JP2001058899A - Method and apparatus for processing metal body - Google Patents

Method and apparatus for processing metal body

Info

Publication number
JP2001058899A
JP2001058899A JP11232845A JP23284599A JP2001058899A JP 2001058899 A JP2001058899 A JP 2001058899A JP 11232845 A JP11232845 A JP 11232845A JP 23284599 A JP23284599 A JP 23284599A JP 2001058899 A JP2001058899 A JP 2001058899A
Authority
JP
Japan
Prior art keywords
metal
metal body
decompression chamber
processing
laser oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11232845A
Other languages
Japanese (ja)
Inventor
Yuji Kawakami
裕二 川上
Hidekazu Ozawa
英一 小澤
Shinya Sasaki
信也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuum Metallurgical Co Ltd
Original Assignee
Vacuum Metallurgical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuum Metallurgical Co Ltd filed Critical Vacuum Metallurgical Co Ltd
Priority to JP11232845A priority Critical patent/JP2001058899A/en
Publication of JP2001058899A publication Critical patent/JP2001058899A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a great number of spherical projections made of a metal semi-regularly arranged on the surface of the metal by irradiating the metal installed in a fixed vacuum atmosphere with a pulse laser beam. SOLUTION: A metal body 32 is preferably a single crystal of a low-melting metal such as W32, etc., W32 as the metal body 32 is held by a retaining holder 33 in a vacuum chamber 22. The vacuum chamber 22 is evacuated, a He gas is introduced from an inert gas inlet pipe 31 and the pressure in the vacuum chamber 22 is retained, for example, at 4kPa. Then a pulse laser beam L is oscillated at 1-1.2 j/P output at 8-10 ns pulse width at 1-20 Hz number of pulse repetition from Nd:YAG laser oscillator 23 of 1,064 nm wavelength, rotates a plane of polarization in a (λ/2) plate 24, condensed through refraction mirrors 25 and 27 by a condensing lens 28 to form a focus through an introduction window 29 on a W surface 32a. W fine projections are formed on the W surface 32a at 0-30 deg. irradiation angle at 300-1,200 times of number of irradiations.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属体の加工方法
及び加工装置に関し、更に詳しくは、金属体にパルスレ
ーザーを照射して、金属体表面に半球状の微小突起物を
多数形成させる金属体の加工方法及び加工装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for processing a metal body, and more particularly, to a method of irradiating a pulsed laser to a metal body to form a large number of hemispherical minute projections on the surface of the metal body. The present invention relates to a body processing method and a body processing apparatus.

【0002】[0002]

【従来の技術】従来、レーザー照射によって基板表面に
リップル(縞模様)状の微小突起物を形成させる研究が
種々行われている。例えば、スタンフォード大学のP.M.
Fauchet, A.E.Siegman らの論文「Appl.Phys.Lett.,40
(1982),824」によれば、Si,Ge,GaAsなどに直線偏光させ
たNd:YAGレーザー光を照射して、偏光方向に垂直に筋が
並ぶリップルの形成が見られる。また、トロント大学の
Jeff.F.Young, J.E.Sipe, J.S.Preston, H.M. van Dri
elらの論文「Appl.Phys.Lett.,41(1982),261」によれ
ば、Ge,Al,Siなどに直線偏光させたNd:YAGレーザー光を
照射して、やはり偏光方向に垂直に筋が並ぶリップルの
形成が見られ、照射角度が45度以上では偏光方向に平
行に並ぶ。また、物質工学工業技術研究所の矢部明、新
納弘之らの論文「レーザー研究, 26(1998),155」によれ
ば、ポリマーにXeCl,KrF,ArFなどのレーザー光を照射し
て突起状の微細構造を形成させ、偏光の種類でその形状
を変化させている。しかし、基板表面に粒子(超微粒
子)状の突起物が多数並んで配列して形成されるという
報告はない。
2. Description of the Related Art Hitherto, various studies have been conducted to form ripple (striped) minute projections on a substrate surface by laser irradiation. For example, PM at Stanford University
Fauchet, AESiegman et al., Appl.Phys. Lett., 40
According to (1982), 824, a linearly polarized Nd: YAG laser beam is irradiated onto Si, Ge, GaAs, or the like, and ripples with stripes perpendicular to the polarization direction are formed. The University of Toronto
Jeff.F.Young, JESipe, JSPreston, HM van Dri
According to el et al.'s paper, `` Appl.Phys.Lett., 41 (1982), 261 '', Ge, Al, Si, etc. were irradiated with linearly polarized Nd: YAG laser light, and again perpendicular to the polarization direction. The formation of ripples in which streaks are arranged is observed, and when the irradiation angle is 45 degrees or more, they are arranged in parallel to the polarization direction. According to the paper `` Laser Research, 26 (1998), 155 '' by Akira Yabe and Hiroyuki Shinno of the National Institute of Materials Technology, polymers are irradiated with laser beams such as XeCl, KrF, and ArF to form protrusions. A microstructure is formed and its shape is changed depending on the type of polarized light. However, there is no report that a large number of particles (ultrafine particles) are formed on the substrate surface.

【0003】[0003]

【発明が解決しようとする課題】本発明は従来技術に見
られない新しい知見に基づいてなされ、金属体表面に大
きさの揃った半球状の微小突起物を規則的に配列して形
成させることのできる金属体の加工方法及び加工装置を
提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention is based on a new finding not found in the prior art, and is intended to form regularly arranged hemispherical microprojections having a uniform size on the surface of a metal body. An object of the present invention is to provide a method and an apparatus for processing a metal body that can be performed.

【0004】[0004]

【課題を解決するための手段】以上の課題は、所定の減
圧雰囲気中に配設された金属体に、パルスレーザー光を
照射して、金属体表面にこの金属でなる半球状の突起物
を多数形成させることを特徴とする金属体の加工方法、
によって解決される。
The above object is achieved by irradiating a metal body provided in a predetermined reduced-pressure atmosphere with a pulse laser beam to form a hemispherical projection made of the metal on the surface of the metal body. A metal body processing method characterized by forming a large number
Solved by

【0005】または、減圧室に配設された金属体と、前
記減圧室の壁部に形成した開口を塞ぐ透明材でなる導入
窓と、前記減圧室の外部に配設されたパルスレーザー発
振器とを備え、該パルスレーザー発振器から発振される
レーザー光を前記導入窓から前記減圧室内の前記金属体
表面に照射して、前記金属体表面に該金属でなる半球状
の突起物を多数形成させることを特徴とする金属体の加
工装置、によって解決される。
Alternatively, a metal body provided in the decompression chamber, an introduction window made of a transparent material for closing an opening formed in a wall of the decompression chamber, and a pulse laser oscillator provided outside the decompression chamber. Irradiating a laser beam oscillated from the pulsed laser oscillator onto the metal body surface in the decompression chamber from the introduction window to form a large number of hemispherical projections made of the metal on the metal body surface. And a metal body processing apparatus characterized in that:

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0007】図1は、本実施の形態によるW突起物形成
装置21を示す。
FIG. 1 shows a W projection forming apparatus 21 according to the present embodiment.

【0008】減圧室22内には、金属体としてのタング
ステン(W)32が保持ホルダー33により保持されて
配設されている。W32は、例えば直径9mm、厚さ3
mmの円形ブロック形状であり(同様な寸法の角形とし
てもよい)、また単結晶でなり、表面32aの結晶方位
は(100)に配向している。
[0008] In the decompression chamber 22, a tungsten (W) 32 as a metal body is provided and held by a holding holder 33. W32 has, for example, a diameter of 9 mm and a thickness of 3
It has a circular block shape of mm (it may be a square with similar dimensions) and is made of single crystal, and the crystal orientation of the surface 32a is oriented to (100).

【0009】減圧室22は、その下部でバルブ26を介
して真空排気系(図示省略)に接続されている。また、
上部では不活性ガス導入管31が接続され、バルブ30
を介して不活性ガス、例えばHeが導入される。
The decompression chamber 22 is connected at its lower part to a vacuum exhaust system (not shown) via a valve 26. Also,
In the upper part, an inert gas introduction pipe 31 is connected, and a valve 30 is connected.
Via an inert gas, for example He.

【0010】また、W32の表面32aに対向する減圧
室22の側壁には開口22aが形成され、この開口22
aを塞いで透明材、例えば石英でなるレーザー光導入窓
29が取り付けられている。
An opening 22a is formed in the side wall of the decompression chamber 22 facing the surface 32a of W32.
A laser light introducing window 29 made of a transparent material, for example, quartz, is attached to block a.

【0011】減圧室22の外部には、Nd:YAGパル
スレーザー発振器23(出力0.5〜1.2J/P、波
長1064nm)が配設されている。Nd:YAGレー
ザー発振器23から発振されるレーザー光Lは、同じく
減圧室22の外部に配設された(λ/2)板24、屈折
ミラー25、27、集光レンズ28を介して、導入窓2
9より、W表面32a上に焦点を結んで照射される。
An Nd: YAG pulse laser oscillator 23 (output: 0.5 to 1.2 J / P, wavelength: 1064 nm) is provided outside the decompression chamber 22. The laser light L oscillated from the Nd: YAG laser oscillator 23 is introduced through a (λ / 2) plate 24, refraction mirrors 25 and 27, and a condenser lens 28 which are also provided outside the decompression chamber 22. 2
9, the light is focused on the W surface 32 a and irradiated.

【0012】次に、以上の装置21による、W突起物の
形成について説明する。
Next, formation of a W projection by the above-described apparatus 21 will be described.

【0013】先ず、真空排気系で減圧室22内を6.7
×10-4Pa(5×10-6Torr)の圧力以下に減圧
する。この後、不活性ガス導入管31からHeガスを導
入し、差動排気しながら減圧室22内の圧力を例えば4
kPa(30Torr)に保持する。
First, the inside of the decompression chamber 22 is 6.7 in the evacuation system.
The pressure is reduced to a pressure of × 10 −4 Pa (5 × 10 −6 Torr) or less. Thereafter, He gas is introduced from the inert gas introduction pipe 31 and the pressure in the decompression chamber 22 is increased to, for example, 4 while performing differential evacuation.
It is kept at kPa (30 Torr).

【0014】このような雰囲気条件となったところで、
Nd:YAGレーザー発振器23から、パルスレーザー
光Lを発振する。その発振条件は、出力1〜1.2J/
P、パルス幅8〜10ns、パルス繰り返し数1〜20
Hzである。発振されたレーザー光Lは、(λ/2)板
24で偏光面を回転され、屈折ミラー25、27を経由
して、集光レンズ28で集光され、導入窓29を通過し
てW表面32a上に焦点を結んで照射される。照射角度
は、0°〜30°である(W表面32a上に垂直に照射
される方向を0°とする)。照射回数300〜1200
回で照射を終了する。
In such an atmosphere condition,
The pulse laser light L is oscillated from the Nd: YAG laser oscillator 23. The oscillation conditions are as follows: output 1 to 1.2 J /
P, pulse width 8-10 ns, pulse repetition number 1-20
Hz. The oscillated laser light L has its polarization plane rotated by a (λ / 2) plate 24, is condensed by a condenser lens 28 via refraction mirrors 25 and 27, passes through an introduction window 29, and passes through a W surface. The light is focused and irradiated on 32a. The irradiation angle is 0 ° to 30 ° (the direction perpendicularly irradiated on the W surface 32a is 0 °). Irradiation frequency 300 to 1200
The irradiation is completed at the same time.

【0015】次に、以上のような処理を受けたW32を
取り出し、走査型電子顕微鏡(SEM)で観察すると、
図2に示すように、ケロイド状のレーザー照射痕36の
周辺にリング状に、一定のピッチで規則正しく配列した
多数のW微小突起物35が観察される。図3は図2にお
けるA部の拡大斜視図である。W微小突起物35は粒径
が揃っており、それぞれ直径約700nm、高さ約30
0nmのほぼ半球状で、結晶方位(100)に配向した
単結晶微小突起物である。周方向における隣合う突起物
35間の間隔は300〜400nmであり、径方向にお
けるピッチは1000nm(1μm)となって規則的に
配列している。
Next, the W32 subjected to the above-described processing is taken out and observed with a scanning electron microscope (SEM).
As shown in FIG. 2, a large number of W microprojections 35 regularly arranged at a constant pitch in a ring shape are observed around a keloid-shaped laser irradiation mark 36. FIG. 3 is an enlarged perspective view of a portion A in FIG. The W microprojections 35 have a uniform particle size, each having a diameter of about 700 nm and a height of about 30 nm.
It is a single-crystal microprojection having a substantially hemispherical shape of 0 nm and oriented in the crystal orientation (100). The spacing between the adjacent protrusions 35 in the circumferential direction is 300 to 400 nm, and the pitch in the radial direction is 1000 nm (1 μm), which is regularly arranged.

【0016】このように、本実施の形態では、nm単位
の極めて小さな突起物を形成させることができ、例え
ば、回転体と基板との間を一定に保持するためのスペー
サや二重ガラスのスペーサなどに適用すれば、微小空間
保持に効果を奏する。また、Wは電子放出しやすい性質
を有しており、例えば、突起物を形成させたWが大型の
表示器などに用いられている電子銃のカソードとして利
用されており、これへの適用も可能である。本実施の形
態の方が簡単に低コストで製造できる。
As described above, in the present embodiment, extremely small protrusions in units of nm can be formed. For example, a spacer for maintaining a constant distance between the rotating body and the substrate or a spacer made of double glass If it is applied to, for example, it is effective in maintaining a minute space. Further, W has a property of easily emitting electrons. For example, W on which a projection is formed is used as a cathode of an electron gun used in a large-sized display and the like, and application to this is also possible. It is possible. This embodiment can be easily manufactured at low cost.

【0017】以上、本発明の実施の形態について説明し
たが、勿論、本発明はこれに限定されることなく、本発
明の技術的思想に基づいて種々の変形が可能である。
Although the embodiments of the present invention have been described above, the present invention is, of course, not limited thereto, and various modifications can be made based on the technical concept of the present invention.

【0018】以上の実施の形態では、減圧室22内の雰
囲気は、減圧下で不活性ガスを導入しているが、必ずし
も不活性ガスを導入しなくともよい。
In the above embodiment, the atmosphere in the decompression chamber 22 is such that an inert gas is introduced under reduced pressure. However, it is not always necessary to introduce an inert gas.

【0019】また、突起物の大きさは実施の形態で示し
たものに限らず、パルスレーザーの発振条件を変えるこ
とによって、粒径100nm〜1μmで粒径の揃った微
小突起物を形成できる。
The size of the projections is not limited to that described in the embodiment, and fine projections having a uniform particle diameter of 100 nm to 1 μm can be formed by changing the oscillation conditions of the pulse laser.

【0020】更に、上記実施の形態では、単結晶でなる
Wを用いているが、単結晶でなくとも良い。しかし、単
結晶でないものを用いるとレーザー照射により割れが起
こりやすく、また形成される突起物も規則正しい配向性
を示さない。また、W以外の金属、特にTa、Moなど
の高融点金属を用いても良い。高融点金属を用いるとそ
の表面のみが溶融、流動し、所望の微小突起物が形成さ
れるが、低融点金属(例えば、銅など)では、溶融が表
面のみにととまらず所望の微小突起物を形成させること
が難しい。しかし、低融点金属においても、液体窒素な
どで冷却することで、表面のみを溶融、流動させること
ができ、高融点金属を用いた場合と同様な微小突起物を
得ることができる。
Further, in the above embodiment, W made of a single crystal is used, but it is not necessary to use a single crystal. However, when a non-single crystal is used, cracks are likely to occur by laser irradiation, and the formed protrusions do not show regular orientation. Further, a metal other than W, particularly a high melting point metal such as Ta or Mo may be used. When a high-melting-point metal is used, only its surface melts and flows to form desired microprojections. However, with a low-melting-point metal (for example, copper), the desired microprojections do not stop at only the surface. Is difficult to form. However, even with a low-melting-point metal, by cooling with liquid nitrogen or the like, only the surface can be melted and flown, and the same minute projections as those obtained when a high-melting-point metal is used can be obtained.

【0021】[0021]

【発明の効果】以上述べたように本発明によれば、金属
体表面に、粒径の良く揃った多数の半球状微小突起物を
一定ピッチで規則正しく配列させて形成させることがで
きる。
As described above, according to the present invention, it is possible to form a large number of hemispherical fine projections having a uniform particle size on a metal body surface by regularly arranging them at a constant pitch.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による金属体の加工装置を
示す概略図である。
FIG. 1 is a schematic view showing an apparatus for processing a metal body according to an embodiment of the present invention.

【図2】図1の装置により形成されたW表面上のレーザ
ー照射痕周辺部の部分破断した拡大平面図である。
FIG. 2 is an enlarged plan view partially broken around a laser irradiation mark on a W surface formed by the apparatus of FIG. 1;

【図3】図2におけるA部の拡大斜視図である。FIG. 3 is an enlarged perspective view of a portion A in FIG. 2;

【符号の説明】[Explanation of symbols]

22 減圧室 23 パルスレーザー発振器 29 導入窓 31 不活性ガス導入管 32 金属体 22 decompression chamber 23 pulse laser oscillator 29 introduction window 31 inert gas introduction pipe 32 metal body

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4E068 AH00 CJ01 CJ09 DB01 4G077 AA02 BA01 FH08  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4E068 AH00 CJ01 CJ09 DB01 4G077 AA02 BA01 FH08

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 所定の減圧雰囲気中に金属体を配設し、
該金属体にパルスレーザー光を照射して、該金属体表面
に該金属でなる半球状の突起物を多数形成させることを
特徴とする金属体の加工方法。
1. A metal body is disposed in a predetermined reduced-pressure atmosphere,
A method for processing a metal body, comprising irradiating the metal body with a pulsed laser beam to form a large number of hemispherical projections made of the metal on the surface of the metal body.
【請求項2】 前記金属は単結晶で成ることを特徴とす
る請求項1に記載の金属体の加工方法。
2. The method according to claim 1, wherein the metal is a single crystal.
【請求項3】 前記金属は高融点金属であることを特徴
とする請求項1又は請求項2に記載の金属体の加工方
法。
3. The method according to claim 1, wherein the metal is a high melting point metal.
【請求項4】 前記高融点金属はタングステンであるこ
とを特徴とする請求項3に記載の金属体の加工方法。
4. The method according to claim 3, wherein the high melting point metal is tungsten.
【請求項5】 前記パルスレーザーは、波長1064n
mのNd:YAGレーザーであることを特徴とする請求
項1乃至請求項4の何れかに記載の金属体の加工方法。
5. The pulse laser has a wavelength of 1064n.
5. The method for processing a metal body according to claim 1, wherein the metal is a Nd: YAG laser.
【請求項6】 前記所定の減圧雰囲気は、不活性ガス雰
囲気であることを特徴とする請求項1乃至請求項5の何
れかに記載の金属体の加工方法。
6. The method according to claim 1, wherein the predetermined reduced-pressure atmosphere is an inert gas atmosphere.
【請求項7】 減圧室に配設された金属体と、前記減圧
室の壁部に形成した開口を塞ぐ透明材でなる導入窓と、
前記減圧室の外部に配設されたパルスレーザー発振器と
を備え、前記パルスレーザー発振器から発振されるレー
ザー光を前記導入窓から前記減圧室内の前記金属体表面
に照射して、該金属体表面に該金属でなる半球状の突起
物を多数形成させることを特徴とする金属体の加工装
置。
7. A metal body provided in the decompression chamber, and an introduction window made of a transparent material for closing an opening formed in a wall of the decompression chamber.
A pulsed laser oscillator disposed outside the decompression chamber, and irradiating the surface of the metal body in the decompression chamber with the laser light oscillated from the pulsed laser oscillator from the introduction window to the surface of the metal body. An apparatus for processing a metal body, wherein a large number of hemispherical projections made of the metal are formed.
【請求項8】 前記パルスレーザー発振器は、波長10
64nmのNd:YAGレーザー発振器であることを特
徴とする請求項7に記載の金属体の加工装置。
8. The pulse laser oscillator has a wavelength of 10.
The apparatus according to claim 7, wherein the apparatus is a 64 nm Nd: YAG laser oscillator.
【請求項9】 前記減圧室は不活性ガス雰囲気であるこ
とを特徴とする請求項7又は請求項8に記載の金属体の
加工装置。
9. The apparatus for processing a metal body according to claim 7, wherein the decompression chamber is in an inert gas atmosphere.
JP11232845A 1999-08-19 1999-08-19 Method and apparatus for processing metal body Pending JP2001058899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11232845A JP2001058899A (en) 1999-08-19 1999-08-19 Method and apparatus for processing metal body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11232845A JP2001058899A (en) 1999-08-19 1999-08-19 Method and apparatus for processing metal body

Publications (1)

Publication Number Publication Date
JP2001058899A true JP2001058899A (en) 2001-03-06

Family

ID=16945714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11232845A Pending JP2001058899A (en) 1999-08-19 1999-08-19 Method and apparatus for processing metal body

Country Status (1)

Country Link
JP (1) JP2001058899A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694456B (en) * 2009-10-13 2011-08-10 合肥工业大学 Sensor for detecting all-sky atmospheric polarization mode and method for processing detection signals
DE102011087181A1 (en) * 2011-11-28 2013-05-29 3D-Micromac Ag Laser Processing System
CN114918546A (en) * 2022-06-02 2022-08-19 南京理工大学 Controllable preparation method of corrugated structure on surface of metal material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694456B (en) * 2009-10-13 2011-08-10 合肥工业大学 Sensor for detecting all-sky atmospheric polarization mode and method for processing detection signals
DE102011087181A1 (en) * 2011-11-28 2013-05-29 3D-Micromac Ag Laser Processing System
DE102011087181B4 (en) * 2011-11-28 2017-08-17 3D-Micromac Ag Laser Processing System
CN114918546A (en) * 2022-06-02 2022-08-19 南京理工大学 Controllable preparation method of corrugated structure on surface of metal material

Similar Documents

Publication Publication Date Title
TWI336277B (en) Laser processing device, laser processing head and laser processing method
US8598051B2 (en) Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US6647088B1 (en) Production of a dense mist of micrometric droplets in particular for extreme UV lithography
US4970196A (en) Method and apparatus for the thin film deposition of materials with a high power pulsed laser
JP2555045B2 (en) Thin film forming method and apparatus
US8581140B2 (en) Laser processing apparatus, laser processing head and laser processing method
JP2008545541A (en) Self-healing and enhancement of nanostructures by liquefaction under induction conditions
JPS6254005A (en) Production of hyperfine particles
JP2011102230A (en) Method of notching brittle material, method of making member having notch, and method of making display device
JP2001058899A (en) Method and apparatus for processing metal body
JPH0740336A (en) Diamond machining method
JPS63224233A (en) Surface treatment
JPH08174244A (en) Method for cutting off substrate member and device thereof
JP2002219587A (en) Producing method for metal micro projection and producing device therefor
JP2005081420A (en) Thin film deposition/removal device, and thin film deposition/removal method
JPH05190517A (en) Microscopic pattern forming method
JP2006233275A (en) Thin film deposition apparatus
JP2004170353A (en) Electron beam irradiator and method for irradiation by it
JP2004263245A (en) Reaction method, and reaction device
JP2000212733A (en) Heating evaporating method for evaporating material and device therefor
TWI642103B (en) In-situ euv collector cleaning utilizing a cryogenic process
KR200200523Y1 (en) Thin film formation method by laser ablation or high voltage discharge plasma CVD or laser ablation combined with high voltage discharge plasma CVD
JPH06316406A (en) Method for processing diamond
JP2004277813A (en) Thin film manufacturing method, and particle deposition method
JP2024048470A (en) Base plate processing method and chip production method