JPH10234704A - Mri apparatus - Google Patents

Mri apparatus

Info

Publication number
JPH10234704A
JPH10234704A JP9058562A JP5856297A JPH10234704A JP H10234704 A JPH10234704 A JP H10234704A JP 9058562 A JP9058562 A JP 9058562A JP 5856297 A JP5856297 A JP 5856297A JP H10234704 A JPH10234704 A JP H10234704A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
magnetic flux
mri apparatus
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9058562A
Other languages
Japanese (ja)
Inventor
Hajime Kawano
川野  源
Hirotaka Takeshima
弘隆 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP9058562A priority Critical patent/JPH10234704A/en
Publication of JPH10234704A publication Critical patent/JPH10234704A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an MRI apparatus possible to test areas having different sizes of a plurality of subjects simultaneously with one magnetic circuit. SOLUTION: In an MRI test room 1, magnetic field generation sources 51, 52, 53, 54 are arranged at a determined distance with making the directions of magnetic force lines generated form them the same, which are connected circularly by materials 61, 62, 63, 64 letting magnetic flux pass through. Magnetic field generation sources 51, 52, 53, 54 have measurement spaces 71, 72, 73, 74, respectively, each having different size, and beds 81, 82, 83, 84 to locate the shooting parts of subjects 101, 102, 103, 104 are housed in them, respectively. Magnetic shielding materials 91, 92, 93, 94 are provided as part of the shield room to screen magnetic effects mutually generated among measurement spaces 71, 72, 73, 74 in order to simultaneously photograph in the measurement spaces 71, 72, 73, 74.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、核磁気共鳴(NM
R)現象を用いて被検者の画像診断に供する医用画像を
得るための磁気共鳴イメージング(MRI)装置に係
り、特に一つの磁気回路で複数の被検者の様々な検査部
位を同時に撮影することができるようにしたMRI装置
に関するものである。
The present invention relates to nuclear magnetic resonance (NM)
R) The present invention relates to a magnetic resonance imaging (MRI) apparatus for obtaining a medical image to be used for image diagnosis of a subject using a phenomenon, and in particular, simultaneously photographs various examination sites of a plurality of subjects with one magnetic circuit. The present invention relates to an MRI apparatus capable of performing such operations.

【0002】[0002]

【従来の技術】MRI装置は、NMR現象を用いて被検
者の体内を画像として描出するもので、被検者の任意の
断面を撮像可能であるとともに、3次元画像や血管像の
撮像、更には、脳機能計測への適用の可能性も検討され
る等、医用画像診断機器としての重要性が定着してい
る。
2. Description of the Related Art An MRI apparatus uses an NMR phenomenon to image the inside of a subject as an image. The MRI apparatus can capture an arbitrary cross section of the subject, and can capture a three-dimensional image or a blood vessel image. Further, the possibility of application to brain function measurement has been studied, and the importance as a medical image diagnostic device has been established.

【0003】一般的にMRI装置は、所定の大きさを有
した空間に高度に均一な静磁場を発生する静磁場発生装
置と、前期空間に傾斜磁場を発生する傾斜磁場発生装置
と、被検者に高周波磁場をパルス状に照射する高周波磁
場照射手段と、前期高周波磁場を照射された被検者の体
内から発生するNMR信号を受信する手段と、受信した
信号を処理する受信信号処理手段と、処理された信号を
用いて画像を再構成する手段と、画像を表示する画像表
示器と、前期構成要素を制御する制御装置とを備えてい
る。
Generally, an MRI apparatus includes a static magnetic field generator for generating a highly uniform static magnetic field in a space having a predetermined size, a gradient magnetic field generator for generating a gradient magnetic field in a space, and a test object. Radio frequency magnetic field irradiating means for irradiating the subject with a high frequency magnetic field in a pulsed manner, means for receiving an NMR signal generated from the body of the subject irradiated with the high frequency magnetic field, and reception signal processing means for processing the received signal Means for reconstructing an image using the processed signal, an image display for displaying the image, and a control device for controlling the components.

【0004】ところで、現在市販されているMRI装置
はほとんどが、被検者のあらゆる部位を撮影対象とする
ことができる全身用装置となっていて、静磁場発生装置
は円柱形または角柱形をした被検者挿入用空間を有して
おり、その空間内に所定の大きさの前記均一な静磁場を
一つだけ形成する。したがって、従来の装置では、装置
内に一人の被検者を入れて撮影を行い、その被検者の撮
影が終了した後に、次の被検者の撮影を行う方法で順次
被検者を入れ替えて撮影を行う。全身用装置の他に、被
検者のある特定部位を撮影対象とした装置もあるが、そ
の静磁場発生装置においても、均一磁場空間は一つであ
り、撮影は全身用装置と同様、被検者を順次入れ替えて
行う。
[0004] By the way, most of the MRI apparatuses currently on the market are whole-body apparatuses capable of imaging any part of a subject, and the static magnetic field generating apparatus has a cylindrical or prismatic shape. A space for subject insertion is provided, and only one uniform static magnetic field having a predetermined size is formed in the space. Therefore, in the conventional apparatus, one subject is put into the apparatus to perform imaging, and after the imaging of the subject is completed, the subjects are sequentially replaced by a method of imaging the next subject. To shoot. In addition to the whole-body device, there is also a device that targets an image of a specific part of the subject, but the static magnetic field generating device has only one uniform magnetic field space, and the imaging is performed in the same manner as the whole-body device. The examiners are sequentially replaced.

【0005】MRI装置は、X線撮影装置,X線CT装
置や超音波診断装置と比較し、一人の被検者を撮影する
時間が長いという欠点を抱えている。この欠点は、いろ
いろな高速撮像法が研究されて克服されつつあるが、画
質を考慮に入れると、まだ完全に解決されたとは言えな
い。
[0005] The MRI apparatus has a disadvantage that it takes a longer time to image one subject than an X-ray imaging apparatus, an X-ray CT apparatus, and an ultrasonic diagnostic apparatus. Although this shortcoming has been studied and overcome by various high-speed imaging methods, it has not been completely solved in view of image quality.

【0006】そこでこの欠点を少しでも解決しようとす
る試みがなされている。その一つが、前記静磁場空間へ
向け複数方向に寝台を設置し、一人の被検者の撮影中に
次の被検者を他の寝台に撮影準備をして待機させておく
というものである。その他に、特開昭61−15995
0号公報に開示されているような、単一の磁気回路中に
被検体の全身を収容できる二つの同等の大きさの計測空
間を設け、二人の被検者を同時に検査できるようにした
ものが提案されている。
[0006] Attempts have been made to overcome this drawback. One of them is to install a bed in a plurality of directions toward the static magnetic field space, and to prepare the next subject to be photographed on another bed while the photographing of one subject is being performed, and wait for the next subject. . In addition, JP-A-61-15995
As disclosed in Japanese Patent Publication No. 0, two measurement spaces of the same size capable of accommodating the whole body of a subject in a single magnetic circuit are provided so that two subjects can be examined simultaneously. Things have been suggested.

【0007】[0007]

【発明が解決しようとする課題】MRI装置は、空間分
解能の点ではまだX線撮影装置やX線CT装置に及ばな
いが、組織の相違に対するコントラスト分解能に優れ、
現在では人体の脳,内臓,頚椎,脊椎などの他、四肢,
耳,鼻等の部位の診断用画像を得るために用いられるよ
うになっている。
The MRI apparatus is not yet comparable to the X-ray imaging apparatus or the X-ray CT apparatus in terms of spatial resolution, but has an excellent contrast resolution with respect to the difference between tissues.
At present, in addition to the human brain, internal organs, cervical spine, spine,
It is used to obtain diagnostic images of parts such as ears and nose.

【0008】それにもかかわらず、上記のように、従来
のMRI装置は全身用やある極所部位用として構成され
ており、装置の利用効率の悪いものとなっている。すな
わち、全身用装置は撮影空間が大きいので、その領域で
均一な、かつ強い静磁場を発生させる必要があるため、
磁場発生源は大きな磁気エネルギーを発生させるように
構成されている。そして、被検体に高周波磁場を印加す
るRFプローブも前記均一磁場領域内の核スピンを励起
対象とするために、また前記静磁場に傾斜を与える傾斜
磁場コイルも当然前記均一磁場領域の全域にわたって勾
配磁場を形成するために大きなものとなっている。この
ような全身用装置で手足を撮影しようとすると、撮影部
位でないところの生体組織も高周波磁場に曝されること
になる。現状はMRI装置で照射される高周波磁場が生
体に悪影響を与えるという説はほとんど無いが、撮影部
位でないところに高周波磁場を照射せずに済むならば安
全上それが望ましい。
[0008] Nevertheless, as described above, the conventional MRI apparatus is configured for the whole body or for a certain extreme part, and the use efficiency of the apparatus is poor. That is, since the whole-body device has a large imaging space, it is necessary to generate a uniform and strong static magnetic field in that region.
The magnetic field source is configured to generate large magnetic energy. The RF probe that applies a high-frequency magnetic field to the subject also targets nuclear spins in the uniform magnetic field region to be excited, and the gradient magnetic field coil that applies a gradient to the static magnetic field naturally has a gradient over the entire uniform magnetic field region. It is large to create a magnetic field. If an attempt is made to image a limb with such a whole-body device, a living tissue that is not an imaging site is also exposed to a high-frequency magnetic field. At present, there is almost no theory that the high-frequency magnetic field irradiated by the MRI apparatus has an adverse effect on the living body, but it is desirable for safety if it is not necessary to irradiate the high-frequency magnetic field to a place other than the imaging site.

【0009】そこで、手足のような部位専用の装置を全
身用装置の他に揃えようとすると、静磁場発生装置が2
台必要となる。MRI装置のコスト中で、静磁場発生装
置の占める割合は非常に高いので、全身用と極部用との
装置を揃えるには、病院の経済的負担が大きくなるとい
う問題を抱えている。また、静磁場発生装置内の均一磁
場強度は安定性が要求されるものであるため、2台の装
置を同一の部屋内に設置することはできない。したがっ
て、全身用と極部用との装置を設置するには、磁気シー
ルドルームを2部屋備えることとなり、これがさらに病
院の経済的負担を増すという問題がある。
Therefore, if a device dedicated to a site such as a limb is to be prepared in addition to a device for the whole body, a static magnetic field generator is required.
You need one. Since the ratio of the static magnetic field generator in the cost of the MRI apparatus is very high, there is a problem that the economic burden on the hospital is increased in order to provide the apparatus for the whole body and the apparatus for the extreme part. Further, since the uniform magnetic field strength in the static magnetic field generator requires stability, two devices cannot be installed in the same room. Therefore, in order to install the apparatus for the whole body and the apparatus for the pole part, two magnetically shielded rooms are provided, which further increases the economic burden on the hospital.

【0010】本発明は上記に鑑み、単一の磁気回路(静
磁場発生装置)内に全身用と極部用とを含む複数の大き
さの異なる計測空間を形成し、それらの計測空間を同時
に使用することができるようにし、被検者の検査待ち時
間を短縮することができるMRI装置を提供するこを目
的として成されたものである。
In view of the above, the present invention forms a plurality of measurement spaces having different sizes including a whole body and a pole for a whole body in a single magnetic circuit (static magnetic field generating device), and makes these measurement spaces simultaneous. An object of the present invention is to provide an MRI apparatus which can be used and can shorten the waiting time for the examination of a subject.

【0011】[0011]

【課題を解決するための手段】本発明は上記課題を解決
するために、MRI装置にて用いる静磁場発生装置を、
少なくとも一つの磁場発生源と、この磁場発生源により
発生される磁束を前記磁場発生源へループ状に導く磁束
通過手段と、この磁束通過手段の磁束通過経路の途中に
設けられた複数種の大きさの異なる間隙と、これらの間
隙毎に間隙の大きさに応じた所定の空間的な大きさと磁
気的強度を有する均一磁場領域を形成する手段とを有し
た静磁場発生装置としたものである。
According to the present invention, there is provided a static magnetic field generator for use in an MRI apparatus.
At least one magnetic field generating source, magnetic flux passing means for guiding a magnetic flux generated by the magnetic field generating source to the magnetic field generating source in a loop, and a plurality of sizes provided in the middle of a magnetic flux passing path of the magnetic flux passing means. And a means for forming a uniform magnetic field region having a predetermined spatial size and magnetic strength corresponding to the size of the gap for each of these gaps. .

【0012】そして、前記静磁場発生装置の間隙と間隙
との間に磁束遮蔽手段を設け、前記磁束通過手段が前記
磁束遮蔽手段を貫通するようにしたものである。また、
前記磁束遮蔽手段はシールドルームの壁面の一部を形成
するようにしたものである。更に、本発明は前記磁束通
過手段を超電導体によって形成したことを特徴としてい
る。
A magnetic flux shielding means is provided between the gaps of the static magnetic field generator, and the magnetic flux passing means penetrates the magnetic flux shielding means. Also,
The magnetic flux shielding means forms a part of the wall surface of the shield room. Further, the present invention is characterized in that the magnetic flux passing means is formed by a superconductor.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて説明する。図1は本発明の一実施例のMRI装
置の構成とその配置を示す平面図である。図1に示した
実施例は、4つの計測空間を一つの磁気回路中に設けた
例である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view showing the configuration and arrangement of an MRI apparatus according to one embodiment of the present invention. The embodiment shown in FIG. 1 is an example in which four measurement spaces are provided in one magnetic circuit.

【0014】図1において、1はMR検査室で、その中
には4つの操作室11,12,13,14が配設され、
それらの操作室11,12,13,14の内部にはそれ
ぞれ操作卓21,22,23,24,及び傾斜磁場電
源、画像処理装置等から成るMRIユニット31,3
2,33,34が配置されている。これらの操作卓及び
MRユニットは公知のものであるので説明は省略する。
そして、MR検査室1の前記操作室11,12,13,
14を除いた部分は4つのシールドルーム41,42,
43,44に分割されている。シールドルームは、後に
詳細に説明する静磁場発生装置の漏洩磁場を室内に閉じ
込めるとともに、室外の変動磁場が静磁場発生装置が設
置されたシールドルーム内に侵入するのを遮蔽し、計測
空間の磁場の均一性を保つためのものである。50は静
磁場発生装置、81,82,83,84は検査用の寝台
で、各寝台には被検者101,102,103,104
が検査を受けるために横たわっている。
In FIG. 1, reference numeral 1 denotes an MR examination room, in which four operation rooms 11, 12, 13, and 14 are disposed.
Inside the operation rooms 11, 12, 13, and 14, consoles 21, 22, 23 and 24, and MRI units 31 and 3 including a gradient magnetic field power supply, an image processing device, and the like, respectively.
2, 33 and 34 are arranged. These consoles and MR units are publicly known and will not be described.
Then, the operation rooms 11, 12, 13 of the MR examination room 1,
The part except 14 is four shield rooms 41, 42,
43 and 44. The shield room confines the stray magnetic field of the static magnetic field generator described in detail later in the room, shields the fluctuating magnetic field outside from entering the shield room where the static magnetic field generator is installed, and reduces the magnetic field in the measurement space. This is for maintaining the uniformity of 50 is a static magnetic field generator, 81, 82, 83 and 84 are examination beds, and subjects 101, 102, 103 and 104 are placed on each bed.
Is lying down for examination.

【0015】次に、本実施例の静磁場発生装置50につ
いて詳細に説明する。従来よりMRI装置の静磁場発生
装置は被検体を収容し得る大きさを有した空間内の所定
領域に、所定の磁場強度で、かつ高度に均一性を有した
静磁場を発生するもので、静磁場を発生する方式として
現在は、超電導磁石方式、常電導磁石方式、及び永久磁
石方式が製品に採用されている。本発明はこれ等のいず
れの方式でも採用できるが、本実施例は永久磁石方式を
一例として説明する。
Next, the static magnetic field generator 50 of this embodiment will be described in detail. Conventionally, a static magnetic field generator of an MRI apparatus generates a static magnetic field having a predetermined magnetic field intensity and a high degree of uniformity in a predetermined area in a space having a size capable of accommodating a subject, Currently, as a method for generating a static magnetic field, a superconducting magnet method, a normal conducting magnet method, and a permanent magnet method are employed in products. The present invention can employ any of these methods, but the present embodiment will be described using a permanent magnet method as an example.

【0016】図1に示すように、本実施例の静磁場発生
装置50はそれぞれが対をなして形成されている磁場発
生源51,52,53,54と、磁場発生源51と52
の間、52と53の間、53と54の間、54と51の
間を接続する、例えば純鉄などの透磁率の高い材料から
成る磁束通過材61,62,63,64で磁気回路を形
成され、被検者101,102,103,104を同時
に検査できるように、4つの計測空間71,72,7
3,74が形成されている。
As shown in FIG. 1, a static magnetic field generator 50 according to the present embodiment includes magnetic field sources 51, 52, 53, 54 formed in pairs, and magnetic field sources 51 and 52.
, Between 52 and 53, between 53 and 54, and between 54 and 51, a magnetic circuit is formed by magnetic flux passing members 61, 62, 63 and 64 made of a material having high magnetic permeability such as pure iron. The four measurement spaces 71, 72, 7 are formed so that the subjects 101, 102, 103, 104 can be inspected simultaneously.
3, 74 are formed.

【0017】そして、4つの各計測空間には図面に示し
ていないが、従来より公知の傾斜磁場コイル及び高周波
磁場の照射用コイルが収納されている。
Although not shown in the drawings, conventionally known gradient magnetic field coils and coils for irradiating a high frequency magnetic field are accommodated in each of the four measurement spaces.

【0018】各磁場発生源は、それぞれが発生する磁束
の方向が一致するように配設される。これにより、磁束
が磁気回路内を周回するようになる。磁場発生源51,
52,53,54は図では詳細を省略しているが、それ
ぞれ所定の磁気エネルギーを有した永久磁石ブロック体
とポールピースとから成り、永久磁石ブロック体は前記
磁束通過材に接して設けられ、ポールピースは計測空間
に面して設けられている。磁場発生源51,52,5
3,54に設けられる被検体収容空間はそれぞれ大きさ
が異なるように、各磁場発生源のポールピース同志の間
隔が異なっていて、例えば、磁場発生源51の計測空間
71には被検者101と被検者101の側方に医師10
0が入れるだけの間隔をあけて配置され、磁場発生源5
2のポールピースは被検者102の四肢が計測できるだ
けの間隔で配置され、磁場発生源53のポールピースは
被検者103の頭部が計測できるだけの間隔で配置さ
れ、磁場発生源54のポールピースは被検者104の全
身部位が計測できるだけの間隔で配置されている。
Each magnetic field generating source is arranged so that the directions of the magnetic fluxes generated by the magnetic field generating sources coincide with each other. As a result, the magnetic flux circulates in the magnetic circuit. Magnetic field source 51,
52, 53, and 54 are not shown in the drawings, but each include a permanent magnet block body having a predetermined magnetic energy and a pole piece, and the permanent magnet block body is provided in contact with the magnetic flux passing material; The pole piece is provided facing the measurement space. Magnetic field sources 51, 52, 5
The space between the pole pieces of the magnetic field sources is different from each other so that the subject accommodation spaces provided in the magnetic field sources 3 and 54 have different sizes. And the doctor 10 beside the subject 101
The magnetic field source 5 is arranged at an interval enough for 0 to enter.
The pole pieces of No. 2 are arranged at intervals enough to measure the extremities of the subject 102, and the pole pieces of the magnetic field source 53 are arranged at intervals only enough to measure the head of the subject 103. The pieces are arranged at intervals such that the whole body of the subject 104 can be measured.

【0019】このように4つの計測空間がそれぞれ空間
的大きさが異なるので、前記傾斜磁場コイル及び照射コ
イルもそれぞれの計測空間の大きさに応じた大きさとし
ている。また、各計測空間の均一磁場の磁場強度が異な
るようにする場合には、被検体内の核スピンの磁気共鳴
周波数が計測空間毎に異なるので、計測空間毎にMRI
システムとしての基準周波数を設定する必要がある。
As described above, since the four measurement spaces have different spatial sizes, the gradient magnetic field coil and the irradiation coil are also made to have a size corresponding to the size of each measurement space. When the magnetic field strength of the uniform magnetic field in each measurement space is made different, the magnetic resonance frequency of the nuclear spin in the subject differs for each measurement space.
It is necessary to set a reference frequency for the system.

【0020】静磁場発生方式のいかんによらず、現在の
MRI装置の磁場発生源の計測空間には球形の均一磁場
空間が形成されるが、前述のように各磁場発生源が対象
とする検査部位の大きさが異なるので均一磁場空間の大
きさも異なって良い。このため本発明では、各磁場発生
源毎にポールピースの間隔の他に対向面積をも異ならせ
ている。つまり、図に示す様に各磁場発生源のポールピ
ースは、間隔が大きいほど前記対向面積を大きくする。
Regardless of the static magnetic field generation method, a spherical uniform magnetic field space is formed in the measurement space of the current magnetic field generation source of the MRI apparatus. Since the size of the part is different, the size of the uniform magnetic field space may be different. For this reason, in the present invention, the facing area is made different in addition to the interval between the pole pieces for each magnetic field generating source. That is, as shown in the drawing, the larger the distance between the pole pieces of the respective magnetic field generating sources, the larger the facing area becomes.

【0021】このように、磁場発生源のポールピースの
間隔と対向面積を異ならせると、磁場発生源の磁気エネ
ルギーにより計測空間に形成される均一磁場の磁場強度
を変えることができる。すなわち、ポールピースの間隔
を小さくするとともに対向面積を小さくすると磁力線の
拡散が小さく単位面積当たりの磁束線数が増加できるの
で、均一磁場の磁場強度を高くでき、その間隔を大きく
かつ対向面積を大きくすると逆に均一磁場の磁場強度を
低くできる。また、磁場強度だけでなく、均一磁場領域
を小さくすると磁場の均一性を良くするのが容易にな
る。したがって、図1に示す計測空間72,73は計測
空間71,74より磁場強度が強く均一性も良い静磁場
領域を有するものとすることができる。
As described above, when the distance between the pole pieces of the magnetic field source and the facing area are made different, the magnetic field strength of the uniform magnetic field formed in the measurement space by the magnetic energy of the magnetic field source can be changed. In other words, if the spacing between the pole pieces is reduced and the facing area is reduced, the diffusion of the magnetic field lines can be reduced and the number of magnetic flux lines per unit area can be increased, so the magnetic field strength of the uniform magnetic field can be increased, and the spacing and the facing area can be increased. Then, on the contrary, the magnetic field strength of the uniform magnetic field can be reduced. In addition, it is easy to improve the uniformity of the magnetic field by reducing the uniform magnetic field region as well as the magnetic field strength. Therefore, the measurement spaces 72 and 73 shown in FIG. 1 can have a static magnetic field region in which the magnetic field strength is higher and the uniformity is better than the measurement spaces 71 and 74.

【0022】次に、このように単一の周回磁気回路内に
複数の計測空間を設けると、各磁場発生源からの磁力線
の相互作用による悪影響、例えば計測空間における磁場
の歪が現われたり、ある計測空間で計測中に被検体へ照
射される高周波磁場やパルス状の傾斜磁場が微小な値で
はあるが他の計測空間の磁場へ影響を及ぼすことが考え
られる。このような悪影響を防止するため、本発明では
各計測空間が独立したシールドルーム内に配置されるよ
うにしている。すなわち、図1に示す磁気シールド材9
1,92,93,94に各磁束通過材61,62,6
3,64がほぼ密着するように貫通させ得る穴を設け、
これ等の穴の中を磁束通過材61,62,63,64を
貫通させ、これ等の磁気シールド材91,92,93,
94が符号を省略した磁気シールド部材とともに前記シ
ールドルーム41,42,43,44を構成する。な
お、磁気シールド材91,92,93,94は中心部で
は交差または密に接触するようにして設けることが必要
である。なお、磁気シールド材料は、従来より一般的に
用いられている金属材料、例えば、銅板,ステンレス
板,又はそれらのメッシュ状又はカニカム状材料の他、
新日本製鉄株式会社製の超電導多層複合材を用いること
ができる。
Next, when a plurality of measurement spaces are provided in a single orbiting magnetic circuit as described above, adverse effects due to the interaction of the magnetic force lines from the respective magnetic field sources, for example, a magnetic field distortion in the measurement space may appear. It is conceivable that the high-frequency magnetic field or the pulsed gradient magnetic field applied to the subject during measurement in the measurement space has a small value but affects the magnetic field in another measurement space. In order to prevent such adverse effects, in the present invention, each measurement space is arranged in an independent shield room. That is, the magnetic shield material 9 shown in FIG.
The magnetic flux passing members 61, 62, 6
A hole that can be penetrated so that 3, 64 almost adheres is provided,
The magnetic flux passing members 61, 62, 63, 64 are made to penetrate through these holes, and these magnetic shielding members 91, 92, 93,
Reference numeral 94 designates the shield rooms 41, 42, 43, and 44 together with the magnetic shield members whose reference numerals are omitted. Note that the magnetic shield materials 91, 92, 93, and 94 need to be provided so as to intersect or closely contact each other at the center. The magnetic shield material may be a metal material generally used conventionally, for example, a copper plate, a stainless plate, or a mesh or honeycomb material thereof,
A superconducting multilayer composite manufactured by Nippon Steel Corporation can be used.

【0023】前記超電導多層複合体は、NbTi層(3
0層)とCu層(31層)とを両表面がCu層となるよ
うに交互に積層し、かつNbTi層とCu層の間にNb
層(60層)を介在させたものを熱間圧延及び冷間圧延
して製造した厚さ約1mmのNbTi/Nb/Cu超電
導多層複合体で、アイイーイーイー・トランザクション
ズ・オン・アプライド・スーパーコンダクティビティ,
第3巻,第1号,1993年3月,第177頁〜第18
0頁(IEEE TRANSACTION ON AP
PLIED SUPER CONDUCTIVITY,
VOL.3,NO.1,MARCH 1993,pp1
77〜180)に記載されている。この材料を液体ヘリ
ウムに浸し電流を流すと高いシールド性能を発すること
は製造者が発表している。これを用いる場合には、前記
シールド材91,92,93,94を収納するとともに
冷却媒体、例えば液体ヘリウムを封入する断熱容器構造
と、液体ヘリウムを冷却する冷却機を併せて設けること
が必要である。
The superconducting multilayer composite comprises an NbTi layer (3
0 layer) and a Cu layer (31 layers) are alternately laminated so that both surfaces become Cu layers, and Nb is interposed between the NbTi layer and the Cu layer.
NbTi / Nb / Cu superconducting multilayer composite with a thickness of about 1 mm manufactured by hot rolling and cold rolling with interposed layers (60 layers), Conductivity,
Vol. 3, No. 1, March 1993, pp. 177-18
Page 0 (IEEE TRANSACTION ON AP
PLIED SUPER CONDUCTIVITY,
VOL. 3, NO. 1, MARCH 1993, pp1
77-180). Manufacturers have announced that this material, when immersed in liquid helium and subjected to an electric current, exhibits high shielding performance. When this is used, it is necessary to provide a heat insulating container structure for accommodating the shielding materials 91, 92, 93, 94 and for filling a cooling medium, for example, liquid helium, and a cooler for cooling liquid helium. is there.

【0024】次に、本実施例のMRI装置の使用方法と
本発明の主要部分の作用を説明する。病院等でMRI検
査を必要とされた患者はMRI検査部門の受付で検査部
位に応じて前記MRI装置のどのシールドルーム内で検
査を受けるかを指示される。例えば、腹部の検査を受け
る患者はシールドルーム44へ、頭部の検査を受ける患
者は、シールドルーム43へ、脚部の検査を受ける患者
はシールドルーム42ヘ案内される。これらの患者は従
来は、MRI装置があっても1台しかない病院では、一
人ひとりが順番に検査を受けるようになっているが、本
発明のMRI装置は1台で最大4人の患者を並列的に検
査できるように、複数の検査領域を備えているので、検
査も4人を同時に行い得る。
Next, a method of using the MRI apparatus of this embodiment and the operation of the main part of the present invention will be described. A patient who needs an MRI examination at a hospital or the like is instructed at the reception of the MRI examination department in which shield room of the MRI apparatus to undergo the examination according to the examination site. For example, a patient undergoing an abdominal examination is guided to a shield room 44, a patient undergoing a head examination is guided to a shield room 43, and a patient undergoing a leg examination is guided to a shield room 42. Conventionally, in a hospital where there is only one MRI apparatus even if there is only one, each patient is sequentially examined. In the MRI apparatus of the present invention, up to four patients can be used in parallel with one MRI apparatus. Since a plurality of inspection areas are provided so that the inspection can be performed appropriately, the inspection can be performed by four persons simultaneously.

【0025】シールドルームへ案内された患者はベッド
84,83,82ヘ横たわり、NMR信号を検出する図
示を省略した検出コイルを装着された後、検査領域へベ
ッドにより移動される。MRI装置はNMR信号をコイ
ルにより検出するが、検出コイルは検査部位に応じた専
用の物を用いると、信号の受信感度が高く、得られる画
像も良好となることが周知であるが、本発明のMRI装
置は複数の検査領域が被検体の検査部位の大きさに対応
するようにそれぞれが異なった大きさとなっているの
で、各検査領域で用いる検出コイルを専用化できる。し
たがって、本発明によれば操作者の検出コイルの選定作
業が単純化される。
The patient guided to the shield room lies on the beds 84, 83, and 82, and after being fitted with a detection coil (not shown) for detecting NMR signals, is moved to the examination area by the bed. It is well known that an MRI apparatus detects an NMR signal by using a coil. If a dedicated detection coil is used in accordance with a part to be inspected, the signal reception sensitivity is high and the obtained image is also good. In the MRI apparatus described above, each of the plurality of examination regions has a different size so as to correspond to the size of the examination region of the subject, and thus the detection coil used in each examination region can be dedicated. Therefore, according to the present invention, the operation of selecting the detection coil by the operator is simplified.

【0026】検出コイルを装着され検査領域へ移動され
た患者の体内では、計測空間の磁場により、体内の核ス
ピンが静磁場方向へ指向される。この状態で、操作者は
撮影の位置決め撮影を行い、CRTディスプレイヘ表示
された位置決め像を参照して、撮影部位のスライス位置
・方向、撮影枚数、使用する撮影法(シーケンス)を操
作卓24,23,22等へ設定する。そして、各検査領
域では個別に撮影を開始する。
In the patient's body, which is mounted on the detection coil and moved to the examination area, the nuclear spin in the body is directed toward the static magnetic field by the magnetic field in the measurement space. In this state, the operator performs positioning imaging, and refers to the positioning image displayed on the CRT display to determine the slice position and direction of the imaging region, the number of images to be imaged, and the imaging method (sequence) to be used. 23, 22, etc. Then, imaging is started individually in each inspection area.

【0027】各検査領域で同時に検査される患者は撮影
部位が異なるので、撮影シーケンスも同一とは限らなく
なる。したがって、撮影シーケンスにおける高周波磁場
パルス、傾斜磁場パルスの大きさ、方向は各検査領域で
種々入り乱れて発生する。しかし、各検査領域は前記磁
気シールド材を含むシールドルーム内に互いに磁気的に
分離して設けられているので、ある検査領域で発生した
高周波磁場パルス又は傾斜磁場パルスによる磁気的影響
が他の検査領域に現われることはない。つまり、各々の
シールドルーム内に1台ずつMRI装置が設置されてい
るのと同様に検査を進めることができる。そして本発明
では、撮影時に高周波磁場パルスを照射する照射コイル
は計測空間の大きさに応じた大きさとなっているので、
検査部位を除いた部位に照射される高周波磁場は、従来
の装置より少なくすることができる。
Since the patient to be examined simultaneously in each examination region has a different imaging region, the imaging sequence is not always the same. Therefore, the magnitude and direction of the high-frequency magnetic field pulse and the gradient magnetic field pulse in the imaging sequence are variously disturbed in each examination region. However, since each inspection region is provided magnetically separated from each other in a shield room including the magnetic shield material, the magnetic influence caused by a high-frequency magnetic field pulse or a gradient magnetic field pulse generated in a certain inspection region causes another inspection. It does not appear in the territory. In other words, the inspection can proceed in the same manner as when one MRI apparatus is installed in each shield room. In the present invention, since the irradiation coil for irradiating the high-frequency magnetic field pulse during imaging has a size corresponding to the size of the measurement space,
The high-frequency magnetic field applied to the site excluding the inspection site can be reduced as compared with the conventional device.

【0028】以上本発明を一実施例を挙げて説明した
が、本発明はその主旨を変更せずに変更して実施するこ
とが可能である。例えば、前記実施例では、磁気回路を
平面的に配置しかつ計測空間の磁場方向も水平方向とな
るように配置しているが、この磁気回路を垂直方向に例
えば1階と2階を貫くように配置することもでき、そし
てその磁気回路内に磁場方向を水平又は垂直方向に設け
ることも可能である。
Although the present invention has been described with reference to one embodiment, the present invention can be modified and implemented without changing the gist of the invention. For example, in the above-described embodiment, the magnetic circuit is arranged in a plane and the magnetic field direction of the measurement space is also arranged in the horizontal direction. However, this magnetic circuit extends vertically through, for example, the first and second floors. And the direction of the magnetic field can be provided horizontally or vertically in the magnetic circuit.

【0029】更に、前記実施例では磁場発生源が発生す
る磁束を純鉄のような透磁率の高い材料内を通過させる
構造としたが、その場合磁気回路が非常に重くなること
が考えられるので、それへの対応案として、磁場発生源
が発生する磁束を隣接する磁場発生源まで空中を通す変
形例も可能である。その変形例では磁束通過材として、
前述の超電導多層複合体を両端が開放した円筒状に形成
し、その開放端へ磁場発生源を固着するとともに円筒の
磁束通過材を冷媒容器で囲み、冷媒容器内に液体ヘリウ
ムを冷媒として封入するような構造を採用する。なお、
この変形例を採用できる磁場発生源は、磁気回路を組上
げた後に磁場発生源を励磁できるものに限定される。
Further, in the above embodiment, the magnetic flux generated by the magnetic field source is passed through a material having a high magnetic permeability such as pure iron. In this case, however, the magnetic circuit may become very heavy. As a countermeasure against this, a modification example in which a magnetic flux generated by a magnetic field source is passed through the air to an adjacent magnetic field source is also possible. In the modified example, as a magnetic flux passing material,
The above-described superconducting multilayer composite is formed in a cylindrical shape with both ends open, a magnetic field source is fixed to the open end, and the magnetic flux passing material of the cylinder is surrounded by a refrigerant container, and liquid helium is sealed as a refrigerant in the refrigerant container. Such a structure is adopted. In addition,
The magnetic field source that can adopt this modification is limited to those that can excite the magnetic field source after assembling the magnetic circuit.

【0030】[0030]

【発明の効果】以上述べたように本発明によれば、一つ
の磁気回路中に複数の空間的大きさと磁気強度が異なる
計測空間を形成したので、1台のMRI装置で同時に複
数の被検者を検査することができるので、検査効率が向
上するとともに、被検者の検査待ち時間を大幅に短縮で
きる。
As described above, according to the present invention, a plurality of measurement spaces having different spatial sizes and different magnetic intensities are formed in one magnetic circuit. Since the patient can be examined, the examination efficiency can be improved and the waiting time for the examination of the subject can be greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のMRI装置の平面図FIG. 1 is a plan view of an MRI apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 MR検査室 11,12,13,14 操作室 21,22,23,24 操作卓 41,42,43,44 シールドルーム 50 静磁場発生装置 51,52,53,54 磁場発生源 61,62,63,64 磁束通過材 71,72,73,74 計測空間 91,92,93,94 磁気シールド材 100 医師 101,102,103,104 被検者 1 MR examination room 11, 12, 13, 14 Operation room 21, 22, 23, 24 Operation console 41, 42, 43, 44 Shield room 50 Static magnetic field generator 51, 52, 53, 54 Magnetic field source 61, 62, 63, 64 Magnetic flux passing material 71, 72, 73, 74 Measurement space 91, 92, 93, 94 Magnetic shielding material 100 Doctor 101, 102, 103, 104 Subject

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一つの磁場発生源と、この磁
場発生源により発生される磁束を前記磁場発生源へ導く
磁束通過手段と、この磁束通過手段の磁束通過経路の途
中に設けられた複数の大きさの異なる間隙と、これらの
間隙毎に設けられ間隙の大きさに応じた所定の空間的な
大きさと磁気的強度を有する均一磁場領域を形成する手
段とを有した静磁場発生装置を備えたことを特徴とする
MRI装置。
At least one magnetic field generating source, magnetic flux passing means for guiding a magnetic flux generated by the magnetic field generating source to the magnetic field generating source, and a plurality of magnetic flux passing means provided in the middle of a magnetic flux passing path of the magnetic flux generating means. A static magnetic field generator having gaps having different sizes and means for forming a uniform magnetic field region having a predetermined spatial size and a magnetic intensity according to the size of the gaps provided for each of the gaps; An MRI apparatus characterized in that:
【請求項2】 前記静磁場発生装置の間隙と間隙の間に
磁束遮蔽手段が設けられ、前記磁束通過手段が前記磁束
遮蔽手段を貫通していることを特徴とする請求項1に記
載のMRI装置。
2. The MRI according to claim 1, wherein a magnetic flux shielding means is provided between gaps of the static magnetic field generator, and the magnetic flux passing means penetrates the magnetic flux shielding means. apparatus.
【請求項3】 前記磁束遮蔽手段はシールドルームの壁
面の一部を形成することを特徴とする請求項2に記載の
MRI装置。
3. The MRI apparatus according to claim 2, wherein said magnetic flux shielding means forms a part of a wall surface of a shield room.
【請求項4】 前記磁束通過手段は超電導体によって形
成されていることを特徴とする請求項1乃至3に記載の
MRI装置。
4. The MRI apparatus according to claim 1, wherein said magnetic flux passing means is formed of a superconductor.
JP9058562A 1997-02-27 1997-02-27 Mri apparatus Pending JPH10234704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9058562A JPH10234704A (en) 1997-02-27 1997-02-27 Mri apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9058562A JPH10234704A (en) 1997-02-27 1997-02-27 Mri apparatus

Publications (1)

Publication Number Publication Date
JPH10234704A true JPH10234704A (en) 1998-09-08

Family

ID=13087902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9058562A Pending JPH10234704A (en) 1997-02-27 1997-02-27 Mri apparatus

Country Status (1)

Country Link
JP (1) JPH10234704A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069052A1 (en) * 2003-02-10 2004-08-19 Neomax Co., Ltd. Magnetic field-producing device
CN103622714A (en) * 2012-08-23 2014-03-12 上海西门子医疗器械有限公司 Medical apparatus
EP3736590A1 (en) * 2019-05-09 2020-11-11 Siemens Healthcare GmbH Mri system for simultaneous imaging of multiple patients
US20210156936A1 (en) * 2019-11-27 2021-05-27 Siemens Healthcare Gmbh Toroidal system configuration for dedicated mri scanners
EP3828580A1 (en) * 2019-11-27 2021-06-02 Siemens Healthcare GmbH Method and system for compensating stray magnetic fields in a magnetic resonance imaging system with multiple examination areas
EP3828573A1 (en) * 2019-11-27 2021-06-02 Siemens Healthcare GmbH V-shaped gradient system for a magnetic resonance imaging system
EP3828574A1 (en) * 2019-11-27 2021-06-02 Siemens Healthcare GmbH Gradient system for a magnetic resonance imaging system with at least two examination areas
CN113534029A (en) * 2020-04-17 2021-10-22 西门子医疗有限公司 Magnet system for magnetic resonance imaging system
US11946992B2 (en) * 2021-04-01 2024-04-02 Canon Medical Systems Corporation Magnetic resonance apparatus with a main magnet disposed between examination rooms

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069052A1 (en) * 2003-02-10 2004-08-19 Neomax Co., Ltd. Magnetic field-producing device
JP2009291639A (en) * 2003-02-10 2009-12-17 Hitachi Metals Ltd Magnetic field generator
CN103622714A (en) * 2012-08-23 2014-03-12 上海西门子医疗器械有限公司 Medical apparatus
EP3736590A1 (en) * 2019-05-09 2020-11-11 Siemens Healthcare GmbH Mri system for simultaneous imaging of multiple patients
US11340321B2 (en) 2019-05-09 2022-05-24 Siemens Healthcare Gmbh Magnetic resonance tomography system
EP3828573A1 (en) * 2019-11-27 2021-06-02 Siemens Healthcare GmbH V-shaped gradient system for a magnetic resonance imaging system
EP3828580A1 (en) * 2019-11-27 2021-06-02 Siemens Healthcare GmbH Method and system for compensating stray magnetic fields in a magnetic resonance imaging system with multiple examination areas
EP3828574A1 (en) * 2019-11-27 2021-06-02 Siemens Healthcare GmbH Gradient system for a magnetic resonance imaging system with at least two examination areas
EP3839541A3 (en) * 2019-11-27 2021-10-06 Siemens Healthcare GmbH Toroidal magnet configuration for dedicated mri scanners
US11209513B2 (en) 2019-11-27 2021-12-28 Siemens Healthcare Gmbh Method and system for compensating stray magnetic fields in a magnetic resonance imaging system
US20210156936A1 (en) * 2019-11-27 2021-05-27 Siemens Healthcare Gmbh Toroidal system configuration for dedicated mri scanners
US11454686B2 (en) 2019-11-27 2022-09-27 Siemens Healthcare Gmbh Gradient system for a magnetic resonance imaging system
CN113534029A (en) * 2020-04-17 2021-10-22 西门子医疗有限公司 Magnet system for magnetic resonance imaging system
US11946992B2 (en) * 2021-04-01 2024-04-02 Canon Medical Systems Corporation Magnetic resonance apparatus with a main magnet disposed between examination rooms

Similar Documents

Publication Publication Date Title
US4534358A (en) Nuclear magnetic resonance imaging apparatus
JP3996734B2 (en) Inspection device using nuclear magnetic resonance
JP5624028B2 (en) Magnetic resonance imaging apparatus and superconducting quantum interference device detection and method using magnetic field circulation method
JP4188384B2 (en) Magnetic resonance imaging system
EP2424429B1 (en) Imaging device for three dimensional anatomical and functional imaging and methods thereof
JPH03236829A (en) Magnetic resonance imaging device
JP2001517132A (en) Radiotherapy equipment including magnetic resonance imaging system
JP2005527292A (en) Reference markers for MRI
US7680525B1 (en) Method for lateral motion magnetic resonance imaging
JP2012130701A (en) System and method for communicating data
CN111913142A (en) Basic field magnet arrangement, magnetic resonance tomography system and measuring method
JPH10234704A (en) Mri apparatus
JP3727601B2 (en) Magnetic resonance imaging system
JPH04105641A (en) Medical diagnosis system
JP2007301153A (en) Medical imaging apparatus
JP3112474B2 (en) Magnetic resonance imaging equipment
JP4031964B2 (en) Receiver coil for magnetic resonance imaging apparatus and apparatus using the same
JP2000300535A (en) Time series temperature measuring method using mri apparatus
US6411837B1 (en) Method for chronologically high-resolution magnetic resonance tomography of the female breast
EP1379889A1 (en) Determination of the arterial input function in dynamic contrast-enhanced mri
Artemov et al. Switchable multicoil array for MR micro‐imaging of breast lesions
JP4648686B2 (en) Surgery receiving coil and magnetic resonance imaging apparatus using the same
JP2005137411A (en) Magnetic resonance imaging apparatus
CN114533027A (en) Artifact reduction method for stomach magnetic resonance imaging in free breathing state and application thereof
JPS6244231A (en) Diagnostic magnetic resonance imaging apparatus