JP4007839B2 - Open MRI system - Google Patents

Open MRI system Download PDF

Info

Publication number
JP4007839B2
JP4007839B2 JP2002101632A JP2002101632A JP4007839B2 JP 4007839 B2 JP4007839 B2 JP 4007839B2 JP 2002101632 A JP2002101632 A JP 2002101632A JP 2002101632 A JP2002101632 A JP 2002101632A JP 4007839 B2 JP4007839 B2 JP 4007839B2
Authority
JP
Japan
Prior art keywords
space
magnetic field
subject
guide means
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002101632A
Other languages
Japanese (ja)
Other versions
JP2003290173A (en
JP2003290173A5 (en
Inventor
宗孝 津田
弘行 大関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2002101632A priority Critical patent/JP4007839B2/en
Publication of JP2003290173A publication Critical patent/JP2003290173A/en
Publication of JP2003290173A5 publication Critical patent/JP2003290173A5/ja
Application granted granted Critical
Publication of JP4007839B2 publication Critical patent/JP4007839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
この発明は磁気共鳴イメージング装置(以下、MRI装置という)に係わり、特に、被検者に圧迫感を与えない開放型の磁石を採用し、かつ、被検者の磁石内セッティングに好適な手段を有する開放型MRI装置に関する。
【0002】
【従来の技術】
核磁気共鳴(NMR)現象を利用して人体の断層像を得るMRI検査法は広く医療機関で利用されている。このMRI検査法は正確に被検体の検査部位の内部構造を反映する必要から、検査部位を含む空間に均一な磁場強度を発生する磁石を必要としている。均一な磁場空間は無限長のソレノイドコイル内で得られることから、MRI装置に用いられる磁石の多くは細長い筒状の空芯ソレノイドコイルと磁場均一度を改善するシム機構が組み込まれた構造となっている。
【0003】
細長い空間に被検者を配設する磁石構造のMRI装置は被検者に対して圧迫感を与えるので閉所恐怖症者や小児の検査に対して適当ではなかった。そこで、側面に開口部を設けたり、磁石前面の被検者搬入部を広くした磁石を採用したMRI装置が開発され近年普及している。
【0004】
この開放型のMRI装置の磁石としては、開放構造の作りやすさから比較的磁場強度が低い常電導磁石や永久磁石が用いられている。これらの磁石は鉄ヨークによる磁気回路を構成しており、その開放型構造を支持する構造物を構成すると共に、その磁気的特性である起磁力と漏洩磁場の向上の働きをしている。これらに関する公知の技術として、特許第2759185号公報がある。
【0005】
一方で、検査部位の位置精度高めるため、被検者の検査部位を正確に磁石の中心に配設する必要がある。磁石の中心で被検者の検査部位の位置合わせをすることは実質的に困難である。その理由は比較的狭い磁石空間内で被検者の体を動かすことが困難なこと、また磁石の周辺部に立つオペーレータからは磁石中心付近まで距離があること、磁石中心を検査部位が占めることになり磁石中心を特定できないことによる。そこで、磁石の周辺位置に磁石の中心をガイドする投光機が複数取り付けられ、この投光機のガイド光に合わせて被検者の検査部位を合わせる。この合わせ作業後、磁石周辺位置と磁石中心位置のオフセット距離を取除く移動過程を経て被検者の検査部位を磁石中心に合わせている。
【0006】
【発明が解決しようとする課題】
開放構造の磁石を用いたMRI装置の有用性が確立されるにつれ、被検者を磁石に搬入するときに感ずる圧迫感を更に低減するためや、検査中の小児の被検者を看護しやすいように磁石の前面や側面の開口を出来るだけ広くした開放構造の磁石構造が提案されている。この様に被検者の搬入口を大きくすることによって、磁石周辺に取り付けられていた投光機の取り付け場所が制約され、最適な位置に取り付けられない問題が生じた。これは磁石の前面位置で被検者の検査部位と検出コイルをセットするオフセット位置合わせに対して、横方向からのガイド光を発する投光機を取り付ける構造物が存在しないことや、あるいは投光機自体で磁石の側面の開放空間を犠牲にしたくないとする配慮もある。
【0007】
この問題の解決策の1つとして、投光機を磁石が設置される部屋の壁面に取り付ける提案もなされている。この場合は、磁石と部屋の相対位置を正確に測定する作業が必要になることと、投光機と磁石の間にオペレータが介在した場合にはガイド光が遮られ被検者の目的部位に投影されない問題が生じた。
【0008】
本発明は上述の観点に鑑みてなされたもので、その目的は開放的な磁石構造でもその開放構造を阻害することなく、被検体の検査部位の位置合わせに好適な投光機の配置を行ない検査部位の位置精度を向上することにある。
【0009】
【課題を解決するための手段】
上記目的を達成する本発明の開放型MRI装置は、被検体の置かれる空間に均一な静磁場を発生する静磁場発生手段と、前記空間に被検体を搬入・搬出する搬送手段と、前記被検体の所望の部位を前記空間の中心に移動するための複数のガイド手段と、を備えて前記被検体の断層画像を得るMRI装置であって、前記静磁場発生手段は、前記空間の上下に配置された磁場発生源と、上下の磁場発生源を所定の間隔を持って保持する1つの構造体とを備えた開放型MRI装置において、前記ガイド手段は、一方の前記磁場発生源の前記空間に対向する側に配置され、前記空間の中心を通る直線上の線分光と該線分光に垂直に交差する線分光を前記被検体上に照射する第一のガイド手段と、前記構造体の前記空間側の面上に配置され、前記空間の中心と前記第一のガイド手段の交差点を内部に含む範囲の角度で、前記磁場発生源の前記空間側の面に略平行な面状のガイド光を照射する第二のガイド手段とを備え、前記搬送手段は、前記第一のガイド手段と第二のガイド手段の前記空間外の交差点の位置が前記空間の中心に来るように前記被検体を搬入することで上記目的を達成した。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳述する。
【0011】
図1は本発明が適用されるオープン構造のMRI装置の全体概要を示す図である。このMRI装置は、被検者1が設置される空間に均一な磁場を発生する静磁場発生磁石2と、この静磁場発生磁石2の内側に配置された傾斜磁場コイル3と、さらにその内側に配置された高周波コイル5と、被検者1から発生するNMR信号を検出する検出コイル7とを備えている。被検者1を静磁場発生磁石2の中心空間に配設する患者テーブル13を備えている。さらに上述の各コイルを駆動する電源やNMR信号の増幅器や、それらの動作タイミングを制御するシーケンサ9(これら電源とシーケンサ9は一体の筐体16に収納されている)と装置の制御を行うと共にNMR信号を処理し画像化するコンピュータ10とで構成される。通常、静磁場発生磁石2と各コイルと患者テーブル13は電磁波遮蔽効果の有するシールド部屋14に設置され、外部やMRI装置のコンピューター10などが発生する電磁波ノイズが検出コイル7に混入するのを防いでいる。このため各コイルを駆動する電源やNMR信号の増幅器との接続(図では接続ケーブルは描かれていない)はシールド部屋14の一部に組み込まれたフィルター回路15を介して行われる。
【0012】
静磁場発生磁石2は、図示する実施形態では、上下一対の永久磁石からなり、これらは被検体1の配設される空間に上下方向の均一な静磁場を発生する。更に、これら一対の永久磁石2はそれぞれ鉄プレートを外側に有し、上下鉄プレートを接続する支柱とからなる鉄ヨークが組み合わされ磁気回路を構成している。例えば静磁場強度は0.4テスラで、 被検者の配設される空間に均一な磁場を発生するように調整されている。本実施例の静磁場発生磁石2は上下の永久磁石を支持する1本の支柱から構成される。更に、磁石周囲と支柱の一箇所にガイド光を発する投光機25、28が取り付けられている。
【0013】
傾斜磁場コイル3は、互いに直交するx、y、zの3軸方向に磁束密度を変化させるように巻かれた3組のコイルからなり、それぞれ傾斜磁場電源4に接続されている。シーケンサ9からの制御信号に従って傾斜磁場電源4(x軸4a、y軸4b、z軸4c)を駆動して傾斜磁場コイル3に流れる電流値を変化させることにより3軸からなる傾斜磁場Gx、Gy、Gzを被検者1の配設空間の静磁場に重畳するようになっている。この傾斜磁場は、被検者1の検査部位から得られるNMR信号の空間的な分布を識別するのに用いられる。この傾斜磁場コイル3は静磁場発生磁石2の開放構造を阻害することが無いように一対からなる平板で構成され上下の磁石に組み込まれている。
【0014】
高周波コイル5は、高周波コイル5に高周波電流を流すための高周波電力アンプ6に接続され、被検者1の検査部位の原子核を共鳴励起するための高周波磁場を発生する。原子核としては、通常、水素原子核が用いられるため、高周波コイル5と高周波電力アンプ6は17MHzにチューニングされている。高周波電力アンプ6もシーケンサ9の制御信号で制御されている。更に、高周波コイル5も静磁場発生磁石2の開放構造を阻害することが無いように一対からなる平板で構成され傾斜磁場コイル3の内側にそれぞれ組み込まれている。
【0015】
検出コイル7は高周波増幅器8に接続されており、高周波増幅器8は検出コイル7で検出したNMR信号を増幅・検波するとともに、コンピュータ10による処理が可能なディジタル信号に変換する。高周波増幅器8もシーケンサ9でその動作タイミングが制御されている。
【0016】
コンピュータ10はディジタル量に変換されたNMR信号を用いて画像再構成等の演算を行うとともに、シーケンサ9を介してMRI装置の各ユニットの動作を定められたタイミングで制御する。コンピュータ10と処理後のデータを表示するディスプレイ装置11と操作入力する操作卓12とで演算処理系が構成される。
【0017】
図2は図1に示した静磁場発生磁石2と患者テーブル13の外観を示した図である。図において、上部21と下部22の容器内には永久磁石と磁気回路を構成する鉄プレート(図では見えない)が納められている。上部21の鉄プレートと下部22の鉄プレートと磁気回路を構成しかつ上部21と下部22を構造的に支える継鉄(図では見えない)を組み込んだ支柱23より静磁場発生磁石2の外観が構成されている。
【0018】
下部22の一部は直線の面24を有しており、この面24に対して患者テーブル13が組合わされる。面24の対向する上部21の位置にはレーザー投光機25が取り付けられている。投光機25のレーザー光は十字26のスリットで患者テーブル13の天板27の端部に投影される。一方、支柱23の磁石中心に面する位置にレーザー投光器28が取り付けられている。レーザー投光器28のスリット光(図では描かれていない)は磁石空間の中心を通る水平面と一致するように支柱23の中心に取り付けられ、調整がなされている。
【0019】
図3aは図2の静磁場発生磁石2と患者テーブル13を側面から見た図面である。レーザー投光機25の光の十字交叉点31は静磁場発生磁石2の空間中心32から例えば65cmオフセットした患者テーブル3側の位置を示す。即ち、レーザー投光機25の1つのスリット光は面33を通過し、他方のスリット光は面34を通過する。点31に検出コイルや被検者の検査部位がおかれると(図3bでは平面35で示した)、点31の位置でスリット光36とスリット光37が交叉し、この交叉する点31が静磁場発生磁石2の空間中心32から65cmの距離を隔てた点であることが解かる。ここで、スリット光の面33や面34はある広がりをもって投影されるようになっている。この広がりにより、面33の投影線を利用して被検者の体軸の曲がりを、面34の投影線を利用して被検者の左右の位置バランスを矯正することが出来る。この矯正により、MRI検査の画像が正確な位置を示すと共に診断精度を高めることになる。特に、マルチスライス撮影法で同時に複数枚の画像を取得するときや、脊椎に沿った画像を取得するときの検査精度の向上には極めて有効な手段となる。
【0020】
次に図4aは図3aの静磁場発生磁石2のA‐A'断面を示した図を示す。支柱23の磁石に面した曲面41に取り付けられたレーザー投光機28のスリット光は図の斜線で示される面42であり、点31と点32を通過する。点31に検出コイルや被検者の検査部位がおかれると(図3bでは患者テーブルに垂直面43で示した)、点31を通ってスリット光44が表示される。このスリット光44は静磁場発生磁石2の空間中心32を通る水平面に一致している。かつ、スリット光44は静磁場発生磁石2の空間内に存在するので、オペーレータや看護者によってスリット光が遮られることない。
【0021】
ここで、被検者1を患者テーブル13の天板27上でセットし、その検査部位に好適な検出コイルを取り付ける。この状態で2つのレーザー投光機25、28を動作させると、レーザーの赤色のスリット光のラインは検出コイルの表面に投影される。図5にこの状態の頭部コイルの表面に投影されるレーザー光を示した。図によれば三次元的に、即ち、前後左右上下の中心が検出コイルの表面に表示される。ここで、検査の中心部位がレーザー光の交差する点に合うように患者テーブル13の天板27を移動させることで被検者の検査部位が磁石の空間の中心に配設される。
【0022】
本実施例に拠れば、最少のレーザー投光機の数量(本実施例では2個)にて三次元の位置を示すことができる。更に、レーザー投光機と検出コイルを含む検査目的部位の間に介在するものが一切なく、オペレータや看護者の位置に関係なく検査部位の中心位置をレーザー光が投影することになり、これらの人の影になることがない。更には、被験者を磁石の中心に搬入するときも、常に被験者の検査部位をレーザー光の少なくとも一つが投影し続けるので、被験者の動き等による位置ずれなどをチェックすることができる。
【0023】
【発明の効果】
本発明によれば、開放型の磁石構造でも被検者の検査部位の位置あわせに精度高く行なうことができる効果がある。
【図面の簡単な説明】
【図1】本発明が適用されるMRI装置の全体構成を示す図。
【図2】本発明が適用されるMRI装置に用いられる静磁場発生磁石と患者テーブルの外観図。
【図3】レーザー投光機の説明図。
【図4】レーザー投光機の説明図。
【図5】頭部検出コイルによる位置合わせの説明図。
【符号の説明】
1……被検体
2……静磁場発生磁石
3……傾斜磁場コイル
5……高周波コイル
13……患者テーブル
25, 28……レーザー投光機
[0001]
[Technical field to which the invention belongs]
The present invention relates to a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus), and in particular, employs an open-type magnet that does not give a feeling of pressure to a subject, and means suitable for setting in the magnet of the subject. The present invention relates to an open MRI apparatus.
[0002]
[Prior art]
MRI examination methods that obtain tomographic images of the human body using the nuclear magnetic resonance (NMR) phenomenon are widely used in medical institutions. Since this MRI examination method needs to accurately reflect the internal structure of the examination region of the subject, a magnet that generates a uniform magnetic field strength in the space including the examination region is required. Since a uniform magnetic field space can be obtained in an infinitely long solenoid coil, many of the magnets used in an MRI apparatus have a structure that incorporates an elongated cylindrical air-core solenoid coil and a shim mechanism that improves magnetic field uniformity. ing.
[0003]
The magnetic structure MRI apparatus in which the subject is arranged in an elongated space gives a feeling of pressure to the subject and is not suitable for the examination of claustrophobic persons and children. In view of this, an MRI apparatus employing a magnet provided with an opening on the side surface or having a wide subject carrying part on the front side of the magnet has been developed and has recently become widespread.
[0004]
As the magnet of this open type MRI apparatus, a normal conducting magnet or a permanent magnet having a relatively low magnetic field strength is used because of the ease of making an open structure. These magnets constitute a magnetic circuit using an iron yoke, which constitutes a structure that supports the open type structure, and also works to improve magnetomotive force and leakage magnetic field, which are magnetic characteristics. Japanese Patent No. 2759185 is known as a related technique.
[0005]
On the other hand, in order to increase the position accuracy of the examination part, it is necessary to accurately arrange the examination part of the subject at the center of the magnet. It is substantially difficult to align the examination site of the subject at the center of the magnet. The reason is that it is difficult to move the subject's body in a relatively narrow magnet space, that there is a distance from the operator standing around the magnet to the vicinity of the magnet center, and that the examination site occupies the magnet center. This is because the magnet center cannot be specified. Therefore, a plurality of projectors for guiding the center of the magnet are attached to the peripheral positions of the magnet, and the examination site of the subject is adjusted according to the guide light of the projector. After this alignment operation, the inspection site of the subject is aligned with the magnet center through a moving process that removes the offset distance between the magnet peripheral position and the magnet center position.
[0006]
[Problems to be solved by the invention]
As the usefulness of MRI devices using open-structured magnets is established, it is easier to care for pediatric subjects during examinations and to further reduce the feeling of pressure felt when patients are carried into magnets. Thus, an open-type magnet structure has been proposed in which the openings on the front and side surfaces of the magnet are as wide as possible. Thus, by enlarging the examinee's entrance, the installation location of the projector installed around the magnet is restricted, causing a problem that the projector cannot be installed at the optimum position. This is because there is no structure to install a projector that emits guide light from the lateral direction for offset alignment that sets the inspection site and detection coil of the subject at the front position of the magnet, or There is also a consideration that the machine itself does not want to sacrifice the open space on the side of the magnet.
[0007]
As one solution to this problem, a proposal has been made to attach a projector to the wall of a room where a magnet is installed. In this case, it is necessary to accurately measure the relative position of the magnet and the room, and if an operator is interposed between the projector and the magnet, the guide light is blocked and the subject's target site is blocked. There was a problem that was not projected.
[0008]
The present invention has been made in view of the above-described viewpoints, and an object of the present invention is to arrange a projector that is suitable for alignment of an examination site of a subject without obstructing the open structure even with an open magnet structure. The purpose is to improve the position accuracy of the examination site.
[0009]
[Means for Solving the Problems]
The open MRI apparatus of the present invention that achieves the above object comprises a static magnetic field generating means for generating a uniform static magnetic field in a space where a subject is placed, a transport means for carrying in and out of the subject, and the subject. A plurality of guide means for moving a desired part of the specimen to the center of the space, and obtaining a tomographic image of the subject, wherein the static magnetic field generation means is located above and below the space. In the open-type MRI apparatus provided with the arranged magnetic field generation source and one structure that holds the upper and lower magnetic field generation sources with a predetermined interval, the guide means includes the space of one of the magnetic field generation sources. And a first guide means for irradiating the subject with a line spectrum on a straight line passing through the center of the space and a line spectrum perpendicularly intersecting the line spectrum, and the structure Arranged on the surface of the space, the center of the space and the first Second guide means for irradiating planar guide light substantially parallel to the space-side surface of the magnetic field generation source at an angle in a range including an intersection of the guide means inside, the transport means, The object is achieved by carrying the subject so that the position of the intersection of the first guide means and the second guide means outside the space is at the center of the space .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0011]
FIG. 1 is a diagram showing an overall outline of an open structure MRI apparatus to which the present invention is applied. This MRI apparatus includes a static magnetic field generating magnet 2 that generates a uniform magnetic field in a space where a subject 1 is installed, a gradient magnetic field coil 3 that is disposed inside the static magnetic field generating magnet 2, and an inner side thereof. A high-frequency coil 5 disposed and a detection coil 7 for detecting an NMR signal generated from the subject 1 are provided. A patient table 13 for arranging the subject 1 in the central space of the static magnetic field generating magnet 2 is provided. Furthermore, the power source for driving each coil, the amplifier for the NMR signal, the sequencer 9 for controlling the operation timing thereof (the power source and the sequencer 9 are housed in an integral housing 16) and the device are controlled. And a computer 10 for processing and imaging NMR signals. Normally, the static magnetic field generating magnet 2, each coil, and the patient table 13 are installed in a shield room 14 having an electromagnetic wave shielding effect, so that electromagnetic noise generated by the outside or the computer 10 of the MRI apparatus is prevented from being mixed into the detection coil 7. It is out. For this reason, connection to a power source for driving each coil and an amplifier for NMR signals (connection cables are not drawn in the figure) is made through a filter circuit 15 incorporated in a part of the shield room 14.
[0012]
In the illustrated embodiment, the static magnetic field generating magnet 2 is composed of a pair of upper and lower permanent magnets, which generate a uniform static magnetic field in the vertical direction in the space in which the subject 1 is disposed. Further, each of the pair of permanent magnets 2 has an iron plate on the outside, and an iron yoke including a support for connecting the upper and lower iron plates is combined to constitute a magnetic circuit. For example, the static magnetic field strength is 0.4 Tesla and is adjusted to generate a uniform magnetic field in the space where the subject is placed. The static magnetic field generating magnet 2 of the present embodiment is composed of a single support that supports upper and lower permanent magnets. Further, projectors 25 and 28 for emitting guide light are attached around the magnet and at one place of the support column.
[0013]
The gradient magnetic field coil 3 is composed of three sets of coils wound so as to change the magnetic flux density in three axial directions of x, y, and z orthogonal to each other, and each is connected to the gradient magnetic field power source 4. The gradient magnetic field power supply 4 (x axis 4a, y axis 4b, z axis 4c) is driven in accordance with the control signal from the sequencer 9 to change the value of the current flowing in the gradient coil 3 to change the gradient magnetic field Gx, Gy consisting of three axes. , Gz is superimposed on the static magnetic field in the placement space of the subject 1. This gradient magnetic field is used to identify the spatial distribution of NMR signals obtained from the examination site of subject 1. The gradient magnetic field coil 3 is composed of a pair of flat plates so as not to obstruct the open structure of the static magnetic field generating magnet 2, and is incorporated in the upper and lower magnets.
[0014]
The high-frequency coil 5 is connected to a high-frequency power amplifier 6 for flowing a high-frequency current through the high-frequency coil 5, and generates a high-frequency magnetic field for resonantly exciting the nucleus of the examination site of the subject 1. Since hydrogen nuclei are usually used as the nuclei, the high frequency coil 5 and the high frequency power amplifier 6 are tuned to 17 MHz. The high frequency power amplifier 6 is also controlled by the control signal of the sequencer 9. Further, the high-frequency coil 5 is also composed of a pair of flat plates so as not to obstruct the open structure of the static magnetic field generating magnet 2, and is incorporated inside the gradient magnetic field coil 3, respectively.
[0015]
The detection coil 7 is connected to a high-frequency amplifier 8. The high-frequency amplifier 8 amplifies and detects the NMR signal detected by the detection coil 7, and converts it into a digital signal that can be processed by the computer 10. The operation timing of the high-frequency amplifier 8 is also controlled by the sequencer 9.
[0016]
The computer 10 performs operations such as image reconstruction using the NMR signals converted into digital quantities, and controls the operation of each unit of the MRI apparatus via the sequencer 9 at a predetermined timing. The computer 10, the display device 11 that displays the processed data, and the console 12 that performs operation input constitute an arithmetic processing system.
[0017]
FIG. 2 is a view showing the appearance of the static magnetic field generating magnet 2 and the patient table 13 shown in FIG. In the drawing, the iron plates (not shown in the figure) that constitute the permanent magnet and the magnetic circuit are accommodated in the containers of the upper part 21 and the lower part 22. The outer appearance of the static magnetic field generating magnet 2 is made up of the support pillar 23 that incorporates a yoke (not shown in the figure) that constitutes a magnetic circuit with the iron plate of the upper part 21 and the iron plate of the lower part 22 and structurally supports the upper part 21 and the lower part 22 It is configured.
[0018]
A part of the lower part 22 has a straight surface 24 to which the patient table 13 is combined. A laser projector 25 is attached to the position of the upper portion 21 facing the surface 24. The laser beam of the projector 25 is projected onto the end of the top plate 27 of the patient table 13 through the slit of the cross 26. On the other hand, a laser projector 28 is attached at a position facing the magnet center of the column 23. The slit light (not shown in the figure) of the laser projector 28 is attached to the center of the column 23 and adjusted so as to coincide with the horizontal plane passing through the center of the magnet space.
[0019]
FIG. 3a is a side view of the static magnetic field generating magnet 2 and the patient table 13 of FIG. The cross point 31 of the light of the laser projector 25 indicates the position on the patient table 3 side that is offset by, for example, 65 cm from the spatial center 32 of the static magnetic field generating magnet 2. That is, one slit light of the laser projector 25 passes through the surface 33 and the other slit light passes through the surface 34. When the detection coil or the examination site of the subject is placed at the point 31 (shown by the plane 35 in FIG. 3b), the slit light 36 and the slit light 37 cross at the position of the point 31, and this crossing point 31 is static. It can be seen that the point is a distance of 65 cm from the space center 32 of the magnetic field generating magnet 2. Here, the surface 33 and the surface 34 of the slit light are projected with a certain spread. By this spread, the bending of the body axis of the subject can be corrected using the projection line of the surface 33, and the left-right positional balance of the subject can be corrected using the projection line of the surface 34. By this correction, the image of the MRI examination shows an accurate position and the diagnostic accuracy is improved. In particular, it is an extremely effective means for improving examination accuracy when acquiring a plurality of images simultaneously by the multi-slice imaging method or acquiring an image along the spine.
[0020]
Next, FIG. 4a is a diagram showing an AA ′ cross section of the static magnetic field generating magnet 2 of FIG. 3a. The slit light of the laser projector 28 attached to the curved surface 41 facing the magnet of the support 23 is a surface 42 indicated by oblique lines in the figure, and passes through points 31 and 32. When the detection coil or the examination site of the subject is placed at the point 31 (shown by the vertical plane 43 on the patient table in FIG. 3b), the slit light 44 is displayed through the point 31. The slit light 44 coincides with a horizontal plane passing through the space center 32 of the static magnetic field generating magnet 2. Moreover, since the slit light 44 exists in the space of the static magnetic field generating magnet 2, the slit light is not blocked by the operator or the nurse.
[0021]
Here, the subject 1 is set on the top plate 27 of the patient table 13, and a suitable detection coil is attached to the examination site. When the two laser projectors 25 and 28 are operated in this state, the red slit light line of the laser is projected onto the surface of the detection coil. FIG. 5 shows the laser beam projected on the surface of the head coil in this state. According to the figure, the centers of the detection coil are displayed three-dimensionally, that is, the front, back, left, right, top and bottom centers . Here, by moving the top plate 27 of the patient table 13 so that the center part of the examination matches the point where the laser beams intersect, the examination part of the subject is arranged at the center of the magnet space.
[0022]
According to the present embodiment, the three-dimensional position can be indicated with the minimum number of laser projectors (two in this embodiment). Furthermore, there is nothing intervening between the examination target site including the laser projector and the detection coil, and the laser beam projects the central position of the examination site regardless of the position of the operator or nurse. There is no shadow of people. Further, even when the subject is brought into the center of the magnet, at least one of the laser light is continuously projected on the examination site of the subject, so that it is possible to check a positional deviation caused by the subject's movement or the like.
[0023]
【The invention's effect】
According to the present invention, there is an effect that even an open-type magnet structure can be performed with high accuracy in alignment of a test site of a subject.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of an MRI apparatus to which the present invention is applied.
FIG. 2 is an external view of a static magnetic field generating magnet and a patient table used in an MRI apparatus to which the present invention is applied.
FIG. 3 is an explanatory diagram of a laser projector.
FIG. 4 is an explanatory diagram of a laser projector.
FIG. 5 is an explanatory diagram of alignment by a head detection coil.
[Explanation of symbols]
1 …… Subject
2 …… Static magnetic field generating magnet
3 …… Gradient field coil
5 …… High frequency coil
13 …… Patient table
25, 28 …… Laser projector

Claims (3)

被検体の置かれる空間に均一な静磁場を発生する静磁場発生手段と、前記空間に被検体を搬入・搬出する搬送手段と、前記被検体の所望の部位を前記空間の中心に移動するための複数のガイド手段と、を備えて前記被検体の断層画像を得るMRI装置であって、前記静磁場発生手段は、前記空間の上下に配置された磁場発生源と、上下の磁場発生源を所定の間隔を持って保持する1つの構造体とを備えた開放型MRI装置において、
前記ガイド手段は、一方の前記磁場発生源の前記空間に対向する側に配置され、前記空間の中心を通る直線上の線分光と該線分光に垂直に交差する線分光を前記被検体上に照射する第一のガイド手段と、前記構造体の前記空間側の面上に配置され、前記空間の中心と前記第一のガイド手段の交差点を内部に含む範囲の角度で、前記磁場発生源の前記空間側の面に略平行な面状のガイド光を照射する第二のガイド手段とを備え、
前記搬送手段は、前記第一のガイド手段と第二のガイド手段の前記空間外の交差点の位置が前記空間の中心に来るように前記被検体を搬入することを特徴とする開放型MRI装置。
A static magnetic field generating means for generating a uniform static magnetic field in a space in which the subject is placed, a transport means for loading / unloading the subject into / from the space, and a desired part of the subject to move to the center of the space A plurality of guide means for obtaining a tomographic image of the subject, wherein the static magnetic field generating means includes a magnetic field generating source disposed above and below the space, and upper and lower magnetic field generating sources. In an open-type MRI apparatus provided with one structure that is held at a predetermined interval,
The guide means is disposed on a side of the one magnetic field generation source facing the space, and a line spectrum on a straight line passing through the center of the space and a line spectrum perpendicularly intersecting the line spectrum are formed on the subject. The first guide means for irradiating and the surface of the structure is disposed on the space-side surface, and has an angle within a range including the intersection of the center of the space and the first guide means. Second guide means for irradiating planar guide light substantially parallel to the space side surface,
The open type MRI apparatus, wherein the transport means carries the subject in such a way that the position of the intersection of the first guide means and the second guide means outside the space is at the center of the space.
請求項1に記載の開放型MRI装置において、  The open MRI apparatus according to claim 1,
前記第二のガイド手段は、前記構造体の中心に取り付けられることを特徴とする開放型MRI装置。  The open type MRI apparatus, wherein the second guide means is attached to the center of the structure.
請求項1または請求項2に記載の開放型MRI装置において、  In the open type MRI apparatus according to claim 1 or 2,
前記第二のガイド手段が一つであることを特徴とする開放型MRI装置。  The open type MRI apparatus, wherein the second guide means is one.
JP2002101632A 2002-04-03 2002-04-03 Open MRI system Expired - Lifetime JP4007839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002101632A JP4007839B2 (en) 2002-04-03 2002-04-03 Open MRI system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002101632A JP4007839B2 (en) 2002-04-03 2002-04-03 Open MRI system

Publications (3)

Publication Number Publication Date
JP2003290173A JP2003290173A (en) 2003-10-14
JP2003290173A5 JP2003290173A5 (en) 2005-06-30
JP4007839B2 true JP4007839B2 (en) 2007-11-14

Family

ID=29241900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002101632A Expired - Lifetime JP4007839B2 (en) 2002-04-03 2002-04-03 Open MRI system

Country Status (1)

Country Link
JP (1) JP4007839B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5184899B2 (en) * 2008-01-18 2013-04-17 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Magnetic resonance imaging system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3144791B2 (en) * 1990-08-24 2001-03-12 株式会社東芝 Magnetic resonance imaging diagnostic equipment
JP2774777B2 (en) * 1994-11-25 1998-07-09 株式会社日立メディコ Magnetic resonance imaging device
JP4034874B2 (en) * 1998-04-09 2008-01-16 株式会社日立メディコ Sleeper and medical diagnostic imaging apparatus using the same
JP2000139874A (en) * 1998-09-02 2000-05-23 Sumitomo Special Metals Co Ltd Magnetic field generator for mri
JP2001008917A (en) * 1999-06-29 2001-01-16 Hitachi Medical Corp Magnetic resonance imaging instrument

Also Published As

Publication number Publication date
JP2003290173A (en) 2003-10-14

Similar Documents

Publication Publication Date Title
US6366798B2 (en) Radiotherapy machine including magnetic resonance imaging system
JP2000107151A (en) Magnetic resonance imaging apparatus
CN106821500B (en) Navigation system for minimally invasive surgery
EP3839541A2 (en) Toroidal magnet configuration for dedicated mri scanners
JPH0472540B2 (en)
JPWO2002022012A1 (en) Magnetic resonance imaging system
JPH09508049A (en) Magnetic resonance apparatus including X-ray apparatus
CN111913142A (en) Basic field magnet arrangement, magnetic resonance tomography system and measuring method
EP3828580B1 (en) Method and system for compensating stray magnetic fields in a magnetic resonance imaging system with multiple examination areas
JP4007839B2 (en) Open MRI system
JP2012115299A (en) Magnetic resonance imaging apparatus
EP1300111A1 (en) Magnetic resonance imaging apparatus
JPH08131419A (en) Magnetic resonance imaging system
US11768263B2 (en) Magnet system for a magnetic resonance imaging system
JPH10234704A (en) Mri apparatus
JPH0248251B2 (en)
JP3112474B2 (en) Magnetic resonance imaging equipment
JP4107799B2 (en) MRI equipment
JP2005124855A (en) Magnetic resonance imaging apparatus
JPH0433455B2 (en)
JPH10262947A (en) Magnetic resonance examination system
JPH08280648A (en) Magnetic resonance imaging apparatus
JPH0523321A (en) Magnetic resonance imaging apparatus and positioning of object to be inspected
JP2002263080A (en) Magnetic resonance imaging apparatus
JP2022130883A (en) Control device and magnetic resonance imaging device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4007839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term