JP4008083B2 - Microfilm formation method using laser heating evaporation method - Google Patents

Microfilm formation method using laser heating evaporation method Download PDF

Info

Publication number
JP4008083B2
JP4008083B2 JP34003497A JP34003497A JP4008083B2 JP 4008083 B2 JP4008083 B2 JP 4008083B2 JP 34003497 A JP34003497 A JP 34003497A JP 34003497 A JP34003497 A JP 34003497A JP 4008083 B2 JP4008083 B2 JP 4008083B2
Authority
JP
Japan
Prior art keywords
solid
inert gas
microfilm
laser
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34003497A
Other languages
Japanese (ja)
Other versions
JPH11172422A (en
Inventor
早紀 今田
村上  裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP34003497A priority Critical patent/JP4008083B2/en
Publication of JPH11172422A publication Critical patent/JPH11172422A/en
Application granted granted Critical
Publication of JP4008083B2 publication Critical patent/JP4008083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レーザー加熱により発生させた微粒子をICやディスプレイ等の必要な場所に集中的に微粒子を堆積させて微小な面積の膜を形成する方法に関する。
【0002】
【従来の技術】
従来、レーザー光のエネルギーを熱源として真空、或いは制御された雰囲気中で固体を融解して蒸発させ、その蒸発位置に対向して配置した基板の表面一面に堆積させる、レーザーアブレーション(デポジション)法が知られている。この方法は、真空蒸着法、スパッタリング法やイオンプレーティング法と同じく、基板一面に膜を形成する方法である。また、誘導加熱法などでるつぼ内の固体を蒸発させ、その蒸発物を微小な断面積を持つノズル内を流れるキャリアガスにより高速で搬送し、ノズルの先端より吹き出させて基板上の所定の位置に堆積させる、ガスデポジション法も知られている。この方法では、蒸発室に設けたるつぼの直上に、該蒸発室よりも低圧力に保たれた成膜室内につながるノズルを設け、両室の圧力差により生じるガス流で蒸発した材料を微粒子化しながら搬送してノズルから吹き出させることにより、基板上に膜を堆積させている。
【0003】
【発明が解決しようとする課題】
上記レーザーアブレーション(デポジション)法では、単位時間当たりの蒸発量が非常に少ないこと、及び蒸発面が非常に小さいことから、成膜速度が遅く、基板一面に薄膜を形成するという目的を有しながらも大面積への均質な成膜が非常に困難で、そのため、エネルギー密度の大きなレーザーを使用すれば殆どの高融点材料を蒸発させ得る利点があるにも係わらず、IC等を構成する薄膜を形成する技術として採用されていない。また、特定の位置に膜を直接形成することはできない。
【0004】
また、ガスデポジション法では、微小な断面積を持つ比較的長いノズル内を大量の粒子が充分に層流になっていないガスにより搬送されるため、ノズルが詰まり易いという欠点がある。しかも、るつぼ内の固体全体を誘導加熱法などにより融解、蒸発させるため、キャリアガスの流れる方向は上向きで、ノズルは垂直でなければならず、ノズルのガス吹き出し口直上に下向きに取り付けられた基板を動かすことで、膜の堆積位置を決定しなければならないという制約があり、同時に複数の膜を作製することもできない。また、るつぼの材料等の耐熱性、蒸発性の問題から、高融点の固体材料の蒸発は行えない。
本発明は、粒子の搬送を確実に行えて比較的迅速に高融点材料を成膜でき、同時に或いは順次に所定の位置に微小な成膜を行える方法とこれに適した装置を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明では、上記の目的は、蒸発される固体を平板状に形成し、該固体の表面に沿って不活性ガスを層流に流しながら該表面の1箇所又は複数箇所にレーザー光を照射し、これにより蒸発する粒子を該層流で直接搬送して所定の位置に微小な面積で堆積させることによって達成される。更に、該レーザー光の照射位置を変更することにより堆積位置を変更することで、異なる位置に順次或いは同時に成膜を行える。該レーザー光の集光サイズを変更することにより該粒子のサイズを制御することが可能である。該不活性ガスにはHe、Ar、Nなどの高純度不活性ガスが使用され、該固体には金属、合金或いはセラミックスなどの無機材料が使用される。また、本発明の方法は、透明ガラス板と板状の固体の表面とを不活性ガスを流す間隙を存して互いに平行に配置し、該間隙の一側にノズル開口を設けると共にその反対側に不活性ガス導入口を設け、該固体の表面上を流れる不活性ガスが層流となるように形成したノズルと、該透明ガラスを介して該固体の表面を照射するレーザー光源とを設けた装置により好都合に実施できる。
【0006】
【発明の実施の形態】
本発明の実施の形態を図面に基づき説明すると、図1に於いて符号1は真空排気された真空室2内に微小膜を形成するSi板等の基板3の板面に対向させて設けたノズルを示し、該ノズル1の一端の不活性ガス導入口10には不活性ガス源を接続管9を介して接続し、圧力及び流量が調整された不活性ガスがノズル開口4から該基板3の板面に向けて吹き出されるようにした。
【0007】
該ノズル1はガラス製でその断面は図2に示すように矩形に形成され、そのノズル開口4側の端部の一周面を図3のように切欠いてそこに固体5を設けるようにした。該固体5は表面5aを平板状に形成したもので、該表面5aとこれに対向するノズル1の壁面1aとを平行させ、平行なノズル通路の隙間11を形成した。該固体5は該ノズル1に沿わせて設けたステンレス製のホルダ6により定位置に交換可能に保持した。該固体5の表面5aには該ノズル1のガラス製の壁面1aを通過してレーザー光源8からのレーザー光7が照射される。該光源8は1若しくは複数用意され、その集光サイズ及び集光位置を任意に調節できるようにした。
【0008】
該ノズル1の断面形状は、ノズル開口4側の固体5の表面5a上の層流を損なわない形状であればよく、例えば図4のように接続管9側を太く形成してもよい。該ノズル1の材料はレーザー光7を損失無く透過できる部分を有すれば良く、それ以外の部分は不純物を放出しない材料で形成することが可能である。該レーザー光7には、Nd:YAGパルスレーザーの第二高調波などが使用され、ビームウエスト径を例えば0.1mmに集光するように調節される。また、基板3は移動自在例えば細線を形成するためにノズル開口4との距離を変えずに移動可能に設置することが有利である。該固体5には、Cu、Ni、各種高融点金属、合金、セラミックスなど固形化可能な無機材料を使用できる。
【0009】
図示実施例の装置を具体的に説明すると、図1のものでは該ノズル1のノズル開口4の内径を0.3×10mmの矩形とし、そのノズル開口4の下方の側面を例えば幅10mm、長さ10mmカットしてそこに10mm×10mm×3mmのCu、Niなどのインゴット状の固体5をホルダ6で支えて設置したもので、平滑に形成した該固体5の表面5aと該ノズル開口4の上方の側面との間に平行な空間を形成した。該表面5aには該ノズル5の上方の透明な側面を介してレーザー光7が照射されるが、その光は図5に示したように真空室2内に設けたレーザー発振器の光源8から放射され、エキスパンダ12、ミラー13、ガルバノ14、F−0レンズ15を介して固体5に導かれる。図5に示す例では、該ノズル1を水平に設け、そのノズル開口4の前方0.5mmの位置にSi基板3を垂直に設けるようにし、該基板3を移動台16により面方向(X−Y方向)へ移動自在とした。該レーザー発振器の光源8は外部のレーザー電源17及びQスイッチコントローラ18により制御されて波長532nmのNd:YAG CW-Qsw greenレーザーを放射し、移動台16はステージコントローラ19により作動制御されたX−ドライバ20とY−ドライバ21でX−Y方向への移動が調節され、基板3の成膜状況を光源22からの投光とCCDカメラ23による撮影でモニターできるようにした。該レーザー光7は、例えばQスイッチの使用時、例えばパルスエネルギー3mJ、繰り返し周波数10〜12kHz、パルス幅250ns、ピークパワー12kW、ビーム径3.0mmの光を放射し、該レンズ15の焦点距離は例えば100mmに調節され、レーザー光7は固体5の表面5aで直径0.1mmのスポットサイズの焦点を結ぶ。
【0010】
真空室2内を適当な真空に排気し、純度が充分に高く粒子を搬送でき固体5の表面5a上で層流が得られる流量の不活性ガスを接続管9から流すと、そのノズル開口4の上下面が平坦で且つ平行しているので層流となって流れ、この状態でレーザー光7を該固体5に照射すると、該固体5が高融点材料であっても照射スポットが融解して微粒子が蒸発し、これが該ノズル開口4の層流で直接運ばれて基板3に衝突し、微小な面積の膜となって堆積する。この成膜中、必要に応じて該基板3をランプ等により数百度に保つようにする。そして形成された微小膜を還元雰囲気中で焼成するなどの後処理を施しても良い。
【0011】
レーザー光7のビームウエストを小さくすれば、数10μm以下の極微小膜を形成することも可能であるが、必要ならば、従来のフォトリソグラフィ技術などによりマスクを基板3に形成し、膜の堆積後にこのマスクを除去して微小膜を完成させてもよい。
【0012】
該レーザー光7は固体5に対する照射位置が移動するようにスキャン可能に構成してもよく、或いは複数のレーザー光源を設けて複数のレーザー光7が同時に固体5の異なる位置を照射するようにしてもよい。こうすることによって、基板3の異なる位置に順次に或いは同時に微小膜を形成でき、結果として成膜速度が速まる。
【0013】
該固体5は集光したレーザー光7により該固体5自体を溶融容器として蒸発するため、従来のるつぼ材料の蒸発による不純物の混入を避けることができ、レーザー光7に高いエネルギー密度を持つレーザーを選択することで、固体5にほとんどの高融点材料を使用できる。しかもノズル1内に蒸発源があるため、レーザー公を追従させればノズル1の位置をレーザー照射中でも移動できる。固体5のレーザー光7による溶融部は非常に小さいため、固体5の表面5aが横向き或いは下向きになるようにノズル1を設置することもできる。また、従来のガスデポジション法では、上記したようにノズルが詰まって作動不能になる事故が生じたが、本発明ではノズル1内の充分に層流になっている不活性ガス中で蒸発が起き、蒸発点からノズル開口4までの距離が短いので、蒸発粒子が塊状化することがなくノズル1の詰まりが生じない。
本発明の実施例は次の通りである。
【0014】
【実施例1】
図5に示す装置に於いて、レーザー光7としてエネルギー密度が1.9J/cm2/pulseで繰り返し周波数が10kHzのNd:YAGレーザーの第2高調波、不活性ガスとしてN2ガス、固体5にCuのインゴットを使用し、レーザービームウエスト径を100μm、不活性ガス流量を10l/min、ノズル開口4の形状を10mm×0.3mmの矩形に設定し、ノズル1から0.5mm離れた位置にSi基板3を配置した。この装置を作動させることで該基板3の表面に1mm×0.2mmのCu超微粒子の微小膜を200Å/secの速度で形成することができた。
【0015】
【実施例2】
実施例1と同じ設定で図5の装置を作動させ、基板3を移動台16を0.05mm/secで一方向に15mm移動させたところ、幅0.3mm、長さ15mmのCu超微粒子の線状の微小膜を形成することができた。
【0016】
【実施例3】
固体5をNiのインゴットとし、基板3には直径100μmでアスペクト比1以上の穴を形成しておいた以外は実施例1と同じ設定で図5の装置を作動させた。この場合、その穴にNiを埋め込むことができた。
【0017】
【実施例4】
固体5をNiのインゴットとし、基板3には幅100μm、長さが15mmでアスペクト比1以上の溝を形成しておいた以外は実施例2と同じ設定で図5の装置を作動させた。この場合、その溝にNiを埋め込むことができた。
【0018】
【実施例5】
不活性ガスの流量を12.5l/min、基板3をSiO2とした以外は実施例1と同じ条件に設定し、図5の装置を作動させた。これによりSiO2基板に形成された5mm×0.2mmのCu超微粒子の微小膜をオージェ電子分光法により分析した結果を図7に示した。この微小膜を、5%H2/Arの雰囲気中で400℃、80min焼成し、オージェ電子分光法により分析したところ、図8に示したように酸素成分が減少し、導電性の良好な微小膜が得られていることが分かった。
【0019】
尚、図5の装置を使用してノズル1の寸法形状及びN2の不活性ガス流量を変化させたときの基板3に形成される微小膜のX、Y方向の大きさは図6に示す通りであった。これに於いて、○及び□のプロットは図1の寸法形状のノズル1を使用したときのX、Y方向の膜サイズで、●及び■は図4に示す寸法形状のノズル1を使用したときのX、Y方向の膜サイズで、成膜条件は、実施例1の場合と同じである。これによれば、図1の寸法形状のノズルは縦横比の小さい微小膜の形成に適し、図4のノズルは縦横比の大きい微小膜に形成に適していることが分かる。また不活性ガス流量は図1の形状では10l/min以上であることが好ましく、図4の形状では4l/min以下であることが好ましい。
【0020】
【発明の効果】
以上のように本発明の方法によれば、不活性ガスの流れの中でレーザー光により固体を蒸発させてその蒸発粒子を直接基板に向けて搬送するので、ノズルの詰まりがなく、特に高融点材料の微小膜を制御して比較的迅速に形成でき、固体の表面に沿って層流を流し、その表面の1箇所若しくは複数箇所にレーザー光を照射することで、所定の箇所に制御性よく成膜出来る効果が得られ、その照射位置を変更することで簡単に成膜位置を変更でき、集光サイズの変更で蒸発粒子のサイズを制御できる。また、透明ガラス板と板状の固体の表面とを不活性ガスを流す間隙を存して互いに平行に配置し、該間隙の一側にノズル開口を設けると共にその反対側に不活性ガス導入口を設け、該固体の表面上を流れる不活性ガスが層流となるように形成したノズルと、該透明ガラスを介して該固体の表面を照射するレーザー光源とを設けた装置を用いて実施すると、簡単に固体を交換でき、本発明の方法を適切に安価に実施できる等の効果がある。
【図面の簡単な説明】
【図1】本発明の方法を実施する装置の要部の側面図
【図2】図1の2−2線部分の拡大断面図
【図3】図1の3−3線部分の拡大断面図
【図4】図1の変形例の側面図
【図5】本発明の方法の実施に使用した装置の全体側面図
【図6】ノズル形状と不活性ガス流量及び微小膜の膜サイズの関係を示す線図
【図7】本発明により形成された微小膜の組成の分析図
【図8】図7の微小膜の焼成後の組成の分析図
【符号の説明】
1 ノズル、3 基板、4 ノズル開口、5 固体、5a 表面、7 レーザー光、8 レーザー光源、10 不活性ガス導入口、11 隙間、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a film having a minute area by intensively depositing fine particles generated by laser heating in a necessary place such as an IC or a display.
[0002]
[Prior art]
Conventionally, a laser ablation (deposition) method in which solids are melted and evaporated in a vacuum or controlled atmosphere using laser light energy as a heat source, and deposited on the entire surface of a substrate placed opposite to the evaporation position. It has been known. This method is a method of forming a film over the entire surface of the substrate, similarly to the vacuum deposition method, the sputtering method, and the ion plating method. Also, the solid in the crucible is evaporated by an induction heating method, etc., and the evaporated material is conveyed at a high speed by the carrier gas flowing in the nozzle having a minute cross-sectional area, and blown out from the tip of the nozzle to be a predetermined position on the substrate. A gas deposition method is also known, which is deposited on the substrate. In this method, a nozzle connected to the film formation chamber maintained at a lower pressure than the evaporation chamber is provided immediately above the crucible provided in the evaporation chamber, and the material evaporated by the gas flow generated by the pressure difference between the two chambers is atomized. The film is deposited on the substrate by being conveyed and blown out from the nozzle.
[0003]
[Problems to be solved by the invention]
The laser ablation (deposition) method has a purpose of forming a thin film on the entire surface of the substrate because the evaporation amount per unit time is very small and the evaporation surface is very small. However, it is very difficult to form a uniform film over a large area. Therefore, even if there is an advantage that most high melting point materials can be evaporated by using a laser having a large energy density, a thin film constituting an IC or the like. It is not adopted as a technology to form Further, it is not possible to directly form a film at a specific position.
[0004]
In addition, the gas deposition method has a drawback in that the nozzle is easily clogged because a large amount of particles are conveyed in a relatively long nozzle having a minute cross-sectional area by a gas that is not sufficiently laminar. Moreover, in order to melt and evaporate the entire solid in the crucible by an induction heating method or the like, the carrier gas must flow in the upward direction and the nozzle must be vertical, and the substrate mounted downward directly above the nozzle gas outlet. By moving the, there is a restriction that the deposition position of the film must be determined, and a plurality of films cannot be produced at the same time. Further, due to heat resistance and evaporation problems of the crucible material and the like, the high melting point solid material cannot be evaporated.
It is an object of the present invention to provide a method capable of reliably transporting particles and forming a high melting point material relatively quickly, and capable of forming a minute film at a predetermined position simultaneously or sequentially, and an apparatus suitable therefor. It is the purpose.
[0005]
[Means for Solving the Problems]
In the present invention , the above object is to form a solid to be evaporated in a flat plate shape, and to irradiate one or more portions of the surface with laser light while flowing an inert gas in a laminar flow along the surface of the solid. This is accomplished by directly transporting the vaporized particles in the laminar flow and depositing them at a predetermined position in a minute area . Further, by changing the deposition position by changing the irradiation position of the laser beam, film formation can be performed sequentially or simultaneously at different positions. It is possible to control the size of the particles by changing the condensing size of the laser beam. A high-purity inert gas such as He, Ar, or N 2 is used as the inert gas, and an inorganic material such as a metal, alloy, or ceramic is used as the solid. In the method of the present invention, the transparent glass plate and the plate-like solid surface are arranged in parallel with each other with a gap for flowing an inert gas, and a nozzle opening is provided on one side of the gap and the opposite side. Provided with an inert gas inlet, a nozzle formed so that the inert gas flowing on the surface of the solid becomes a laminar flow, and a laser light source for irradiating the surface of the solid via the transparent glass It can be conveniently carried out by the apparatus.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. In FIG. 1, reference numeral 1 denotes a vacuum chamber 2 that is evacuated and provided to face a plate surface of a substrate 3 such as a Si plate that forms a microfilm. An inert gas source is connected to an inert gas inlet 10 at one end of the nozzle 1 via a connecting pipe 9, and an inert gas whose pressure and flow rate are adjusted is supplied from the nozzle opening 4 to the substrate 3. It was blown out toward the plate surface.
[0007]
The nozzle 1 is made of glass and has a rectangular cross section as shown in FIG. 2, and a peripheral surface of the nozzle opening 4 side is cut out as shown in FIG. 3 to provide the solid 5 there. The solid 5 has a surface 5a formed in a flat plate shape. The surface 5a and the wall surface 1a of the nozzle 1 facing the surface 5a are parallel to each other to form a gap 11 between parallel nozzle passages. The solid 5 was held in place at a fixed position by a stainless steel holder 6 provided along the nozzle 1. The surface 5 a of the solid 5 is irradiated with laser light 7 from a laser light source 8 through the glass wall surface 1 a of the nozzle 1. One or a plurality of the light sources 8 are prepared, and the light collection size and the light collection position can be arbitrarily adjusted .
[0008]
The cross-sectional shape of the nozzle 1 may be any shape that does not impair the laminar flow on the surface 5a of the solid 5 on the nozzle opening 4 side. For example, the connecting tube 9 side may be formed thick as shown in FIG. The material of the nozzle 1 only needs to have a portion that can transmit the laser beam 7 without loss, and the other portions can be formed of a material that does not emit impurities. For the laser beam 7, a second harmonic of an Nd: YAG pulse laser or the like is used, and the beam waist diameter is adjusted to be focused to, for example, 0.1 mm. Further, it is advantageous to install the substrate 3 so as to be movable without changing the distance from the nozzle opening 4 in order to form a thin line, for example. The solid 5 can be made of an inorganic material that can be solidified, such as Cu, Ni, various high melting point metals, alloys, and ceramics.
[0009]
The apparatus of the illustrated embodiment will be described in detail. In the apparatus of FIG. 1, the inner diameter of the nozzle opening 4 of the nozzle 1 is a rectangle of 0.3 × 10 mm, and the lower side surface of the nozzle opening 4 is, for example, 10 mm wide and 10 mm long. It is cut and placed there and supported by a holder 6 with an ingot-like solid 5 such as Cu, Ni, etc. of 10 mm × 10 mm × 3 mm. Above the surface 5 a of the solid 5 that is formed smoothly and above the nozzle opening 4 A parallel space was formed between the sides. The surface 5a is irradiated with laser light 7 through a transparent side surface above the nozzle 5, and the light is emitted from a light source 8 of a laser oscillator provided in the vacuum chamber 2 as shown in FIG. Then, it is guided to the solid 5 through the expander 12, the mirror 13, the galvano 14, and the F-0 lens 15. In the example shown in FIG. 5, the nozzle 1 is provided horizontally, and the Si substrate 3 is provided vertically at a position 0.5 mm in front of the nozzle opening 4, and the substrate 3 is moved in the plane direction (X− Y direction). The light source 8 of the laser oscillator is controlled by an external laser power source 17 and a Q switch controller 18 to emit an Nd: YAG CW-Qsw green laser having a wavelength of 532 nm. The movement in the X-Y direction is adjusted by the driver 20 and the Y-driver 21 so that the film formation state of the substrate 3 can be monitored by light projection from the light source 22 and photographing by the CCD camera 23. For example, when the Q switch is used, the laser beam 7 emits light having a pulse energy of 3 mJ, a repetition frequency of 10 to 12 kHz, a pulse width of 250 ns, a peak power of 12 kW, a beam diameter of 3.0 mm, and the focal length of the lens 15 is For example, it is adjusted to 100 mm, and the laser beam 7 is focused on the surface 5 a of the solid 5 with a spot size of 0.1 mm in diameter.
[0010]
When the inside of the vacuum chamber 2 is evacuated to an appropriate vacuum and a flow of inert gas is flowed from the connecting pipe 9 so that the particles can be transported with sufficiently high purity and a laminar flow is obtained on the surface 5a of the solid 5, the nozzle opening 4 Since the upper and lower surfaces are flat and parallel, it flows as a laminar flow. When the solid 5 is irradiated with the laser beam 7 in this state, the irradiation spot is melted even if the solid 5 is a high melting point material. The fine particles evaporate and are directly carried by the laminar flow of the nozzle opening 4 and collide with the substrate 3 to be deposited as a film having a minute area. During the film formation, the substrate 3 is kept at several hundred degrees by a lamp or the like as necessary. Then, a post-treatment such as baking the formed microfilm in a reducing atmosphere may be performed.
[0011]
If the beam waist of the laser beam 7 is reduced, it is possible to form a very small film of several tens of μm or less. However, if necessary, a mask is formed on the substrate 3 by a conventional photolithography technique or the like, and the film is deposited. Later, the mask may be removed to complete the microfilm.
[0012]
The laser beam 7 may be configured to be scannable so that the irradiation position on the solid 5 moves, or a plurality of laser light sources are provided so that the plurality of laser beams 7 irradiate different positions on the solid 5 at the same time. Also good. By doing so, microfilms can be formed sequentially or simultaneously at different positions on the substrate 3, and as a result, the deposition rate is increased.
[0013]
Since the solid 5 evaporates as a melting container by the condensed laser beam 7, it is possible to avoid contamination by impurities due to evaporation of the conventional crucible material. By selection, most refractory materials can be used for the solid 5. Moreover, since there is an evaporation source in the nozzle 1, the position of the nozzle 1 can be moved even during laser irradiation by following the laser beam. Since the melted portion of the solid 5 by the laser beam 7 is very small, the nozzle 1 can be installed so that the surface 5a of the solid 5 is laterally or downward. Further, in the conventional gas deposition method, as described above, there was an accident that the nozzle was clogged and became inoperable. However, in the present invention, evaporation occurs in a sufficiently laminar inert gas in the nozzle 1. Since the distance from the evaporation point to the nozzle opening 4 is short, the evaporated particles are not agglomerated and the nozzle 1 is not clogged.
Examples of the present invention are as follows.
[0014]
[Example 1]
In the apparatus shown in FIG. 5, the second harmonic of an Nd: YAG laser having an energy density of 1.9 J / cm 2 / pulse and a repetition frequency of 10 kHz as laser light 7, N 2 gas as an inert gas, and solid 5 Using a Cu ingot, the laser beam waist diameter is set to 100 μm, the inert gas flow rate is set to 10 l / min, and the shape of the nozzle opening 4 is set to a rectangle of 10 mm × 0.3 mm. A Si substrate 3 was disposed. By operating this apparatus, it was possible to form a 1 mm × 0.2 mm ultrafine Cu film on the surface of the substrate 3 at a rate of 200 Å / sec.
[0015]
[Example 2]
5 was operated with the same settings as in Example 1, and the substrate 3 was moved 15 mm in one direction at 0.05 mm / sec. As a result, Cu ultrafine particles having a width of 0.3 mm and a length of 15 mm were obtained. A linear microfilm could be formed.
[0016]
[Example 3]
The apparatus of FIG. 5 was operated with the same settings as in Example 1 except that the solid 5 was an Ni ingot and the substrate 3 had holes with a diameter of 100 μm and an aspect ratio of 1 or more. In this case, Ni could be embedded in the hole.
[0017]
[Example 4]
The apparatus of FIG. 5 was operated with the same settings as in Example 2 except that the solid 5 was an Ni ingot, and the substrate 3 had a width of 100 μm, a length of 15 mm, and a groove with an aspect ratio of 1 or more. In this case, Ni could be embedded in the groove.
[0018]
[Example 5]
The apparatus of FIG. 5 was operated under the same conditions as in Example 1 except that the flow rate of the inert gas was 12.5 l / min and the substrate 3 was made of SiO 2 . FIG. 7 shows the result of analyzing the 5 mm × 0.2 mm Cu ultrafine particles formed on the SiO 2 substrate by Auger electron spectroscopy. This microfilm was baked at 400 ° C. for 80 min in an atmosphere of 5% H 2 / Ar and analyzed by Auger electron spectroscopy. As a result, the oxygen component decreased as shown in FIG. It was found that was obtained.
[0019]
The sizes in the X and Y directions of the microfilm formed on the substrate 3 when the size and shape of the nozzle 1 and the inert gas flow rate of N 2 are changed using the apparatus of FIG. 5 are shown in FIG. It was street. In this case, the plots of ○ and □ are the film sizes in the X and Y directions when the nozzle 1 having the dimensions shown in FIG. 1 is used, and ● and ■ are when the nozzle 1 having the dimensions shown in FIG. 4 is used. The film forming conditions are the same as those in the first embodiment. According to this, it can be seen that the nozzle of the size and shape of FIG. 1 is suitable for forming a microfilm having a small aspect ratio, and the nozzle of FIG. 4 is suitable for forming a microfilm having a large aspect ratio. Further, the inert gas flow rate is preferably 10 l / min or more in the shape of FIG. 1, and is preferably 4 l / min or less in the shape of FIG.
[0020]
【The invention's effect】
As described above, according to the method of the present invention, since the solid is evaporated by the laser beam in the flow of the inert gas and the evaporated particles are conveyed directly toward the substrate, there is no clogging of the nozzle, and particularly, the high melting point. It can be formed relatively quickly by controlling the micro membrane of the material. By flowing a laminar flow along the surface of the solid and irradiating one or more places on the surface with laser light, it is possible to control a predetermined place with good controllability. deposition can effect is obtained, can be changed easily deposited position by changing the irradiation position, Ru can control the size of the evaporation particles by changing the focused size. Further, the transparent glass plate and the surface of the plate-like solid are arranged in parallel with each other with a gap for flowing an inert gas, a nozzle opening is provided on one side of the gap, and an inert gas introduction port is provided on the opposite side. And a device provided with a laser light source that irradiates the surface of the solid through the transparent glass and a nozzle formed so that the inert gas flowing on the surface of the solid becomes a laminar flow The solids can be easily exchanged, and the method of the present invention can be carried out appropriately and inexpensively.
[Brief description of the drawings]
FIG. 1 is a side view of an essential part of an apparatus for carrying out the method of the present invention. FIG. 2 is an enlarged cross-sectional view taken along line 2-2 in FIG. 1. FIG. 3 is an enlarged cross-sectional view taken along line 3-3 in FIG. 4 is a side view of the modified example of FIG. 1. FIG. 5 is an overall side view of the apparatus used for carrying out the method of the present invention. FIG. 6 shows the relationship between the nozzle shape, the inert gas flow rate, and the membrane size of the micromembrane. FIG. 7 is an analysis diagram of the composition of a microfilm formed according to the present invention. FIG. 8 is an analysis diagram of a composition after firing the microfilm of FIG.
1 nozzle, 3 substrate, 4 nozzle opening, 5 solid, 5a surface, 7 laser light, 8 laser light source, 10 inert gas inlet, 11 gap,

Claims (5)

蒸発される固体を平板上に形成し、該固体の表面に沿って不活性ガスを層流に流しながら該表面の1箇所又は複数箇所にレーザー光を照射し、これにより蒸発する粒子を該層流で直接搬送して所定の位置に微小な面積で堆積させることを特徴とするレーザー加熱蒸発法を用いた微小膜形成方法。A solid to be evaporated is formed on a flat plate, and an inert gas is flowed in a laminar flow along the surface of the solid while irradiating a laser beam to one or a plurality of locations on the surface, thereby evaporating particles to the layer A method for forming a microfilm using a laser heating evaporation method, wherein the film is directly transported by a flow and deposited at a predetermined position in a micro area. 上記レーザー項の照射位置を変更することにより上記堆積位置を変更することを特徴とする請求項1に記載のレーザー加熱蒸発法を用いた微小膜形成方法。2. The method for forming a microfilm using a laser heating evaporation method according to claim 1, wherein the deposition position is changed by changing an irradiation position of the laser term. 上記レーザー光の集光サイズを変更することにより上記粒子のサイズを制御することを特徴とする請求項1に記載のレーザー加熱蒸発法を用いた微小膜形成方法。2. The method for forming a microfilm using a laser heating evaporation method according to claim 1, wherein the size of the particles is controlled by changing the condensing size of the laser beam. 上記不活性ガスは、He、Ar或いはNの高純度不活性ガスであり、上記固体は金属、合金或いはセラミックスの無機材料からなることを特徴とする請求項1に記載のレーザー加熱蒸発法を用いた微小膜形成方法。 2. The laser heating evaporation method according to claim 1, wherein the inert gas is a high-purity inert gas of He, Ar, or N 2 , and the solid is made of an inorganic material of a metal, an alloy, or a ceramic. Microfilm formation method used. 透明ガラス板と板状の固体の表面とを不活性ガスを流す間隙を存して互いに平行に配置し、該間隙の一側にノズル開口を設けると共にその反対側に不活性ガス導入口を設け、該固体の表面上を流れる不活性ガスが層流となるように形成したノズルと、該透明ガラスを介して該固体の表面を照射するレーザー光源とを設けたことを特徴とするレーザー加熱蒸発法を用いた微小膜形成方法。The transparent glass plate and the surface of the plate-shaped solid are arranged in parallel with each other with a gap for flowing an inert gas, and a nozzle opening is provided on one side of the gap and an inert gas inlet is provided on the opposite side. And a laser heating evaporation comprising a nozzle formed so that an inert gas flowing on the surface of the solid becomes a laminar flow, and a laser light source for irradiating the surface of the solid through the transparent glass. Method for forming a microfilm using a method.
JP34003497A 1997-12-10 1997-12-10 Microfilm formation method using laser heating evaporation method Expired - Fee Related JP4008083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34003497A JP4008083B2 (en) 1997-12-10 1997-12-10 Microfilm formation method using laser heating evaporation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34003497A JP4008083B2 (en) 1997-12-10 1997-12-10 Microfilm formation method using laser heating evaporation method

Publications (2)

Publication Number Publication Date
JPH11172422A JPH11172422A (en) 1999-06-29
JP4008083B2 true JP4008083B2 (en) 2007-11-14

Family

ID=18333115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34003497A Expired - Fee Related JP4008083B2 (en) 1997-12-10 1997-12-10 Microfilm formation method using laser heating evaporation method

Country Status (1)

Country Link
JP (1) JP4008083B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022171A (en) * 2015-07-07 2017-01-26 株式会社フジクラ Oxide superconducting conductor manufacturing method and manufacturing device

Also Published As

Publication number Publication date
JPH11172422A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
US7692115B2 (en) Laser processing device, laser processing head and laser processing method
US5254832A (en) Method of manufacturing ultrafine particles and their application
Papakonstantinou et al. Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films
JP5165203B2 (en) Laser processing apparatus and laser processing method
KR100225775B1 (en) Method for analyzing solid specimen and apparatus therefor
JPH0565561B2 (en)
JP4008083B2 (en) Microfilm formation method using laser heating evaporation method
JPH06299353A (en) Continuous vacuum deposition device
JPH04214860A (en) Manufacture of multicomponent solid material
Riehemann Synthesis of nanoscaled powders by laser-evaporation of materials
WO2019146060A1 (en) Method for manufacturing chromel-alumel thermocouple
WO2007149011A1 (en) Method for producing film coatings by means of laser ablation
JP2005294625A5 (en) Film forming apparatus and manufacturing method of TFT array substrate
CN115537737B (en) Preparation method and system of thin coating
JP2939047B2 (en) Metal spraying method
JP2024060734A (en) Method for manufacturing ceramic-metal bonded body
JPH0788359A (en) Method and device for forming compound film
JP2001107223A (en) Film deposition method and system by pulse laser
JP2505376B2 (en) Film forming method and apparatus
JP2008202106A (en) Method for producing fine particle or fine-sized fiber
JPH09256141A (en) Formation of thin film and device therefor
JPH06136520A (en) Method for producing thin film and device therefor
US20200156934A1 (en) Method assisted by a laser and high-intensity electric fields for the synthesis and collection of nanoparticles and the generation of coatings
JPH1055899A (en) X-ray generator
JP2001107224A (en) Film deposition method and system by pulse laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees