b, the reception area, that is small and the reception area A S. Reception area A S and (schematic drawing n = 48 shown in to FIG. 9 (c)) number N n that small is to measure scan the entire range of the measurement range and long time measured by momentum increases t = It takes time and trouble with Tn. When this is set large as shown in FIG. 9B within the measurement distance D L and the nearby electromagnetic field range, the reception area A L increases and the number of scans N is m (FIG. 9C
) Corresponding to the schematic diagram shown in FIG. 4), m = 12) and the measurement time is reduced to t = Tm. However, since the intensity of the received electromagnetic wave decreases rapidly and the resolution of measurement also decreases, high-precision measurement cannot be performed.

そこで、不要電磁波の問題のない商品を提供する上で高精度な計測が必須となっている今日、商品の設計、製作段階で不要電磁波を計測するのに、不要電磁波成分が発生していないエリアも含む図9(c)に示す被測定物aからの電磁波発生域全体につき、小さな計測距離DLおよび受信域ALでの高い分解能にて精査し計測することを余儀なくされ、従来、計測に長い時間が掛かり製品コスト上昇の原因になっている。 Therefore, high-precision measurement is indispensable for providing products that do not have the problem of unwanted electromagnetic waves. Today, unnecessary electromagnetic wave components are not generated to measure unwanted electromagnetic waves at the product design and production stages. 9C, the entire electromagnetic wave generation area from the object to be measured a shown in FIG. 9C is required to be scrutinized and measured with high resolution at a small measurement distance D L and reception area A L. It takes a long time and causes an increase in product cost.

本発明の目的は、高精度な計測が短時間で行える電子機器の電磁波計測方法と装置を提供することにある。 An object of the present invention is to provide an electromagnetic wave measuring method and apparatus for an electronic apparatus that can perform highly accurate measurement in a short time.

上記のような目的を達成するために、本発明の電子機器の電磁波計測方法は、被測定物に計測距離に応じ受信域が広がる指向性のアンテナプローブを向けて受信域を順次スキャンし、電磁波成分を受信して不要電磁波成分を計測する電子機器の電磁波計測方法において、被測定物からの計測距離を、50mmを上限、5mmを下限として、予め大小2つのみ設定し、大きい方の第1計測距離で、第1受信域単位毎に移動し、かつ、スキャンし、不要電磁波成分が計測された前記第1受信域単位について、小さい方の第2計測距離で、前記第1受信域単位より小さな複数の第2受信域毎に移動し、かつ、スキャンし、前記第1計測距離で計測された前記不要電磁波成分が、前記第2計測距離での計測で変動ないとき、前記不要電磁波成分は外来ノイズであると判定し計測データから除外することを主たる特徴としている。 In order to achieve the above object, an electromagnetic wave measuring method for an electronic device according to the present invention is directed to an electromagnetic wave by sequentially scanning a receiving area toward a measured object with a directional antenna probe that expands the receiving area according to a measurement distance. in the electromagnetic wave measurement method of an electronic device for measuring the electromagnetic interference components by receiving component, the measurement distance from the object to be measured, the upper limit of 50 mm, a lower limit of 5 mm, pre magnitude only two settings, the person has a size No. The first reception area unit at a smaller second measurement distance with respect to the first reception area unit that is moved and scanned for each first reception area at one measurement distance and the unnecessary electromagnetic wave component is measured. When the unnecessary electromagnetic wave component that moves and scans for each of a plurality of smaller second reception areas and is measured at the first measurement distance does not vary in the measurement at the second measurement distance, the unnecessary electromagnetic wave component Is outpatient It is mainly characterized to be excluded from the determined measurement data to be size.

このような構成では、主として対象とする近傍電磁界範囲内でアンテナプローブにつき
、50mmを上限、5mmを下限として、予め大小2つのみ設定し、大きい方の第1計測距離で、第1受信域単位毎に移動し、かつ、スキャンすることを先行し、大きな受信域面積により受信域の移動回数少なく被測定物からの電磁波放射域の全範囲につき計測して、不要電磁波成分が計測された受信域を特定することができる。次いで、この特定した不要電磁波成分が計測された前記第1受信域単位について、小さい方の第2計測距離で、前記第1受信域単位より小さな複数の第2受信域毎に移動し、かつ、スキャンし、小さな計測距離、小さな受信域面識による高い分解能で計測しながらも、その計測対象域が限られているので受信域面積が小さいものの短時間で計測を終えられ、前記第1計測距離で計測された前記不要電磁波成分が、前記第2計測距離での計測で変動ないとき、前記不要電磁波成分はその計測位置での外来ノイズであると高精度に高速で計測することができる。なお、異なった計測距離での前記前後関係による計測の繰り返し回数を増すほど精査度が向上する。併せ、被測定物からの不要電磁波は計測距離が小さくなるほど高まる筈であるところ、これが高まらなければ計測距離の違いが影響しない遠方電磁界からの外来ノイズと判定して計測データから除外し計測精度を高められる。
In such a configuration, the antenna probe is mainly used within the target near electromagnetic field range.
, 50mm is the upper limit, 5mm is the lower limit, and only two large and small are set in advance , moving at the first first measurement range at the larger first measurement range and preceding scanning, and a large reception area measures per full range of electromagnetic radiation range from the transfer times less DUT reception area by, Ru can identify the reception range electromagnetic interference component is measured. Next, for the first reception area unit in which the specified unnecessary electromagnetic wave component is measured, the second reception area unit moves at a smaller second measurement distance for each of a plurality of second reception areas smaller than the first reception area unit, and While scanning and measuring with high resolution due to small measurement distance and small reception area , the measurement target area is limited, so the reception area is small, but the measurement can be completed in a short time, and at the first measurement distance When the measured unnecessary electromagnetic wave component does not vary in the measurement at the second measurement distance, the unnecessary electromagnetic wave component can be measured with high accuracy and at high speed as being an external noise at the measurement position . It should be noted that the degree of scrutiny improves as the number of repetitions of measurement according to the above-described context at different measurement distances increases. In addition, the unnecessary electromagnetic wave from the object to be measured should increase as the measurement distance decreases, and if this does not increase, it is judged as external noise from the far electromagnetic field that does not affect the difference in measurement distance and is excluded from the measurement data. Can be enhanced.

このような方法を達成する電磁波計測装置としては、計測距離に応じ受信域が広がる指向性を持って電磁波成分を受信するアンテナプローブと、このアンテナプローブと被測定物とをアンテナプローブの受信域単位に相対移動させスキャンする走査手段と、アンテナプローブと被測定物との間の計測距離を、50mmを上限、5mmを下限とした大小2つのみ予め設定し切り替える計測距離変更手段と、アンテナプローブが受信した電磁波情報の送信を受けて受信処理する受信処理手段と、大きい方の第1計測距離で、第1受信域単位毎に移動し、かつ、スキャンし、不要電磁波成分が計測された前記第1受信域単位について、小さい方の第2計測距離で、前記第1受信域単位より小さな複数の第2受信域毎に移動し、かつ、スキャンし、前記第1計測距離で計測された前記不要電磁波成分が、前記第2計測距離での計測で変動ないとき、前記不要電磁波成分は外来ノイズであると判定し計測データから除外する計測制御部とを備えたことを特徴とするもので足りる。 As an electromagnetic wave measuring apparatus that achieves such a method, an antenna probe that receives an electromagnetic wave component having a directivity that expands a reception area according to a measurement distance, and the antenna probe and a device under test are combined in a reception area unit of the antenna probe. scanning means you scanned moved relative to, a measurement distance changing means to measure distance, 50 mm an upper limit, which is set large and small only advance that the lower limit 5mm switching between the antenna probe and the DUT, the antenna probe There a reception processing means for reception processing by receiving the transmission of electromagnetic wave information received, at the first measurement distance towards have large moving each first reception area unit, and scanned, unwanted electromagnetic wave components are measured With respect to the first reception area unit, a smaller second measurement distance moves for each of a plurality of second reception areas that are smaller than the first reception area unit, and scans. The electromagnetic interference components measured by the first measurement distance, the absence fluctuation in the measurement in the second measurement distance, the electromagnetic interference component and a judgment exclude measurement control unit from the measurement data to be external noise It is enough to have a feature.

大きな計測距離で計測された不要電磁波成分が、小さな計測距離での計測で高まらないとき、前記不要電磁波成分は外来ノイズであると判定する、さらなる構成では、
被測定物からの不要電磁波は計測距離が小さくなるほど高まる筈であるところ、これが高まらなければ計測距離の違いが影響しない遠方電磁界からの外来ノイズと判定することができる。
When the unnecessary electromagnetic wave component measured at a large measurement distance is not increased by measurement at a small measurement distance, the unnecessary electromagnetic wave component is determined to be external noise.
The unnecessary electromagnetic wave from the object to be measured should increase as the measurement distance decreases. If the measurement distance does not increase, it can be determined as external noise from a far electromagnetic field that is not affected by the difference in measurement distance.

計測する不要電磁波成分は、対象とする近傍電磁界での周波数またはおよび強度である、さらなる構成では、
不要電磁波成分を各周波数別にも、強度別にも、さらにその双方にても計測し評価することができる。
In a further configuration, the unnecessary electromagnetic wave component to be measured is the frequency or intensity in the near electromagnetic field of interest .
Unwanted electromagnetic wave components can be measured and evaluated for each frequency, for each intensity, and for both.

前記電磁波計測装置において、アンテナプローブと受信部との間に入力する受信情報を増幅して出力するアンプを有し、アンテナプローブでの受信情報を直接受信部に送信する直接送信経路と、アンテナプローブでの受信情報をアンプを経由して受信部に送信する増幅送信経路と、を切換え選択する切換え手段を備えた、さらなる構成では、
アンテナプローブによる不要電磁波成分の受信レベルが低く、計測部側の受信ダイナミックレンジの範囲に入らないことがある被測定物などの場合、アンプを経由した増幅送信経路を選択して受信することにより前記範囲以内として、計測することができる。
In the electromagnetic wave measuring apparatus, the antenna probe has an amplifier that amplifies and outputs reception information input between the antenna probe and the reception unit, and a direct transmission path for transmitting the reception information at the antenna probe directly to the reception unit, and the antenna probe In a further configuration comprising a switching means for switching and selecting the amplification transmission path for transmitting the reception information at the receiver to the reception unit via the amplifier,
In the case of an object to be measured that has a low reception level of unwanted electromagnetic wave components by the antenna probe and may not fall within the range of the reception dynamic range on the measurement unit side, the amplification transmission path via the amplifier is selected and received. It can be measured within the range.

切替え手段が、直接送信経路選択の切換え状態で、アンプの入力側および出力側双方での電気的な入力を断つ、さらなる構成では、
アンプを経由しない直接送信経路選択状態で、アンプの入力側および出力側双方での電気的な入力を断つことで、電流が流れることによる電界および磁界とそれらによる電磁波とが発生しないのは勿論、電圧が掛かることによる電界も発生しないものとすることができる。
In a further configuration, the switching means cuts off the electrical input on both the input side and the output side of the amplifier in the direct transmission path selection switching state,
In the direct transmission path selection state without going through the amplifier, by cutting off the electrical input on both the input side and the output side of the amplifier, the electric field and magnetic field due to the current flowing and the electromagnetic wave due to them are not generated, of course, An electric field due to application of a voltage may not be generated.

本発明のそれ以上の目的および特徴は、以下の詳細な説明および図面によって明らかになる。本発明の各特徴はそれ自体単独で、または種々な組合せで複合して採用することができる。   Further objects and features of the present invention will become apparent from the following detailed description and drawings. Each feature of the present invention can be employed by itself or in combination in various combinations.

本発明の電磁波計測方法と装置によれば、アンテナプローブにつき被測定物からの計測
距離を、50mmを上限、5mmを下限とした大小2つのみ予め設定した分解能に差がある2通りの計測を適時に利用して、計測のための走査回数を計測精度を低下させずに減らして計測速度を高められ、高精度な計測が短時間で達成でき、製品の他機器や生体に対する安全性の高いものを低コストで提供できる。併せ、被測定物からの不要電磁波は計測距離が小さくなるほど高まるところ、これが高まらなければ外来ノイズと判定して計測データから除外し計測精度を高められる。
According to the electromagnetic wave measurement method and apparatus of the present invention, the measurement distance from the object to be measured with respect to the antenna probe can be measured in two ways with a difference in preset resolutions of only two large and small with an upper limit of 50 mm and a lower limit of 5 mm. using timely, the number of scans for the measurement, increased measurement speed is reduced without lowering the measurement accuracy, highly accurate measurement can be achieved in a short time, the safety for other equipment and biological products High price can be provided at low cost. At the same time, the unnecessary electromagnetic wave from the object to be measured increases as the measurement distance decreases, and if this does not increase, it is determined as external noise and can be excluded from the measurement data to increase the measurement accuracy.

また、不要電磁波成分は周波数別にも、強度別にも、さらにその双方にても計測し評価することができる。   Unnecessary electromagnetic wave components can be measured and evaluated for each frequency, for each intensity, and for both.

また、アンテナプローブによる不要電磁波成分の受信レベルが低く、計測部側の受信ダイナミックレンジの範囲に入らないことがある被測定物などの場合、アンプにより前記範囲以内に増幅して、計測することができる。   In addition, in the case of an object to be measured that has a low reception level of unnecessary electromagnetic wave components by the antenna probe and may not fall within the range of the reception dynamic range on the measurement unit side, it can be amplified and measured within the range by an amplifier. it can.

また、アンプを経由しない受信状態への切換えによっては、アンプに電流が流れることによる電界および磁界とそれらによる電磁波とが発生しないのは勿論、電圧が掛かることによる電界も発生しないものとして、計測の妨げになるようなことを回避することができる。   Also, depending on the switching to the reception state without passing through the amplifier, the electric field and magnetic field due to the current flowing through the amplifier and the electromagnetic wave due to them do not occur, and the electric field due to the voltage is not generated. You can avoid things that get in the way.

本発明の実施の形態に係る電子機器の電磁波計測方法と装置につき、以下に図を参照しながら説明し、本発明の理解に供する。以下の説明は本発明の具体例であって特許請求の範囲を限定するものではない。 An electromagnetic wave measuring method and apparatus for an electronic apparatus according to an embodiment of the present invention will be described below with reference to the drawings for understanding of the present invention. The following description is a specific example of the present invention and does not limit the scope of the claims.

本実施の形態の電子機器の電磁波計測方法は、図1に示すように、電子機器類である電磁波を発生する被測定物1からの不要電磁波をアンテナプローブ2により受信して電磁波計測装置3により計測する場合の例であって、アンテナプローブ2は周辺の機器や生体への影響上に問題となる範囲の不要電磁波成分ないしは電波を受信できればよいが、計測距離に応じ受信域が広がる指向性のあるものを採用する。それには、ループアンテナ、微少ダイポールアンテナなどがある。しかし、これらに限られることはない。計測は主として近傍電磁波範囲内で行い、アンテナプローブ2の被測定物1からの計測距離Dは最低の分解能を考慮して例えば50mm程度を上限とするのがよく、計測距離Dと指向特性とに応じた受信域Aが得られる。また、計測距離Dが小さくなればそれに対応して受信域Aも小さくなり、被測定物1の計測必要範囲A0の全域を計測するには、アンテナプローブ2の受信域を計測必要範囲A0の全域へ順次に移していく、つまりXY2方向へ走査する回数が勢い増大する。つまり、計測距離が小さくなる割合の逆数の二乗倍になる。そこで、走査回数を徒に増大させないで必要十分な計測分解能が得られる範囲で見ると、5mm程度を計測距離Dの下限として有効である。 As shown in FIG. 1, the electromagnetic wave measuring method for an electronic device according to the present embodiment receives an unnecessary electromagnetic wave from an object to be measured 1 that generates an electromagnetic wave , which is an electronic device , by an antenna probe 2 and uses an electromagnetic wave measuring device 3. It is an example in the case of measurement, and the antenna probe 2 is only required to be able to receive unnecessary electromagnetic wave components or radio waves in a range that causes problems on peripheral devices and living organisms. Adopt something. These include loop antennas and minute dipole antennas. However, it is not limited to these. The measurement is performed mainly in the vicinity of the electromagnetic wave range, and the measurement distance D of the antenna probe 2 from the object to be measured 1 is preferably set to an upper limit of, for example, about 50 mm in consideration of the minimum resolution. A corresponding reception area A is obtained. Further, if the measurement distance D is reduced, the reception area A is correspondingly reduced. To measure the entire measurement area A0 of the DUT 1, the reception area of the antenna probe 2 is set to the entire measurement area A0. The number of times of scanning in the XY2 direction increases rapidly. That is, it is the square of the reciprocal of the rate at which the measurement distance is reduced. Therefore, when viewed in a range where necessary and sufficient measurement resolution can be obtained without increasing the number of scans, about 5 mm is effective as the lower limit of the measurement distance D.

以上のような計測距離Dおよびそのときの受信域Aの広狭と走査回数Nとの関係から、本実施の形態では計測距離Dを図2に示すようにDL S など大小複数設定して、図2
(a)に示す大きな計測距離DLでXY二方向に走査してのいわば広範囲スキャンによる
計測から、図2(b)に示す小さな計測距離 S でXY二方向に走査しての計測を複数回行い、小さな計測距離 S での狭範囲スキャンによる計測は大きな計測距離 L で不要電磁波成分が計測された受信域A1、A2、A3について行うようにする。このように、近傍電磁界範囲内で設定する大小計測距離DL S による、先行した大きな計測距離DLでの広範囲スキャン計測にて、大きな受信域面積ALにより計測必要範囲A0に対する受信
域の移動回数ないしは走査回数が模式図上からN=m=12と少なくして被測定物1からの電磁波放射域の計測必要範囲A0につき計測し、不要電磁波成分が計測された受信域A1〜A3などを見落としなく特定することができる。また、この特定した受信域A1〜A3などにつき小さな計測距離 S での狭範囲スキャンによる高い分解能で計測しながらも、その計測対象域が受信域A1〜A3などと模式図上からN=n=3と限られているので受信域面積 S が小さいものの短時間で計測を終えられる。従って、不要電磁波成分の発生とその位置を高精度に高速で計測することができ、その特徴は大きな計測距離 L を前記上限の50mmとし、小さな計測距離 S を前記下限の5mmとして最大限発揮される。
From the relationship between wide and narrow reception area A and the number of scans N when measured distance D and as described above, in this embodiment the measurement distance D and D L, D S magnitude more settings, such as shown in FIG. 2 Figure 2
From it were measured by wide scanning by scanning in the XY two directions with large measurement distance D L shown in (a), a plurality of measurements of scans in the XY two directions with a small measurement distance D S shown in FIG. 2 (b) The measurement is performed once, and the measurement by the narrow range scan at the small measurement distance D S is performed for the reception areas A1, A2, and A3 where the unnecessary electromagnetic wave component is measured at the large measurement distance D L. Thus, the magnitude measurement distance D L is set in the vicinity of the electromagnetic field range, according to D S, preceding the wide limits scan measurements at large measurement distance D L, received for the measurement required range A0 by a large reception area area A L The number of movements or scannings of the area is reduced as N = m = 12 from the schematic diagram, and measurement is performed for the necessary electromagnetic wave emission area A0 from the DUT 1, and the reception areas A1 to A1 in which unnecessary electromagnetic wave components are measured. A3 etc. can be specified without overlooking. Furthermore, the narrow range while measuring with high resolution by scanning the measurement target region is N = n from schematic diagram to as reception area A1~A3 with a small measurement distance D S per such reception area A1~A3 that this particular = 3, so that the reception area A S is small, but the measurement can be completed in a short time. Therefore, the generation and position of unnecessary electromagnetic wave components can be measured with high accuracy and at high speed, and the feature is that the maximum measurement distance D L is set to the upper limit of 50 mm and the minimum measurement distance D S is set to the lower limit of 5 mm. Demonstrated.

以上から本実施の形態では、計測距離DをDL S など複数設定した分解能に差があ
る計測を適時に利用して、計測のための総走査回数を計測精度を低下させずにN=n+m=15などと減らして計測速度を高められる。この結果、高精度な計測が短時間で達成でき、製品の他機器や生体に対する安全性の高いものを低コストで提供できる。なお、異なった計測距離Dでの前記前後関係による計測の繰り返し回数を増すほど精査度が向上し、それには上下限の計測距離50mm〜5mm程度の範囲内で計測距離を複数設定することになる。
In the present embodiment from the above, the measurement distance D D L, using timely measurement there is a difference in resolution in which a plurality set such D S, N without lowering the measurement accuracy of the total number of scans for measurement = N + m = 15 etc., and the measurement speed can be increased. As a result, highly accurate measurement can be achieved in a short time, and products that are highly safe for other devices and living bodies can be provided at low cost. Note that the degree of scrutiny improves as the number of repetitions of measurement according to the above-mentioned context at different measurement distances D increases, and for this, a plurality of measurement distances are set within a range of upper and lower measurement distances of about 50 mm to 5 mm. .

このような方法を達成するのに電子機器の電磁波計測装置3は、図3に示すように、既述した計測距離Dに応じ受信域が広がる指向性を持って被測定物1からの電磁波成分を受信するアンテナプローブ2と、このアンテナプローブ2が受信した電磁波情報を送信されて受信処理する受信部としての広帯域受信回路などである広帯域受信部4と、アンテナプローブ2と被測定物1とをアンテナプローブ2の受信域A単位にXY二方向に相対移動させる走査用のXY駆動部5aと、アンテナプローブ2と被測定物1との間の計測距離Dを複数に切り替える、つまりZ方向に移動させる計測距離変更用のZ駆動部5bと、広帯域受信部4にて入力処理された受信電磁波情報から不要電磁波成分をデータ処理して計測し、大きな計測距離での計測から小さな計測距離での計測を複数回行い、小さな計測距離での計測は大きな計測距離で不要電磁波成分が計測された受信域について行う計測制御部6と、表示部7とを備えたものとしている。 In order to achieve such a method, the electromagnetic wave measuring apparatus 3 of the electronic device has an electromagnetic wave component from the object 1 to be measured having a directivity in which the reception area is widened according to the measurement distance D described above, as shown in FIG. An antenna probe 2, a broadband receiver 4 as a receiver for receiving and processing the electromagnetic wave information received by the antenna probe 2, and the antenna probe 2 and the device under test 1. The XY driving unit 5a for scanning that moves relative to the reception area A of the antenna probe 2 in two XY directions and the measurement distance D between the antenna probe 2 and the DUT 1 are switched to a plurality, that is, moved in the Z direction. From the measurement at a large measurement distance, an unnecessary electromagnetic wave component is measured and processed from the received electromagnetic wave information input and processed by the Z driving unit 5b for changing the measurement distance and the broadband receiving unit 4. A measurement control unit 6 that performs measurement at a small measurement distance a plurality of times and performs measurement at a small measurement distance for a reception range in which an unnecessary electromagnetic wave component is measured at a large measurement distance, and a display unit 7 are provided. .

ここに、広帯域受信部4とは、広帯域の範囲内で発生する不要電磁波を受信処理する。XY駆動部5aおよびZ駆動部5bのそれぞれは、被測定物1に対してアンテナプローブ2の側をXY方向に駆動して走査するように設けてある。しかし、図4に示すようにアンテナプローブ2に対して被測定物1の側をXY方向に駆動して走査するようにしてもよい。もっとも、原理的にはXYZの駆動をアンテナプローブ2側と被測定物1側とで分担して行うこともできる。計測制御部6は不要電磁波成分を計測して評価するために、アンテナプローブ2、広帯域受信部4、XY駆動部5a、Z駆動部5b、表示部7などを動作制御する。   Here, the broadband receiving unit 4 receives and processes unnecessary electromagnetic waves generated within a wide band range. Each of the XY drive unit 5a and the Z drive unit 5b is provided so as to scan the device under test 1 by driving the antenna probe 2 side in the XY directions. However, as shown in FIG. 4, scanning may be performed by driving the object 1 to be measured in the XY directions with respect to the antenna probe 2. However, in principle, the driving of XYZ can be shared between the antenna probe 2 side and the DUT 1 side. The measurement control unit 6 controls the operation of the antenna probe 2, the broadband receiving unit 4, the XY driving unit 5a, the Z driving unit 5b, the display unit 7 and the like in order to measure and evaluate unnecessary electromagnetic wave components.

さらに、被測定物1によっては、アンテナプローブ2による不要電磁波成分の受信レベルが低く、広帯域受信部4の受信ダイナミックレンジの範囲に入らないことがある被測定物1などの場合、図5に示すようにアンプ11をアンテナプローブ2と広帯域受信部4との間に設け、アンテナプローブ2から入力する受信情報をアンプ11で増幅して出力し広帯域受信部4に送信するようにすれば対応できる。もっとも、増幅率を高くするとSN比が低下するので、6dB程度の増幅に抑えるのが好適である。また、アンプ11が不要な場合は計測精度をできるだけ上げるためにアンプ11を用いない方が好ましい。そこで、図5に示す場合では、アンテナプローブ2での受信情報を直接広帯域受信部4に送信する直接送信経路12と、アンテナプローブ2での受信情報をアンプ11を経由して広帯域受信部4に送信する増幅送信経路13と、を切換え選択する切換え手段14を設け、必要なときだけアンプ11を経由した増幅送信経路13を選択して受信することにより前記受信ダイナミックレンジの範囲以内として、計測できるようにする。この場合、切換え手段14はアンプ11の入力側と出力側とで接続、接続解除を行う2つの切換えスイッチ14a、14bを設けて、直接送信経路12を選択する図5に示す切換え状態では、アンプ11の入力側および出力側双方での電気的な入力を断つようにしている。これにより、アンプ11を経由しない直接送信経路12の選択状態で、アンプ11の入力側および出力側双方での電気的な入力を断つことで、アンプ11に電流が流れることによる電界および磁界とそれらによる電磁波とが発生しないのは勿論、電圧が掛かることによる電界も発生しないものとすることができる。従って、アンプ11の不使用時に計測のノイズ源になるようなことを回避することができる。   Further, depending on the device under test 1, the case of the device under test 1 or the like in which the reception level of the unnecessary electromagnetic wave component by the antenna probe 2 is low and may not fall within the reception dynamic range of the broadband receiving unit 4 is shown in FIG. In this manner, the amplifier 11 is provided between the antenna probe 2 and the broadband receiver 4 so that reception information input from the antenna probe 2 is amplified by the amplifier 11 and output to be transmitted to the broadband receiver 4. However, since the SN ratio decreases when the amplification factor is increased, it is preferable to suppress the amplification to about 6 dB. When the amplifier 11 is not necessary, it is preferable not to use the amplifier 11 in order to increase the measurement accuracy as much as possible. Therefore, in the case shown in FIG. 5, the direct transmission path 12 for directly transmitting the reception information at the antenna probe 2 to the broadband receiving unit 4 and the reception information at the antenna probe 2 to the broadband receiving unit 4 via the amplifier 11. A switching means 14 is provided for switching and selecting the amplified transmission path 13 for transmission, and by selecting and receiving the amplified transmission path 13 via the amplifier 11 only when necessary, it can be measured within the range of the reception dynamic range. Like that. In this case, the switching means 14 is provided with two changeover switches 14a and 14b for connecting and releasing the connection between the input side and the output side of the amplifier 11, and in the switching state shown in FIG. The electrical input on both the input side and the output side of 11 is cut off. As a result, in the selected state of the direct transmission path 12 that does not pass through the amplifier 11, by cutting off the electrical input on both the input side and the output side of the amplifier 11, the electric field and magnetic field caused by the current flowing through the amplifier 11 and those As a matter of course, the electric field due to the voltage can be prevented from being generated. Therefore, it is possible to avoid a measurement noise source when the amplifier 11 is not used.

ここで、計測につき詳述すると、被測定物1が不要電磁波成分を放射しているとする。これをアンテナプローブ2で受信して広帯域受信部4に送信する。広帯域受信部4ではアンテナプローブから送信される不要電磁波成分から不要電磁波の周波数や電界レベルでの受信処理をし、計測制御部6に送信する。計測制御部6では受信処理された前記不要電磁波の周波数や電界レベルをそれぞれデータ処理して表示部7に表示する。周波数別の強度分布としては図6に示すような周波数スペクトラムとして表示することができる。これによれば、他機器や生態に影響する不要電磁波となる特定周波数での強度をそれぞれ判定することができ、所定よりも高い場合に対策することが課題となる。この課題を解決するためには被測定物1における電子部品や回路、機器などの発生源を特定する必要がある。電界強度分布は例えば図7に示すようなXY座標上で、同等レベルの分布エリアを異なった色や網掛け、ラインなどの少なくとも1つによって区別したいわば等高線タイプの縞模様状態で表示することができ、場合により強度を示す数値を付すこともできる。このような電界レベル表示では被測定物1におけるXY座標上での高い電磁界の発生域や発生位置が判別でき、計測距離Dを小さくすることでその分布が複数の発生源からのものが複合したものであるような場合でも、電磁波発生源別に絞ったエリアに区分けする精査ができる。そこで、前記課題となる電界強度を持つこととなった周波数別に、図7に示すような電磁界強度分布にて表示することにより発生源を特定することができる。なお、図7は平板状
のダイポールアンテナを被測定物1としたときの、周波数900MHzにおける近傍磁界分布の例を示しており、磁界強度0から700mA/mの範囲で、等高線を50mA/mごとに施してある。
Here, the measurement will be described in detail. It is assumed that the DUT 1 radiates unnecessary electromagnetic wave components. This is received by the antenna probe 2 and transmitted to the broadband receiver 4. The broadband receiving unit 4 performs a receiving process at the frequency or electric field level of the unnecessary electromagnetic wave from the unnecessary electromagnetic wave component transmitted from the antenna probe, and transmits it to the measurement control unit 6. The measurement control unit 6 performs data processing on the frequency and electric field level of the unnecessary electromagnetic waves that have been subjected to reception processing, and displays them on the display unit 7. The intensity distribution for each frequency can be displayed as a frequency spectrum as shown in FIG. According to this, the intensity | strength in the specific frequency used as the unnecessary electromagnetic wave which affects other apparatuses and ecology can each be determined, and it becomes a subject to take a countermeasure when higher than predetermined. In order to solve this problem, it is necessary to specify the generation source of electronic components, circuits, equipment, etc. in the DUT 1. For example, the electric field intensity distribution can be displayed in a so-called contour line-type striped state in which distribution areas of the same level are distinguished by at least one of different colors, shading, lines, etc. on XY coordinates as shown in FIG. In some cases, a numerical value indicating strength can be attached. In such electric field level display, it is possible to determine the generation area and generation position of a high electromagnetic field on the XY coordinate in the DUT 1, and by reducing the measurement distance D, the distribution is compounded from a plurality of generation sources. Even in such a case, it is possible to scrutinize the area by focusing on the electromagnetic wave source. Therefore, the generation source can be identified by displaying the electromagnetic field intensity distribution as shown in FIG. 7 for each frequency that has the electric field intensity as the problem. FIG. 7 shows an example of the near magnetic field distribution at a frequency of 900 MHz when a flat dipole antenna is used as the DUT 1. The contour line is 50 mA / m in the range of magnetic field strength of 0 to 700 mA / m. It is given every.

もっとも、周波数別の強度分布を複合してXY座標上、まはたZ軸を強度としたXYZ座標上で色分けなどの区別をして同時に表示すれば、課題となる周波数とその発生源とを同時に評価することができる。この場合、発生する電磁波成分の周波数の種類が少なかったり、発生位置が重複しない条件であるほど評価しやすい。このような点から、課題となる周波数ごとの閾値範囲内となる不要電磁波成分に限って表示すれば計測に便利である。   However, if the intensity distribution for each frequency is combined and displayed on the XY coordinates, or on the XYZ coordinates with the Z axis as the intensity, the colors are distinguished and displayed at the same time. Can be evaluated at the same time. In this case, it is easier to evaluate the condition that the number of types of generated electromagnetic wave components is smaller or the generation position does not overlap. From this point of view, it is convenient for measurement to display only unnecessary electromagnetic wave components within the threshold range for each frequency that is a problem.

特に、図6に示す周波数スペクトラムは、広範囲スキャン時の計測結果を黒塗りで、狭範囲スキャン時の計測結果を白塗りで、それぞれ区別して表示しているように、広範囲スキャン時の計測値Af1に比し狭範囲スキャン時の計測値Bf1と格段に高くなる計測置の種類と、広範囲スキャン時の計測値Af2が狭範囲スキャン時にもほとんど変動しない計測値の種類がある。これは、アンテナプローブ2が被計側物1からの近傍電磁界範囲内の電磁波を受信しているのであれば、計測距離Dの変動によって計測値が変動し、遠方電磁界からの電磁波を受信しているのであれば、被測定物1に対する計測距離Dが変動しても影響しないことを意味している。この関係から、狭範囲スキャンにて不要電磁波として検出されても、広範囲スキャンで検出されたときの検出レベルから変動のないものであれば、これを遠方電磁界からの外来ノイズであると判定し被測定物1からの計測データから除外し計測精度を高められる。   In particular, the frequency spectrum shown in FIG. 6 shows the measurement value Af1 in the wide-range scan so that the measurement result in the wide-range scan is displayed in black and the measurement result in the narrow-range scan is displayed in white. There are types of measurement devices that are significantly higher than the measurement value Bf1 at the time of narrow-range scanning, and types of measurement values at which the measurement value Af2 at the time of wide-range scanning hardly varies even during narrow-range scanning. If the antenna probe 2 receives an electromagnetic wave in the near electromagnetic field range from the measured object 1, the measurement value fluctuates due to the fluctuation of the measurement distance D, and the electromagnetic wave from the far electromagnetic field is received. If it does, it means that even if the measurement distance D with respect to the DUT 1 fluctuates, there is no influence. From this relationship, even if it is detected as an unnecessary electromagnetic wave in a narrow range scan, if it does not vary from the detection level when it is detected in a wide range scan, it is determined as an external noise from a far electromagnetic field. Measurement accuracy can be improved by excluding the measurement data from the DUT 1.

具体的な計測の手順は自由であるが、計測制御部6による計測制御の1つの例について図8を参照して説明する。先ずステップST1にて入力処理をする。これはスタート操作に対する処理を含むが、ユーザが行う複数の計測距離Dの設定操作に対する処理を含む。計測距離Dの設定は少なくとも大小2通り設定される必要があり、所定時間の間計測距離の設定がないか終了操作によって計測距離設定終了と判定し、2通り以上の計測距離Dが設定し終わると大きいものから順位を付し、順位カウンタを1に設定しておき、スタート操作に従いステップST3に移行する。計測距離Dの設定が終了しスタート操作があっても計測距離Dが2通り以上設定されていない場合はその旨の警告をして設定を促す。初期設定され、あるいはその後変更された2通り以上の計測距離Dの設定がある場合で、所定時間新たな設定がなくスタート操作があると、順位カウンタを1にしてステップST3に移行する。初期設定され、あるいは変更された2通り以上の計測距離Dの設定があっても、スタート操作なく設定操作があるときは既設定をクリアして新たな設定を上記の手順で受け付ける。   Although a specific measurement procedure is arbitrary, one example of measurement control by the measurement control unit 6 will be described with reference to FIG. First, input processing is performed in step ST1. This includes processing for a start operation, but also includes processing for a setting operation for a plurality of measurement distances D performed by a user. The measurement distance D needs to be set in at least two ways, large and small. If the measurement distance is not set for a predetermined time, it is determined that the measurement distance setting is ended by an end operation, and two or more measurement distances D are set. The rank is assigned in descending order, the rank counter is set to 1, and the process proceeds to step ST3 according to the start operation. Even if the measurement distance D is set and the start operation is performed, if two or more measurement distances D are not set, a warning to that effect is given to prompt the setting. If there are two or more measurement distances D that are initially set or changed after that, if there is no new setting for a predetermined time and there is a start operation, the rank counter is set to 1 and the process proceeds to step ST3. Even if there are two or more measurement distances D that are initially set or changed, if there is a setting operation without a start operation, the existing setting is cleared and a new setting is accepted according to the above procedure.

ステップST3で順位カウンタが1であると、計測開始であるのでステップST4に移行し、順位カウンタ1に対応する順位1の設定計測距離Dx(x=1)を読み出し、ステップST5にて計測距離Dx(x=1)での計測必要範囲A0の全域につきXY広範囲スキャンによる不要電磁波成分の計測と計測データの取り込みを記憶する。次いでステップST6にて順位カウンタを+1してステップST3に戻る。ここで、順位カウンタが2であることによりステップST8に移行し、順位カウンタに対応する設定計測距離Dxがあるか判定し、現時点での順位カウンタが2で、これに対応する順位2の設定計測距離Dx(x=2)があることによってステップST9に移行する。ステップST9では現時点の順位カウンタ2に対応する順位2の設定計測距離Dx(x=2)を読み出し、ステップST10にて計測距離Dx(x=2)での、順位カウンタ−1時、つまりXY広範囲スキャンである前回の場合に比し狭範囲スキャンを前回に不要電磁波成分が計測されている受信域Ax(x=1〜n)に限って行い、前回よりも精査した不要電磁波成分の計測をして計測データを取り込み記憶する。次いでステップST11に移行して順位カウンタを+1してから、ステップST12にて順位カウンタ3に対応した順位3の設定計測距離Dx(x=3)があるかどうか判定し、なければそれ以上の計測はせずステップST13にて最終的に計測データを評価に対応した形式で表示し、不要電磁波とその発信位置を特定するが、つぎのステップST14にてさらに、複数計測距離Dxでの計測データ間で不要電磁波のデータ値に所定以上の変動がないデータは外来ノイズとして計測された不要電磁波データから削除して計測を終える。もっとも、ステップST13、14での不要電磁波とその位置、外来ノイズ削除の判定は自動で行えるが、これに代えて、あるいはこれと共にデータ表示から人が判定するようにもできる。ステップST12で順位カウンタ3に対応する順位3の設定計測距離Dx(x=3)があると、ステップST15に移行し、今回順位カウンタ2に対応した設定計測距離Dx(x=2)での狭範囲スキャンにて不要電磁波成分が検出された受信域Axを特定して記憶し、ステップST3以降に戻って、それ以上の狭範囲スキャンによる計測が設定計測距離Dxがなくなるまで繰り返し、計測の精査度を高める。ステップST14での外来ノイズの判定は、2つを上回る設定計測距離Dxに対応した計測を行っている場合、一番差の大きな2つの計測距離Dxでの計測データ間で行うのが正しく判定しやすい。   If the rank counter is 1 in step ST3, the measurement is started, so the process moves to step ST4, the set measurement distance Dx (x = 1) corresponding to rank 1 is read, and the measurement distance Dx is read in step ST5. The measurement of the unnecessary electromagnetic wave component by the XY wide range scan and the acquisition of the measurement data are stored for the entire measurement required range A0 at (x = 1). Next, in step ST6, the rank counter is incremented by 1, and the process returns to step ST3. Here, when the rank counter is 2, the process proceeds to step ST8, where it is determined whether or not there is a set measurement distance Dx corresponding to the rank counter. Due to the distance Dx (x = 2), the process proceeds to step ST9. In step ST9, the set measurement distance Dx (x = 2) of the rank 2 corresponding to the current rank counter 2 is read, and in step ST10, the rank counter-1 at the measurement distance Dx (x = 2), that is, the XY wide range. Compared to the previous scan, a narrow-range scan is performed only in the reception area Ax (x = 1 to n) where the unnecessary electromagnetic wave component was measured last time, and the unnecessary electromagnetic wave component measured more closely than the previous time is measured. Capture and store the measurement data. Next, the process proceeds to step ST11, and the rank counter is incremented by 1. Then, in step ST12, it is determined whether or not there is a set measurement distance Dx (x = 3) of rank 3 corresponding to the rank counter 3. In step ST13, the measurement data is finally displayed in a format corresponding to the evaluation, and the unnecessary electromagnetic wave and its transmission position are specified. In the next step ST14, the measurement data between the measurement data Dx is further measured. Then, the data that does not have a predetermined fluctuation in the data value of the unnecessary electromagnetic wave is deleted from the unnecessary electromagnetic wave data measured as the external noise, and the measurement is finished. Of course, the unnecessary electromagnetic wave, its position, and the removal of the external noise in steps ST13 and ST14 can be automatically determined, but instead of this or in combination with this, a person can also determine from the data display. If there is a set measurement distance Dx (x = 3) of rank 3 corresponding to the rank counter 3 in step ST12, the process proceeds to step ST15, where the narrowness is set at the set measurement distance Dx (x = 2) corresponding to the current rank counter 2. The reception area Ax in which the unnecessary electromagnetic wave component is detected in the range scan is specified and stored, and after returning to step ST3, the measurement by the narrow range scan is repeated until the set measurement distance Dx disappears, and the measurement scrutiny To increase. The determination of the external noise at step ST14 is correctly performed between the measurement data at the two measurement distances Dx having the largest difference when the measurement corresponding to the set measurement distance Dx exceeding two is performed. Cheap.

以上は、広範囲スキャンでの計測を計測必要範囲A0の全域につき先行して行い、その後に広範囲スキャンで不要電磁波成分が計測された受信域に限ってそれよりも狭範囲スキャンでの計測を行うようにしたが、この手順を計測必要範囲A0の全域につき広範囲スキャンによる計測を行うのに、不要電磁波成分が計測される都度、その時の受信域につき狭範囲スキャンによる計測を行い、不要電磁波成分が計測されなければそのまま次の受信域へ移行し広範囲スキャンでの計測を続行する手順を採用することもできる。   As described above, the measurement in the wide range scan is performed in advance for the entire measurement required range A0, and then the measurement in the narrow range scan is performed only in the reception range where the unnecessary electromagnetic wave component is measured in the wide range scan. However, in this procedure, every time the unnecessary electromagnetic wave component is measured in the entire measurement required range A0, the unnecessary electromagnetic wave component is measured every time the unnecessary electromagnetic wave component is measured. If this is not the case, it is possible to adopt a procedure for shifting to the next reception area as it is and continuing measurement in a wide range scan.

本発明は、電磁波を発生する電子機器での不要電磁波の計測に実用でき、計測速度を高められる。 INDUSTRIAL APPLICABILITY The present invention can be practically used for measuring unnecessary electromagnetic waves in an electronic device that generates electromagnetic waves, and can increase the measurement speed.

本発明の実施の形態に係る電子機器の電磁波計測方法と装置が採用する広範囲スキャン方式での計測状態例を示す斜視図である。It is a perspective view which shows the example of a measurement state by the wide range scanning system which the electromagnetic wave measuring method and apparatus of the electronic device which concern on embodiment of this invention employ | adopt. 本発明の実施の形態に係る電子機器の電磁波計測方法と装置が採用する狭範囲スキャン方式での計測状態例を示す斜視図である。It is a perspective view which shows the example of a measurement state by the narrow range scanning system which the electromagnetic wave measuring method and apparatus of the electronic device which concern on embodiment of this invention employ | adopt. 本発明の実施の形態に係る電子機器の電磁波計測装置の1つの例を示すブロック図である。It is a block diagram which shows one example of the electromagnetic wave measuring device of the electronic device which concerns on embodiment of this invention. 本発明の実施の形態に係る電子機器の電磁波計測装置の別の例を示すブロック図である。It is a block diagram which shows another example of the electromagnetic wave measuring device of the electronic device which concerns on embodiment of this invention. 本発明の実施の形態に係る電子機器の電磁波計測装置の他の例を示すブロック図である。It is a block diagram which shows the other example of the electromagnetic wave measuring device of the electronic device which concerns on embodiment of this invention. 計測される不要電磁波成分の周波数別の強度に関し、広範囲スキャン時の計測データ例と、狭範囲スキャン時の計測データ例とを比較して示す表示グラフである。It is a display graph which compares and shows the measurement data example at the time of a wide range scan, and the measurement data example at the time of a narrow range scan regarding the intensity according to frequency of the unnecessary electromagnetic wave component measured. 計測される特定の周波数の不要電磁波に関するXY強度分布を示す表示グラフである。It is a display graph which shows XY intensity distribution regarding the unnecessary electromagnetic wave of the specific frequency measured. 計測制御例を示すフローチャートである。It is a flowchart which shows the example of measurement control. 特定の指向性を持ったアンテナプローブを利用して、不要電磁波を狭範囲スキャンにて計測する場合の正面図、広範囲スキャンにて計測する場合の正面図、および狭範囲スキャンでのXY操作状態を示す斜視図である。Using an antenna probe with specific directivity, the front view when measuring unnecessary electromagnetic waves with narrow range scan, the front view when measuring with wide range scan, and the XY operation state in narrow range scan It is a perspective view shown.

符号の説明Explanation of symbols

1 被測定物
2 アンテナプローブ
3 電磁波計測装置
4 広帯域受信部
5a XY駆動部
5b Z駆動部
6 計測制御部
7 表示部
11 アンプ
12 直接送信経路
13 増幅送信経路
14 切換え手段
14a、14b 切換えスイッチ
DESCRIPTION OF SYMBOLS 1 Measured object 2 Antenna probe 3 Electromagnetic wave measuring device 4 Broadband receiving part 5a XY drive part 5b Z drive part 6 Measurement control part 7 Display part 11 Amplifier 12 Direct transmission path 13 Amplification transmission path 14 Switching means 14a, 14b Changeover switch

Claims (6)

被測定物に計測距離に応じ受信域が広がる指向性のアンテナプローブを向けて受信域を
順次スキャンし、電磁波成分を受信して不要電磁波成分を計測する電子機器の電磁波計測方法において、
被測定物からの計測距離を、50mmを上限、5mmを下限として、予め大小2つのみ設定し、大きい方の第1計測距離で、第1受信域単位毎に移動し、かつ、スキャンし、不要電磁波成分が計測された前記第1受信域単位について、小さい方の第2計測距離で、前記第1受信域単位より小さな複数の第2受信域毎に移動し、かつ、スキャンし、
前記第1計測距離で計測された前記不要電磁波成分が、前記第2計測距離での計測で変動ないとき、前記不要電磁波成分は外来ノイズであると判定し計測データから除外することを特徴とする電子機器の電磁波計測方法。
In the electromagnetic wave measurement method of electronic equipment that scans the reception area sequentially with the directional antenna probe that extends the reception area according to the measurement distance to the object to be measured, receives the electromagnetic wave component, and measures the unnecessary electromagnetic wave component,
The distance measured from the object to be measured, 50 mm an upper limit, the lower limit of 5 mm, pre magnitude only two settings, in a first measurement distance towards have large moving each first reception area unit, and scans , About the first reception area unit in which the unnecessary electromagnetic wave component is measured, move to a plurality of second reception areas smaller than the first reception area unit at a second measurement distance which is smaller, and scan,
Wherein the electromagnetic interference components measured by the first measurement distance, the absence fluctuation in the measurement in the second measurement distance, the electromagnetic interference component is characterized by excluding from the measurement data determined to be external noise Electromagnetic wave measurement method for electronic equipment .
計測する不要電磁波成分は、対象とする近傍電磁界での電磁波の周波数またはおよび強
度である請求項1に記載の電子機器の電磁波計測方法。
The electromagnetic wave measuring method for an electronic device according to claim 1, wherein the unnecessary electromagnetic wave component to be measured is a frequency or intensity of an electromagnetic wave in a target near electromagnetic field.
計測距離に応じ受信域が広がる指向性を持って電磁波成分を受信するアンテナプローブ
と、このアンテナプローブと被測定物とをアンテナプローブの受信域単位に相対移動させ
スキャンする走査手段と、アンテナプローブと被測定物との間の計測距離を、50mmを上限、5mmを下限とした大小2つのみ予め設定し切り替える計測距離変更手段と、アンテナプローブが受信した電磁波情報の送信を受けて受信処理する受信処理手段と、大きい方の第1計測距離で、第1受信域単位毎に移動し、かつ、スキャンし、不要電磁波成分が計測された前記第1受信域単位について、小さい方の第2計測距離で、前記第1受信域単位より小さな複数の第2受信域毎に移動し、かつ、スキャンし、前記第1計測距離で計測された前記不要電磁波成分が、前記第2計測距離での計測で変動ないとき、前記不要電磁波成分は外来ノイズであると判定し計測データから除外する計測制御部とを備えたことを特徴とする電子機器の電磁波計測装置。
An antenna probe that receives an electromagnetic wave component with directivity that expands the reception range according to the measurement distance, and the antenna probe and the object to be measured are moved relative to each other within the reception range of the antenna probe.
A scanning means that to scan, the distance measured between the antenna probe and the object to be measured, 50 mm an upper limit, and large and small only replaced Ri Setsu preset measurement distance changing means that the lower limit 5 mm, the antenna probe is received a reception processing means for reception processing by receiving the transmission of electromagnetic wave information, the first measurement distance towards have large moving each first reception area unit, and scanned, the first unnecessary wave component is measured About 1 receiving zone unit, the second measurement distance of the smaller, go to each of the second reception area smaller plurality than the first receiving zone unit, and scanned, the unnecessary measured in the first measurement distance electromagnetic component, wherein the absence fluctuation in the measurement in the second measurement distance, the electromagnetic interference component waves of the electronic device, characterized in that a determination was excluded measurement control unit from the measurement data to be external noise Measuring apparatus.
アンテナプローブと受信部との間に入力する受信情報を増幅して出力するアンプを有し
、アンテナプローブでの受信情報を直接受信部に送信する直接送信経路と、アンテナプロ
ーブでの受信情報をアンプを経由して送信部に送信する増幅送信経路と、を切換え選択す
る切換え手段を備えた請求項3に記載の電子機器の電磁波計測装置。
It has an amplifier that amplifies the reception information input between the antenna probe and the receiving unit and outputs it, a direct transmission path for transmitting the reception information at the antenna probe directly to the receiving unit, and an amplifier for the reception information at the antenna probe The electromagnetic wave measuring apparatus of the electronic device according to claim 3, further comprising a switching unit that switches and selects an amplification transmission path that transmits to the transmission unit via.
切替え手段は、直接送信経路選択の切換え状態で、アンプの入力側および出力側双方で
の電気的な入力を断つ請求項4に記載の電子機器の電磁波計測装置。
5. The electromagnetic wave measuring apparatus for an electronic device according to claim 4, wherein the switching unit cuts off the electrical input on both the input side and the output side of the amplifier in the direct transmission path selection switching state.
複数の計測距離は、対象とする近傍電磁界範囲内で設定する請求項3〜5のいずれか1
項に記載の電子機器の電磁波計測装置。
The plurality of measurement distances are set within a target near electromagnetic field range.
The electromagnetic wave measuring apparatus of the electronic device as described in a term.
JP2005198441A 2005-07-07 2005-07-07 Method and apparatus for measuring electromagnetic wave of electronic equipment Expired - Fee Related JP4657032B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005198441A JP4657032B2 (en) 2005-07-07 2005-07-07 Method and apparatus for measuring electromagnetic wave of electronic equipment
US11/482,063 US7541818B2 (en) 2005-07-07 2006-07-07 Method and apparatus of electromagnetic measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005198441A JP4657032B2 (en) 2005-07-07 2005-07-07 Method and apparatus for measuring electromagnetic wave of electronic equipment

Publications (2)

Publication Number Publication Date
JP2007017250A JP2007017250A (en) 2007-01-25
JP4657032B2 true JP4657032B2 (en) 2011-03-23

Family

ID=37754542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198441A Expired - Fee Related JP4657032B2 (en) 2005-07-07 2005-07-07 Method and apparatus for measuring electromagnetic wave of electronic equipment

Country Status (1)

Country Link
JP (1) JP4657032B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5207951B2 (en) * 2008-12-18 2013-06-12 キヤノン株式会社 Electric field measurement array sensor and electric field distribution measurement device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062467A (en) * 1996-06-12 1998-03-06 Mitsubishi Electric Corp Unnecessary electromagnetic wave measuring system
JPH1183918A (en) * 1997-09-01 1999-03-26 Canon Inc Apparatus for measuring distribution of near electromagnetic field
JPH11304858A (en) * 1998-04-17 1999-11-05 Hitachi Ltd Searching device for electromagnetic wave generating source and searching method thereof
JP2001013183A (en) * 1999-06-30 2001-01-19 Toshiba Corp Electromagnetic wave disturbance source surveying method and device thereof
JP2001066336A (en) * 1999-08-26 2001-03-16 Ricoh Co Ltd Reflected wave measuring instrument for radiated electromagnetic wave
JP2002016519A (en) * 2000-05-12 2002-01-18 Tektronix Inc Input protecting circuit for wireless frequency receiver
JP2002277497A (en) * 2001-03-15 2002-09-25 Kenwood Corp Proximity electric field strength measuring apparatus
JP2003329716A (en) * 2002-05-15 2003-11-19 Ricoh Co Ltd Electromagnetic disturbance wave measuring apparatus
JP2003332999A (en) * 2002-05-17 2003-11-21 Matsushita Electric Ind Co Ltd Apparatus and method measuring local sar
JP2004239887A (en) * 2002-04-22 2004-08-26 Matsushita Electric Ind Co Ltd Specific absorption rate measuring apparatus for wireless device
JP2004264143A (en) * 2003-02-28 2004-09-24 Matsushita Electric Ind Co Ltd Electromagnetic wave measuring instrument and its method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062467A (en) * 1996-06-12 1998-03-06 Mitsubishi Electric Corp Unnecessary electromagnetic wave measuring system
JPH1183918A (en) * 1997-09-01 1999-03-26 Canon Inc Apparatus for measuring distribution of near electromagnetic field
JPH11304858A (en) * 1998-04-17 1999-11-05 Hitachi Ltd Searching device for electromagnetic wave generating source and searching method thereof
JP2001013183A (en) * 1999-06-30 2001-01-19 Toshiba Corp Electromagnetic wave disturbance source surveying method and device thereof
JP2001066336A (en) * 1999-08-26 2001-03-16 Ricoh Co Ltd Reflected wave measuring instrument for radiated electromagnetic wave
JP2002016519A (en) * 2000-05-12 2002-01-18 Tektronix Inc Input protecting circuit for wireless frequency receiver
JP2002277497A (en) * 2001-03-15 2002-09-25 Kenwood Corp Proximity electric field strength measuring apparatus
JP2004239887A (en) * 2002-04-22 2004-08-26 Matsushita Electric Ind Co Ltd Specific absorption rate measuring apparatus for wireless device
JP2003329716A (en) * 2002-05-15 2003-11-19 Ricoh Co Ltd Electromagnetic disturbance wave measuring apparatus
JP2003332999A (en) * 2002-05-17 2003-11-21 Matsushita Electric Ind Co Ltd Apparatus and method measuring local sar
JP2004264143A (en) * 2003-02-28 2004-09-24 Matsushita Electric Ind Co Ltd Electromagnetic wave measuring instrument and its method

Also Published As

Publication number Publication date
JP2007017250A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
US7541818B2 (en) Method and apparatus of electromagnetic measurement
JP5249294B2 (en) Electromagnetic field distribution measuring apparatus and computer-readable recording medium
US10288661B2 (en) Method for testing the transmission and reflection properties of an automotive radome body as well as apparatus for testing the transmission and reflection properties of an automotive radome body
JP5410827B2 (en) Electromagnetic wave source determination method and apparatus
EP3264641B1 (en) Over the air power sensor and method
JP2011099856A (en) Method and device for measuring characteristic of radiation field
EP2386997A1 (en) Radiometric imaging device and corresponding method
JP2011053055A (en) Device for visualizing electromagnetic wave generation source and method thereof
EP3358360B1 (en) System and method for testing with respect to a far-field region
JP4657032B2 (en) Method and apparatus for measuring electromagnetic wave of electronic equipment
KR101649514B1 (en) Electromagnetic compatibility testing apparatus
JP5351466B2 (en) Radio source visualization device
JP2007040894A (en) Electromagnetic interference wave measuring system
KR101523223B1 (en) Apparatus of Detecting Radiated Spurious Emission of Electric Device and Method Thereof
JP2009052990A (en) Apparatus, system and method for measuring electromagnetic field
JP2002372558A (en) Electromagnetic wave measuring device
CN112923243A (en) Method for detecting water leakage of water pipe in wall
JP5170955B2 (en) Electromagnetic wave measuring method and electromagnetic wave measuring device
CN106872806B (en) Antenna rapid detection system based on code division and test method thereof
JP7038909B2 (en) Electromagnetic field strength estimation device and electromagnetic field strength estimation method
JP2006242672A (en) Electromagnetic wave measuring instrument
JP2001066336A (en) Reflected wave measuring instrument for radiated electromagnetic wave
KR20120071840A (en) Apparatus and method for testing antenna in wireless communication system
KR20120096260A (en) Apparatus for measuring electromagnetic coupling and system for analyzing noise interference using the same
CN111726177A (en) Wireless performance test method, device, system, equipment and storage medium of wireless equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees