JP4010129B2 - Planetary gear device, manufacturing method thereof, and planetary gear tooth surface shape setting method - Google Patents

Planetary gear device, manufacturing method thereof, and planetary gear tooth surface shape setting method Download PDF

Info

Publication number
JP4010129B2
JP4010129B2 JP2001288992A JP2001288992A JP4010129B2 JP 4010129 B2 JP4010129 B2 JP 4010129B2 JP 2001288992 A JP2001288992 A JP 2001288992A JP 2001288992 A JP2001288992 A JP 2001288992A JP 4010129 B2 JP4010129 B2 JP 4010129B2
Authority
JP
Japan
Prior art keywords
planetary
planetary gears
gear
tooth
meshing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001288992A
Other languages
Japanese (ja)
Other versions
JP2003097653A (en
Inventor
真一郎 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001288992A priority Critical patent/JP4010129B2/en
Publication of JP2003097653A publication Critical patent/JP2003097653A/en
Application granted granted Critical
Publication of JP4010129B2 publication Critical patent/JP4010129B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Retarders (AREA)
  • Gears, Cams (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、中心部に配置された太陽歯車の周囲に複数の遊星歯車が配置されるとともに、遊星歯車の外側に内歯車が配置され、太陽歯車の歯数および内歯車の歯数が、いずれも遊星歯車の個数で割り切れる遊星歯車装置およびその製造方法ならびに遊星歯車歯面形状設定方法に関する。
【0002】
【従来の技術】
太陽歯車の歯数および内歯車の歯数が、いずれも遊星歯車の個数で割り切れる遊星歯車装置においては、遊星歯車と、太陽歯車または内歯車とが噛み合うタイミングが、各遊星歯車において同じになる。このため、噛み合い時に発生する衝撃は、遊星歯車の数だけ増大し、遊星歯車装置として振動および騒音が大きくなるという問題がある。
【0003】
図14は、上記した遊星歯車装置の概略を示しており、中心部に配置した太陽歯車1の周囲に四つの遊星歯車3a,3b,3c,3dがそれぞれ配置され、さらにその外側に内歯車5が配置されている。図15(a),(b),(c),(d)は、各遊星歯車3a,3b,3c,3dの噛み合い振動変位をそれぞれ示している。
【0004】
図15によれば、各遊星歯車3a,3b,3c,3dの噛み合い振動変位がほぼ同一であり、そのピークが同一時期に発生しており、この四つの噛み合い振動変位が合成されることで、図16に示すように、遊星歯車装置全体としての噛み合い振動変位の振幅の最大値(伝達誤差)が大きなものとなる。
【0005】
これを解消すべく、特開平9−53690号公報には、複数の遊星歯車の軸方向位置、歯幅、歯丈、面取り量などを順次変化させたものが記載されている。また、特開平6−10994号公報には、複数の遊星歯車の噛み合い位相を調整することで、各遊星歯車相互の噛み合い位相を、噛み合い周期/遊星歯車個数(N)ずつずらし、噛み合い率ε≒1+(N−1)/Nとするものが記載されている。
【0006】
【発明が解決しようとする課題】
しかしながら、前者のものは、軸方向位置を変化させると、軸方向の位置決めのための組み立て作業が複雑化して製造コストが上昇し、一方歯幅、歯丈、面取り量などを順次変化させると、歯幅などの形状の異なる遊星歯車が多数混在することによる、粗材形状の仕様増し、部品管理の煩雑化、加工工程での治具段取りの変更など、製造コストの上昇を招く。
【0007】
また後者のものについては、歯車の噛み合う点が限られることから、複数の遊星歯車の配置位置をずらして上記式の条件が成立するためには、歯車諸元(歯数、ねじれ角、圧力角など)を変更しなければならず、歯数比、強度などが変わってしまい、必要とする仕様の遊星歯車装置が得られなくなるという問題がある。
【0008】
そこで、この発明は、製造コストの上昇を抑え、かつ歯数比、強度などの変化を抑えつつ、遊星歯車装置として振動および騒音を低下させることを目的としている。
【0009】
【課題を解決するための手段】
前記目的を達成するために、請求項1の発明は、中心部に配置された太陽歯車の周囲にこの太陽歯車に噛み合う複数の遊星歯車が配置されるとともに、前記複数の遊星歯車の外側にこの各遊星歯車に噛み合う内歯車が配置され、前記太陽歯車の歯数および前記内歯車の歯数が、いずれも前記遊星歯車の個数で割り切れる遊星歯車装置において、前記複数の遊星歯車のうち少なくとも一つの遊星歯車と、他の遊星歯車との間で、噛合タイミングが異なるように歯面の表面形状が歯幅方向に沿って異なっており、前記少なくとも一つの遊星歯車は、ねじれ角が他の遊星歯車と異なる構成としてある。
【0011】
請求項の発明は、中心部に配置された太陽歯車の周囲にこの太陽歯車に噛み合う複数の遊星歯車が配置されるとともに、前記複数の遊星歯車の外側にこの各遊星歯車に噛み合う内歯車が配置され、前記太陽歯車の歯数および前記内歯車の歯数が、いずれも前記遊星歯車の個数で割り切れる遊星歯車装置において、前記複数の遊星歯車のうち少なくとも一つの遊星歯車と、他の遊星歯車との間で、噛合タイミングが異なるように歯面の表面形状が歯幅方向に沿って異なっており、前記少なくとも一つの遊星歯車は、一方の歯面の歯幅方向一端側に歯厚方向に盛り上がる盛り上げ部を備えるとともに、他方の歯面の歯幅方向他端側に歯厚方向に盛り上がる盛り上げ部を備え、他方の遊星歯車は、一方の歯面の歯幅方向他端側に歯厚方向に盛り上がる盛り上げ部を備えるとともに、他方の歯面の歯幅方向一端側に歯厚方向に盛り上がる盛り上げ部を備えている構成としてある。
【0012】
請求項の発明は、中心部に配置された太陽歯車の周囲にこの太陽歯車に噛み合う複数の遊星歯車が配置されるとともに、前記複数の遊星歯車の外側にこの各遊星歯車に噛み合う内歯車が配置され、前記太陽歯車の歯数および前記内歯車の歯数が、いずれも前記遊星歯車の個数で割り切れる遊星歯車装置において、前記複数の遊星歯車のうち少なくとも一つの遊星歯車と、他の遊星歯車との間で、噛合タイミングが異なるように歯面の表面形状が歯幅方向に沿って異なっており、前記少なくとも一つの遊星歯車は、歯幅方向の一端側と同他端側とで歯厚が異なる構成としてある。
【0013】
請求項の発明は、中心部に配置された太陽歯車の周囲にこの太陽歯車に噛み合う複数の遊星歯車が配置されるとともに、前記複数の遊星歯車の外側にこの各遊星歯車に噛み合う内歯車が配置され、前記太陽歯車の歯数および前記内歯車の歯数が、いずれも前記遊星歯車の個数で割り切れる遊星歯車装置において、前記複数の遊星歯車のうち少なくとも一つの遊星歯車と、他の遊星歯車との間で、噛合タイミングが異なるように歯面の表面形状が歯幅方向に沿って異なっており、歯幅方向の一端側と同他端側とで歯厚が異なる構成とするとともに、両歯面の相互間の中心線に対して線対称に形成した複数の遊星歯車を、軸方向両端を互いに逆にして太陽歯車の周囲に沿って交互に配置して、歯面の表面形状を歯幅方向に沿って異なるものとした構成としてある。
【0014】
請求項の発明は、中心部に配置された太陽歯車の周囲にこの太陽歯車に噛み合う複数の遊星歯車が配置されるとともに、前記複数の遊星歯車の外側にこの各遊星歯車に噛み合う内歯車が配置され、前記太陽歯車の歯数および前記内歯車の歯数が、いずれも前記遊星歯車の個数で割り切れる遊星歯車装置において、前記複数の遊星歯車のうち少なくとも一つの遊星歯車と、他の遊星歯車との間で、噛合タイミングが異なるように歯面の表面形状が歯幅方向に沿って異なっており、前記少なくとも一つの遊星歯車は、両歯面ともに歯幅方向一端側に歯厚方向に盛り上がる盛り上げ部を備えている構成としてある。
【0015】
請求項の発明は、請求項またはの発明の構成において、盛り上げ部は、歯幅方向に沿って圧力角を変化させることで形成されるものとしてある。
【0016】
請求項の発明は、請求項またはの発明の構成において、両歯面の相互間の中心線に対して線対称に形成された複数の遊星歯車を、軸方向両端を互いに逆にして太陽歯車の周囲に沿って交互に配置した構成としてある。
【0017】
請求項8の発明は、請求項1ないし3,5,6のいずれか1項の発明の構成において、遊星歯車が複数N個設けられ、N=偶数のときはN/2個が、N=奇数のときは(N−1)/2個が、他の遊星歯車に対し、歯面の表面形状が歯幅方向に沿って異なっている構成としてある。
【0019】
請求項の発明は、請求項1ないしのいずれか1項の発明の構成において、遊星歯車は、はすば歯車で構成されている。
【0020】
請求項10の発明は、中心部に配置された太陽歯車の周囲にこの太陽歯車に噛み合う複数の遊星歯車が配置されるとともに、前記複数の遊星歯車の外側にこの各遊星歯車に噛み合う内歯車が配置され、前記太陽歯車の歯数および前記内歯車の歯数が、いずれも前記遊星歯車の個数で割り切れる遊星歯車装置の製造方法において、前記遊星歯車が複数N個設けられ、N=偶数のときはN/2個を、N=奇数のときは(N−1)/2個を、他の遊星歯車に対し、噛合タイミングが異なるように歯面の表面形状を歯幅方向に沿って異ならせ、この歯面の表面形状が歯幅方向に沿って互い異なる遊星歯車を太陽歯車の周囲に沿って交互に配置していくことで製造する遊星歯車装置の製造方法であって、前記複数の遊星歯車は、両歯面の相互間の中心線に対して線対称に形成され、この複数の遊星歯車を、軸方向両端を互いに逆にして太陽歯車の周囲に沿って交互に配置し、この交互に配置した遊星歯車相互間で歯面の表面形状を歯幅方向に沿って異なるものとした遊星歯車装置の製造方法としてある。
【0022】
請求項11の発明は、中心部に配置された太陽歯車の周囲にこの太陽歯車に噛み合う複数の遊星歯車が配置されるとともに、前記複数の遊星歯車の外側にこの各遊星歯車に噛み合う内歯車が配置され、前記太陽歯車の歯数および前記内歯車の歯数が、いずれも前記遊星歯車の個数で割り切れる遊星歯車装置の遊星歯車歯面形状設定方法において、前記太陽歯車と前記遊星歯車との噛み合い振動変位を計算するとともに、前記遊星歯車と前記内歯車との噛み合い振動変位を計算し、これら各振動変位を互いに加算してこの加算値をあらかじめ決められた目標値と比較し、前記加算値が前記目標値より大きいときには、前記複数の遊星歯車のうち少なくとも一つの遊星歯車を、他の遊星歯車に対して、噛合タイミングが異なるように歯面の表面形状を歯幅方向に沿って異ならせる遊星歯車装置の遊星歯車歯面形状設定方法としてある。
【0023】
【発明の効果】
請求項1の発明によれば、複数の遊星歯車のうち少なくとも一つの遊星歯車を、他の遊星歯車に対して噛合タイミングが異なるように歯面の表面形状を歯幅方向に沿って異ならせることで、遊星歯車と太陽歯車との噛み合い状態および、遊星歯車と内歯車との噛み合い状態が、歯面の表面形状が歯幅方向に沿って異なる遊星歯車相互間で異なることになり、製造コストの上昇および、歯数比、強度などの変化を抑えつつ、遊星歯車装置全体として、各遊星歯車の噛み合い変動が互いに相殺され、振動および騒音を低下させることができる。
また、複数の遊星歯車のうち少なくとも一つの遊星歯車は、他の遊星歯車と異なるねじれ角を備えているので、遊星歯車と太陽歯車との噛み合い状態および、遊星歯車と内歯車との噛み合い状態が、歯面の表面形状が歯幅方向に沿って異なる遊星歯車相互間で異なることになり、製造コストの上昇および、歯数比、強度などの変化を抑えつつ、遊星歯車装置全体として、各遊星歯車の噛み合い変動が互いに相殺され、振動および騒音を低下させることができる。
【0025】
請求項の発明によれば、少なくとも一つの遊星歯車は、一方の歯面の歯幅方向一端側に歯厚方向に盛り上がる盛り上げ部を備えるとともに、他方の歯面の歯幅方向他端側に歯厚方向に盛り上がる盛り上げ部を備え、他方の遊星歯車は、一方の歯面の歯幅方向他端側に歯厚方向に盛り上がる盛り上げ部を備えるとともに、他方の歯面の歯幅方向一端側に歯厚方向に盛り上がる盛り上げ部を備えているので、遊星歯車と太陽歯車との噛み合い状態および、遊星歯車と内歯車との噛み合い状態が、歯面の表面形状が歯幅方向に沿って異なる遊星歯車相互間で異なることになり、製造コストの上昇および、歯数比、強度などの変化を抑えつつ、遊星歯車装置全体として、各遊星歯車の噛み合い変動が互いに相殺され、振動および騒音を低下させることができる。
【0026】
請求項の発明によれば、少なくとも一つの遊星歯車は、歯幅方向の一端側と同他端側とで歯厚が異なる構成としたので、遊星歯車と太陽歯車との噛み合い状態および、遊星歯車と内歯車との噛み合い状態が、歯面の表面形状が歯幅方向に沿って異なる遊星歯車相互間で異なることになり、製造コストの上昇および、歯数比、強度などの変化を抑えつつ、遊星歯車装置全体として、各遊星歯車の噛み合い変動が互いに相殺され、振動および騒音を低下させることができる。
【0027】
請求項の発明によれば、歯幅方向の一端側と同他端側とで歯厚が異なり、かつ両歯面の相互間の中心線に対して線対称に形成した複数の遊星歯車を、軸方向両端を互いに逆にして交互に配置したので、組付状態では歯面の表面形状が歯幅方向に沿って異なる遊星歯車であっても、加工は同一形状のもので済み、加工コストを抑えつつ、遊星歯車と太陽歯車との噛み合い状態および、遊星歯車と内歯車との噛み合い状態が、各遊星歯車との間で異なることになり、製造コストの上昇および、歯数比、強度などの変化を抑えつつ、遊星歯車装置全体として、各遊星歯車の噛み合い変動が互いに相殺され、振動および騒音をより低下させることができる。
【0028】
請求項の発明によれば、複数の遊星歯車のうち少なくとも一つの遊星歯車は、両歯面ともに歯幅方向一端側に歯厚方向に盛り上がる盛り上げ部を備えているので、遊星歯車と太陽歯車との噛み合い状態および、遊星歯車と内歯車との噛み合い状態が、各遊星歯車との間で異なることになり、製造コストの上昇および、歯数比、強度などの変化を抑えつつ、遊星歯車装置全体として、各遊星歯車の噛み合い変動が互いに相殺され、振動および騒音を低下させることができる。
【0029】
請求項の発明によれば、歯幅方向に沿って圧力角を変化させることで、盛り上げ部を容易に形成することができる。
【0030】
請求項の発明によれば、両歯面の相互間の中心線に対して線対称に形成された複数の遊星歯車を、軸方向両端を互いに逆にして太陽歯車の周囲に沿って交互に配置したので、組付状態では異なる形状の遊星歯車であっても、加工は同一形状のもので済み、加工コストを抑えつつ、遊星歯車と太陽歯車との噛み合い状態および、遊星歯車と内歯車との噛み合い状態が、各遊星歯車との間で異なることになり、製造コストの上昇および、歯数比、強度などの変化を抑えつつ、遊星歯車装置全体として、各遊星歯車の噛み合い変動が互いに相殺され、振動および騒音をより低下させることができる。
【0031】
請求項の発明によれば、歯面の表面形状の異なる遊星歯車がほぼ同数となるので、遊星歯車装置全体としての振動および騒音をより低下させることができる。
【0033】
請求項の発明によれば、遊星歯車を、はすば歯車で構成することで、噛み合い方向に沿って歯面の表面形状の変化が発生するので、噛み合い方向の歯当たりが良好となり、遊星歯車や太陽歯車、内歯車が、伝達トルクや組立誤差などにより位置関係が変化した場合でも、歯当たりの変化が少なくなり、各遊星歯車の噛み合い変動が互いに相殺され、振動および騒音を低下させることができる。
【0035】
請求項10の発明によれば、噛合タイミングを異ならせることで歯面の表面形状が互いに異なる二種の遊星歯車がほぼ同数となり、かつ歯面の表面形状が互いに異なる二種の遊星歯車を、太陽歯車の周囲に沿って交互に配置していくことで、遊星歯車装置全体としての振動および騒音をより低下させることができる。
また、複数の遊星歯車は、軸方向の向きを交互に変えて太陽歯車の周囲に配置すればよいので、生産性を犠牲にすることなく、また組付状態では異なる形状の遊星歯車であっても、加工は同一形状のもので済み、加工コストを抑えつつ、遊星歯車と太陽歯車との噛み合い状態および、遊星歯車と内歯車との噛み合い状態が、各遊星歯車との間で異なることになり、製造コストの上昇および、歯数比、強度などの変化を抑えつつ、遊星歯車装置全体として、各遊星歯車の噛み合い変動が互いに相殺され、振動および騒音をより低下させることができる。
【0036】
請求項11の発明によれば、遊星歯車の歯面の表面形状を設定するに当たり、試作実験のトライ&エラーを行う必要がなく、設定のためのコスト、時間を削減しつつ、遊星歯車装置全体としての振動および騒音を低下させることができる。
【0037】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づき説明する。
【0038】
図1は、この発明の第1の実施形態を示している。遊星歯車装置7は、図1(a)に示すように、従来例と同様に、中心部に配置した太陽歯車9の周囲に、円周方向等間隔に四つの遊星歯車11,13,15,17がそれぞれ配置されて太陽歯車9と噛み合い、さらにその周囲に内歯車19が配置されて遊星歯車11,13,15,17と噛み合っている。遊星歯車11,13,15,17は、図示しないキャリアによって互いに連結され、かつこのキャリアに対して回転可能となっている。
【0039】
なお、ここでの遊星歯車装置7は、インボリュート曲線で形成するはすば歯車を使用するものとし、太陽歯車9の歯数および内歯車19の歯数が、いずれも前記遊星歯車11,13,15,17の個数(ここでは4)で割り切れるものとする。
【0040】
上記した遊星歯車装置7の具体的な歯車諸元を表1に示す。すなわち、モジュール:1.23,歯直角圧力角:20°,ねじれ角23.3°,歯幅:16.5mm,太陽歯車の中心と遊星歯車の中心との距離:48.2mm,太陽歯車の歯数:44,遊星歯車の歯数:28,内歯車の歯数:100,遊星歯車の個数:4である。
【0041】
【表1】

Figure 0004010129
図1(b)は遊星歯車11の歯面形状を示し、図1(c)は遊星歯車13,15,17の歯面形状を示している。図1(b),(c)中の矢印は、噛み合い方向を示しており、図中で左側が噛み合い始めであり、同右側が噛み合い終わりとなる。図1(c)に示す三つの遊星歯車13,15,17は、ねじれ角が10〜30°(表1では23.3°としてある)程度のねじれ角を備えたはすば歯車であり、一方遊星歯車11は、遊星歯車13,15,17に対し、ねじれ角を異ならせている。つまり、一つの遊星歯車11と、他の遊星歯車13,15,17との間で噛合タイミングが異なるように歯面形状が異なっている。
【0042】
図1(b)にて二点鎖線で示す歯面形状が、図1(c)の歯面形状と同一である。遊星歯車11は、遊星歯車13,15,17に対し、ねじれ角を、両歯面L,Rともに、単位歯幅(1mm)当たり0.5μm大きくなるよう修正している。
【0043】
このように、遊星歯車11を、遊星歯車13,15,17に対して歯面形状を異ならせることで、遊星歯車11と遊星歯車13,15,17との間で、太陽歯車9および内歯車19に対する噛み合い状態が異なることになる。
【0044】
これにより、遊星歯車装置7全体として、遊星歯車11と遊星歯車13,15,17との間での噛み合い変動が互いに相殺されることになり、振動および騒音が低下する。この場合、一つの遊星歯車11の歯面形状を、他の三つの遊星歯車13,15,17と異ならせるだけであるので、粗材形状の仕様増し、部品管理の煩雑化や加工工程での治具段取りの変更など、製造コストの上昇を抑えることができ、また歯数比、強度などの変化も抑えられ、必要とする仕様の遊星歯車装置を得ることができる。
【0045】
図2は、遊星歯車11,13,15,17の噛み合い振動変位を示している。(a)が遊星歯車11のもので、(b),(c),(d)がそれぞれ遊星歯車13,15,17のものである。遊星歯車13,15,17の噛み合い変動は互いに同じであるが、遊星歯車11については、遊星歯車13,15,17と異なっている。これら四つの遊星歯車11,13,15,17の噛み合い振動変位を合成したものが、図3である。これによれば、遊星歯車装置7全体としての伝達誤差(噛み合い振動変位の振幅の最大値)が、前記図16に示した従来のものに比べて減少していることがわかる。
【0046】
なお、上記実施の形態では一つの遊星歯車11を他の三つの遊星歯車13,15,17に対して歯面形状を異ならせているが、例えば二つの遊星歯車11,13を他の二つの遊星歯車15,17に対して歯面形状を異ならせるようにしてもよい。この場合、異なる歯面形状の遊星歯車11,13,15,17を交互に、つまり遊星歯車11→15→13→17の順に太陽歯車9の周囲に沿って交互に配置することで、より一層振動および騒音を低下させることができる。
【0047】
図4は、この発明の第2の実施形態に係わる遊星歯車の歯面形状を示している。第2の実施形態は、図1(a)に示すものと基本構成が同様の遊星歯車装置7に適用している。図4(a)は遊星歯車11,15の歯面形状を示し、図4(b)は遊星歯車13,17の歯面形状を示している。図中の矢印は、噛み合い方向を示しており、図中で左側が噛み合い始めであり、同右側が噛み合い終わりとなる。
【0048】
図4(a)の二つの遊星歯車11,15の歯面形状は、前記図1(b)に示したものと同様である。すなわち、遊星歯車11,15は、前記図1(c)に示した遊星歯車13,15,17の歯面形状に対し、ねじれ角を、両歯面L,Rともに単位歯幅(1mm)当たり0.5μm大きくなるよう修正している。これに対し、図4(b)の二つの遊星歯車13,17は、前記図1(c)に示した遊星歯車13,15,17の歯面形状に対し、ねじれ角を、両歯面L,Rともに単位歯幅(1mm)当たり0.5μm小さくなるよう修正している。なお、図4(a),(b)にて二点鎖線で示す形状が、図1(c)の歯面形状と同一である。
【0049】
図5は、遊星歯車11,13,15,17の噛み合い振動変位を示している。(a),(c)が遊星歯車11,15のもので、(b),(d)が遊星歯車13,17のものである。遊星歯車11,15の噛み合い変動が互いに同じで、遊星歯車13,17の噛み合い変動が互いに同じであり、遊星歯車11,15と遊星歯車13,17との間で噛み合い変動が互いに異なっている。これら四つの遊星歯車11,13,15,17の噛み合い振動変位を合成したものが、図6である。これによれば、遊星歯車装置7全体としての伝達誤差(噛み合い振動変位の振幅の最大値)が、前記第1の実施形態による図3に示したものに比べてさらに減少していることがわかる。
【0050】
このように、ねじれ角を大きくした遊星歯車11,15と、ねじれ角を小さくした遊星歯車13,17とを、太陽歯車9の周囲に沿って交互に配置することで、第1の実施の形態に比べ、さらに振動および騒音を低下させることができる。
【0051】
図7は、この発明の第3の実施形態に係わる遊星歯車の歯面形状を示している。第3の実施形態は、図1(a)に示すものと基本構成が同様の遊星歯車装置7に適用している。図7(a)は遊星歯車11,15の歯面形状を示し、図7(b)は遊星歯車13,17の歯面形状を示している。図中の矢印は、噛み合い方向を示しており、図中で左側が、幅方向一端側となる噛み合い始め側であり、同右側が、歯幅方向他端側となる噛み合い終わり側となる。
【0052】
図7(a)の二つの遊星歯車11,15の歯面形状は、一方の歯面Lについて、図中で左側の噛み合い始め側にて、歯厚方向に盛り上がる盛り上げ部Aを形成してある。他方の歯面Rについては、図中で右側の噛み合い終わり側にて、歯厚方向に盛り上がる盛り上げ部Bを形成している。
【0053】
図7(b)に示す他の二つの遊星歯車13,17の歯面形状は、一方の歯面Lについて、図中で右側の噛み合い終わり側にて、歯厚方向に盛り上がる盛り上げ部Aを形成している。他方の歯面Rについては、図中で左側の噛み合い始め側にて、歯厚方向に盛り上がる盛り上げ部Bを形成している。
【0054】
このように、遊星歯車11,15と遊星歯車13,17との間で、盛り上げ部A,Bの形成部位を相互に異ならせて歯面形状を異ならせ、かつ遊星歯車11,15と遊星歯車13,17とを、太陽歯車9の周囲に沿って交互に配置することで、第2の実施の形態と同様の効果が得られる。
【0055】
さらに、上記した第3の実施形態では、盛り上げ部A,Bを形成することで、矢印で示す噛み合い方向に歯面形状の変化が発生するため、歯当たりが向上し、振動、騒音がさらに低減するものとなる。
【0056】
上記した盛り上げ部A,Bは、その最も高い頂点部位から周囲に沿って等高線で示すように、徐々に高さが低く形成されている。このような高さの変化は、圧力角を修正することによって達成される。具体的には、図7(a)における一方の歯面Lの圧力角修正量は、図中で左側の噛み合い始め側の端部で10μm歯先上がりとし、歯幅方向中央で5μm歯先上がりとし、図中で右側の噛み合い終わり側の端部では0μmとする。図7(a)における他方の歯面Rの圧力角修正量は、図中で左側の噛み合い始め側の端部で0μm、歯幅方向中央で5μm歯先上がりとし、図中で右側の噛み合い終わり側の端部では10μm歯先上がりとする。
【0057】
また、図7(b)における一方の歯面Lの圧力角修正量は、図中で左側の噛み合い始め側の端部で0μm、歯幅方向中央で5μm歯先上がりとし、図中で右側の噛み合い終わり側の端部では10μm歯先上がりとする。図7(b)における他方の歯面Rの圧力角修正量は、図中で左側の噛み合い始め側の端部で10μm歯先上がりとし、歯幅方向中央で5μm歯先上がりとし、図中で右側の噛み合い終わり側の端部では0μmとする。
【0058】
図8は、この発明の第4の実施形態に係わる遊星歯車の歯面形状を示している。第4の実施形態は、図1(a)に示すものと基本構成が同様の遊星歯車装置7に適用している。図8(a)は遊星歯車11,15の歯面形状を示し、図8(b)は遊星歯車13,17の歯面形状を示している。図中の矢印は、噛み合い方向を示しており、図中で左側が噛み合い始めであり、同右側が噛み合い終わりとなる。
【0059】
図8(a)の二つの遊星歯車11,15の歯面形状および、図8(b)の二つの遊星歯車13,17の歯面形状は、いずれも図中で一端側となる左側と、同他端側となる右側とで歯厚を異ならせている。
【0060】
具体的には、図8(a)の遊星歯車11,15は、前記図1(c)に示した遊星歯車13,15,17の歯面形状に対し、ねじれ角を、歯面Rについては、単位歯幅(1mm)当たり0.5μm大きくなるよう修正し、歯面Lについては、単位歯幅(1mm)当たり0.5μm小さくなるよう修正している。これにより、図8(a)中で左側の歯厚が小さく、同右側の歯厚が大きくなる。そして、この歯面形状は、両歯面L,Rの相互間の中心線Sに対して線対称に形成されている。
【0061】
また、図8(b)の遊星歯車13,17は、前記図1(c)に示した遊星歯車13,15,17の歯面形状に対し、ねじれ角を、歯面Rについては、単位歯幅(1mm)当たり0.5μm小さくなるよう修正し、歯面Lについては、単位歯幅(1mm)当たり0.5μm大きくなるよう修正している。これにより、図8(b)中で左側の歯厚が大きく、同右側の歯厚が小さくなる。そして、この歯面形状は、両歯面L,Rの相互間の中心線Sに対して線対称に形成されている。
【0062】
したがって、図8(a)に示した遊星歯車11,15と、図8(b)に示した遊星歯車13,17とは、左右を逆にしただけであって、形状は同一であり、遊星歯車装置として組み立てる際に、組付方向を軸方向について互いに逆にすればよい。このため、上記した第4の実施形態によれば、図4に示した第2の実施形態と同様の効果が得られるほか、遊星歯車としての1種のものを用意すればよく、加工コストが少なくて済む。
【0063】
図9は、この発明の第5の実施形態に係わる遊星歯車の歯面形状を示している。第5の実施形態は、図1(a)に示すものと基本構成が同様の遊星歯車装置7に適用している。図9(a)は遊星歯車11,15の歯面形状を示し、図9(b)は遊星歯車13,17の歯面形状を示している。図中の矢印は、噛み合い方向を示しており、図中で左側が噛み合い始めであり、同右側が噛み合い終わりとなる。
【0064】
図9(a)の二つの遊星歯車11,15の歯面形状は、両歯面L,Rについて、図中で左側の一端側となる噛み合い始め側にて歯厚方向に盛り上がる盛り上げ部A,Bを形成している。一方図9(b)の二つの遊星歯車13,17の歯面形状は、両歯面L,Rについて、図中で右側の他端側となる噛み合い終わり側にて歯厚方向に盛り上がる盛り上げ部A,Bを形成している。
【0065】
そして、遊星歯車11,15および遊星歯車13,17の歯面形状は、いずれも両歯面L,Rの相互間の中心線Sに対して線対称となっている。このため、図9(a)に示した遊星歯車11,15と、図9(b)に示した遊星歯車13,17とは、図8のものと同様に、図中で左右を逆にしただけであって、形状は同一であり、遊星歯車装置として組み立てる際に、組付方向を軸方向両端について互いに逆にすればよい。したがって、上記した第5の実施形態によれば、図7に示した第3の実施形態と同様の効果が得られるほか、遊星歯車としての1種のものを用意すればよく、加工コストが少なくて済む。
【0066】
なお、上記した盛り上げ部A,Bは、図7におけるものと同様に、その最も高い頂点部位から周囲に沿って等高線で示すように、徐々に高さが低く形成されており、このような高さの変化は、圧力角を修正することによって達成される。
【0067】
具体的には、図9(a)における両歯面L,Rの圧力角修正量は、図中で左側の噛み合い始め側の端部で10μm歯先上がりとし、歯幅方向中央で5μm歯先上がりとし、図中で右側の噛み合い終わり側の端部では0μmとする。図9(b)における両歯面L,Rの圧力角修正量は、図中で左側の噛み合い始め側の端部で0μm、歯幅方向中央で5μm歯先上がりとし、図中で右側の噛み合い終わり側の端部では10μm歯先上がりとする。
【0068】
図10は、太陽歯車上伝達トルク(Nm)と、伝達誤差(μm)との関係を、従来例と、第1の実施形態〜第5の実施形態による本発明とで比較して示したものである。これによれば、本発明におけるものが従来のものに比べ、伝達誤差が小さくなっていることがわかる。
【0069】
上記した図10のデータは、伝達トルクが30〜40Nm付近の範囲において、第1の実施形態に比べ、第2〜第5の実施形態の伝達誤差が小さくなっており、前記図3(第1の実施形態)および図6(第2の実施形態)は、この範囲での伝達誤差に対応している。
【0070】
なお、図4、図7,図8,図9に示した各実施形態では、必ずしも異なる歯面形状の遊星歯車を交互に配置する必要がなく、また、歯面形状の異なる遊星歯車を二つずつとせず、一つのみ他のものと異なるようにしてもよい。
【0071】
図11は、図8または図9の歯面形状を備えた遊星歯車11,13,15,17による遊星歯車装置7の製造工程図である。まず、遊星歯車加工工程として、粗材を旋削し、歯切りを行った後シェービング加工する。このシェービング加工において、図8または図9の歯面形状となるよう仕上げ加工する。次に熱処理し、内径および端面を研削し、これにより遊星歯車11,13,15,17が完成する。ここまでが、遊星歯車加工工程となる。以下は、遊星歯車装置組立工程となる。
【0072】
完成した四つの遊星歯車11,13,15,17は、図8または図9にて左右を逆としたものを、交互に並べて組立ラインへの投入準備を行う。組立ラインへは、キャリアを投入し、このキャリアに対し、遊星歯車11,13,15,17を、時計回りに遊星歯車11→15→13→17の順に組み付ける。さらに、シャフトを遊星歯車11,13,15,17に挿入して固定し、最後に太陽歯車9および内歯車19を組み付け、これにより遊星歯車装置7が完成する。
【0073】
上記した遊星歯車の製造方法によれば、四つの遊星歯車11,13,15,17は、単に軸方向の向きを交互に変えて太陽歯車の周囲に配置すればよいので、生産性を犠牲にすることなく、また組付状態では異なる形状の遊星歯車であっても、加工は同一形状のもので済み、加工コストを抑えたうえで、遊星歯車装置7全体として、振動および騒音をより低下させることができる。
【0074】
図12は、上記した遊星歯車装置7に使用される遊星歯車の歯面形状設定方法を示すフローチャートで、図13は、その設定方法を実施するための装置のブロック図である。ここでは、図7の実施形態における遊星歯車について説明する。
【0075】
まず、キーボードなどからなる入力装置21から、歯車諸元および伝達トルクを入力し(ステップS1)、太陽歯車、遊星歯車、内歯車の各歯面形状を初期値=0μm(ねじれ角修正量)として入力し(ステップS3)、さらに目標とする伝達誤差を入力する(ステップS5)。これらの各入力値は補助記憶装置23に記憶される。
【0076】
次に、太陽歯車9と、歯面形状を異ならせる前の状態の遊星歯車11,13,15,17との噛み合い振動変位をCPU25にて計算するとともに(ステップS7)、歯面形状を異ならせる前の状態の遊星歯車11,13,15,17と、内歯車19との噛み合い振動変位をCPU25にて計算する(ステップS9)。
【0077】
これらの振動変位の計算は、以下の方程式を解くことにより行う(機械学会論文43巻371号(昭52−7)P2771久保,梅澤「誤差をもつ円筒歯車の荷重伝達特性に関する研究」参照)。
【0078】
∫Kb(x,ζ)・P(ζ)dζ+Kc(x)・P(x)={Δ−e(x)}cosβg
j=∫P(ζ)dζ
W=ΣWjcosβg
ここで、Kb:歯の曲げ剪断コンプライアンス
c:歯の接触のコンプライアンス
P:歯の接触線上の分布荷重 Δ:噛合振動変位 e:歯面の形状 βg:ベース円上ねじれ角 W:伝達荷重
x,ζ:歯面上の座
上記ステップS7,9で計算した各噛み合い振動変位を、CPU25にて互いに重ね合わせて加算する(ステップS11)。そして、上記ステップS7〜S11の処理を遊星歯車の個数分繰り返す。これにより、遊星歯車装置7の噛み合い振動変位の最大振幅値(伝達誤差)が得られる(ステップS13)。この得られた伝達誤差(出力結果)は、補助記憶装置23に記憶されている前記目標とする伝達誤差とCPU25にて比較する(ステップS15)。
【0079】
ここで、出力結果が目標伝達誤差以下となって遊星歯車装置として騒音および振動が問題とならない場合には、その旨をディスプレイやプリンタなどの出力装置27に出力して作業者に知らせ、処理を終了する。逆に、出力結果が目標伝達誤差を超え、遊星歯車装置として騒音および振動が大きいと判断された場合には、歯面形状を変更する旨、前記した出力装置27に出力して作業者に知らせる。
【0080】
歯面形状の変更作業は、遊星歯車の全数の半分(ここでは遊星歯車の全数が4個なので2個)について、図7(a)のような歯面形状となるよう前記図11の加工工程で示してあるシェービング加工を行う(ステップS17)。遊星歯車の個数が奇数の場合には、(遊星歯車の個数−1)の半分の数の遊星歯車について、図7(a)のような歯面形状に変更する。次に、残りの遊星歯車を、上記とは逆形状の図7(b)のような歯面形状となるよう前記図11の加工工程で示してあるシェービング加工を行う(ステップS19)。
【0081】
上記した遊星歯車の歯面形状設定方法によれば、遊星歯車11,13,15,17の歯面形状を設定するに当たり、試作実験のトライ&エラーを行う必要がなく、設定のためのコスト、時間を削減しつつ、遊星歯車装置7全体としての振動および騒音を低下させることができる。
【0082】
なお、上記した遊星歯車装置7は、はすば歯車を使用しているが、図7〜図9に示した第3〜第5の実施形態においては、平歯車でも構わない。
【図面の簡単な説明】
【図1】この発明の第1の実施形態を示すもので、(a)は遊星歯車装置の全体構成を示す正面図、(b)は(a)の遊星歯車装置における一つの遊星歯車の歯面形状を示す説明図、(c)は(a)の遊星歯車装置における他の三つの遊星歯車の歯面形状を示す説明図である。
【図2】図1の遊星歯車装置における遊星歯車の噛み合い周期に対する噛み合い振動変位特性図である。
【図3】図2の各噛み合い振動変位を合成した噛み合い振動変位特性図である。
【図4】この発明の第2の実施形態を示すもので、(a)は遊星歯車装置における二つの遊星歯車の歯面形状を示す説明図、(b)は他の二つの遊星歯車の歯面形状を示す説明図である。
【図5】図4の遊星歯車装置における遊星歯車の噛み合い周期に対する噛み合い振動変位特性図である。
【図6】図5の各噛み合い振動変位を合成した噛み合い振動変位特性図である。
【図7】この発明の第3の実施形態を示すもので、(a)は遊星歯車装置における二つの遊星歯車の歯面形状を示す説明図、(b)は他の二つの遊星歯車の歯面形状を示す説明図である。
【図8】この発明の第4の実施形態を示すもので、(a)は遊星歯車装置における二つの遊星歯車の歯面形状を示す説明図、(b)は他の二つの遊星歯車の歯面形状を示す説明図である。
【図9】この発明の第5の実施形態を示すもので、(a)は遊星歯車装置における二つの遊星歯車の歯面形状を示す説明図、(b)は他の二つの遊星歯車の歯面形状を示す説明図である。
【図10】太陽歯車上伝達トルクと伝達誤差との関係を、従来例と、第1〜第5の実施形態による本発明とで比較して示した伝達誤差特性図である。
【図11】図8または図9の歯面形状を備えた遊星歯車による遊星歯車装置の製造工程図である。
【図12】図7の実施形態における遊星歯車装置に使用される遊星歯車の歯面形状設定方法を示すフローチャートである。
【図13】図12の設定方法を実施するための装置のブロック図である。
【図14】従来例に係わる遊星歯車装置の全体構成を示す正面図である。
【図15】図14の遊星歯車装置における遊星歯車の噛み合い周期に対する噛み合い振動変位特性図である。
【図16】図15の各噛み合い振動変位を合成した噛み合い振動変位特性図である。
【符号の説明】
7 遊星歯車装置
9 太陽歯車
11,13,15,17 遊星歯車
19 内歯車
L,R 歯面
A,B 盛り上げ部[0001]
BACKGROUND OF THE INVENTION
In the present invention, a plurality of planetary gears are arranged around a sun gear arranged in the central portion, an internal gear is arranged outside the planetary gear, and the number of teeth of the sun gear and the number of teeth of the internal gear are The present invention also relates to a planetary gear device that can be divided by the number of planetary gears, a manufacturing method thereof, and a planetary gear tooth surface shape setting method.
[0002]
[Prior art]
In a planetary gear device in which the number of teeth of the sun gear and the number of teeth of the internal gear are all divisible by the number of planetary gears, the timing at which the planetary gear and the sun gear or the internal gear mesh with each other is the same. For this reason, the impact generated at the time of meshing increases by the number of planetary gears, and there is a problem that vibration and noise increase as a planetary gear device.
[0003]
FIG. 14 shows an outline of the planetary gear device described above, and four planetary gears 3a, 3b, 3c, 3d are arranged around the sun gear 1 arranged at the center, and the inner gear 5 is arranged on the outer side thereof. Is arranged. 15 (a), (b), (c), and (d) show the meshing vibration displacement of the planetary gears 3a, 3b, 3c, and 3d, respectively.
[0004]
According to FIG. 15, the meshing vibration displacements of the planetary gears 3 a, 3 b, 3 c, and 3 d are substantially the same, the peaks are generated at the same time, and the four meshing vibration displacements are combined, As shown in FIG. 16, the maximum amplitude (transmission error) of the meshing vibration displacement of the entire planetary gear device becomes large.
[0005]
In order to solve this problem, Japanese Patent Application Laid-Open No. 9-53690 describes a plurality of planetary gears in which the axial position, tooth width, tooth height, chamfering amount, etc. are sequentially changed. Japanese Patent Laid-Open No. 6-10994 discloses that the meshing phase of a plurality of planetary gears is adjusted to shift the meshing phase between the planetary gears by meshing cycle / number of planetary gears (N), and the meshing rate ε≈ What is set to 1+ (N-1) / N is described.
[0006]
[Problems to be solved by the invention]
However, in the former, when the axial position is changed, the assembly work for axial positioning is complicated and the manufacturing cost is increased, while when the tooth width, the tooth height, the chamfering amount, etc. are sequentially changed, A large number of planetary gears having different shapes such as tooth widths increase the specifications of the rough material shape, complicate parts management, and change the jig setup in the machining process, thereby increasing the manufacturing cost.
[0007]
In the latter case, since the meshing points of the gears are limited, the gear specifications (number of teeth, torsion angle, pressure angle) must be satisfied in order to satisfy the above formula by shifting the arrangement positions of a plurality of planetary gears. Etc.), the gear ratio, the strength, etc. are changed, and the planetary gear device having the required specifications cannot be obtained.
[0008]
Accordingly, an object of the present invention is to reduce vibration and noise as a planetary gear device while suppressing an increase in manufacturing cost and suppressing changes in the gear ratio, strength, and the like.
[0009]
[Means for Solving the Problems]
  In order to achieve the above object, according to the first aspect of the present invention, a plurality of planetary gears meshing with the sun gear are arranged around a sun gear arranged in the center, and the planetary gears are arranged outside the plurality of planetary gears. In a planetary gear device in which an internal gear meshing with each planetary gear is arranged, and the number of teeth of the sun gear and the number of teeth of the internal gear are all divisible by the number of planetary gears, at least one of the plurality of planetary gears Tooth surface so that the meshing timing differs between the planetary gear and other planetary gearsSurface ofshapeAlong the tooth width directionDifferentlyThe at least one planetary gear has a twist angle different from other planetary gears.As a configuration.
[0011]
  Claim2The invention ofA plurality of planetary gears meshing with the sun gear are disposed around the sun gear disposed in the center, and an internal gear meshing with the planetary gears is disposed outside the plurality of planetary gears. In a planetary gear device in which the number of teeth and the number of teeth of the internal gear are both divisible by the number of planetary gears, the meshing timing between at least one planetary gear among the plurality of planetary gears and another planetary gear. The surface shape of the tooth surface is different along the tooth width direction so that theAt least one planetary gear includes a raised portion that rises in the tooth thickness direction on one end side in the tooth width direction of one tooth surface, and a raised portion that rises in the tooth thickness direction on the other end side in the tooth width direction of the other tooth surface. The other planetary gear includes a raised portion that rises in the tooth thickness direction on the other end side in the tooth width direction of one tooth surface, and a raised portion that rises in the tooth thickness direction on one end side in the tooth width direction of the other tooth surface. It is as composition.
[0012]
  Claim3The invention ofA plurality of planetary gears meshing with the sun gear are disposed around the sun gear disposed in the center, and an internal gear meshing with the planetary gears is disposed outside the plurality of planetary gears. In a planetary gear device in which the number of teeth and the number of teeth of the internal gear are both divisible by the number of planetary gears, the meshing timing between at least one planetary gear among the plurality of planetary gears and another planetary gear. The surface shape of the tooth surface is different along the tooth width direction so that theAt least one planetary gear has a configuration in which the tooth thickness is different between one end side and the other end side in the tooth width direction.
[0013]
  Claim4The invention ofA plurality of planetary gears meshing with the sun gear are disposed around the sun gear disposed at the center, and an internal gear meshing with the planetary gears is disposed outside the plurality of planetary gears. In a planetary gear device in which the number of teeth and the number of teeth of the internal gear are both divisible by the number of planetary gears, the meshing timing between at least one planetary gear among the plurality of planetary gears and another planetary gear. The surface shape of the tooth surface is different along the tooth width direction so thatThe tooth thickness is different between one end side and the other end side in the tooth width direction, and is symmetrical with respect to the center line between both tooth surfaces.MultipleThe planetary gears are alternately arranged along the circumference of the sun gear with the axial ends opposite to each other, and the tooth surfaceSurface ofShapeAlong the tooth width directionThe configuration is different.
[0014]
  Claim5The invention ofA plurality of planetary gears meshing with the sun gear are disposed around the sun gear disposed in the center, and an internal gear meshing with the planetary gears is disposed outside the plurality of planetary gears. In a planetary gear device in which the number of teeth and the number of teeth of the internal gear are both divisible by the number of planetary gears, the meshing timing between at least one planetary gear among the plurality of planetary gears and another planetary gear. The surface shape of the tooth surface is different along the tooth width direction so that theAt least one planetary gear has a configuration in which both tooth surfaces include a raised portion that swells in the tooth thickness direction on one end side in the tooth width direction.
[0015]
  Claim6The invention of claim2Or5In the configuration of the invention, the raised portion is formed by changing the pressure angle along the tooth width direction.
[0016]
  Claim7The invention of claim5Or6In the configuration of the present invention, it is formed symmetrically with respect to the center line between both tooth surfaces.MultipleThese planetary gears are arranged alternately along the circumference of the sun gear with their axial ends opposite to each other.
[0017]
  Claim 8According to the invention of claim 1, in the configuration of the invention of any one of claims 1 to 3, 5 and 6, a plurality of N planetary gears are provided. When N = even, N / 2 is provided, and when N = odd, (N-1) / 2 are configured such that the surface shape of the tooth surface is different along the tooth width direction with respect to other planetary gears.
[0019]
  Claim9The invention of claim 1 to claim 18In the configuration of any one of the inventions, the planetary gear is a helical gear.
[0020]
  Claim10In the invention, a plurality of planetary gears meshing with the sun gear are arranged around the sun gear arranged in the center, and an internal gear meshing with each planetary gear is arranged outside the plurality of planetary gears, In the method for manufacturing a planetary gear device in which the number of teeth of the sun gear and the number of teeth of the internal gear are both divisible by the number of planetary gears, a plurality of N planetary gears are provided, and N / When N = odd, (N-1) / 2 when N = odd, the surface shape of the tooth surface is made different along the tooth width direction with respect to the other planetary gears so that the meshing timing is different. Produced by alternately arranging planetary gears with different surface shapes along the tooth width direction along the circumference of the sun gearA method for manufacturing a planetary gear device, wherein the plurality of planetary gears are formed symmetrically with respect to a center line between both tooth surfaces, and the plurality of planetary gears are made opposite to each other in the axial direction. Alternatingly arranged along the circumference of the sun gear, and the surface shape of the tooth surface differs between the alternately arranged planetary gears along the tooth width direction.As a method of manufacturing a planetary gear device.
[0022]
  Claim11In the invention, a plurality of planetary gears meshing with the sun gear are arranged around the sun gear arranged in the center, and an internal gear meshing with each planetary gear is arranged outside the plurality of planetary gears, In the planetary gear tooth surface shape setting method for a planetary gear device in which the number of teeth of the sun gear and the number of teeth of the internal gear are both divisible by the number of planetary gears, the meshing vibration displacement between the sun gear and the planetary gear is changed. And calculating the meshing vibration displacement of the planetary gear and the internal gear, adding these vibration displacements to each other and comparing the added value with a predetermined target value, and the added value is the target value When larger, the surface shape of the tooth surface of the plurality of planetary gears is changed so that the meshing timing is different from that of the other planetary gears. There as a planetary gear tooth surface shape setting process of the planetary gear device to vary along.
[0023]
【The invention's effect】
  According to the first aspect of the present invention, at least one planetary gear of the plurality of planetary gears has a tooth surface so that the meshing timing is different from that of the other planetary gears.Surface ofShapeAlong the tooth width directionBy differentiating, the meshing state of the planetary gear and the sun gear and the meshing state of the planetary gear and the internal gear are changed to the tooth surface.Surface ofshapeAlong the tooth width directionDifferent planetary gears are different from each other, and the meshing fluctuations of the planetary gears cancel each other out in the planetary gear unit as a whole while suppressing an increase in manufacturing costs and changes in the gear ratio, strength, etc. Can be reduced.
  In addition, since at least one planetary gear among the plurality of planetary gears has a different helix angle from the other planetary gears, the meshing state between the planetary gear and the sun gear and the meshing state between the planetary gear and the internal gear are Each planetary gear device as a whole has a surface shape of the tooth surface that is different between the planetary gears that are different in the tooth width direction, while suppressing an increase in manufacturing cost and a change in the number of teeth ratio, strength, and the like. The meshing fluctuations of the gears cancel each other, and vibration and noise can be reduced.
[0025]
  Claim2According to the invention, at least one planetary gear includes a raised portion that rises in the tooth thickness direction on one end side in the tooth width direction of one tooth surface, and the tooth thickness direction on the other end side in the tooth width direction of the other tooth surface. The other planetary gear has a raised portion that rises in the tooth thickness direction on the other end side in the tooth width direction of one tooth surface, and a tooth thickness direction on one end side in the tooth width direction of the other tooth surface. The meshing state of the planetary gear and the sun gear and the meshing state of the planetary gear and the internal gear are as follows.The surface shape of the tooth surface is along the tooth width direction.Different planetary gears are different from each other, and the meshing fluctuations of the planetary gears cancel each other out in the planetary gear unit as a whole while suppressing an increase in manufacturing costs and changes in the gear ratio, strength, etc. Can be reduced.
[0026]
  Claim3According to the invention, since at least one planetary gear has a configuration in which the tooth thickness is different between the one end side and the other end side in the tooth width direction, the meshing state between the planetary gear and the sun gear, the planetary gear, The meshing state with the gearThe surface shape of the tooth surface is along the tooth width direction.Different planetary gears are different from each other, and the meshing fluctuations of the planetary gears cancel each other out in the planetary gear unit as a whole while suppressing an increase in manufacturing costs and changes in the gear ratio, strength, etc. Can be reduced.
[0027]
  Claim4According to the invention, the tooth thickness is different between the one end side and the other end side in the tooth width direction, and the line thickness is formed symmetrically with respect to the center line between the tooth surfaces.MultiplePlanetary gears are alternately arranged with their axial ends opposite to each other.The surface shape of the tooth surface varies along the tooth width direction.Even with planetary gears, the machining can be of the same shape, and the meshing state between the planetary gear and the sun gear and the meshing state between the planetary gear and the internal gear are between the planetary gears while reducing machining costs. As a whole planetary gear unit, the meshing fluctuations of the planetary gears cancel each other, and vibration and noise can be further reduced while suppressing an increase in manufacturing cost and changes in the gear ratio, strength, and the like. it can.
[0028]
  Claim5According to the invention, at least one planetary gear among the plurality of planetary gears has a raised portion that rises in the tooth thickness direction on both ends of the tooth width direction, so that the planetary gear and the sun gear mesh with each other. The state and the meshing state of the planetary gear and the internal gear will be different between each planetary gear, and while suppressing the increase in manufacturing cost and the change in the number of teeth ratio, strength, etc., the entire planetary gear device, The meshing fluctuations of the planetary gears cancel each other, and vibration and noise can be reduced.
[0029]
  Claim6According to the invention, the raised portion can be easily formed by changing the pressure angle along the tooth width direction.
[0030]
  Claim7According to the present invention, it is formed symmetrically with respect to the center line between both tooth surfaces.MultipleSince the planetary gears are alternately arranged along the circumference of the sun gear with their axial ends opposite to each other, even if the planetary gears have different shapes in the assembled state, the machining can be of the same shape. The meshing state of the planetary gear and the sun gear and the meshing state of the planetary gear and the internal gear are different between the planetary gears while suppressing the cost, resulting in an increase in manufacturing cost, a gear ratio, and a strength. As a whole planetary gear device, the meshing fluctuations of the planetary gears cancel each other out and the vibration and noise can be further reduced.
[0031]
  Claim8According to this invention, since the number of planetary gears having different tooth surface shapes is substantially the same, vibration and noise of the entire planetary gear device can be further reduced.
[0033]
  Claim9According to the invention, since the planetary gear is constituted by a helical gear, the change in the surface shape of the tooth surface along the meshing direction occurs, so that the tooth contact in the meshing direction becomes good, and the planetary gear and the sun Even when the positional relationship between the gear and the internal gear changes due to transmission torque, assembly error, or the like, the change in the tooth contact is reduced, the meshing fluctuations of the planetary gears cancel each other, and vibration and noise can be reduced.
[0035]
  Claim10According to the invention ofBy changing the mesh timing, the number of planetary gears with two different tooth surface shapes is almost the same, and two planetary gears with different tooth surface surface shapes are alternately arranged around the sun gear. By arranging, the vibration and noise of the planetary gear device as a whole can be further reduced.
  Also,Since the plurality of planetary gears may be arranged around the sun gear by alternately changing the axial direction, without sacrificing productivity, even in the assembled state planetary gears, Machining can be performed in the same shape, and the meshing state between the planetary gear and the sun gear and the meshing state between the planetary gear and the internal gear are different between the planetary gears while reducing the machining cost. While suppressing an increase in cost and changes in the gear ratio, strength, etc., the planetary gear device as a whole can cancel the meshing fluctuations of the planetary gears, thereby further reducing vibration and noise.
[0036]
  Claim11According to the invention, in setting the surface shape of the tooth surface of the planetary gear, it is not necessary to perform trial and error of a prototype experiment, and the cost and time for setting are reduced, and the vibration of the planetary gear device as a whole is reduced. And can reduce noise.
[0037]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0038]
FIG. 1 shows a first embodiment of the present invention. As shown in FIG. 1 (a), the planetary gear unit 7 includes four planetary gears 11, 13, 15 and 14 around the sun gear 9 arranged at the center part at equal intervals in the circumferential direction, as in the conventional example. 17 is arranged and meshed with the sun gear 9, and an internal gear 19 is arranged around it and meshed with the planetary gears 11, 13, 15, and 17. The planetary gears 11, 13, 15, and 17 are connected to each other by a carrier (not shown) and are rotatable with respect to the carrier.
[0039]
Here, the planetary gear device 7 uses a helical gear formed by an involute curve, and the number of teeth of the sun gear 9 and the number of teeth of the internal gear 19 are both the planetary gears 11, 13, It is divisible by the number of 15 and 17 (here, 4).
[0040]
Table 1 shows specific gear specifications of the planetary gear device 7 described above. That is, module: 1.23, tooth right angle pressure angle: 20 °, helix angle 23.3 °, tooth width: 16.5 mm, distance between center of sun gear and center of planetary gear: 48.2 mm, of sun gear Number of teeth: 44, number of teeth of planetary gear: 28, number of teeth of internal gear: 100, number of planetary gears: 4.
[0041]
[Table 1]
Figure 0004010129
1B shows the tooth surface shape of the planetary gear 11, and FIG. 1C shows the tooth surface shape of the planetary gears 13, 15, and 17. The arrows in FIGS. 1B and 1C indicate the meshing direction, and the left side in FIG. 1 is the start of meshing and the right side is the meshing end. The three planetary gears 13, 15, and 17 shown in FIG. 1C are helical gears having a twist angle of about 10 to 30 ° (indicated by 23.3 ° in Table 1), On the other hand, the planetary gear 11 is different in torsion angle from the planetary gears 13, 15, and 17. That is, the tooth surface shape is different so that the meshing timing is different between one planetary gear 11 and the other planetary gears 13, 15, and 17.
[0042]
The tooth surface shape indicated by a two-dot chain line in FIG. 1B is the same as the tooth surface shape in FIG. The planetary gear 11 is modified so that the torsion angle of the planetary gears 13, 15, and 17 is increased by 0.5 μm per unit tooth width (1 mm) for both tooth surfaces L and R.
[0043]
In this way, the planetary gear 11 is made to have a different tooth surface shape with respect to the planetary gears 13, 15, 17, so that the sun gear 9 and the internal gears are arranged between the planetary gear 11 and the planetary gears 13, 15, 17. The meshing state with respect to 19 is different.
[0044]
As a result, the meshing variation between the planetary gear 11 and the planetary gears 13, 15, and 17 is canceled out as a whole in the planetary gear device 7, and vibration and noise are reduced. In this case, since the tooth surface shape of one planetary gear 11 is only different from the other three planetary gears 13, 15, 17, the specification of the coarse material is increased, the parts management becomes complicated and the machining process becomes difficult. An increase in manufacturing cost, such as a change in jig setup, can be suppressed, and changes in the number of teeth ratio, strength, and the like can be suppressed, and a planetary gear device having a required specification can be obtained.
[0045]
FIG. 2 shows the meshing vibration displacement of the planetary gears 11, 13, 15, and 17. (A) is that of the planetary gear 11, and (b), (c), and (d) are those of the planetary gears 13, 15, and 17, respectively. The meshing variations of the planetary gears 13, 15, and 17 are the same, but the planetary gear 11 is different from the planetary gears 13, 15, and 17. FIG. 3 shows a combination of meshing vibration displacements of these four planetary gears 11, 13, 15, and 17. According to this, it can be seen that the transmission error (maximum value of the meshing vibration displacement amplitude) of the planetary gear device 7 as a whole is reduced as compared with the conventional one shown in FIG.
[0046]
In the above embodiment, one planetary gear 11 has a different tooth surface shape from the other three planetary gears 13, 15, 17. For example, the two planetary gears 11, 13 are replaced with the other two planetary gears 11, 13. The tooth surface shapes of the planetary gears 15 and 17 may be different. In this case, the planetary gears 11, 13, 15, and 17 having different tooth surface shapes are alternately arranged, that is, alternately arranged along the periphery of the sun gear 9 in the order of the planetary gears 11 → 15 → 13 → 17. Vibration and noise can be reduced.
[0047]
FIG. 4 shows the tooth surface shape of the planetary gear according to the second embodiment of the present invention. The second embodiment is applied to a planetary gear device 7 having the same basic configuration as that shown in FIG. FIG. 4A shows the tooth surface shape of the planetary gears 11 and 15, and FIG. 4B shows the tooth surface shape of the planetary gears 13 and 17. The arrows in the figure indicate the meshing direction, and in the figure, the left side is the start of meshing and the right side is the meshing end.
[0048]
The tooth surface shapes of the two planetary gears 11 and 15 in FIG. 4A are the same as those shown in FIG. That is, the planetary gears 11 and 15 have a torsion angle with respect to the tooth surface shape of the planetary gears 13, 15 and 17 shown in FIG. It is corrected to be 0.5 μm larger. On the other hand, the two planetary gears 13 and 17 in FIG. 4B have a twist angle with respect to the tooth surface shape of the planetary gears 13, 15 and 17 shown in FIG. , R are corrected to be 0.5 μm per unit tooth width (1 mm). In addition, the shape shown with a dashed-two dotted line in Fig.4 (a), (b) is the same as the tooth surface shape of FIG.1 (c).
[0049]
FIG. 5 shows the meshing vibration displacement of the planetary gears 11, 13, 15, and 17. (A) and (c) are for the planetary gears 11 and 15, and (b) and (d) are for the planetary gears 13 and 17. The meshing variations of the planetary gears 11 and 15 are the same, the meshing variations of the planetary gears 13 and 17 are the same, and the meshing variations between the planetary gears 11 and 15 and the planetary gears 13 and 17 are different from each other. FIG. 6 shows a combination of meshing vibration displacements of these four planetary gears 11, 13, 15, and 17. According to this, it can be seen that the transmission error (maximum amplitude of meshing vibration displacement) of the planetary gear device 7 as a whole is further reduced compared to that shown in FIG. 3 according to the first embodiment. .
[0050]
As described above, the planetary gears 11 and 15 having a larger helix angle and the planetary gears 13 and 17 having a smaller helix angle are alternately arranged along the circumference of the sun gear 9, thereby allowing the first embodiment to be described. Compared to the above, vibration and noise can be further reduced.
[0051]
FIG. 7 shows a tooth surface shape of a planetary gear according to the third embodiment of the present invention. The third embodiment is applied to a planetary gear device 7 having the same basic configuration as that shown in FIG. FIG. 7A shows the tooth surface shapes of the planetary gears 11 and 15, and FIG. 7B shows the tooth surface shapes of the planetary gears 13 and 17. The arrows in the figure indicate the meshing direction. In the figure, the left side is the meshing start side that is one end side in the width direction, and the right side is the meshing end side that is the other end side in the tooth width direction.
[0052]
The tooth surface shape of the two planetary gears 11 and 15 in FIG. 7 (a) is formed with a raised portion A that rises in the tooth thickness direction on one tooth surface L on the left side in the drawing on the meshing start side. . As for the other tooth surface R, a raised portion B that rises in the tooth thickness direction is formed on the right engagement end side in the drawing.
[0053]
The tooth surface shape of the other two planetary gears 13 and 17 shown in FIG. 7 (b) forms a raised portion A that swells in the tooth thickness direction on one gear surface L at the end of engagement on the right side in the drawing. is doing. As for the other tooth surface R, a raised portion B that rises in the tooth thickness direction is formed on the left side of the drawing in the drawing.
[0054]
In this way, the formation parts of the raised portions A and B are made different from each other between the planetary gears 11 and 15 and the planetary gears 13 and 17, and the tooth surface shapes are made different from each other, and the planetary gears 11 and 15 and the planetary gears are made. By arranging 13 and 17 alternately along the circumference of the sun gear 9, the same effect as in the second embodiment can be obtained.
[0055]
Furthermore, in the above-described third embodiment, by forming the raised portions A and B, the tooth surface shape changes in the meshing direction indicated by the arrows, so that the tooth contact is improved and vibration and noise are further reduced. To be.
[0056]
The raised portions A and B described above are gradually formed to have a lower height as shown by contour lines along the periphery from the highest apex portion. Such a change in height is achieved by modifying the pressure angle. Specifically, the pressure angle correction amount of one tooth surface L in FIG. 7A is 10 μm tooth tip rising at the end on the left side in the drawing, and 5 μm tooth tip rising at the center in the tooth width direction. In the figure, the end on the right engagement end side is set to 0 μm. The pressure angle correction amount of the other tooth surface R in FIG. 7A is 0 μm at the end on the left side in the drawing and 5 μm at the center in the tooth width direction, and the end of the right side in the drawing. At the end on the side, the tooth tip is raised by 10 μm.
[0057]
In addition, the pressure angle correction amount of one tooth surface L in FIG. 7B is 0 μm at the left end of the meshing side in the drawing and 5 μm at the center in the tooth width direction. At the end of the engagement end side, the tooth tip is raised by 10 μm. The pressure angle correction amount of the other tooth surface R in FIG. 7B is 10 μm tooth tip rising at the end of the left side in the drawing, and 5 μm tooth tip rising at the center in the tooth width direction. The end on the right engagement end side is 0 μm.
[0058]
FIG. 8 shows a tooth surface shape of a planetary gear according to the fourth embodiment of the present invention. The fourth embodiment is applied to a planetary gear device 7 having the same basic configuration as that shown in FIG. FIG. 8A shows the tooth surface shape of the planetary gears 11 and 15, and FIG. 8B shows the tooth surface shape of the planetary gears 13 and 17. The arrows in the figure indicate the meshing direction, and in the figure, the left side is the start of meshing and the right side is the meshing end.
[0059]
The tooth surface shapes of the two planetary gears 11 and 15 in FIG. 8A and the tooth surface shapes of the two planetary gears 13 and 17 in FIG. The tooth thickness is varied on the right side which is the other end side.
[0060]
Specifically, the planetary gears 11 and 15 in FIG. 8A have a twist angle with respect to the tooth surface shape of the planetary gears 13, 15 and 17 shown in FIG. The tooth surface L is corrected to be 0.5 μm larger per unit tooth width (1 mm), and the tooth surface L is corrected to be smaller than 0.5 μm per unit tooth width (1 mm). As a result, the tooth thickness on the left side is small and the tooth thickness on the right side is large in FIG. The tooth surface shape is symmetrical with respect to the center line S between the tooth surfaces L and R.
[0061]
Further, the planetary gears 13 and 17 in FIG. 8B have a twist angle with respect to the tooth surface shape of the planetary gears 13, 15 and 17 shown in FIG. The tooth surface L is corrected so as to be reduced by 0.5 μm per width (1 mm), and the tooth surface L is corrected so as to be increased by 0.5 μm per unit tooth width (1 mm). As a result, the tooth thickness on the left side is large and the tooth thickness on the right side is small in FIG. The tooth surface shape is symmetrical with respect to the center line S between the tooth surfaces L and R.
[0062]
Therefore, the planetary gears 11 and 15 shown in FIG. 8 (a) and the planetary gears 13 and 17 shown in FIG. 8 (b) are just the right and left reversed, and the shape is the same. When the gear device is assembled, the assembly direction may be reversed with respect to the axial direction. For this reason, according to the above-described fourth embodiment, the same effect as that of the second embodiment shown in FIG. 4 can be obtained, and one kind of planetary gear may be prepared, and the processing cost is reduced. Less is enough.
[0063]
FIG. 9 shows the tooth surface shape of the planetary gear according to the fifth embodiment of the present invention. The fifth embodiment is applied to a planetary gear device 7 having the same basic configuration as that shown in FIG. FIG. 9A shows the tooth surface shape of the planetary gears 11 and 15, and FIG. 9B shows the tooth surface shape of the planetary gears 13 and 17. The arrows in the figure indicate the meshing direction, and in the figure, the left side is the start of meshing and the right side is the meshing end.
[0064]
The tooth surface shapes of the two planetary gears 11 and 15 in FIG. 9 (a) are the raised portions A and R that rise in the tooth thickness direction on the meshing start side that is one end side on the left side in the drawing. B is formed. On the other hand, the tooth surface shape of the two planetary gears 13 and 17 in FIG. 9B is a raised portion that swells in the tooth thickness direction at the meshing end side that is the other end side on the right side of both tooth surfaces L and R in the drawing. A and B are formed.
[0065]
The tooth surface shapes of the planetary gears 11 and 15 and the planetary gears 13 and 17 are all symmetrical with respect to the center line S between the tooth surfaces L and R. For this reason, the planetary gears 11 and 15 shown in FIG. 9 (a) and the planetary gears 13 and 17 shown in FIG. However, the shape is the same, and when assembling as a planetary gear device, the assembling direction may be reversed with respect to both ends in the axial direction. Therefore, according to the fifth embodiment described above, the same effect as that of the third embodiment shown in FIG. 7 can be obtained, and one kind of planetary gear may be prepared, and the processing cost is low. I'll do it.
[0066]
Note that the raised portions A and B described above are formed gradually lower in height as indicated by contour lines along the periphery from the highest apex portion as in FIG. The change in depth is achieved by modifying the pressure angle.
[0067]
Specifically, the pressure angle correction amount of both tooth surfaces L and R in FIG. 9A is 10 μm tooth tip rising at the end on the left side in the drawing and 5 μm tooth tip at the center in the tooth width direction. In the drawing, 0 μm is set at the end on the right engagement end side in the drawing. In FIG. 9B, the pressure angle correction amount of both tooth surfaces L and R is 0 μm at the left end of the mesh in the drawing and 5 μm at the center of the tooth width direction, and the right mesh in the diagram. At the end of the end side, the tooth tip is raised by 10 μm.
[0068]
FIG. 10 shows the relationship between the transmission torque (Nm) on the sun gear and the transmission error (μm) in comparison with the conventional example and the present invention according to the first to fifth embodiments. It is. According to this, it can be seen that the transmission error is smaller in the present invention than in the conventional one.
[0069]
In the data of FIG. 10 described above, the transmission error of the second to fifth embodiments is smaller than that of the first embodiment in the range where the transmission torque is in the range of 30 to 40 Nm. Embodiment 2) and FIG. 6 (second embodiment) correspond to transmission errors in this range.
[0070]
In each of the embodiments shown in FIGS. 4, 7, 8, and 9, it is not always necessary to alternately arrange planetary gears having different tooth surface shapes, and two planetary gears having different tooth surface shapes may be provided. Instead of each one, only one may be different from the others.
[0071]
FIG. 11 is a manufacturing process diagram of the planetary gear device 7 by the planetary gears 11, 13, 15, and 17 having the tooth surface shape of FIG. 8 or FIG. First, as a planetary gear machining process, a rough material is turned, geared, and then shaved. In this shaving process, a finishing process is performed so that the tooth surface shape of FIG. 8 or FIG. 9 is obtained. Next, it heat-processes, an internal diameter and an end surface are ground, and, thereby, the planetary gears 11, 13, 15, and 17 are completed. This is the planetary gear machining process. The following is the planetary gear assembly process.
[0072]
The completed four planetary gears 11, 13, 15, and 17 are arranged alternately in the left and right directions in FIG. 8 or FIG. 9 to prepare for input to the assembly line. The carrier is inserted into the assembly line, and the planetary gears 11, 13, 15, and 17 are assembled to the carrier in the order of the planetary gears 11 → 15 → 13 → 17 in the clockwise direction. Further, the shaft is inserted and fixed to the planetary gears 11, 13, 15, and 17, and finally the sun gear 9 and the internal gear 19 are assembled, whereby the planetary gear device 7 is completed.
[0073]
According to the planetary gear manufacturing method described above, the four planetary gears 11, 13, 15, and 17 may be arranged around the sun gear by simply changing the axial direction alternately, so that productivity is sacrificed. Even if the planetary gears have different shapes in the assembled state, the machining can be performed in the same shape, and the vibration and noise of the planetary gear device 7 as a whole can be further reduced while reducing the machining cost. be able to.
[0074]
FIG. 12 is a flowchart showing a method for setting the tooth surface shape of the planetary gear used in the planetary gear device 7 described above, and FIG. 13 is a block diagram of a device for carrying out the setting method. Here, the planetary gear in the embodiment of FIG. 7 will be described.
[0075]
First, gear specifications and transmission torque are input from an input device 21 such as a keyboard (step S1), and the tooth surface shapes of the sun gear, planetary gear, and internal gear are set to initial values = 0 μm (twist angle correction amount). Input (step S3), and further input a target transmission error (step S5). Each of these input values is stored in the auxiliary storage device 23.
[0076]
Next, the CPU 25 calculates the meshing vibration displacement between the sun gear 9 and the planetary gears 11, 13, 15, and 17 in a state before the tooth surface shape is changed (step S 7), and the tooth surface shape is changed. The meshing vibration displacement between the planetary gears 11, 13, 15, 17 in the previous state and the internal gear 19 is calculated by the CPU 25 (step S9).
[0077]
These vibration displacements are calculated by solving the following equations (refer to the Japan Society of Mechanical Engineers, Volume 43, 371 (Sho 52-7), P2771, Kubo, Umezawa “Study on Load Transmission Characteristics of Cylindrical Gears with Errors”).
[0078]
∫Kb(X, ζ) · P (ζ) dζ + Kc(x) · P (x) = {Δ−e (x)} cos βg
Wj= ∫P (ζ) dζ
W = ΣWjcosβg
Where Kb: Tooth bending shear compliance
Kc: Tooth contact compliance
P: distributed load on tooth contact line Δ: meshing vibration displacement e: tooth surface shape βg: Twist angle on base circle W: Transfer load
x, ζ: seat on tooth surface
The respective meshing vibration displacements calculated in steps S7 and S9 are added to each other by being overlapped by the CPU 25 (step S11). And the process of said step S7-S11 is repeated by the number of planetary gears. Thereby, the maximum amplitude value (transmission error) of the meshing vibration displacement of the planetary gear device 7 is obtained (step S13). The obtained transmission error (output result) is compared with the target transmission error stored in the auxiliary storage device 23 by the CPU 25 (step S15).
[0079]
Here, when the output result is equal to or less than the target transmission error and the noise and vibration do not become a problem as a planetary gear device, the fact is output to the output device 27 such as a display or a printer to notify the operator, and the processing is performed. finish. Conversely, if the output result exceeds the target transmission error and it is determined that the planetary gear unit is high in noise and vibration, the fact that the tooth surface shape will be changed is output to the output unit 27 to notify the operator. .
[0080]
The tooth surface shape is changed by changing the processing step of FIG. 11 so that the half of the total number of planetary gears (here, the total number of planetary gears is two) is changed to the tooth surface shape as shown in FIG. The shaving process shown by (5) is performed (step S17). When the number of planetary gears is an odd number, the number of planetary gears, which is half the number of (planetary gears-1), is changed to a tooth surface shape as shown in FIG. Next, the remaining planetary gear is subjected to the shaving process shown in the machining process of FIG. 11 so as to have a tooth surface shape as shown in FIG. 7B opposite to the above (step S19).
[0081]
According to the tooth surface shape setting method of the planetary gear described above, setting the tooth surface shape of the planetary gears 11, 13, 15, and 17 eliminates the need for trial and error of a prototype experiment, The vibration and noise of the entire planetary gear unit 7 can be reduced while reducing time.
[0082]
  The above planetary gear device 7 uses a helical gear, but a spur gear may be used in the third to fifth embodiments shown in FIGS.
[Brief description of the drawings]
1A and 1B show a first embodiment of the present invention, in which FIG. 1A is a front view showing an entire configuration of a planetary gear device, and FIG. 1B is a tooth of one planetary gear in the planetary gear device of FIG. Explanatory drawing which shows a surface shape, (c) is explanatory drawing which shows the tooth surface shape of the other three planetary gears in the planetary gear apparatus of (a).
FIG. 2 is a meshing vibration displacement characteristic diagram with respect to a meshing cycle of the planetary gear in the planetary gear device of FIG. 1;
3 is a meshing vibration displacement characteristic diagram obtained by synthesizing each meshing vibration displacement of FIG. 2. FIG.
4A and 4B show a second embodiment of the present invention, in which FIG. 4A is an explanatory view showing tooth surface shapes of two planetary gears in a planetary gear device, and FIG. 4B is a tooth view of the other two planetary gears; It is explanatory drawing which shows a surface shape.
5 is a meshing vibration displacement characteristic diagram with respect to the meshing period of the planetary gear in the planetary gear device of FIG. 4; FIG.
6 is a meshing vibration displacement characteristic diagram obtained by synthesizing each meshing vibration displacement of FIG. 5;
7A and 7B show a third embodiment of the present invention, in which FIG. 7A is an explanatory diagram showing tooth surface shapes of two planetary gears in a planetary gear device, and FIG. 7B is a tooth diagram of the other two planetary gears; It is explanatory drawing which shows a surface shape.
8A and 8B show a fourth embodiment of the present invention, in which FIG. 8A is an explanatory view showing tooth surface shapes of two planetary gears in a planetary gear device, and FIG. 8B is a tooth view of the other two planetary gears. It is explanatory drawing which shows a surface shape.
9A and 9B show a fifth embodiment of the present invention, in which FIG. 9A is an explanatory view showing tooth surface shapes of two planetary gears in a planetary gear device, and FIG. 9B is a diagram showing teeth of the other two planetary gears; It is explanatory drawing which shows a surface shape.
FIG. 10 is a transmission error characteristic diagram showing the relationship between the transmission torque on the sun gear and the transmission error between the conventional example and the present invention according to the first to fifth embodiments.
11 is a manufacturing process diagram of a planetary gear device using a planetary gear having the tooth surface shape of FIG. 8 or FIG. 9;
12 is a flowchart showing a tooth surface shape setting method of a planetary gear used in the planetary gear device in the embodiment of FIG. 7;
13 is a block diagram of an apparatus for implementing the setting method of FIG.
FIG. 14 is a front view showing an overall configuration of a planetary gear device according to a conventional example.
15 is a meshing vibration displacement characteristic diagram with respect to the meshing period of the planetary gear in the planetary gear device of FIG.
16 is a meshing vibration displacement characteristic diagram in which the meshing vibration displacements of FIG. 15 are combined.
[Explanation of symbols]
7 Planetary gear unit
9 Sun gear
11, 13, 15, 17 planetary gear
19 Internal gear
L, R tooth surface
A, B climax

Claims (11)

中心部に配置された太陽歯車の周囲にこの太陽歯車に噛み合う複数の遊星歯車が配置されるとともに、前記複数の遊星歯車の外側にこの各遊星歯車に噛み合う内歯車が配置され、前記太陽歯車の歯数および前記内歯車の歯数が、いずれも前記遊星歯車の個数で割り切れる遊星歯車装置において、前記複数の遊星歯車のうち少なくとも一つの遊星歯車と、他の遊星歯車との間で、噛合タイミングが異なるように歯面の表面形状が歯幅方向に沿って異なっており、前記少なくとも一つの遊星歯車は、ねじれ角が他の遊星歯車と異なることを特徴とする遊星歯車装置。  A plurality of planetary gears meshing with the sun gear are disposed around the sun gear disposed at the center, and an internal gear meshing with the planetary gears is disposed outside the plurality of planetary gears. In a planetary gear device in which the number of teeth and the number of teeth of the internal gear are both divisible by the number of planetary gears, the meshing timing between at least one planetary gear among the plurality of planetary gears and another planetary gear. The planetary gear device is characterized in that the surface shapes of the tooth surfaces are different along the tooth width direction so that the at least one planetary gear has a twist angle different from other planetary gears. 中心部に配置された太陽歯車の周囲にこの太陽歯車に噛み合う複数の遊星歯車が配置されるとともに、前記複数の遊星歯車の外側にこの各遊星歯車に噛み合う内歯車が配置され、前記太陽歯車の歯数および前記内歯車の歯数が、いずれも前記遊星歯車の個数で割り切れる遊星歯車装置において、前記複数の遊星歯車のうち少なくとも一つの遊星歯車と、他の遊星歯車との間で、噛合タイミングが異なるように歯面の表面形状が歯幅方向に沿って異なっており、前記少なくとも一つの遊星歯車は、一方の歯面の歯幅方向一端側に歯厚方向に盛り上がる盛り上げ部を備えるとともに、他方の歯面の歯幅方向他端側に歯厚方向に盛り上がる盛り上げ部を備え、他方の遊星歯車は、一方の歯面の歯幅方向他端側に歯厚方向に盛り上がる盛り上げ部を備えるとともに、他方の歯面の歯幅方向一端側に歯厚方向に盛り上がる盛り上げ部を備えていることを特徴とする遊星歯車装置。  A plurality of planetary gears meshing with the sun gear are disposed around the sun gear disposed at the center, and an internal gear meshing with the planetary gears is disposed outside the plurality of planetary gears. In a planetary gear device in which the number of teeth and the number of teeth of the internal gear are both divisible by the number of planetary gears, the meshing timing between at least one planetary gear among the plurality of planetary gears and another planetary gear. The surface shape of the tooth surface is different along the tooth width direction such that the at least one planetary gear includes a raised portion that rises in the tooth thickness direction on one end side of the tooth width direction of one tooth surface, The other tooth surface is provided with a raised portion that rises in the tooth thickness direction on the other end side in the tooth width direction, and the other planetary gear has a raised portion that is raised in the tooth thickness direction on the other end side in the tooth width direction of one tooth surface. Rutotomoni, planetary gear unit, characterized in that it comprises a raised portion rises in tooth thickness direction to the tooth width direction end side of the other tooth surface. 中心部に配置された太陽歯車の周囲にこの太陽歯車に噛み合う複数の遊星歯車が配置されるとともに、前記複数の遊星歯車の外側にこの各遊星歯車に噛み合う内歯車が配置され、前記太陽歯車の歯数および前記内歯車の歯数が、いずれも前記遊星歯車の個数で割り切れる遊星歯車装置において、前記複数の遊星歯車のうち少なくとも一つの遊星歯車と、他の遊星歯車との間で、噛合タイミングが異なるように歯面の表面形状が歯幅方向に沿って異なっており、前記少なくとも一つの遊星歯車は、歯幅方向の一端側と同他端側とで歯厚が異なることを特徴とする遊星歯車装置。  A plurality of planetary gears meshing with the sun gear are disposed around the sun gear disposed at the center, and an internal gear meshing with the planetary gears is disposed outside the plurality of planetary gears. In a planetary gear device in which the number of teeth and the number of teeth of the internal gear are both divisible by the number of planetary gears, the meshing timing between at least one planetary gear among the plurality of planetary gears and another planetary gear. The surface shape of the tooth surface is different along the tooth width direction so that the tooth thickness is different, and the at least one planetary gear has a different tooth thickness at one end side and the other end side in the tooth width direction. Planetary gear device. 中心部に配置された太陽歯車の周囲にこの太陽歯車に噛み合う複数の遊星歯車が配置されるとともに、前記複数の遊星歯車の外側にこの各遊星歯車に噛み合う内歯車が配置され、前記太陽歯車の歯数および前記内歯車の歯数が、いずれも前記遊星歯車の個数で割り切れる遊星歯車装置において、前記複数の遊星歯車のうち少なくとも一つの遊星歯車と、他の遊星歯車との間で、噛合タイミングが異なるように歯面の表面形状が歯幅方向に沿って異なっており、歯幅方向の一端側と同他端側とで歯厚が異なる構成とするとともに、両歯面の相互間の中心線に対して線対称に形成した複数の遊星歯車を、軸方向両端を互いに逆にして太陽歯車の周囲に沿って交互に配置して、歯面の表面形状を歯幅方向に沿って異なるものとしたことを特徴とする遊星歯車装置。  A plurality of planetary gears meshing with the sun gear are disposed around the sun gear disposed at the center, and an internal gear meshing with the planetary gears is disposed outside the plurality of planetary gears. In a planetary gear device in which the number of teeth and the number of teeth of the internal gear are both divisible by the number of planetary gears, the meshing timing between at least one planetary gear among the plurality of planetary gears and another planetary gear. The surface shape of the tooth surface is different along the tooth width direction so that the tooth thickness is different at one end side and the other end side in the tooth width direction, and the center between both tooth surfaces is different A plurality of planetary gears formed symmetrically with respect to the line are alternately arranged along the periphery of the sun gear with the axial ends opposite to each other, and the surface shape of the tooth surface is different along the tooth width direction. It is characterized by Star gear. 中心部に配置された太陽歯車の周囲にこの太陽歯車に噛み合う複数の遊星歯車が配置されるとともに、前記複数の遊星歯車の外側にこの各遊星歯車に噛み合う内歯車が配置され、前記太陽歯車の歯数および前記内歯車の歯数が、いずれも前記遊星歯車の個数で割り切れる遊星歯車装置において、前記複数の遊星歯車のうち少なくとも一つの遊星歯車と、他の遊星歯車との間で、噛合タイミングが異なるように歯面の表面形状が歯幅方向に沿って異なっており、前記少なくとも一つの遊星歯車は、両歯面ともに歯幅方向一端側に歯厚方向に盛り上がる盛り上げ部を備えていることを特徴とする遊星歯車装置。  A plurality of planetary gears meshing with the sun gear are disposed around the sun gear disposed at the center, and an internal gear meshing with the planetary gears is disposed outside the plurality of planetary gears. In a planetary gear device in which the number of teeth and the number of teeth of the internal gear are both divisible by the number of planetary gears, the meshing timing between at least one planetary gear among the plurality of planetary gears and another planetary gear. The surface shapes of the tooth surfaces are different along the tooth width direction so that the tooth surfaces are different from each other, and the at least one planetary gear has a raised portion that rises in the tooth thickness direction on one end side in the tooth width direction on both tooth surfaces A planetary gear device characterized by the above. 盛り上げ部は、歯幅方向に沿って圧力角を変化させることで形成されることを特徴とする請求項2または5記載の遊星歯車装置。  6. The planetary gear device according to claim 2, wherein the raised portion is formed by changing a pressure angle along a tooth width direction. 両歯面の相互間の中心線に対して線対称に形成された複数の遊星歯車を、軸方向両端を互いに逆にして太陽歯車の周囲に沿って交互に配置したことを特徴とする請求項5または6記載の遊星歯車装置。  A plurality of planetary gears formed symmetrically with respect to a center line between both tooth surfaces are alternately arranged along the periphery of the sun gear with both axial ends opposite to each other. The planetary gear set according to 5 or 6. 遊星歯車が複数N個設けられ、N=偶数のときはN/2個が、N=奇数のときは(N−1)/2個が、他の遊星歯車に対し、歯面の表面形状が歯幅方向に沿って異なっていることを特徴とする請求項1ないし3,5,6のいずれか1項に記載の遊星歯車装置。  A plurality of N planetary gears are provided, and N / 2 when N = even, (N-1) / 2 when N = odd, and the surface shape of the tooth surface with respect to other planetary gears. The planetary gear device according to any one of claims 1 to 3, 5, and 6, wherein the planetary gear device is different along a tooth width direction. 遊星歯車は、はすば歯車で構成されていることを特徴とする請求項1ないしのいずれか1項に記載の遊星歯車装置。The planetary gear device according to any one of claims 1 to 8 , wherein the planetary gear is a helical gear. 中心部に配置された太陽歯車の周囲にこの太陽歯車に噛み合う複数の遊星歯車が配置されるとともに、前記複数の遊星歯車の外側にこの各遊星歯車に噛み合う内歯車が配置され、前記太陽歯車の歯数および前記内歯車の歯数が、いずれも前記遊星歯車の個数で割り切れる遊星歯車装置の製造方法において、前記遊星歯車が複数N個設けられ、N=偶数のときはN/2個を、N=奇数のときは(N−1)/2個を、他の遊星歯車に対し、噛合タイミングが異なるように歯面の表面形状を歯幅方向に沿って異ならせ、この歯面の表面形状が歯幅方向に沿って互い異なる遊星歯車を太陽歯車の周囲に沿って交互に配置していくことで製造する遊星歯車装置の製造方法であって、前記複数の遊星歯車は、両歯面の相互間の中心線に対して線対称に形成され、この複数の遊星歯車を、軸方向両端を互いに逆にして太陽歯車の周囲に沿って交互に配置し、この交互に配置した遊星歯車相互間で歯面の表面形状を歯幅方向に沿って異なるものとしたことを特徴とする遊星歯車装置の製造方法。A plurality of planetary gears meshing with the sun gear are disposed around the sun gear disposed at the center, and an internal gear meshing with the planetary gears is disposed outside the plurality of planetary gears. In the method of manufacturing a planetary gear device in which the number of teeth and the number of teeth of the internal gear are both divisible by the number of planetary gears, a plurality of N planetary gears are provided, and N / 2 when N = even, When N = odd, the surface shape of the tooth surface is changed along the tooth width direction so that the mesh timing is different from other planetary gears with respect to (N-1) / 2 pieces. Is a method of manufacturing a planetary gear device in which different planetary gears are alternately arranged along the circumference of the sun gear along the tooth width direction, the plurality of planetary gears having both tooth surfaces. Formed symmetrically with respect to the center line between each other The plurality of planetary gears are alternately arranged along the periphery of the sun gear with the axial ends opposite to each other, and the surface shape of the tooth surface between the alternately arranged planetary gears along the tooth width direction. A method for manufacturing a planetary gear device, wherein the planetary gear device is different. 中心部に配置された太陽歯車の周囲にこの太陽歯車に噛み合う複数の遊星歯車が配置されるとともに、前記複数の遊星歯車の外側にこの各遊星歯車に噛み合う内歯車が配置され、前記太陽歯車の歯数および前記内歯車の歯数が、いずれも前記遊星歯車の個数で割り切れる遊星歯車装置の遊星歯車歯面形状設定方法において、前記太陽歯車と前記遊星歯車との噛み合い振動変位を計算するとともに、前記遊星歯車と前記内歯車との噛み合い振動変位を計算し、これら各振動変位を互いに加算してこの加算値をあらかじめ決められた目標値と比較し、前記加算値が前記目標値より大きいときには、前記複数の遊星歯車のうち少なくとも一つの遊星歯車を、他の遊星歯車に対して、噛合タイミングが異なるように歯面の表面形状を歯幅方向に沿って異ならせることを特徴とする遊星歯車装置の遊星歯車歯面形状設定方法。  A plurality of planetary gears meshing with the sun gear are disposed around the sun gear disposed at the center, and an internal gear meshing with the planetary gears is disposed outside the plurality of planetary gears. In the planetary gear tooth surface shape setting method of the planetary gear device in which the number of teeth and the number of teeth of the internal gear are both divisible by the number of planetary gears, the meshing vibration displacement between the sun gear and the planetary gear is calculated, The meshing vibration displacement between the planetary gear and the internal gear is calculated, the vibration displacements are added to each other, the added value is compared with a predetermined target value, and when the added value is larger than the target value, At least one planetary gear of the plurality of planetary gears has a tooth surface surface shape along the tooth width direction so that the meshing timing is different from other planetary gears. Planet gear tooth surface shape setting process of the planetary gear device for causing not.
JP2001288992A 2001-09-21 2001-09-21 Planetary gear device, manufacturing method thereof, and planetary gear tooth surface shape setting method Expired - Fee Related JP4010129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001288992A JP4010129B2 (en) 2001-09-21 2001-09-21 Planetary gear device, manufacturing method thereof, and planetary gear tooth surface shape setting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001288992A JP4010129B2 (en) 2001-09-21 2001-09-21 Planetary gear device, manufacturing method thereof, and planetary gear tooth surface shape setting method

Publications (2)

Publication Number Publication Date
JP2003097653A JP2003097653A (en) 2003-04-03
JP4010129B2 true JP4010129B2 (en) 2007-11-21

Family

ID=19111551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001288992A Expired - Fee Related JP4010129B2 (en) 2001-09-21 2001-09-21 Planetary gear device, manufacturing method thereof, and planetary gear tooth surface shape setting method

Country Status (1)

Country Link
JP (1) JP4010129B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110410464A (en) * 2019-07-04 2019-11-05 广西大学 A kind of planet line gear transmission device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7076875B2 (en) * 2002-09-12 2006-07-18 Deere & Company Method of manufacturing compound helical planet gears having different leads
JP5287375B2 (en) * 2009-03-12 2013-09-11 日産自動車株式会社 Electric vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110410464A (en) * 2019-07-04 2019-11-05 广西大学 A kind of planet line gear transmission device

Also Published As

Publication number Publication date
JP2003097653A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
JP5735943B2 (en) Progressive transmission gear unit
JP5165120B2 (en) Wave gear device having three-dimensional continuous contact tooth profile
JP5774713B2 (en) Method of setting root rim thickness of flexible external gear of wave gear device
TWI638105B (en) Harmonic gear device with negative offset tooth profile with 2 degree contact
WO2016013381A1 (en) Dual-type wave gear device
CN111108307B (en) Duplex wave gear device
WO2007013373A1 (en) Method of designing gear using cad system, and gear
JP4010129B2 (en) Planetary gear device, manufacturing method thereof, and planetary gear tooth surface shape setting method
CN206386439U (en) A kind of helical tooth cycloid gear planetary reduction gear
JP4665516B2 (en) Planetary gear mechanism and manufacturing method thereof
CN107304803B (en) Variable pressure angle gear for reducing gear squeal
JPH06257660A (en) Geared transmission mechanism
CN103270335B (en) The profile of tooth defining method of flexible engagement gear device and flexible engagement gear device
JPH0932908A (en) Designing of tooth profile of bevel gear
JP4120542B2 (en) Angular position adjustment mechanism
JP2001271912A (en) Gear and gear device
JPH08285048A (en) Three-dimensional tooth surface modification structure in helical/double-helical gear
JP4029847B2 (en) Angular position adjustment mechanism
WO2017094195A1 (en) 2-stress separating strain wave gearing device
JPH0783314A (en) Drive gear
JPH1194052A (en) Gear
JP5496982B2 (en) Gear coupling and manufacturing method thereof
JP2002364733A (en) Spur gear power transmission mechanism
JPH05332404A (en) Flexure mesh type gear meshing structure
JP2018135964A (en) Face gear transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees