JP4010223B2 - Vehicle hood structure - Google Patents

Vehicle hood structure Download PDF

Info

Publication number
JP4010223B2
JP4010223B2 JP2002304302A JP2002304302A JP4010223B2 JP 4010223 B2 JP4010223 B2 JP 4010223B2 JP 2002304302 A JP2002304302 A JP 2002304302A JP 2002304302 A JP2002304302 A JP 2002304302A JP 4010223 B2 JP4010223 B2 JP 4010223B2
Authority
JP
Japan
Prior art keywords
vehicle
hood structure
hood
skeleton member
skeleton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002304302A
Other languages
Japanese (ja)
Other versions
JP2004136810A (en
Inventor
欣秀 遠藤
和彦 宮寺
行央 松田
明義 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002304302A priority Critical patent/JP4010223B2/en
Publication of JP2004136810A publication Critical patent/JP2004136810A/en
Application granted granted Critical
Publication of JP4010223B2 publication Critical patent/JP4010223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は車両のフード構造に関し、特に、自動車等の車両において衝突時に衝突体を保護する車両のフード構造に関する。
【0002】
【従来の技術】
従来、車両のフード構造においては、 エンジンフードのエンジンフードインナパネルに、インシュレータの外周縁部がエンジンルーム内側から当接しており、このインシュレータはボルト及びウエドナットによって、エンジンフードインナパネルに結合されている構成がある(例えば、特許文献1参照。)。
【0003】
また、従来、車両のフード構造においては、ストラットタワーとフードアウタパネルの間に空洞部を設け、この空洞部に、直線脚部を有しストラットタワーの上部とフードアウタパネルの間の車体高さ方向における間隙を埋める衝撃吸収体を設けている構成がある(例えば、特許文献2参照。)。
【0004】
【特許文献1】
特開平5−155356号公報(図1、図7)
【特許文献2】
特開平7−285466号公報(図2、図5)
【0005】
【発明が解決しようとする課題】
しかしながら、前記特許文献1では、フードインナが上開きのコ字状断面であり、フードインナとフードアウタとで閉断面を形成しているが、衝突体が衝突した際には、閉断面が崩れるのと、閉断面空間により衝突体が空走してしまう。なお、衝突体が空走している間は衝撃を吸収できない。一方、前記特許文献2では、フードインナが下開きのコ字状断面で形成されているため、前記特許文献1のような衝突体の空走は抑えられるが、衝撃吸収材となるフードインナが、車幅方向に沿って配設されており、剛性の高いフードインナの稜線部が、フードに車両前方上側から当接する衝突体の当接方向に直行する方向に形成されている。この結果、前記特許文献2では、衝突体が稜線部に衝突した場合に反力が大きくなってしまう可能性がある。
【0006】
本発明は上記事実を考慮し、衝突体の空走を抑えると共に、衝突体への過度の反力発生を抑え効果的な衝撃吸収が可能な車両のフード構造を提供することが目的である。
【0007】
【0008】
【0009】
【課題を解決するための手段】
請求項1記載の本発明は、フードの車体外側面を構成するアウタ部材と、該アウタ部材の内側に配設されたインナ部材と、からなる車両のフード構造であって、
前記インナ部材は前記アウタ部材に接着層を介して接合されており、
前記インナ部材は開放端部を下方にし、中心軸が車体の前後方向に沿って延設された直線状の複数の主たる骨格部材であり、前記インナ部材の中心軸に沿った方向から見た断面形状は、開口端部間の距離よりも上方が狭い下開きの逆V字形状であることを特徴とする。
【0010】
従って、アウタ部材に接着層を介して接合されているインナ部材が、開放端部を下方にし中心軸が車体の前後方向に沿って延設された直線状の複数の主たる骨格部材である。この結果、インナ部材の開放端部が下方であり、且つ剛性の高い稜線部が、フードに車両前方上側から当接する衝突体の当接方向に並行に形成されている。このため、衝突体の空走が抑えられると共に、衝突体への過度の反力発生を抑え効果的な衝撃吸収が可能である。また、インナ部材は下開きの逆V字形状であり、開放端部を拘束しない構造であるため、衝突体の空走を抑えると共に、衝突体への過度の反力発生を抑え効果的な衝撃吸収が可能である。また、インナ部材の中心軸に沿った方向から見た断面形状を、開口端部間の距離よりも上方が狭い下開きの逆V字形状とすることで、インナ部材のアウタ部材との接合面を狭くすることができ、衝突時に衝突体を水平方向へ押す衝撃加速度の水平成分の発生を抑えることができる。この結果、衝突体をエンジンルーム内の部品との干渉から守るために有効である衝撃加速度の上方向分力を大きくできる。
【0011】
【0012】
【0013】
【0014】
【0015】
【0016】
【0017】
請求項2記載の本発明は、フードの車体外側面を構成するアウタ部材と、該アウタ部材の内側に配設されたインナ部材と、からなる車両のフード構造であって、
前記インナ部材は、開放端部を下方にし中心軸が車体の前後方向に沿って延設された直線状の複数の主たる骨格部材と、該複数の主たる骨格部材間を所定の箇所で連結する補助骨格部材と、を有し、該補助骨格部材は前記アウタ部材と所定の間隔をもって前記複数の主たる骨格部材の開放端部に一体または別体にて設けられていることを特徴とする。
【0018】
従って、インナ部材は、開放端部を下方にし中心軸が車体の前後方向に沿って延設された直線状の複数の主たる骨格部材と、複数の主たる骨格部材間を所定の箇所で連結する補助骨格部材と、を有しており、補助骨格部材はアウタ部材と所定の間隔をもって複数の主たる骨格部材の開放端部に一体または別体にて設けられている。この結果、衝突体の空走が抑えられると共に、衝突体がアウタ部材を介して補助骨格部材の当接し難いため、衝突体への過度の反力発生を抑え効果的な衝撃吸収が可能である。
【0019】
請求項3記載の本発明は、請求項2に記載の車両のフード構造において、前記補助骨格部材は下開きの開口を有する断面を有し、前記複数の主たる骨格部材の側壁間を連結する縦壁部を有することを特徴とする。
【0020】
従って、請求項2記載の内容に加えて、補助骨格部材が複数の主たる骨格部材の側壁間を連結する縦壁部を有するため、剛性を確保できると共に、複数の主たる骨格部材の変形移動に伴い、補助骨格部材が下方へ移動し衝突体との干渉を避けることができる。
【0021】
請求項4記載の本発明は、請求項2、3の何れかに記載の車両のフード構造において、前記補助骨格部材と前記アウタ部材との間に衝撃吸収構造を備えており、前記補助骨格部材の一部を切り起して前記アウタ部材の下面に接着したことを特徴とする。
【0022】
従って、請求項2、3の何れかに記載の内容に加えて、補助骨格部材とアウタ部材との間に衝撃吸収構造を備えており、補助骨格部材の一部を切り起してアウタ部材の下面に接着したため、補助骨格部材を衝撃吸収構造として活用することで、主たる骨格部材から離れた位置に衝突体が衝突しても衝撃を吸収できる。
【0023】
請求項5記載の本発明は、請求項2、3の何れかに記載の車両のフード構造において、前記複数の主たる骨格部材と前記補助骨格部材との連結部に脆弱部を設けたことを特徴とする。
【0024】
従って、請求項2、3の何れかに記載の内容に加えて、複数の主たる骨格部材と前記補助骨格部材との連結部に脆弱部を設けたため、補助骨格部材に衝突体が衝突しても脆弱部により補助骨格部材が変形し、衝突時に衝突体を水平方向へ押す衝撃加速度の水平成分の発生を抑えることができる。この結果、衝突体をエンジンルーム内の部品との干渉から守るために有効である衝撃加速度の上方向分力を大きくできる。
【0025】
請求項6記載の本発明は、請求項2に記載の車両のフード構造において、前記補助骨格部材は平板形状であり、前記複数の主たる骨格部材の開放端部間を連結することを特徴とする。
【0026】
従って、請求項2に記載の内容に加えて、補助骨格部材は平板形状であり、複数の主たる骨格部材の開放端部間を連結するため、衝突時に発生する主たる骨格部材の回転モーメントを補助骨格部材のテンションで抑えることができ、衝突時に衝突体に発生する衝撃加速度の上方向分力の低下を防止できる。
請求項7記載の本発明は、請求項2に記載の車両のフード構造において、前記インナ部材は前記アウタ部材に接着層を介して接合されており、前記インナ部材の主たる骨格部材の中心軸に沿った方向から見た断面形状は、開口端部間の距離よりも上方が狭い下開きのコ字形状であることを特徴とする。
従って、請求項2に記載の内容に加えて、インナ部材は下開きのコ字形状であり、開放端部を拘束しない構造であるため、衝突体の空走を抑えると共に、衝突体への過度の反力発生を抑え効果的な衝撃吸収が可能である。また、インナ部材の中心軸に沿った方向から見た断面形状を、開口端部間の距離よりも上方が狭い下開きのコ字形状とすることで、インナ部材のアウタ部材との接合面を狭くすることができ、衝突時に衝突体を水平方向へ押す衝撃加速度の水平成分の発生を抑えることができる。この結果、衝突体をエンジンルーム内の部品との干渉から守るために有効である衝撃加速度の上方向分力を大きくできる。
請求項8記載の本発明は、請求項2に記載の車両のフード構造において、前記インナ部材は前記アウタ部材に接着層を介して接合されており、前記インナ部材の主たる骨格部材の中心軸に沿った方向から見た断面形状は、開口端部間の距離よりも上方が狭い下開きの逆V字形状であることを特徴とする。
従って、請求項2に記載の内容に加えて、インナ部材は下開きの逆V字形状状であり、開放端部を拘束しない構造であるため、衝突体の空走を抑えると共に、衝突体への過度の反力発生を抑え効果的な衝撃吸収が可能である。また、インナ部材の中心軸に沿った方向から見た断面形状を、開口端部間の距離よりも上方が狭い下開きの逆V字形状とすることで、インナ部材のアウタ部材との接合面を狭くすることができ、衝突時に衝突体を水平方向へ押す衝撃加速度の水平成分の発生を抑えることができる。この結果、衝突体をエンジンルーム内の部品との干渉から守るために有効である衝撃加速度の上方向分力を大きくできる。
請求項9記載の本発明は、請求項7に記載の車両のフード構造において、前記インナ部材の主たる骨格部材の上壁部とアウタ部材との間に介在する接着層を前記上壁部の車幅方向縁部にも配設したことを特徴とする。
従って、請求項7に記載の内容に加えて、インナ部材の中心軸から車幅方向に離れた個所に、衝突体が衝突しても接着層の厚み分だけ開き角度を狭くすることができるため、衝突時に衝突体を水平方向へ押す衝撃加速度の水平成分の発生を抑えることができる。この結果、衝突体をエンジンルーム内の部品との干渉から守るために有効である衝撃加速度の上方向分力を大きくできる。
【0027】
【発明の実施の形態】
本発明における車両のフード構造の参考例となる実施形態を図1〜図5に従って説明する。
【0028】
なお、図中矢印UPは車体上方方向を示し、図中矢印FRは車体前方方向を示している。
【0029】
図4に示される如く、本実施形態では、自動車車体10のエンジンフード12が、エンジンフード12の車体外側面を構成するアウタ部材としてのアウタパネル14と、アウタパネル14の内側に配設されエンジンルーム側部を構成するインナ部材としてのインナパネル16で構成されており、インナパネル16はアウタパネル14に接着層を介して接合されている。
【0030】
図3に示される如く、エンジンフード12のインナパネル16における前側骨16A、後側骨16B及び車幅方向外側骨16Cからなる外周骨は、他の部位に比べて剛性が高くなっている。
【0031】
インナパネル16における前側骨16Aと後側骨16Bとには、車幅方向に所定の間隔を開けて、車体前後方向に延設された複数本(本実施形態では5本)の主たる骨格部材としての骨格部材22が架設されている。
【0032】
図2に示される如く、骨格部材22の軸方向(車体前後方向)から見た断面形状は、開口部を車両下方に向け、且つ下方が広がったコ字形状となっている。
【0033】
この結果、図1に二点鎖線で示すように、骨格部材22を、全幅L1及び開口幅L2が同一で、上下方向の開口幅が一定なコ字形状にした比較例と比べて、本実施形態における、骨格部材22の中心軸Xと、骨格部材22とアウタパネル14との接合部24の車幅方向縁部24Aとの平面視におけるオフセット量Lが小さくなっている。従って、衝突体Sが接合部24の車幅方向縁部24Aの上方となるアウタパネル14上に衝突した際の衝突点Pと、骨格部材22の中心軸Xとを結ぶ直線の鉛直方向に対する開き角度θ1が、比較例の開き角度θ2に比べて小さくなるようになっている。
【0034】
また、図2に示される如く、骨格部材22の開口端部には、開口外側に向かって左右のフランジ22A、22Bが形成されており、これらのフランジ22A、22Bにフードサイレンサ23が係止されている。
【0035】
次に、本実施形態の作用を説明する。
【0036】
本実施形態では、エンジンフード12のインナパネル16における前側骨16Aと後側骨16Bとに、車幅方向に所定の間隔を開けて、車体前後方向に延設された複数本の骨格部材22が架設されており、骨格部材22の軸方向から見た断面形状が、開口部を車両下方に向け、且つ下方が広がったコ字形状となっている。
【0037】
この結果、インナパネル16の骨格部材22の開放端部が下方であり、且つ剛性の高い骨格部材22の稜線部が、エンジンフード12に車両前方上側から当接する衝突体Sの当接方向に並行に形成されている。このため、衝突体Sの空走が抑えられると共に、衝突体Sへの過度の反力発生を抑え効果的な衝撃吸収が可能である。
【0038】
また、図1に二点鎖線で示すように、骨格部材22を、全幅L1及び開口幅L2が同一で、上下方向の開口幅が一定なコ字形状にした比較例と比べて、本実施形態における、骨格部材22の中心軸Xと、骨格部材22とアウタパネル14との接合部24の車幅方向縁部24Aとの平面視におけるオフセット量Lが小さくなっている。
【0039】
従って、衝突体Sが接合部24の車幅方向縁部24Aの上方となるアウタパネル14上に衝突した際の衝突点Pと、骨格部材22の中心軸Xとを結ぶ直線の鉛直方向に対する開き角度θ1が、比較例の開き角度θ2に比べて小さくなる。
【0040】
このため、衝突点Pと骨格部材22の中心軸Xとを結ぶ直線上に発生する衝撃加速度Gの水平成分G2が小さくなる。即ち、衝突体Sに対して横方向に作用するの衝撃加速度の分力を抑制することができる。この結果、衝突体Sをエンジンルーム内の部品との干渉から守るために有効である衝撃加速度Gの上方向分力G1は大きくなる。
【0041】
また、本実施形態では、図2に二点鎖線で示すように、骨格部材22のフランジ22A、22Bにフードサイレンサ23を係止できるため、フードサイレンサ23の脱落を防止できると共に、フードサイレンサ23を取付けるためのブラケットを別途設ける必要が無く、部品点数及び重量の低減が可能となると共に生産性が向上する。
【0042】
また、本実施形態では、車両走行中に骨格部材22のコ字状断面内を通って、図4の矢印Wで示すように車両前方からの空気を大きな抵抗を受けずに流すことができるため、エンジン26の上部26Aを効果的に冷却することができる。
【0043】
また、本実施形態では、骨格部材22を下方が広がったのコ字状断面形状としたため、断面内に水が溜まり難くく、防錆性能を向上できると共に、プレス加工または型抜きが容易となり生産性が向上する。更に、フードサイレンサ等の脱落防止性能も向上する。
【0044】
また、本実施形態では、車両前後方向に沿って骨格部材22が配設されているため、骨格部材が車幅方向に延設されたエンジンフードに比べて、オフセット軽衝突時に、衝突側から反衝突側へ荷重が伝わり難く、反衝突側の損傷を低減できると共に、インナパネル単品の捩れ剛性も向上する。
【0045】
なお、本実施形態では、骨格部材22のフランジ22A、22Bにフードサイレンサ23を係止したがこれに代えて、図5に示される如く、骨格部材22のフランジ22A、22Bまたは骨格部材22の断面内にウオッシャーホース25等を組付けることも可能である。
【0046】
次に、本発明に係る車両のフード構造の第1実施形態を図6及び図7に従って説明する。
【0047】
なお、参考例の実施形態と同一部材は、同一符号を付してその説明を省略する。
【0048】
図7に示される如く、本実施形態では、骨格部材22の軸方向から見た断面形状は、開口部を車両下方に向け、且つ下方が広がった逆V字形状となっている。
【0049】
この結果、図6に示される如く、骨格部材22の中心軸Xと、骨格部材22とアウタパネル14との接合部24との平面視におけるオフセット量Lが0になっている。従って、衝突体Sが接合部24の上方となるアウタパネル14上に衝突した際の衝突点Pと、骨格部材22の中心軸Xとを結ぶ直線の鉛直方向に対する開き角度θ1が0度となっている。
【0050】
次に、本実施形態の作用を説明する。
【0051】
本実施形態では、エンジンフード12のインナパネル16における前側骨16Aと後側骨16Bとに、車幅方向に所定の間隔を開けて、車体前後方向に延設された複数本の骨格部材22が架設されており、骨格部材22の軸方向から見た断面形状が、開口部を車両下方に向け、且つ下方が広がったV字形状となっている。
【0052】
この結果、インナパネル16の骨格部材22の開放端部が下方であり、且つ剛性の高い骨格部材22の稜線部が、エンジンフード12に車両前方上側から当接する衝突体Sの当接方向に並行に形成されている。このため、衝突体Sの空走が抑えられると共に、衝突体Sへの過度の反力発生を抑え効果的な衝撃吸収が可能である。
【0053】
また、骨格部材22の中心軸Xと、骨格部材22とアウタパネル14との接合部24の車幅方向縁部24Aとの平面視におけるオフセット量Lが0になっている。
【0054】
従って、衝突体Sが接合部24の上方となるアウタパネル14上に衝突した際の衝突点Pと、骨格部材22の中心軸Xとを結ぶ直線の鉛直方向に対する開き角度θ1が0度となる。
【0055】
この結果、衝突点Pと、骨格部材22の中心軸Xとを結ぶ直線上に発生する衝撃加速度Gの水平成分が0となる。即ち、衝突体Sに対して横方向に作用するの衝撃加速度の分力を抑制することができる。この結果、衝突体Sをエンジンルーム内の部品との干渉から守るために有効である衝撃加速度Gの上方向の分力G1が大きくなる。
【0056】
なお、図8に示される如く、骨格部材22の上端部22Cの断面形状をR形状とした構成としても良い。
【0057】
次に、本発明における車両のフード構造の参考例の実施形態を図9及び図10に従って説明する。
【0058】
なお、図1〜図5に示す参考例の実施形態と同一部材に付いては、同一符号を付してそ
【0059】
図10に示される如く、本実施形態では、骨格部材22の上壁部22Cとアウタパネル14との間に介在する接着層34が、車両前後方向に沿って波形状とされており、接着層34は、骨格部材22の上壁部22Cの車幅方向縁部にも配設されている。
【0060】
この結果、図9に示される如く、衝突体Sが骨格部材22における上壁部22Cの車幅方向縁部とアウタパネル14との接合部24に衝突した際の衝突点Pは、骨格部材22とアウタパネル14との間に介在する接着層34により、骨格部材22における上壁部22Cの車幅方向縁部から上方へ離間するようになっている。
【0061】
従って、衝突点Pと、骨格部材22の中心軸Xとを結ぶ直線の鉛直方向に対する本実施形態の開き角度θ1が、図11に示すように、接着層34が、骨格部材22における上壁部22Cの車幅方向中央部のみに配設された比較例の開き角度θ3に比べて小さくなるようになっている。
【0062】
次に、本実施形態の作用を説明する。
【0063】
本実施形態では、衝突体Sが骨格部材22における上壁部22Cの車幅方向縁部と、アウタパネル14との接合部24に衝突した際の衝突点Pは、骨格部材22とアウタパネル14との間に介在する接着層34により、骨格部材22における上壁部22Cの車幅方向縁部から上方へ離間する。
【0064】
従って、衝突点Pと、骨格部材22の中心軸Xとを結ぶ直線の鉛直方向に対する開き角度θ1が、図11に示すように、接着層34が、骨格部材22における上壁部22Cの車幅方向中央部のみにした比較例の開き角度θ3に比べて小さくなる。
【0065】
この結果、衝突点Pと骨格部材22の中心軸Xとを結ぶ直線上に発生する衝撃加速度Gの水平成分G1が小さくなる。即ち、衝突体Sに対して横方向に作用するの衝撃加速度の分力を抑制することができる。この結果、衝突体Sをエンジンルーム内の部品との干渉から守るために有効である衝撃加速度Gの上方向の分力G1は大きくなる。
【0066】
なお、本実施形態では、接着層34を車両前後方向に沿って波形状に配設したが、これに代えて、図12に示される如く、接着層34を車両前後方向に沿ってジグザグ形状に配設しても良い。また、図13に示される如く、接着層34を骨格部材22における上壁部22Cの車幅方向縁部に車両前後方向に沿って直線状に配設しても良い。また、接着層34を所定の長さで断続的に配設しても良い。、更に、図14に示される如く、骨格部材22における上壁部22Cに接着剤塗布用の凹部36を形成した構成としても良い。
【0067】
次に、本発明における車両のフード構造の第2実施形態を図15〜図21に従って説明する。
【0068】
なお、図1〜図5に示す参考例の実施形態と同一部材に付いては、同一符号を付してその説明を省略する。
【0069】
図17に示される如く、本実施形態では、エンジンフード12のインナパネル16における車幅方向中央部の隣接する3本の骨格部材22が、それぞれの前後方向中央部において、車幅方向に沿って配設された補助骨格部材としての骨格部材38によって連結されている。
【0070】
図16に示される如く、骨格部材38の軸方向(車幅方向)から見た断面形状は、開口部を車両下方に向け、且つ下方が広がったコ字形状となっており、骨格部材38の開口端部には、開口外側に向かって前後のフランジ38A、38Bが形成されている。また、骨格部材38のフランジ38A、38Bは、骨格部材22のフランジ22A、22Bに連結されている。
【0071】
なお、骨格部材22における骨格部材38が連結される部位においては、例えば、上壁部22Cがリング状に配設された接着層34によってアウタパネル14に接着されている。
【0072】
図18に示される如く、骨格部材38の上壁部38Cとアウタパネル14との間には、隙間39が形成されている。
【0073】
次に、本実施形態の作用を説明する。
【0074】
本実施形態では、エンジンフード12のインナパネル16における前側骨16Aと後側骨16Bとに、車幅方向に所定の間隔を開けて、車体前後方向に延設された複数本の骨格部材22が架設されており、インナパネル16における車幅方向中央部の隣接する3本の骨格部材22が、それぞれの前後方向中央部において、車幅方向に沿って配設された骨格部材38によって連結されている。この結果、図1〜図5に示す参考例の実施形態に比べてエンジンフード12の剛性が向上し、衝突エネルギを効率良く吸収できる。
【0075】
また、エンジンフード12のインナパネル16における骨格部材38を連結した部位が、車両正面衝突時に、前後方向に延びる骨格部材22を折るきっかけになるため、図19に示される如く、骨格部材38の配設部位を調整することによって、エンジンフード12を折るモードコントロールが可能になる。
【0076】
また、本実施形態では、図20に示される如く、衝突体Sがエンジンフード12に当接した際に、インナパネル16の骨格部材22の撓み変形により、骨格部材38が下方(図20の矢印A)へ移動するため、衝突体Sがアウタパネル14を挟んで骨格部材38の上壁部38Cに当接し難くなる。
【0077】
従って、図15に示される如く、衝突体Sがアウタパネル14上に衝突した際の衝突点Pの傾斜角度によって決まる本実施形態の衝撃加速度Gの前方への傾斜角度α1は、骨格部材38に代えて、図21に示すように、上方に開口部を向けた骨格部材42を配設した比較例における、衝突点Pの傾斜角度によって決まる衝撃加速度Gの前方への傾斜角度α2に比べて小さくなる。
【0078】
この結果、本実施形態では、衝撃加速度Gの前方の水平成分G2が小さくなる。即ち、衝突体Sに対して横方向に作用するの衝撃加速度の分力を抑制することができる。この結果、衝突体Sをエンジンルーム内の部品との干渉から守るために有効である衝撃加速度の上方向の分力G1は大きくなる。
【0079】
なお、図22に示される如く、隣接する骨格部材22の中央部となる骨格部材38の上壁部38C上には一部を切り起して凸部40が形成されており、凸部40の上壁部40Aをアウタパネル14に結合しても良い。また、図23に示される如く、凸部40の後側には切欠43が形成されている。このため、衝突体Sがアウタパネル14上に衝突した際に、凸部40の上壁部40Aは、車両後側下方(図23の矢印B方向)へ倒れ易くなっており、凸部40が矢印B方向へ倒れることで、衝突体Sがアウタパネル14上に衝突した際の衝突点Pの傾斜角度によって決まる衝撃加速度Gの前方への傾斜角度が小さくなる。
【0080】
また、図24に示される如く、骨格部材38における骨格部材22との連結部に、変形起点となる脆弱部44を形成し、衝突体Sの衝突によりアウタパネル14が骨格部材38の上壁部38Cに当接した場合に、脆弱部44を起点に骨格部材38が下方(図24の矢印B方向)へ二点鎖線で示すように、容易に変形する構成としても良い。
【0081】
また、図25に示される如く、隣接する骨格部材22のフランジ22A、22Bを一枚の板46で連結することで、衝突体Sの衝突により隣接する骨格部材22が撓んだ際に、板46に発生するテンションTにより、衝突体Sに発生する上方向の加速度G1が低下するのを防止しても良い。
【0082】
次に、本発明における車両のフード構造の参考例の実施形態を図26及び図27に従って説明する。
【0083】
なお、図1〜図5に示す参考例の実施形態と同一部材に付いては、同一符号を付してその説明を省略する。
【0084】
図26に示される如く、本実施形態では、骨格部材22のフランジを無くしており、左右の縦壁部22D、22Eの先端部22F、22Gは、円弧状の断面形状となっている。
【0085】
この結果、図27に示される本実施形態の骨格部材22の幅W1が、図28に示されるフランジがある比較例の骨格部材22の幅W2=W1+N1+N2に比べて小さくなっている。
【0086】
従って、衝突体Sがエンジンフード12に衝突し、図27及び図28に示される如く、骨格部材22が、二点鎖線で示す位置から、実線で示す位置へ下降した場合に、エンジンルーム内の部品46、48と骨格部材22とが干渉しないための隙間M1、M2を考慮した場合の、本実施形態(図27)の部品46と部品48との間隔L1が、比較例(図28)の骨格部材22の部品46と部品48との間隔L2より短くなる。このため、部品46と部品48との間隔が予め決っている場合には、本実施形態では、隙間M1、M2を大きくすることで、部品のバラツキにより、比較例(図29)に示される如く、骨格部材22と部品46とが干渉するのを防止できるようになっている。
【0087】
次に、本実施形態の作用を説明する。
【0088】
本実施形態では、衝突体Sがエンジンフード12に衝突し、図27に示される如く、骨格部材22が、二点鎖線で示す位置から、実線で示す位置へ下降した場合に、エンジンルーム内の部品46、48と骨格部材22とが干渉しないための隙間M1、M2を考慮した場合の部品46と部品48との間隔L1が、図28に示す比較例の骨格部材22の部品46と部品48との間隔L2より短くなる。
【0089】
この結果、部品46と部品48との間隔が予め決っている場合には、隙間M1、M2を大きくすることで、部品のバラツキにより、比較例(図29)に示される如く、骨格部材22と部品46とが干渉するのを防止できる。このため、本実施形態では、骨格部材22とエンジンルーム内の部品とが干渉し、衝突体Sが受ける衝撃加速度が増加するのを防止できる。
【0090】
また、本実施形態では、図30に示される如く、2次衝突による骨格部材22の変形後の厚さK1が、比較例(図31)における骨格部材22の変形後の厚さK2より薄くなるため、この点においても、衝突体Sが受ける衝撃加速度の増加を防止できる。
【0091】
また、本実施形態では、骨格部材22の縦壁部22D、22Eの先端部22F、22Gが円弧状の断面形状となっているため、2次衝突によりエンジンルーム内の部材50と当接した際に、先端部22F、22Gが部材50に引っかかり難くなっている。
【0092】
なお、図32に示される如く、骨格部材22の縦壁部22D、22Eの先端部22F、22GをJ字状に湾曲させ、先端部22F、22Gがエンジンルーム内の部材に引っかかり難くしても良い。
【0093】
以上に於いては、本発明を特定の実施形態について詳細に説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかである。
【0094】
【0095】
【0096】
【0097】
また、骨格部材22と骨格部材38との配設位置及び幅は、上記実施形態に限定されず、例えば、図33(A)〜図33(D)に示される如く、骨格部材22と骨格部材38との配設位置及び幅を変更することができる。
【0098】
また、図34に示される如く、骨格部材22と骨格部材38との連結部において、左右方向に延びるコ字状断面を無くすことで、脆弱部44を形成しても良い。
【0099】
【0100】
【0101】
また、上記各実施形態を組み合わせた構成とすることも可能である。
【0102】
【0103】
【発明の効果】
請求項1記載の本発明は、フードの車体外側面を構成するアウタ部材と、アウタ部材の内側に配設されたインナ部材と、からなる車両のフード構造であって、インナ部材はアウタ部材に接着層を介して接合されており、インナ部材は開放端部を下方にし、中心軸が車体の前後方向に沿って延設された直線状の複数の主たる骨格部材であり、インナ部材の中心軸に沿った方向から見た断面形状は、開口端部間の距離よりも上方が狭い下開きの逆V字形状であるため、衝突体の空走を抑えると共に、衝突体への過度の反力発生を抑え効果的な衝撃吸収が可能であるという優れた効果を有する。また、衝突体の空走を抑えると共に、衝突体への過度の反力発生を抑え効果的な衝撃吸収が可能であるという優れた効果を有する。また、衝突時に衝突体を水平方向へ押す衝撃加速度の水平成分の発生を抑えることができるという優れた効果を有する。
【0104】
【0105】
【0106】
【0107】
請求項2記載の本発明は、フードの車体外側面を構成するアウタ部材と、アウタ部材の内側に配設されたインナ部材と、からなる車両のフード構造であって、インナ部材は、開放端部を下方にし中心軸が車体の前後方向に沿って延設された直線状の複数の主たる骨格部材と、複数の主たる骨格部材間を所定の箇所で連結する補助骨格部材と、を有し、補助骨格部材はアウタ部材と所定の間隔をもって複数の主たる骨格部材の開放端部に一体または別体にて設けられているため、衝突体の空走を抑えると共に、衝突体への過度の反力発生を抑え効果的な衝撃吸収が可能であるという優れた効果を有する。
【0108】
請求項3記載の本発明は、請求項2に記載の車両のフード構造において、補助骨格部材は下開きの開口を有する断面を有し、複数の主たる骨格部材の側壁間を連結する縦壁部を有するため、請求項2記載の効果に加えて、剛性を確保できると共に補助骨格部材と衝突体との干渉を避けることができるという優れた効果を有する。
【0109】
請求項4記載の本発明は、請求項2、3の何れかに記載の車両のフード構造において、補助骨格部材とアウタ部材との間に衝撃吸収構造を備えており、補助骨格部材の一部を切り起してアウタ部材の下面に接着したため、請求項2、3の何れかに記載の効果に加えて、骨格部材から離れた位置に衝突体が衝突しても衝撃を吸収できるという優れた効果を有する。
【0110】
請求項5記載の本発明は、請求項2、3の何れかに記載の車両のフード構造において、複数の主たる骨格部材と補助骨格部材との連結部に脆弱部を設けたため、請求項2、3の何れかに記載の効果に加えて、複衝突時に衝突体を水平方向へ押す衝撃加速度の水平成分の発生を抑えることができるという優れた効果を有する。
【0111】
請求項6記載の本発明は、請求項2に記載の車両のフード構造において、補助骨格部材は平板形状であり、複数の主たる骨格部材の開放端部間を連結するため、請求項2に記載の効果に加えて、衝突時に衝突体に発生する衝撃加速度の上方向分力の低下を防止できるという優れた効果を有する。
請求項7記載の本発明は、請求項2に記載の車両のフード構造において、インナ部材はアウタ部材に接着層を介して接合されており、インナ部材の主たる骨格部材の中心軸に沿った方向から見た断面形状は、開口端部間の距離よりも上方が狭い下開きのコ字形状であるため、請求項2に記載の効果に加えて、衝突体の空走を抑えると共に、衝突体への過度の反力発生を抑え効果的な衝撃吸収が可能であるという優れた効果を有する。また、衝突体の空走を抑えると共に、衝突体への過度の反力発生を抑え効果的な衝撃吸収が可能であるという優れた効果を有する。また、衝突時に衝突体を水平方向へ押す衝撃加速度の水平成分の発生を抑えることができるという優れた効果を有する。
請求項8記載の本発明は、請求項2に記載の車両のフード構造において、インナ部材はアウタ部材に接着層を介して接合されており、インナ部材の主たる骨格部材の中心軸に沿った方向から見た断面形状は、開口端部間の距離よりも上方が狭い下開きの逆V字形状であるため、請求項2に記載の効果に加えて、衝突体の空走を抑えると共に、衝突体への過度の反力発生を抑え効果的な衝撃吸収が可能であるという優れた効果を有する。また、衝突体の空走を抑えると共に、衝突体への過度の反力発生を抑え効果的な衝撃吸収が可能であるという優れた効果を有する。また、衝突時に衝突体を水平方向へ押す衝撃加速度の水平成分の発生を抑えることができるという優れた効果を有する。
請求項9記載の本発明は、請求項7に記載の車両のフード構造において、インナ部材の主たる骨格部材の上壁部とアウタ部材との間に介在する接着層を上壁部の車幅方向縁部にも配設したため、請求項7に記載の効果に加えて、衝突時に衝突体を水平方向へ押す衝撃加速度の水平成分の発生を抑えることができるという優れた効果を有する。
【図面の簡単な説明】
【図1】 本発明の参考例の実施形態に係る車両のフード構造を示す車両前方から見た断面図である。
【図2】 本発明の参考例の実施形態に係る車両のフード構造を示す車両斜め前方から見た断面斜視図である。
【図3】 本発明の参考例の実施形態に係る車両のフード構造を示す車両下方から見た平面図である。
【図4】 本発明の参考例の実施形態に係る車両のフード構造が適用された車体前部を示す概略側断面図である。
【図5】 本発明の参考例の実施形態の変形例に係る車両のフード構造を示す車両斜め前方から見た断面斜視図である。
【図6】 本発明の第1実施形態に係る車両のフード構造を示す車両前方から見た断面図である。
【図7】 本発明の第1実施形態に係る車両のフード構造を示す車両斜め前方から見た断面斜視図である。
【図8】 本発明の第1実施形態の変形例に係る車両のフード構造を示す車両斜め前方から見た断面斜視図である。
【図9】 本発明の参考例の実施形態に係る車両のフード構造を示す車両前方から見た断面図である。
【図10】 本発明の参考例の実施形態に係る車両のフード構造を示す車両斜め前方から見た断面斜視図である。
【図11】 本発明の比較例に係る車両のフード構造を示す車両前方から見た断面図である。
【図12】 本発明の参考例の実施形態に係る車両のフード構造を示す車両斜め前方から見た断面斜視図である。
【図13】 本発明の参考例の実施形態に係る車両のフード構造を示す車両斜め前方から見た断面斜視図である。
【図14】 本発明の参考例の実施形態に係る車両のフード構造を示す車両斜め前方から見た断面斜視図である。
【図15】 本発明の第2実施形態に係る車両のフード構造を示す側断面図である。
【図16】 本発明の第2実施形態に係る車両のフード構造を示す車両斜め前方から見た断面斜視図である。
【図17】 本発明の第2実施形態に係る車両のフード構造を示す車両下方から見た平面図である。
【図18】 図17の18−18線に沿った拡大断面図である。
【図19】 本発明の第2実施形態に係る車両のフード構造が適用された車体前部の変形状態を示す概略側断面図である。
【図20】 本発明の第2実施形態に係る車両のフード構造の変形状態を示す図18に対応する断面図である。
【図21】 本発明の比較例に係る車両のフード構造を示す車両前方から見た断面図である。
【図22】 本発明の第2実施形態の変形例に係る車両のフード構造を示す図18に対応する断面図である。
【図23】 図22の23−23線に沿った拡大断面図である。
【図24】 本発明の第2実施形態の変形例に係る車両のフード構造を示す図18に対応する断面図である。
【図25】 本発明の第2実施形態の変形例に係る車両のフード構造の変形状態を示す図18に対応する断面図である。
【図26】 本発明の参考例の実施形態に係る車両のフード構造を示す車両斜め前方から見た断面斜視図である。
【図27】 本発明の参考例の実施形態に係る車両のフード構造を示す車両前方から見た断面図である。
【図28】 本発明の比較例に係る車両のフード構造を示す車両前方から見た断面図である。
【図29】 本発明の比較例に係る車両のフード構造を示す車両前方から見た断面図である。
【図30】 本発明の参考例の実施形態に係る車両のフード構造の変形状態を示す車両前方から見た断面図である。
【図31】 本発明の比較例に係る車両のフード構造の変形状態を示す車両前方から見た断面図である。
【図32】 本発明の参考例の実施形態の変形例に係る車両のフード構造を示す車両斜め前方から見た断面斜視図である。
【図33】 (A)〜(D)は本発明の他の実施形態に係る車両のフード構造を示す車両下方から見た平面図である。
【図34】 本発明の他の実施形態に係る車両のフード構造を示す車両斜め前方から見た断面斜視図である。
【符号の説明】
12 エンジンフード
14 アウタパネル(アウタ部材)
16 インナパネル(インナ部材)
22 骨格部材(主たる骨格部材)
22A フランジ
22B フランジ
22C 上端部
22D 縦壁部
22E 縦壁部
23 フードサイレンサ
24 接合部
25 ウオッシャーホース
26 エンジン
34 接着層
36 凹部
38 骨格部材(補助骨格部材)
40 凸部
42 骨格部材
43 切欠
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a hood structure for a vehicle, and more particularly to a hood structure for a vehicle that protects a collision object in a vehicle such as an automobile in the event of a collision.
[0002]
[Prior art]
  Conventionally, in the hood structure of a vehicle, the outer peripheral edge of the insulator is in contact with the engine hood inner panel of the engine hood from the inside of the engine room, and this insulator is coupled to the engine hood inner panel by bolts and a wet nut. There exists a structure (for example, refer patent document 1).
[0003]
  Conventionally, in a vehicle hood structure, a hollow portion is provided between the strut tower and the hood outer panel, and a straight leg portion is provided in the hollow portion in the vehicle body height direction between the upper portion of the strut tower and the hood outer panel. There is a configuration in which an impact absorber that fills the gap is provided (see, for example, Patent Document 2).
[0004]
[Patent Document 1]
    JP-A-5-155356 (FIGS. 1 and 7)
[Patent Document 2]
    JP-A-7-285466 (FIGS. 2 and 5)
[0005]
[Problems to be solved by the invention]
  However, in Patent Document 1, the hood inner has an upper-open U-shaped cross section, and the hood inner and the hood outer form a closed cross section. However, when the collision body collides, the closed cross section is broken. Then, the collision object will run idle due to the closed cross-section space. It should be noted that the impact cannot be absorbed while the collision object is idle. On the other hand, in Patent Document 2, since the hood inner is formed with a U-shaped cross section with a downward opening, the idling of the collision body as in Patent Document 1 is suppressed. The ridge line portion of the hood inner, which is disposed along the vehicle width direction and has high rigidity, is formed in a direction perpendicular to the contact direction of the collision body that contacts the hood from the upper front side of the vehicle. As a result, in Patent Document 2, there is a possibility that the reaction force becomes large when the collision body collides with the ridge line portion.
[0006]
  In consideration of the above-described facts, the present invention has an object to provide a vehicle hood structure capable of suppressing the idling of the collision object and suppressing the generation of excessive reaction force on the collision object and effectively absorbing the shock.
[0007]
[0008]
[0009]
[Means for Solving the Problems]
  The present invention according to claim 1 is a vehicle hood structure comprising an outer member that constitutes a vehicle body outer surface of the hood, and an inner member that is disposed inside the outer member.
  The inner member is joined to the outer member via an adhesive layer,
  The inner member is a plurality of linear main skeleton members having an open end downward and a central axis extending along the front-rear direction of the vehicle body, and a cross section viewed from a direction along the central axis of the inner member The shape is a reverse V-shape with a downward opening that is narrower than the distance between the opening ends.
[0010]
  Therefore, the inner member joined to the outer member through the adhesive layer is a plurality of linear main skeleton members with the open end downward and the central axis extending along the longitudinal direction of the vehicle body. As a result, the open end portion of the inner member is downward, and a highly rigid ridge line portion is formed in parallel with the contact direction of the collision body that contacts the hood from the upper front side of the vehicle. For this reason, while the idling of a collision object is suppressed, generation | occurrence | production of the excessive reaction force to a collision object is suppressed, and effective shock absorption is possible. In addition, the inner member has an inverted V-shape with a downward opening, and has a structure that does not constrain the open end, so that it is possible to prevent the collision body from running idle and to prevent excessive reaction force from being generated on the collision body. Absorption is possible. Moreover, the cross-sectional shape seen from the direction along the central axis of the inner member is a reverse V-shape having a downward opening that is narrower than the distance between the opening ends, so that the joint surface of the inner member with the outer member And the occurrence of a horizontal component of the impact acceleration that pushes the collision object in the horizontal direction at the time of collision can be suppressed. As a result, it is possible to increase the upward component force of the impact acceleration that is effective for protecting the collision body from interference with the components in the engine room.
[0011]
[0012]
[0013]
[0014]
[0015]
[0016]
[0017]
  The present invention according to claim 2 is a vehicle hood structure comprising an outer member that constitutes a vehicle body outer surface of the hood, and an inner member that is disposed inside the outer member.
  The inner member includes a plurality of linear main skeleton members having an open end downward and a central axis extending along the front-rear direction of the vehicle body, and an auxiliary for connecting the plurality of main skeleton members at a predetermined position. A skeleton member, and the auxiliary skeleton member is provided integrally or separately at an open end of the plurality of main skeleton members with a predetermined distance from the outer member.
[0018]
  Therefore, the inner member has a plurality of linear main skeleton members whose open end faces downward and the central axis extends along the front-rear direction of the vehicle body, and an auxiliary that connects the plurality of main skeleton members at a predetermined position. The auxiliary skeleton member is integrally or separately provided at the open ends of the plurality of main skeleton members with a predetermined distance from the outer member. As a result, the collision object is prevented from running idle and the collision object is difficult to contact the auxiliary skeleton member via the outer member, so that it is possible to effectively absorb the impact by suppressing the generation of excessive reaction force on the collision object. .
[0019]
  According to a third aspect of the present invention, in the hood structure for a vehicle according to the second aspect, the auxiliary skeleton member has a cross section having a downward opening, and the vertical skeleton connecting the side walls of the plurality of main skeleton members. It has a wall part.
[0020]
  Therefore, in addition to the content of claim 2, since the auxiliary skeleton member has a vertical wall portion that connects the side walls of the plurality of main skeleton members, it is possible to ensure rigidity and with the deformation movement of the plurality of main skeleton members. The auxiliary skeleton member moves downward to avoid interference with the collision object.
[0021]
  According to a fourth aspect of the present invention, in the vehicle hood structure according to any one of the second and third aspects, an impact absorbing structure is provided between the auxiliary skeleton member and the outer member, and the auxiliary skeleton member is provided. Is cut and raised to adhere to the lower surface of the outer member.
[0022]
  Therefore, in addition to the contents described in any one of claims 2 and 3, an impact absorbing structure is provided between the auxiliary skeleton member and the outer member, and a part of the auxiliary skeleton member is cut and raised. Since the auxiliary skeleton member is used as an impact absorbing structure because it is bonded to the lower surface, the impact can be absorbed even when a collision object collides at a position away from the main skeleton member.
[0023]
  According to a fifth aspect of the present invention, in the hood structure for a vehicle according to any one of the second and third aspects, a fragile portion is provided at a connecting portion between the plurality of main skeleton members and the auxiliary skeleton member. And
[0024]
  Therefore, in addition to the content described in any one of claims 2 and 3, since a weak portion is provided in a connecting portion between a plurality of main skeleton members and the auxiliary skeleton member, even if a collision object collides with the auxiliary skeleton member. The auxiliary skeleton member is deformed by the fragile portion, and generation of a horizontal component of impact acceleration that pushes the collision body in the horizontal direction at the time of collision can be suppressed. As a result, it is possible to increase the upward component force of the impact acceleration that is effective for protecting the collision body from interference with the components in the engine room.
[0025]
  According to a sixth aspect of the present invention, in the hood structure for a vehicle according to the second aspect, the auxiliary skeleton member has a flat plate shape, and the open ends of the plurality of main skeleton members are connected to each other. .
[0026]
  Therefore, in addition to the content described in claim 2, the auxiliary skeleton member has a flat plate shape and connects the open ends of the plurality of main skeleton members, so that the rotational moment of the main skeleton member generated at the time of collision is reduced. It can be suppressed by the tension of the member, and a decrease in the upward component force of the impact acceleration generated in the collision body at the time of collision can be prevented.
  According to a seventh aspect of the present invention, in the hood structure for a vehicle according to the second aspect, the inner member is joined to the outer member through an adhesive layer, and the inner member is attached to a central axis of a main skeleton member. The cross-sectional shape seen from the direction along the line is characterized by a downwardly open U-shape narrower upward than the distance between the opening ends.
  Therefore, in addition to the content described in claim 2, the inner member has a U-shape that is open downward, and has a structure that does not restrain the open end. It is possible to suppress the generation of reaction force and effectively absorb the shock. Moreover, the cross-sectional shape seen from the direction along the central axis of the inner member is a U-shape having a downward opening that is narrower than the distance between the opening end portions, so that the joint surface of the inner member with the outer member can be obtained. It can be narrowed, and the generation of a horizontal component of the impact acceleration that pushes the collision body in the horizontal direction at the time of collision can be suppressed. As a result, it is possible to increase the upward component force of the impact acceleration that is effective for protecting the collision body from interference with the components in the engine room.
  The present invention according to claim 8 is the vehicle hood structure according to claim 2, wherein the inner member is joined to the outer member via an adhesive layer, and the inner member is attached to a central axis of a main skeleton member. The cross-sectional shape seen from the direction along the line is characterized by an inverted V-shape having a downward opening that is narrower than the distance between the opening end portions.
  Therefore, in addition to the content described in claim 2, the inner member has an inverted V-shaped configuration with a downward opening, and has a structure that does not restrain the open end, so that the collision object can be prevented from running freely and It is possible to suppress the generation of excessive reaction force and effectively absorb the shock. Moreover, the cross-sectional shape seen from the direction along the central axis of the inner member is a reverse V-shape having a downward opening that is narrower than the distance between the opening ends, so that the joint surface of the inner member with the outer member And the occurrence of a horizontal component of the impact acceleration that pushes the collision object in the horizontal direction at the time of collision can be suppressed. As a result, it is possible to increase the upward component force of the impact acceleration that is effective for protecting the collision body from interference with the components in the engine room.
  According to a ninth aspect of the present invention, in the hood structure for a vehicle according to the seventh aspect, an adhesive layer interposed between the upper wall portion of the main skeleton member of the inner member and the outer member is provided on the vehicle of the upper wall portion. It is also characterized in that it is arranged at the edge in the width direction.
  Therefore, in addition to the content described in claim 7, the opening angle can be reduced by the thickness of the adhesive layer even if the collision body collides with a location separated from the central axis of the inner member in the vehicle width direction. In addition, it is possible to suppress the generation of a horizontal component of the impact acceleration that pushes the collision body in the horizontal direction at the time of collision. As a result, it is possible to increase the upward component force of the impact acceleration that is effective for protecting the collision body from interference with the components in the engine room.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
  The vehicle hood structure according to the present inventionReference embodimentWill be described with reference to FIGS.
[0028]
  In the figure, the arrow UP indicates the vehicle body upward direction, and the arrow FR in the figure indicates the vehicle body front direction.
[0029]
  As shown in FIG. 4, in the present embodiment, the engine hood 12 of the automobile body 10 includes an outer panel 14 as an outer member constituting the outer surface of the vehicle body of the engine hood 12, and an engine room side disposed on the inner side of the outer panel 14. It is comprised by the inner panel 16 as an inner member which comprises a part, and the inner panel 16 is joined to the outer panel 14 through the contact bonding layer.
[0030]
  As shown in FIG. 3, the outer peripheral bone including the front bone 16 </ b> A, the rear bone 16 </ b> B, and the vehicle width direction outer bone 16 </ b> C in the inner panel 16 of the engine hood 12 has higher rigidity than other parts.
[0031]
  The front bone 16A and the rear bone 16B of the inner panel 16 have a plurality of (five in the present embodiment) main skeleton members extending in the longitudinal direction of the vehicle body with a predetermined interval in the vehicle width direction. The skeleton member 22 is constructed.
[0032]
  As shown in FIG. 2, the cross-sectional shape of the skeleton member 22 as viewed from the axial direction (vehicle body longitudinal direction) is a U-shape in which the opening is directed downward in the vehicle and the lower part is widened.
[0033]
  As a result, as shown by a two-dot chain line in FIG. 1, the skeleton member 22 is compared with the comparative example in which the entire width L1 and the opening width L2 are the same and the opening width in the vertical direction is constant. In the embodiment, the offset amount L in plan view between the central axis X of the skeleton member 22 and the vehicle width direction edge portion 24A of the joint portion 24 between the skeleton member 22 and the outer panel 14 is small. Therefore, the opening angle with respect to the vertical direction of the straight line connecting the collision point P and the central axis X of the skeleton member 22 when the collision body S collides with the outer panel 14 above the vehicle width direction edge portion 24A of the joint portion 24. θ1 is smaller than the opening angle θ2 of the comparative example.
[0034]
  As shown in FIG. 2, left and right flanges 22A and 22B are formed at the opening end of the skeleton member 22 toward the outside of the opening, and the hood silencer 23 is locked to the flanges 22A and 22B. ing.
[0035]
  Next, the operation of this embodiment will be described.
[0036]
  In the present embodiment, a plurality of skeleton members 22 extending in the vehicle body front-rear direction with a predetermined interval in the vehicle width direction are provided between the front bone 16A and the rear bone 16B in the inner panel 16 of the engine hood 12. The cross-sectional shape seen from the axial direction of the skeleton member 22 is a U-shape with the opening directed downward in the vehicle and the lower portion expanded.
[0037]
  As a result, the open end of the skeleton member 22 of the inner panel 16 is downward, and the ridge line portion of the skeleton member 22 having high rigidity is parallel to the contact direction of the collision body S that contacts the engine hood 12 from the upper front side of the vehicle. Is formed. For this reason, it is possible to suppress the idling of the collision body S and to suppress the generation of an excessive reaction force on the collision body S and to effectively absorb the shock.
[0038]
  In addition, as shown by a two-dot chain line in FIG. 1, the present embodiment is compared with the comparative example in which the skeleton member 22 is formed in a U-shape in which the entire width L1 and the opening width L2 are the same and the opening width in the vertical direction is constant. The offset amount L in plan view between the center axis X of the skeleton member 22 and the vehicle width direction edge portion 24A of the joint portion 24 between the skeleton member 22 and the outer panel 14 is small.
[0039]
  Therefore, the opening angle with respect to the vertical direction of the straight line connecting the collision point P and the central axis X of the skeleton member 22 when the collision body S collides with the outer panel 14 above the vehicle width direction edge portion 24A of the joint portion 24. θ1 is smaller than the opening angle θ2 of the comparative example.
[0040]
  For this reason, the horizontal component G2 of the impact acceleration G generated on the straight line connecting the collision point P and the central axis X of the skeleton member 22 is reduced. That is, the component force of the impact acceleration acting in the lateral direction with respect to the collision body S can be suppressed. As a result, the upward component G1 of the impact acceleration G, which is effective for protecting the collision body S from interference with parts in the engine room, is increased.
[0041]
  Further, in the present embodiment, as shown by a two-dot chain line in FIG. 2, the hood silencer 23 can be locked to the flanges 22A and 22B of the skeleton member 22, so that the hood silencer 23 can be prevented from falling off and the hood silencer 23 is There is no need to separately provide a bracket for mounting, and the number of parts and weight can be reduced, and productivity is improved.
[0042]
  Further, in the present embodiment, the air from the front of the vehicle can flow without receiving a large resistance as shown by the arrow W in FIG. 4 through the U-shaped cross section of the skeleton member 22 while the vehicle is traveling. The upper portion 26A of the engine 26 can be effectively cooled.
[0043]
  Further, in this embodiment, since the skeleton member 22 has a U-shaped cross-sectional shape with the lower portion spread, it is difficult for water to accumulate in the cross-section, and the rust prevention performance can be improved, and press working or die cutting can be easily performed. Improves. In addition, the ability to prevent the hood silencer from falling off is improved.
[0044]
  Further, in this embodiment, since the skeleton member 22 is disposed along the vehicle front-rear direction, compared to an engine hood in which the skeleton member is extended in the vehicle width direction, the skeleton member is counteracted from the collision side at the time of an offset light collision. It is difficult for the load to be transmitted to the collision side, the damage on the anti-collision side can be reduced, and the torsional rigidity of the single inner panel is improved.
[0045]
  In the present embodiment, the hood silencer 23 is locked to the flanges 22A and 22B of the skeleton member 22. Instead, as shown in FIG. 5, the cross sections of the flanges 22A and 22B of the skeleton member 22 or the skeleton member 22 are used. It is also possible to assemble a washer hose 25 or the like inside.
[0046]
  Next, the hood structure of the vehicle according to the present inventionFirst embodimentWill be described with reference to FIGS.
[0047]
  In addition,Reference embodimentThe same members as those in FIG.
[0048]
  As shown in FIG. 7, in the present embodiment, the cross-sectional shape of the skeleton member 22 viewed from the axial direction is an inverted V shape in which the opening is directed downward in the vehicle and the lower part is widened.
[0049]
  As a result, as shown in FIG. 6, the offset amount L in plan view between the central axis X of the skeleton member 22 and the joint portion 24 between the skeleton member 22 and the outer panel 14 is zero. Therefore, the opening angle θ1 with respect to the vertical direction of the straight line connecting the collision point P when the collision body S collides with the outer panel 14 above the joint portion 24 and the central axis X of the skeleton member 22 becomes 0 degree. Yes.
[0050]
  Next, the operation of this embodiment will be described.
[0051]
  In the present embodiment, a plurality of skeleton members 22 extending in the vehicle body front-rear direction with a predetermined interval in the vehicle width direction are provided between the front bone 16A and the rear bone 16B in the inner panel 16 of the engine hood 12. The cross-sectional shape seen from the axial direction of the skeletal member 22 is a V-shape with the opening directed downward in the vehicle and expanded downward.
[0052]
  As a result, the open end of the skeleton member 22 of the inner panel 16 is downward, and the ridge line portion of the skeleton member 22 having high rigidity is parallel to the contact direction of the collision body S that contacts the engine hood 12 from the upper front side of the vehicle. Is formed. For this reason, it is possible to suppress the idling of the collision body S and to suppress the generation of an excessive reaction force on the collision body S and to effectively absorb the shock.
[0053]
  Further, the offset amount L in plan view between the central axis X of the skeleton member 22 and the vehicle width direction edge portion 24A of the joint portion 24 between the skeleton member 22 and the outer panel 14 is zero.
[0054]
  Therefore, the opening angle θ1 with respect to the vertical direction of the straight line connecting the collision point P when the collision body S collides with the outer panel 14 above the joint portion 24 and the central axis X of the skeleton member 22 is 0 degree.
[0055]
  As a result, the horizontal component of the impact acceleration G generated on the straight line connecting the collision point P and the central axis X of the skeleton member 22 becomes zero. That is, the component force of the impact acceleration acting in the lateral direction with respect to the collision body S can be suppressed. As a result, the upward component force G1 of the impact acceleration G, which is effective for protecting the collision body S from interference with components in the engine room, is increased.
[0056]
  As shown in FIG. 8, the cross-sectional shape of the upper end portion 22C of the skeleton member 22 may be an R shape.
[0057]
  Next, the hood structure of the vehicle in the present inventionReference embodimentWill be described with reference to FIGS.
[0058]
  In addition,Embodiment of reference example shown in FIGS.Are attached to the same members with the same reference numerals.
[0059]
  As shown in FIG. 10, in the present embodiment, the adhesive layer 34 interposed between the upper wall portion 22 </ b> C of the skeleton member 22 and the outer panel 14 has a wave shape along the vehicle front-rear direction. Are also disposed at the edge of the upper wall portion 22C of the skeleton member 22 in the vehicle width direction.
[0060]
  As a result, as shown in FIG. 9, the collision point P when the collision body S collides with the joint portion 24 between the outer panel 14 and the edge in the vehicle width direction of the upper wall portion 22 </ b> C of the skeleton member 22 is The adhesive layer 34 interposed between the outer panel 14 and the frame member 22 is spaced upward from the edge in the vehicle width direction of the upper wall portion 22 </ b> C.
[0061]
  Therefore, the opening angle θ1 of the present embodiment with respect to the vertical direction of the straight line connecting the collision point P and the central axis X of the skeleton member 22 is as shown in FIG. This is smaller than the opening angle θ3 of the comparative example provided only at the center in the vehicle width direction of 22C.
[0062]
  Next, the operation of this embodiment will be described.
[0063]
  In the present embodiment, the collision point P when the colliding body S collides with the edge 24 in the vehicle width direction of the upper wall portion 22 </ b> C of the skeleton member 22 and the joint portion 24 with the outer panel 14 is determined between the skeleton member 22 and the outer panel 14. Due to the adhesive layer 34 interposed therebetween, the frame member 22 is spaced upward from the edge in the vehicle width direction of the upper wall portion 22C.
[0064]
  Accordingly, the opening angle θ1 with respect to the vertical direction of the straight line connecting the collision point P and the central axis X of the skeleton member 22 is such that the adhesive layer 34 has the vehicle width of the upper wall portion 22C of the skeleton member 22 as shown in FIG. This is smaller than the opening angle θ3 of the comparative example in which only the central portion in the direction is provided.
[0065]
  As a result, the horizontal component G1 of the impact acceleration G generated on the straight line connecting the collision point P and the central axis X of the skeleton member 22 is reduced. That is, the component force of the impact acceleration acting in the lateral direction with respect to the collision body S can be suppressed. As a result, the upward component force G1 of the impact acceleration G, which is effective for protecting the collision body S from interference with parts in the engine room, is increased.
[0066]
  In the present embodiment, the adhesive layer 34 is disposed in a wave shape along the vehicle front-rear direction. Instead, as shown in FIG. 12, the adhesive layer 34 is formed in a zigzag shape along the vehicle front-rear direction. It may be arranged. Further, as shown in FIG. 13, the adhesive layer 34 may be disposed linearly along the vehicle front-rear direction at the edge in the vehicle width direction of the upper wall portion 22 </ b> C of the skeleton member 22. Further, the adhesive layer 34 may be intermittently disposed with a predetermined length. Furthermore, as shown in FIG. 14, a configuration may be adopted in which a concave portion 36 for applying an adhesive is formed on the upper wall portion 22 </ b> C of the skeleton member 22.
[0067]
  Next, the hood structure of the vehicle in the present inventionSecond embodimentWill be described with reference to FIGS.
[0068]
  In addition,Embodiment of reference example shown in FIGS.The same members are denoted by the same reference numerals and the description thereof is omitted.
[0069]
  As shown in FIG. 17, in the present embodiment, the three skeleton members 22 adjacent to each other in the vehicle width direction central portion of the inner panel 16 of the engine hood 12 are arranged along the vehicle width direction at the respective center portions in the front-rear direction. They are connected by a skeleton member 38 as an auxiliary skeleton member.
[0070]
  As shown in FIG. 16, the cross-sectional shape of the skeletal member 38 viewed from the axial direction (vehicle width direction) is a U-shape with the opening facing the lower side of the vehicle and the lower side spreading. Front and rear flanges 38A and 38B are formed at the opening end portion toward the outside of the opening. Further, the flanges 38 </ b> A and 38 </ b> B of the skeleton member 38 are connected to the flanges 22 </ b> A and 22 </ b> B of the skeleton member 22.
[0071]
  In addition, in the site | part to which the skeleton member 38 in the skeleton member 22 is connected, for example, the upper wall portion 22C is bonded to the outer panel 14 by an adhesive layer 34 arranged in a ring shape.
[0072]
  As shown in FIG. 18, a gap 39 is formed between the upper wall portion 38 </ b> C of the skeleton member 38 and the outer panel 14.
[0073]
  Next, the operation of this embodiment will be described.
[0074]
  In the present embodiment, a plurality of skeleton members 22 extending in the vehicle body front-rear direction with a predetermined interval in the vehicle width direction are provided between the front bone 16A and the rear bone 16B in the inner panel 16 of the engine hood 12. The three skeleton members 22 adjacent to each other in the center portion in the vehicle width direction of the inner panel 16 are connected by skeleton members 38 disposed along the vehicle width direction in the respective center portions in the front-rear direction. Yes. As a result,Embodiment of reference example shown in FIGS.As compared with the above, the rigidity of the engine hood 12 is improved and the collision energy can be absorbed efficiently.
[0075]
  Further, since the portion of the inner panel 16 of the engine hood 12 where the skeleton member 38 is connected becomes a trigger to fold the skeleton member 22 extending in the front-rear direction at the time of a vehicle frontal collision, as shown in FIG. By adjusting the installation site, the mode control for folding the engine hood 12 becomes possible.
[0076]
  Further, in the present embodiment, as shown in FIG. 20, when the collision body S comes into contact with the engine hood 12, the skeleton member 38 is moved downward (arrows in FIG. 20) due to the bending deformation of the skeleton member 22 of the inner panel 16. Therefore, it is difficult for the collision body S to contact the upper wall portion 38C of the skeleton member 38 with the outer panel 14 interposed therebetween.
[0077]
  Accordingly, as shown in FIG. 15, the forward inclination angle α1 of the impact acceleration G of the present embodiment, which is determined by the inclination angle of the collision point P when the collision body S collides with the outer panel 14, is replaced with the skeleton member 38. Thus, as shown in FIG. 21, in the comparative example in which the skeletal member 42 with the opening facing upward is disposed, the impact acceleration G determined by the tilt angle of the collision point P is smaller than the forward tilt angle α2. .
[0078]
  As a result, in the present embodiment, the horizontal component G2 in front of the impact acceleration G is reduced. That is, the component force of the impact acceleration acting in the lateral direction with respect to the collision body S can be suppressed. As a result, the upward component force G1 of the impact acceleration that is effective for protecting the collision body S from interference with the components in the engine room is increased.
[0079]
  Note that, as shown in FIG. 22, a convex portion 40 is formed by cutting a part on the upper wall portion 38 </ b> C of the skeleton member 38 that is the central portion of the adjacent skeleton member 22. The upper wall portion 40A may be coupled to the outer panel 14. Further, as shown in FIG. 23, a notch 43 is formed on the rear side of the convex portion 40. For this reason, when the colliding body S collides with the outer panel 14, the upper wall portion 40A of the convex portion 40 easily falls down to the vehicle rear side (in the direction of arrow B in FIG. 23). By tilting in the B direction, the forward tilt angle of the impact acceleration G determined by the tilt angle of the collision point P when the colliding body S collides with the outer panel 14 becomes small.
[0080]
  Further, as shown in FIG. 24, a fragile portion 44 serving as a deformation starting point is formed at a connection portion of the skeleton member 38 with the skeleton member 22, and the outer panel 14 is caused to collide with the collision body S so that the outer panel 14 is the upper wall portion 38 </ b> C of the skeleton member 38. In this case, the skeleton member 38 may be easily deformed as indicated by a two-dot chain line downward (in the direction of arrow B in FIG. 24) starting from the fragile portion 44.
[0081]
  In addition, as shown in FIG. 25, the flanges 22 </ b> A and 22 </ b> B of the adjacent skeleton members 22 are connected by a single plate 46, so that when the adjacent skeleton member 22 is bent due to the collision of the collision body S, the plate It is possible to prevent the upward acceleration G1 generated in the collision body S from being reduced by the tension T generated in 46.
[0082]
  Next, the hood structure of the vehicle in the present inventionReference embodimentWill be described with reference to FIGS.
[0083]
  In addition,Embodiment of reference example shown in FIGS.The same members are denoted by the same reference numerals and the description thereof is omitted.
[0084]
  As shown in FIG. 26, in the present embodiment, the flange of the skeleton member 22 is eliminated, and the front end portions 22F and 22G of the left and right vertical wall portions 22D and 22E have an arcuate cross-sectional shape.
[0085]
  As a result, the width W1 of the skeleton member 22 of the present embodiment shown in FIG. 27 is smaller than the width W2 = W1 + N1 + N2 of the skeleton member 22 of the comparative example having the flange shown in FIG.
[0086]
  Therefore, when the collision body S collides with the engine hood 12 and the skeleton member 22 descends from the position indicated by the two-dot chain line to the position indicated by the solid line as shown in FIGS. When the gaps M1 and M2 for preventing the components 46 and 48 and the skeleton member 22 from interfering with each other are taken into consideration, the distance L1 between the component 46 and the component 48 in this embodiment (FIG. 27) is the same as that in the comparative example (FIG. 28). The distance L2 between the component 46 and the component 48 of the skeleton member 22 is shorter. For this reason, when the interval between the component 46 and the component 48 is determined in advance, in the present embodiment, the gaps M1 and M2 are increased so that the variation in the components causes the variation as shown in the comparative example (FIG. 29). The skeleton member 22 and the component 46 can be prevented from interfering with each other.
[0087]
  Next, the operation of this embodiment will be described.
[0088]
  In the present embodiment, when the collision body S collides with the engine hood 12 and the skeleton member 22 descends from the position indicated by the two-dot chain line to the position indicated by the solid line as shown in FIG. The distance L1 between the component 46 and the component 48 when considering the gaps M1 and M2 for preventing the components 46 and 48 and the skeleton member 22 from interfering with each other is equal to the component 46 and the component 48 of the skeleton member 22 of the comparative example shown in FIG. Is shorter than the interval L2.
[0089]
  As a result, when the interval between the component 46 and the component 48 is determined in advance, the gaps M1 and M2 are increased so that the skeleton member 22 and the skeleton member 22 as shown in the comparative example (FIG. 29) due to component variations. Interference with the component 46 can be prevented. For this reason, in this embodiment, it can prevent that the frame member 22 and the components in an engine room interfere, and the impact acceleration which the collision body S receives increases.
[0090]
  Further, in the present embodiment, as shown in FIG. 30, the thickness K1 after deformation of the skeleton member 22 due to the secondary collision is smaller than the thickness K2 after deformation of the skeleton member 22 in the comparative example (FIG. 31). Therefore, also in this respect, it is possible to prevent an increase in impact acceleration received by the collision body S.
[0091]
  Further, in the present embodiment, since the front end portions 22F and 22G of the vertical wall portions 22D and 22E of the skeleton member 22 have an arcuate cross-sectional shape, when contacting the member 50 in the engine room due to a secondary collision. In addition, the tip portions 22F and 22G are not easily caught by the member 50.
[0092]
  As shown in FIG. 32, even if the front end portions 22F and 22G of the vertical wall portions 22D and 22E of the skeleton member 22 are curved in a J shape, the front end portions 22F and 22G are less likely to be caught by members in the engine room. good.
[0093]
  Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to such embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art.
[0094]
[0095]
[0096]
[0097]
  Further, the arrangement positions and widths of the skeleton member 22 and the skeleton member 38 are not limited to the above-described embodiment.FIG.(A) ~FIG.As shown in (D), the arrangement position and width of the skeleton member 22 and the skeleton member 38 can be changed.
[0098]
  Also,FIG.As shown in FIG. 5, the weakened portion 44 may be formed by eliminating the U-shaped cross section extending in the left-right direction at the connecting portion between the skeleton member 22 and the skeleton member 38.
[0099]
[0100]
[0101]
  Moreover, it is also possible to make the structure which combined said each embodiment.
[0102]
[0103]
【The invention's effect】
  The present invention according to claim 1 is a vehicle hood structure comprising an outer member that constitutes a vehicle body outer surface of the hood, and an inner member that is disposed on the inner side of the outer member, and the inner member is an outer member. The inner member is joined through an adhesive layer, and the inner member is a plurality of linear main skeleton members extending along the front-rear direction of the vehicle body with the open end downward and the central axis of the inner member The cross-sectional shape seen from the direction along the line is a reverse V-shape with an opening that is narrower than the distance between the open ends, so that the collision object is prevented from running idle and excessive reaction force to the collision object. It has an excellent effect of suppressing generation and effective shock absorption. Moreover, it has the outstanding effect that it can suppress the idling of the collision body and suppress the generation of an excessive reaction force to the collision body and can effectively absorb the shock. Moreover, it has the outstanding effect that generation | occurrence | production of the horizontal component of the impact acceleration which pushes a collision body to a horizontal direction at the time of a collision can be suppressed.
[0104]
[0105]
[0106]
[0107]
  According to a second aspect of the present invention, there is provided a vehicle hood structure comprising an outer member that constitutes a vehicle body outer surface of the hood, and an inner member that is disposed inside the outer member, wherein the inner member has an open end. A plurality of linear main skeleton members having a central portion extending along the front-rear direction of the vehicle body, and an auxiliary skeleton member that connects the plurality of main skeleton members at predetermined locations, Since the auxiliary skeleton member is provided integrally or separately at the open ends of the plurality of main skeleton members with a predetermined distance from the outer member, it is possible to prevent the collision body from running idle and excessive reaction force against the collision body. It has an excellent effect of suppressing generation and effective shock absorption.
[0108]
  According to a third aspect of the present invention, in the vehicle hood structure according to the second aspect, the auxiliary skeleton member has a cross section having a downward opening, and the vertical wall portion connects between the side walls of the plurality of main skeleton members. Therefore, in addition to the effect of the second aspect, it has an excellent effect that the rigidity can be secured and the interference between the auxiliary skeleton member and the collision body can be avoided.
[0109]
  According to a fourth aspect of the present invention, in the hood structure for a vehicle according to any one of the second and third aspects, a shock absorbing structure is provided between the auxiliary skeleton member and the outer member, and a part of the auxiliary skeleton member is provided. In addition to the effect according to any one of claims 2 and 3, it is possible to absorb an impact even if a collision object collides at a position away from the skeleton member. Has an effect.
[0110]
  According to a fifth aspect of the present invention, in the hood structure for a vehicle according to any one of the second and third aspects, the weakened portion is provided at the connecting portion between the plurality of main skeleton members and the auxiliary skeleton members. In addition to the effect described in any one of 3 above, the present invention has an excellent effect that it is possible to suppress the generation of a horizontal component of impact acceleration that pushes the collision body in the horizontal direction at the time of multiple collisions.
[0111]
  According to a sixth aspect of the present invention, in the vehicle hood structure according to the second aspect, the auxiliary skeleton member has a flat plate shape, and connects the open ends of the plurality of main skeleton members. In addition to the above effect, it has an excellent effect of preventing a reduction in the upward component force of the impact acceleration generated in the collision body at the time of collision.
  According to a seventh aspect of the present invention, in the vehicle hood structure according to the second aspect, the inner member is joined to the outer member via an adhesive layer, and the direction along the central axis of the main skeleton member of the inner member Since the cross-sectional shape seen from the top is a U-shape with a lower opening narrower than the distance between the opening end portions, in addition to the effect of claim 2, the collision object is prevented from running idle and the collision object It has an excellent effect of suppressing the generation of an excessive reaction force and effective shock absorption. Moreover, it has the outstanding effect that it can suppress the idling of the collision body and suppress the generation of an excessive reaction force to the collision body and can effectively absorb the shock. Moreover, it has the outstanding effect that generation | occurrence | production of the horizontal component of the impact acceleration which pushes a collision body to a horizontal direction at the time of a collision can be suppressed.
  The invention according to claim 8 is the vehicle hood structure according to claim 2, wherein the inner member is joined to the outer member via an adhesive layer, and the direction along the central axis of the main skeleton member of the inner member Since the cross-sectional shape seen from above is a reverse V-shaped with a lower opening narrower than the distance between the opening end portions, in addition to the effect of claim 2, while preventing the collision object from running idle, It has an excellent effect of suppressing the generation of excessive reaction force on the body and effective shock absorption. Moreover, it has the outstanding effect that it can suppress the idling of the collision body and suppress the generation of an excessive reaction force to the collision body and can effectively absorb the shock. Moreover, it has the outstanding effect that generation | occurrence | production of the horizontal component of the impact acceleration which pushes a collision body to a horizontal direction at the time of a collision can be suppressed.
  According to a ninth aspect of the present invention, in the vehicle hood structure according to the seventh aspect, an adhesive layer interposed between the upper wall portion of the main skeleton member of the inner member and the outer member is provided in the vehicle width direction of the upper wall portion. Since it is also arranged at the edge, in addition to the effect described in claim 7, it has an excellent effect that generation of a horizontal component of impact acceleration that pushes the collision body in the horizontal direction at the time of collision can be suppressed.
[Brief description of the drawings]
FIG. 1 of the present inventionReference embodimentIt is sectional drawing seen from the vehicle front which shows the hood structure of the vehicle which concerns on.
FIG. 2 of the present inventionReference embodimentIt is the cross-sectional perspective view seen from the vehicle diagonal front which shows the hood structure of the vehicle which concerns on.
FIG. 3 of the present inventionReference embodimentIt is the top view seen from the vehicle lower part which shows the hood structure of the vehicle which concerns on.
FIG. 4 of the present inventionReference embodimentIt is a schematic sectional side view which shows the vehicle body front part to which the hood structure of the vehicle which concerns on is applied.
FIG. 5 shows the present invention.Reference embodimentIt is the cross-sectional perspective view seen from the vehicle diagonal front which shows the hood structure of the vehicle which concerns on the modification of this.
FIG. 6 of the present inventionFirst embodimentIt is sectional drawing seen from the vehicle front which shows the hood structure of the vehicle which concerns on.
[Fig. 7] of the present invention.First embodimentIt is the cross-sectional perspective view seen from the vehicle diagonal front which shows the hood structure of the vehicle which concerns on.
[Fig. 8] of the present inventionFirst embodimentIt is the cross-sectional perspective view seen from the vehicle diagonal front which shows the hood structure of the vehicle which concerns on the modification of this.
FIG. 9 shows the present invention.Reference embodimentIt is sectional drawing seen from the vehicle front which shows the hood structure of the vehicle which concerns on.
FIG. 10 shows the present invention.Reference embodimentIt is the cross-sectional perspective view seen from the vehicle diagonal front which shows the hood structure of the vehicle which concerns on.
FIG. 11 is a cross-sectional view of a vehicle hood structure according to a comparative example of the present invention as seen from the front of the vehicle.
FIG. 12 shows the present invention.Reference embodimentIt is the cross-sectional perspective view seen from the vehicle diagonal front which shows the hood structure of the vehicle which concerns on.
FIG. 13 shows the present invention.Reference embodimentIt is the cross-sectional perspective view seen from the vehicle diagonal front which shows the hood structure of the vehicle which concerns on.
FIG. 14 shows the present invention.Reference embodimentIt is the cross-sectional perspective view seen from the vehicle diagonal front which shows the hood structure of the vehicle which concerns on.
FIG. 15 shows the present invention.Second embodimentIt is side sectional drawing which shows the hood structure of the vehicle which concerns on.
FIG. 16 shows the present invention.Second embodimentIt is the cross-sectional perspective view seen from the vehicle diagonal front which shows the hood structure of the vehicle which concerns on.
FIG. 17 shows the present invention.Second embodimentIt is the top view seen from the vehicle lower part which shows the hood structure of the vehicle which concerns on.
18 is an enlarged cross-sectional view taken along line 18-18 in FIG.
FIG. 19 shows the present invention.Second embodimentIt is a schematic sectional side view which shows the deformation | transformation state of the vehicle body front part to which the hood structure of the vehicle which concerns on is applied.
FIG. 20 shows the present invention.Second embodimentIt is sectional drawing corresponding to FIG. 18 which shows the deformation | transformation state of the hood structure of the vehicle which concerns on.
FIG. 21 is a cross-sectional view of a vehicle hood structure according to a comparative example of the present invention as seen from the front of the vehicle.
FIG. 22 shows the present invention.Second embodimentIt is sectional drawing corresponding to FIG. 18 which shows the hood structure of the vehicle which concerns on the modification of this.
23 is an enlarged cross-sectional view taken along line 23-23 in FIG.
FIG. 24 shows the present invention.Second embodimentIt is sectional drawing corresponding to FIG. 18 which shows the hood structure of the vehicle which concerns on the modification of this.
FIG. 25 shows the present invention.Second embodimentIt is sectional drawing corresponding to FIG. 18 which shows the deformation | transformation state of the hood structure of the vehicle which concerns on the modification of this.
FIG. 26 of the present inventionReference embodimentIt is the cross-sectional perspective view seen from the vehicle diagonal front which shows the hood structure of the vehicle which concerns on.
Fig. 27 of the present inventionReference embodimentIt is sectional drawing seen from the vehicle front which shows the hood structure of the vehicle which concerns on.
FIG. 28 is a cross-sectional view of a vehicle hood structure according to a comparative example of the present invention as seen from the front of the vehicle.
FIG. 29 is a cross-sectional view of a vehicle hood structure according to a comparative example of the present invention as seen from the front of the vehicle.
FIG. 30 shows the present invention.Reference embodimentIt is sectional drawing seen from the vehicle front which shows the deformation | transformation state of the hood structure of the vehicle which concerns on.
FIG. 31 is a cross-sectional view seen from the front of the vehicle showing a deformation state of the hood structure of the vehicle according to the comparative example of the present invention.
FIG. 32 shows the present invention.Reference embodimentIt is the cross-sectional perspective view seen from the vehicle diagonal front which shows the hood structure of the vehicle which concerns on the modification of this.
FIG. 33(A)-(D) are the top views seen from the vehicle lower part which shows the hood structure of the vehicle which concerns on other embodiment of this invention.
FIG. 34It is the cross-sectional perspective view seen from the vehicle diagonal front which shows the hood structure of the vehicle which concerns on other embodiment of this invention.
[Explanation of symbols]
  12 Engine hood
  14 Outer panel (outer member)
  16 Inner panel (inner member)
  22 Skeletal member (main skeletal member)
  22A flange
  22B Flange
  22C Upper end
  22D vertical wall
  22E Vertical wall
  23 Hood Silencer
  24 joints
  25 Washer hose
  26 engine
  34 Adhesive layer
  36 recess
  38 Skeletal member (auxiliary skeletal member)
  40 Convex
  42 Skeletal members
  43 Notches

Claims (9)

フードの車体外側面を構成するアウタ部材と、該アウタ部材の内側に配設されたインナ部材と、からなる車両のフード構造であって、
前記インナ部材は前記アウタ部材に接着層を介して接合されており、
前記インナ部材は開放端部を下方にし、中心軸が車体の前後方向に沿って延設された直線状の複数の主たる骨格部材であり、前記インナ部材の中心軸に沿った方向から見た断面形状は、開口端部間の距離よりも上方が狭い下開きの逆V字形状であることを特徴とする車両のフード構造。
A vehicle hood structure comprising an outer member that constitutes a vehicle body outer surface of a hood, and an inner member disposed inside the outer member,
The inner member is joined to the outer member via an adhesive layer,
The inner member is a plurality of linear main skeleton members having an open end downward and a central axis extending along the front-rear direction of the vehicle body, and a cross section viewed from a direction along the central axis of the inner member The vehicle hood structure is characterized in that the shape is a reverse V-shape with a lower opening narrower than the distance between the opening end portions.
フードの車体外側面を構成するアウタ部材と、該アウタ部材の内側に配設されたインナ部材と、からなる車両のフード構造であって、
前記インナ部材は、開放端部を下方にし中心軸が車体の前後方向に沿って延設された直線状の複数の主たる骨格部材と、該複数の主たる骨格部材間を所定の箇所で連結する補助骨格部材と、を有し、該補助骨格部材は前記アウタ部材と所定の間隔をもって前記複数の主たる骨格部材の開放端部に一体または別体にて設けられていることを特徴とする車両のフード構造。
A vehicle hood structure comprising an outer member that constitutes a vehicle body outer surface of a hood, and an inner member disposed inside the outer member,
The inner member includes a plurality of linear main skeleton members having an open end downward and a central axis extending along the front-rear direction of the vehicle body, and an auxiliary for connecting the plurality of main skeleton members at a predetermined position. A vehicle hood, wherein the auxiliary skeleton member is provided integrally or separately at an open end of the plurality of main skeleton members with a predetermined distance from the outer member. Construction.
前記補助骨格部材は下開きの開口を有する断面を有し、前記複数の主たる骨格部材の側壁間を連結する縦壁部を有することを特徴とする請求項2に記載の車両のフード構造。  3. The vehicle hood structure according to claim 2, wherein the auxiliary skeleton member has a cross section having an opening that opens downward, and has a vertical wall portion that connects side walls of the plurality of main skeleton members. 4. 前記補助骨格部材と前記アウタ部材との間に衝撃吸収構造を備えており、前記補助骨格部材の一部を切り起して前記アウタ部材の下面に接着したことを特徴とする請求項2、3の何れかに記載の車両のフード構造。  4. A shock absorbing structure is provided between the auxiliary skeleton member and the outer member, and a part of the auxiliary skeleton member is cut and bonded to the lower surface of the outer member. A hood structure for a vehicle according to any one of the above. 前記複数の主たる骨格部材と前記補助骨格部材との連結部に脆弱部を設けたことを特徴とする請求項2、3の何れかに記載の車両のフード構造。  The vehicle hood structure according to any one of claims 2 and 3, wherein a fragile portion is provided at a connecting portion between the plurality of main skeleton members and the auxiliary skeleton member. 前記補助骨格部材は平板形状であり、前記複数の主たる骨格部材の開放端部間を連結することを特徴とする請求項2に記載の車両のフード構造。  The hood structure for a vehicle according to claim 2, wherein the auxiliary skeleton member has a flat plate shape and connects between the open ends of the plurality of main skeleton members. 前記インナ部材は前記アウタ部材に接着層を介して接合されており、前記インナ部材の主たる骨格部材の中心軸に沿った方向から見た断面形状は、開口端部間の距離よりも上方が狭い下開きのコ字形状であることを特徴とする請求項2に記載の車両のフード構造。  The inner member is joined to the outer member via an adhesive layer, and the cross-sectional shape viewed from the direction along the central axis of the main skeleton member of the inner member is narrower above the distance between the opening end portions. The hood structure for a vehicle according to claim 2, wherein the hood structure has a U-shape with a downward opening. 前記インナ部材は前記アウタ部材に接着層を介して接合されており、前記インナ部材の主たる骨格部材の中心軸に沿った方向から見た断面形状は、開口端部間の距離よりも上方が狭い下開きの逆V字形状であることを特徴とする請求項2に記載の車両のフード構造。  The inner member is joined to the outer member via an adhesive layer, and the cross-sectional shape viewed from the direction along the central axis of the main skeleton member of the inner member is narrower above the distance between the opening end portions. The hood structure for a vehicle according to claim 2, wherein the hood structure has a reverse V-shape with a downward opening. 前記インナ部材の主たる骨格部材の上壁部とアウタ部材との間に介在する接着層を前記上壁部の車幅方向縁部にも配設したことを特徴とする請求項7に記載の車両のフード構造。  The vehicle according to claim 7, wherein an adhesive layer interposed between the upper wall portion of the main skeleton member of the inner member and the outer member is also disposed at a vehicle width direction edge portion of the upper wall portion. Hood structure.
JP2002304302A 2002-10-18 2002-10-18 Vehicle hood structure Expired - Fee Related JP4010223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002304302A JP4010223B2 (en) 2002-10-18 2002-10-18 Vehicle hood structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304302A JP4010223B2 (en) 2002-10-18 2002-10-18 Vehicle hood structure

Publications (2)

Publication Number Publication Date
JP2004136810A JP2004136810A (en) 2004-05-13
JP4010223B2 true JP4010223B2 (en) 2007-11-21

Family

ID=32451760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304302A Expired - Fee Related JP4010223B2 (en) 2002-10-18 2002-10-18 Vehicle hood structure

Country Status (1)

Country Link
JP (1) JP4010223B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1829770B1 (en) * 2003-07-01 2012-10-24 Toyota Jidosha Kabushiki Kaisha Vehicular hood structure and vehicle body front portion structure
JP2006044543A (en) * 2004-08-06 2006-02-16 Kanto Auto Works Ltd Hood structure of automobile
FR2875777B1 (en) * 2004-09-24 2008-08-15 Renault Sas MOTOR VEHICLE COVER WITH REINFORCED LINING
JP4876400B2 (en) * 2005-02-01 2012-02-15 日産自動車株式会社 Vehicle hood structure
FR2907078B1 (en) * 2006-10-17 2009-01-16 Plastic Omnium Cie HOOD FOR A MOTOR VEHICLE WITH HOLLOW BODIES
US7735908B2 (en) 2007-07-24 2010-06-15 Gm Global Technology Operations, Inc. Vehicle hood with sandwich inner structure
DE102010018898A1 (en) * 2010-04-30 2011-11-03 Volkswagen Ag Body structure of a motor vehicle, method for producing the body structure and body or body attachment
JP5902109B2 (en) 2013-02-08 2016-04-13 豊田鉄工株式会社 Vehicle hood structure
JP6070670B2 (en) 2014-10-06 2017-02-01 トヨタ自動車株式会社 Vehicle hood structure
US9381879B2 (en) * 2014-11-12 2016-07-05 GM Global Technology Operations LLC Local energy absorber
EP4129804A4 (en) * 2020-03-30 2023-09-06 Nippon Steel Corporation Automobile hood

Also Published As

Publication number Publication date
JP2004136810A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
KR100892478B1 (en) Automotive engine hood
JP5556959B2 (en) Vehicle hood structure
JP5201864B2 (en) Body structure
KR100644416B1 (en) Vehicle hood structure
JP4059187B2 (en) Vehicle hood structure
JP2003226266A (en) Front structure of vehicle body
JP4010223B2 (en) Vehicle hood structure
JP4479550B2 (en) Engine under cover mounting structure
JP4801524B2 (en) Automotive hood
JP4200907B2 (en) Vehicle hood structure
JP2006015859A (en) Front vehicle body structure of vehicle
JP2005145224A (en) Hood structure for vehicle
JP4123073B2 (en) Fender panel mounting structure
JP6414298B1 (en) Body structure
JP4328054B2 (en) Body panel
JP2007137224A (en) Vehicle body front part structure
JP2002225750A (en) Battery bracket structure
JP2921183B2 (en) Car front body structure
JP4407476B2 (en) Vehicle cowl structure
JP3870677B2 (en) Shock absorber for moving body
JP4798485B2 (en) Vehicle front bumper structure
JP4214629B2 (en) Front body structure of the vehicle
JP2003048498A (en) Bumper stay, and shock absorber for front part of vehicle body
JP3613226B2 (en) Body front structure
JP3981791B2 (en) Rear bumper shock absorption structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070827

R151 Written notification of patent or utility model registration

Ref document number: 4010223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees