JP4007773B2 - Fuel cell exhaust heat recovery mechanism - Google Patents

Fuel cell exhaust heat recovery mechanism Download PDF

Info

Publication number
JP4007773B2
JP4007773B2 JP2001179100A JP2001179100A JP4007773B2 JP 4007773 B2 JP4007773 B2 JP 4007773B2 JP 2001179100 A JP2001179100 A JP 2001179100A JP 2001179100 A JP2001179100 A JP 2001179100A JP 4007773 B2 JP4007773 B2 JP 4007773B2
Authority
JP
Japan
Prior art keywords
fuel cell
hot water
temperature
hot
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001179100A
Other languages
Japanese (ja)
Other versions
JP2002372303A (en
Inventor
本 博 昌 松
本 正 之 藤
崎 邦 博 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2001179100A priority Critical patent/JP4007773B2/en
Publication of JP2002372303A publication Critical patent/JP2002372303A/en
Application granted granted Critical
Publication of JP4007773B2 publication Critical patent/JP4007773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/30Fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/13Small-scale CHP systems characterised by their heat recovery units characterised by their heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/17Storage tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子形燃料電池に関するものであり、特に、固体高分子形燃料電池の温排水を利用する排熱回収機構に関する。
【0002】
【従来の技術】
無公害の動力発生装置としての燃料電池は、使用する電解質で分類すると、りん酸水溶液を使用するりん酸形燃料電池、炭酸塩を使用する溶融炭酸塩形燃料電池、ジルコニア系セラミックスを使用する固体酸化物形燃料電池、陽イオン交換膜を使用する固体高分子形燃料電池等が知られている。
これらの燃料電池は、主たる出力としての電力と出力に対応した排熱を発生し、その排熱を温水として回収すれば、電熱併給のコジェネレーションシステムとして作動をする。
【0003】
ここで発電時の反応温度は、りん酸形燃料電池では約200℃、溶融炭酸塩形燃料電池では650〜700℃、固体酸化物形燃料電池では900〜1000℃、固体高分子形燃料電池では常温〜90℃である。
【0004】
上記各種の燃料電池のうち固体高分子形燃料電池は、常温で発電できること、そのため起動、停止が容易であること、出力密度が高いため小型、軽量化が可能なこと、反応作動温度が低温のために安価な材料を使用することができて低コスト化が可能なこと、低負荷時に高発電効率である等の特長を有し、排熱を温水として回収することにより家庭向け発電機能を有する給湯器と考えることが出来る。
さらに、有害成分を包含する排気ガス量が少ないという燃料電池の特質は、家庭向け発電装置としての適性を、さらに高めている。
【0005】
しかし、固体高分子形燃料電池を家庭用発電装置とした場合、発電出力は1KW程度が適当と考えられ、この場合の温排水流量は、温排水温度が60℃の場合では0.4リットル/分程度、温排水温度が40℃の場合では0.7リットル/分程度の少量である。
【0006】
この程度の(少流量の)温水では、家庭内で通常消費されるシャワー水量(20リットル/分)を直接供給するには能力不足(給湯能力不足)である。従って、出力1kW程度の固体高分子形燃料電池を家庭用に用いる場合には、温排水を貯湯槽に一旦貯えて、貯湯槽に蓄えられた温排水(湯)を使用するのが一般的である。
【0007】
従来の洗面所、風呂および調理場等への給湯装置では、貯湯槽を屋外に設置しているが、このスペース、設備費、工事費はできるだけ省きたいという要請が存在する。しかし、従来の固体高分子形燃料電池の排熱回収機構では、この様な要請に応えることが出来なかった。
【0008】
【発明が解決しようとする課題】
本発明は上述した従来技術の問題点に鑑みて提案されたもので、燃料電池の温排水を有効に利用する燃料電池の新たな排熱回収機構の提供を目的としている。
【0009】
【課題を解決するための手段】
本発明によれば、固体高分子形燃料電池の温排水を用いる排熱回収機構において、固体高分子形燃料電池4には温排水管6が接続され、その温排水管6は、三方弁7を介して浴槽8に連通しており、その三方弁7の開度調節手段22は制御線18で制御装置14に接続されており、そして浴槽8の温水Wの温度を検知する温度センサ10は信号線16で前記制御装置14に接続され、さらに固体高分子形燃料電池4をバイパスするバイパス管21が前記三方弁7に接続され、前記制御装置14は温排水管6から浴槽8に流れる温排水の温度を下げる場合に、前記温度センサ10の検温信号によって前記バイパス管21の水量を制御する機能を有している。
【0012】
家屋内の浴槽を温排水貯蔵空間にするので、貯湯のための格別な設備が不要でありコストがかからない。
【0014】
そして、本発明によれば、固体高分子形燃料電池の温排水を用いる排熱回収機構において、床面Fh下に設置された貯湯タンク93の上方には支持材95を介して浴槽91が設けられ、固体高分子形燃料電池4には温排水管6Aが接続され、その温排水管6Aは三方弁100Aとポンプ7Aとを介して前記貯湯タンク93に連通しており、前記固体高分子形燃料電池4に給水源19からの給水管20Aが連通しており、その給水管20Aには固体高分子形燃料電池4をバイパスするバイパス管21Aが前記三方弁100Aに接続され、前記貯湯タンク93には水温センサ10Aが設けられ、その水温センサ10Aは信号ライン16Aを介して制御装置14Aに接続され、その制御装置14Aは貯湯タンク93の温度を下げる場合に、前記温度センサ10Aの検出信号によって前記バイパス管21Aの水量を制御する機能を有している。
【0019】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を説明する。
図1は、本発明の第1の実施形態であって、固体高分子形燃料電池(以降、PEFCと略記する。)からの温排水を家屋内に設置された温排水貯蔵空間に貯える排熱回収機構1のブロック構成を示している。
【0020】
図1において、適所に設けられたPEFC4に、そのPEFC4から回収される温排水が流過する温排水ラインの管6が、温排水貯蔵空間9である貯湯槽8に連通されている。貯湯槽8は、家屋H内に設置されている浴槽でもよい。
【0021】
管6に三方弁7が介装され、開度調節手段22に制御装置14が制御線18で連通されている。
【0022】
貯湯槽8に温水Wの温度を検知する温度センサ10が装着され、温度センサ10と制御装置14が信号線16で連通されている。
なお、図においては、三方弁7は制御装置14で制御されるよう構成されている。また、手動操作によっても良い。
【0023】
PEFC4に、外部の給水源たとえば上水道19から給水管20が連通されている。
【0024】
上記構成による燃料電池の排熱回収機構1の作用を説明する。
図1において、PEFC4が作動して発電すると、排熱が発生するので、給水管20を流過する給水により、該排熱が温水として回収される。回収された温排水は、給水圧力により管6を通り、浴槽8に送られる。
【0025】
ここで、温排水の温度がたとえば60℃の場合で、このままの60℃の温度で貯湯する場合は管6を介して浴槽8に直接に送湯する。
しかし、60℃の温排水を、所定の使用温度に降温して貯湯する場合は次のようにする。
【0026】
温排水を所定の使用温度に下げる場合、たとえば60℃の温排水を入浴適温度42℃に下げる場合は、上水道19から管20を介してPEFC4をバイパスする管21を通過する水量を、三方弁7の開度調節手段22により増加して湯温を下げる。そして浴槽8に供給する。
【0027】
設定した所定の入浴適温たとえば42℃を確保するために、温度センサ10の検温信号によって制御装置14が三方弁7の作動を制御して浴槽8への送湯量の制御をする。また、手動操作を行っても良い。
【0028】
図2及び図3は、排水貯蔵空間の第2の実施形態を示し、浴槽が2重壁で形成され、その2重壁間の中空部を温排水貯蔵空間とした形態を示している。
【0029】
図2及び図3において、家屋H内に設置された浴槽80は、内壁81と外壁82との二重構造で一体に構成され、内壁81と外壁82の間に中空部83が形成されている。
【0030】
中空部83に、内壁81と外壁82を連結する複数の支持部材84が設けられている。図3においては、支持部材84は底部のみにあるが、浴槽形状保持、強度保持のために必要に応じて側壁に設けられてもよい。
【0031】
外壁82の側面に、外壁82を貫通して中空部83と外部を連通させる2つの管86及び87が設けられ、管87は温排水ライン6を介してPEFC4(図1参照)に連通され、管86は温排水の使用場所である浴槽や給湯設備等、あるいは図示のない循環管を介してPEFC4に連通されている。
【0032】
なお、浴槽を二重構造にした場合の貯湯容量は、浴槽の寸法を、内のり:1600x800x700、外形:1800x1000x800とすると、中空部83が544リットルとなって、通常の貯湯槽として充分な容量である。従って、温排水貯蔵空間を別途に設置する必要がない。
【0033】
図4は、第3の実施形態であって、例えばユニットバスの浴室の床下に貯湯タンクを設けて温排水貯蔵空間にする排熱回収機構2のブロック構成を示す。
図4において、家屋H内の浴室90の床下に、図においては浴槽91及び洗い場92下部の床面Fh下に複数の支持材95を介して貯湯タンク93が設置されている。
【0034】
一方、適所に設けられたPEFC4に、そのPEFC4から回収される温排水が流過する温排水ラインの管6Aが、温排水貯蔵空間9である貯湯タンク93に連通されている。その管6Aに、ポンプ7Aが介装されている。 図4の第3の実施形態では、ポンプ7Aは、手動操作でもよい。但し、図5に関連して後述する様に、浴槽8内の湯温に応答して制御装置によりポンプ7Aを作動させても良い。
【0035】
PEFC4に、外部の給水源たとえば給水19から給水管20Aが連通されている。
【0036】
上記構成による排熱回収機構2の作用を説明する。
図4において、PEFC4が作動して発電すると、排熱が発生するので、給水管20Aを流過する給水により、該排熱が温水として回収される。回収された温排水は、管6A及びポンプ7Aによって貯湯タンク93に送られる。貯湯タンク93の湯温は、通常は60℃で貯湯されるので、給湯設備で必要な温度としては高温過ぎる場合には、上水と混合して適温まで降温して使用する。
【0038】
図5で示す排熱回収機構は、図4で示す第3の実施形態における変形例である。
この変形例では、図1で示すのと同様に、制御装置(図5では符号14Aで示す)により三方弁(図5では符号100Aで示す)を制御している。
【0039】
すなわち、図5においては、管6Aに三方弁100Aが介装され、開度調節手段22Aは制御線18Aを介して制御装置14Aと接続されている。
貯湯タンク93には、温水Wの温度を検知する温度センサ10Aが装着され、温度センサ10Aは信号線16Aを介して制御装置14Aに接続されている。
【0040】
図5で示す排熱回収機構では、三方弁100Aは制御装置14Aで制御され、その結果、管21Aと管6Aを流れる温排水の流量が調節されて、温水Wは所望温度となる様に構成されている。すなわち、温水Wを給湯に必要な温度と設定することにより、その温度で貯湯することが出来るので、そのまま給湯することが可能である。
なお、ポンプ7Aは、給水19の圧力が十分であれば、省略しても良い。
【0074】
【発明の効果】
本発明の作用効果を、以下に列記する。
(1) 固体高分子形燃料電池からの温排水を家庭内の貯湯槽に貯えるので、温排水の活用が容易である。
(2) 温排水貯蔵空間を浴槽にすれば、貯湯のための特別な設備の設置が不要になる。
(3) 浴槽を二重構造にして中空部に貯湯すれば、格別なスペースをとることなく貯湯槽にできる。また、密閉性がよくて水漏れの懸念がなく、断熱性もよい。
(4) 家屋の床下に貯湯タンクを設ければ、格別なスペースが不要となり配管類の工事が容易になる。
【図面の簡単な説明】
【図1】本発明の第1実施形態のブロック図。
【図2】本発明の第2実施形態の要部を示す斜視図。
【図3】図2の断面図。
【図4】本発明の第3実施形態のブロック図。
【図5】図4の実施形態に制御系を付加した変形例を示すブロック図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell, and more particularly, to an exhaust heat recovery mechanism that uses hot drainage of a polymer electrolyte fuel cell.
[0002]
[Prior art]
Fuel cells as non-polluting power generators can be classified according to the electrolyte used. Phosphoric acid fuel cells using phosphoric acid aqueous solution, molten carbonate fuel cells using carbonate, solids using zirconia ceramics An oxide fuel cell, a polymer electrolyte fuel cell using a cation exchange membrane, and the like are known.
These fuel cells generate electric power as a main output and exhaust heat corresponding to the output, and if the exhaust heat is recovered as hot water, the fuel cell operates as a cogeneration system combined with electric heat.
[0003]
The reaction temperature during power generation is about 200 ° C. for phosphoric acid fuel cells, 650 to 700 ° C. for molten carbonate fuel cells, 900 to 1000 ° C. for solid oxide fuel cells, and for polymer electrolyte fuel cells. Normal temperature to 90 ° C.
[0004]
Among the various types of fuel cells described above, the polymer electrolyte fuel cell can generate electricity at room temperature, and therefore can be easily started and stopped, can be reduced in size and weight because of its high output density, and the reaction operating temperature is low. Therefore, it is possible to use inexpensive materials and reduce costs, and it has features such as high power generation efficiency at low loads, and has a power generation function for households by collecting waste heat as hot water Think of it as a water heater.
Furthermore, the characteristic of the fuel cell that the amount of exhaust gas containing harmful components is small further enhances the suitability as a power generator for home use.
[0005]
However, when the polymer electrolyte fuel cell is used as a household power generation device, it is considered that the power generation output is about 1 KW, and in this case, the warm drainage flow rate is 0.4 liter / When the temperature is about 40 minutes, the temperature is about 0.7 liter / minute.
[0006]
This level of hot water (with a small flow rate) is insufficient to supply directly the amount of shower water normally consumed in the home (20 liters / minute) (insufficient hot water supply capacity). Therefore, when a polymer electrolyte fuel cell having an output of about 1 kW is used for home use, it is common to temporarily store hot waste water in a hot water storage tank and use the hot waste water (hot water) stored in the hot water storage tank. is there.
[0007]
In conventional hot water supply devices for bathrooms, baths, and kitchens, hot water storage tanks are installed outdoors, but there is a demand to save this space, equipment costs, and construction costs as much as possible. However, the conventional exhaust heat recovery mechanism of the polymer electrolyte fuel cell cannot meet such a request.
[0008]
[Problems to be solved by the invention]
The present invention has been proposed in view of the above-described problems of the prior art, and an object thereof is to provide a new exhaust heat recovery mechanism for a fuel cell that effectively uses the warm drainage of the fuel cell.
[0009]
[Means for Solving the Problems]
According to the present invention, in the exhaust heat recovery mechanism using the warm drainage of the polymer electrolyte fuel cell, the polymer electrolyte fuel cell 4 is connected to the warm drain pipe 6, and the warm drain pipe 6 is connected to the three-way valve 7. The opening degree adjusting means 22 of the three-way valve 7 is connected to the control device 14 by a control line 18, and a temperature sensor 10 for detecting the temperature of the hot water W in the bathtub 8 is A signal line 16 is connected to the control device 14, and further, a bypass pipe 21 that bypasses the polymer electrolyte fuel cell 4 is connected to the three-way valve 7, and the control device 14 has a temperature flowing from the hot drain pipe 6 to the bathtub 8. When the temperature of the drainage is lowered, it has a function of controlling the amount of water in the bypass pipe 21 by the temperature detection signal of the temperature sensor 10.
[0012]
Since the bathtub in the house is used as a warm drainage storage space, no special equipment for hot water storage is required and the cost is low.
[0014]
According to the present invention, in the exhaust heat recovery mechanism using the warm drainage of the polymer electrolyte fuel cell, the bathtub 91 is provided above the hot water storage tank 93 installed under the floor surface Fh via the support member 95. The solid polymer fuel cell 4 is connected with a warm drain pipe 6A, and the warm drain pipe 6A communicates with the hot water storage tank 93 via a three-way valve 100A and a pump 7A. A water supply pipe 20A from a water supply source 19 communicates with the fuel cell 4, and a bypass pipe 21A that bypasses the polymer electrolyte fuel cell 4 is connected to the water supply pipe 20A to the three-way valve 100A. Is provided with a water temperature sensor 10A, which is connected to the control device 14A via a signal line 16A, and the control device 14A reduces the temperature when the temperature of the hot water storage tank 93 is lowered. And it has a function of controlling the amount of water of the bypass pipe 21A by the detection signal of the capacitors 10A.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a first embodiment of the present invention, in which exhaust heat is stored in a warm drainage storage space installed in a house from warm drainage from a polymer electrolyte fuel cell (hereinafter abbreviated as PEFC). The block configuration of the collection mechanism 1 is shown.
[0020]
In FIG. 1, a pipe 6 of a warm drainage line through which warm drainage recovered from the PEFC 4 flows is connected to a hot water storage tank 8 that is a warm drainage storage space 9. The hot water tank 8 may be a bathtub installed in the house H.
[0021]
A three-way valve 7 is interposed in the pipe 6, and a control device 14 is connected to the opening degree adjusting means 22 through a control line 18.
[0022]
A temperature sensor 10 for detecting the temperature of the hot water W is attached to the hot water storage tank 8, and the temperature sensor 10 and the control device 14 are communicated with each other through a signal line 16.
In the figure, the three-way valve 7 is configured to be controlled by the control device 14. Manual operation may also be used.
[0023]
A water supply pipe 20 is connected to the PEFC 4 from an external water supply source, for example, a water supply 19.
[0024]
The operation of the exhaust heat recovery mechanism 1 of the fuel cell having the above configuration will be described.
In FIG. 1, when the PEFC 4 is activated to generate electric power, exhaust heat is generated. Therefore, the exhaust heat is recovered as hot water by the supply water flowing through the water supply pipe 20. The collected hot waste water passes through the pipe 6 by the feed water pressure and is sent to the bathtub 8.
[0025]
Here, when the temperature of the hot waste water is 60 ° C., for example, when hot water is stored at the temperature of 60 ° C. as it is, the hot water is directly fed to the bathtub 8 through the pipe 6.
However, when the hot waste water at 60 ° C. is cooled to a predetermined use temperature and stored in hot water, the following is performed.
[0026]
When lowering the warm drainage to a predetermined operating temperature, for example, when lowering the warm drainage at 60 ° C. to a suitable bathing temperature of 42 ° C., the amount of water passing through the pipe 21 bypassing the PEFC 4 from the water supply 19 through the pipe 20 7 and the hot water temperature is lowered by the opening degree adjusting means 22. And it supplies to the bathtub 8.
[0027]
In order to ensure a predetermined appropriate bathing temperature, for example, 42 ° C., the control device 14 controls the operation of the three-way valve 7 by the temperature detection signal of the temperature sensor 10 to control the amount of hot water supplied to the bathtub 8. Manual operation may also be performed.
[0028]
FIG.2 and FIG.3 shows 2nd Embodiment of waste_water | drain storage space, The bathtub was formed with the double wall and the form which used the hollow part between the double walls as the warm waste water storage space is shown.
[0029]
2 and 3, the bathtub 80 installed in the house H is integrally formed with a double structure of an inner wall 81 and an outer wall 82, and a hollow portion 83 is formed between the inner wall 81 and the outer wall 82. .
[0030]
A plurality of support members 84 that connect the inner wall 81 and the outer wall 82 are provided in the hollow portion 83. In FIG. 3, the support member 84 is only at the bottom, but may be provided on the side wall as necessary for maintaining the shape of the bathtub and maintaining the strength.
[0031]
Two pipes 86 and 87 are provided on the side surface of the outer wall 82 so as to pass through the outer wall 82 and communicate with the hollow portion 83 and the outside. The pipe 87 is communicated with the PEFC 4 (see FIG. 1) via the hot drainage line 6. The pipe 86 communicates with the PEFC 4 via a bathtub, a hot water supply facility, etc., where hot water is used, or a circulation pipe (not shown).
[0032]
In addition, the hot water storage capacity in the case where the bathtub has a double structure is sufficient capacity as a normal hot water storage tank, with the hollow portion 83 being 544 liters when the dimensions of the bathtub are 1600 × 800 × 700 and external shape: 1800 × 1000 × 800. . Therefore, it is not necessary to separately install a warm drainage storage space.
[0033]
FIG. 4 shows a block configuration of the exhaust heat recovery mechanism 2 according to the third embodiment, for example, where a hot water storage tank is provided under the floor of a bathroom of a unit bath to form a warm drainage storage space.
In FIG. 4, a hot water storage tank 93 is installed under the floor of the bathroom 90 in the house H, and in the figure under the floor surface Fh below the bathtub 91 and the washing place 92 via a plurality of support members 95.
[0034]
On the other hand, a pipe 6A of a warm drainage line through which warm drainage recovered from the PEFC 4 flows is connected to a hot water storage tank 93 which is a warm drainage storage space 9. A pump 7A is interposed in the pipe 6A. In the third embodiment of FIG. 4, the pump 7A may be manually operated. However, as will be described later with reference to FIG. 5, the pump 7 </ b> A may be operated by the control device in response to the hot water temperature in the bathtub 8.
[0035]
A water supply pipe 20A communicates with PEFC 4 from an external water supply source, for example, water supply 19.
[0036]
The operation of the exhaust heat recovery mechanism 2 configured as described above will be described.
In FIG. 4, when the PEFC 4 is operated to generate power, exhaust heat is generated, so that the exhaust heat is recovered as hot water by the feed water flowing through the feed water pipe 20A. The collected hot waste water is sent to the hot water storage tank 93 by the pipe 6A and the pump 7A. Since the hot water temperature in the hot water storage tank 93 is normally stored at 60 ° C., if the temperature required for the hot water supply facility is too high, the hot water tank 93 is mixed with clean water and cooled to an appropriate temperature.
[0038]
The exhaust heat recovery mechanism shown in FIG. 5 is a modification of the third embodiment shown in FIG.
In this modification, the three-way valve (indicated by reference numeral 100A in FIG. 5) is controlled by a control device (indicated by reference numeral 14A in FIG. 5), as shown in FIG.
[0039]
That is, in FIG. 5, a three-way valve 100A is interposed in the pipe 6A, and the opening degree adjusting means 22A is connected to the control device 14A via the control line 18A.
The hot water storage tank 93 is equipped with a temperature sensor 10A that detects the temperature of the hot water W, and the temperature sensor 10A is connected to the control device 14A via a signal line 16A.
[0040]
In the exhaust heat recovery mechanism shown in FIG. 5, the three-way valve 100A is controlled by the control device 14A, and as a result, the flow rate of the hot waste water flowing through the pipe 21A and the pipe 6A is adjusted, and the hot water W becomes a desired temperature. Has been. In other words, by setting the hot water W as a temperature necessary for hot water supply, hot water can be stored at that temperature, so that hot water can be supplied as it is.
The pump 7A may be omitted if the pressure of the water supply 19 is sufficient.
[0074]
【The invention's effect】
The effects of the present invention are listed below.
(1) Hot water from the polymer electrolyte fuel cell is stored in a domestic hot water storage tank, making it easy to use hot water.
(2) If the hot drainage storage space is made into a bathtub, it is not necessary to install special equipment for hot water storage.
(3) If a bathtub is made into a double structure and hot water is stored in a hollow part, it can be made into a hot water storage tank without taking a special space. In addition, the airtightness is good, there is no fear of water leakage, and the heat insulation is good.
(4) If a hot water storage tank is installed under the floor of a house, a special space is not required and piping work is facilitated.
[Brief description of the drawings]
FIG. 1 is a block diagram of a first embodiment of the present invention.
FIG. 2 is a perspective view showing a main part of a second embodiment of the present invention.
3 is a cross-sectional view of FIG.
FIG. 4 is a block diagram of a third embodiment of the present invention.
FIG. 5 is a block diagram showing a modification in which a control system is added to the embodiment of FIG.

Claims (2)

固体高分子形燃料電池の温排水を用いる排熱回収機構において、固体高分子形燃料電池(4)には温排水管(6)が接続され、その温排水管(6)は、三方弁(7)を介して浴槽(8)に連通しており、その三方弁(7)の開度調節手段(22)は制御線(18)で制御装置(14)に接続されており、そして浴槽(8)の温水(W)の温度を検知する温度センサ(10)は信号線(16)で前記制御装置(14)に接続され、さらに固体高分子形燃料電池(4)をバイパスするバイパス管(21)が前記三方弁(7)に接続され、前記制御装置(14)は温排水管(6)から浴槽(8)に流れる温排水の温度を下げる場合に、前記温度センサ(10)の検温信号によって前記バイパス管(21)の水量を制御する機能を有することを特徴とする排熱回収機構。  In the exhaust heat recovery mechanism using warm drainage of a polymer electrolyte fuel cell, a warm drain pipe (6) is connected to the polymer electrolyte fuel cell (4), and the warm drain pipe (6) is a three-way valve ( 7) is communicated with the bathtub (8), the opening adjusting means (22) of the three-way valve (7) is connected to the control device (14) by a control line (18), and the bathtub ( 8) The temperature sensor (10) for detecting the temperature of the hot water (W) is connected to the control device (14) through a signal line (16), and further bypasses the polymer electrolyte fuel cell (4) ( 21) is connected to the three-way valve (7), and the control device (14) detects the temperature of the temperature sensor (10) when the temperature of the warm drainage flowing from the hot drain pipe (6) to the bathtub (8) is lowered. It has a function of controlling the amount of water in the bypass pipe (21) by a signal. Exhaust heat recovery mechanism that. 固体高分子形燃料電池の温排水を用いる排熱回収機構において、床面(Fh)下に設置された貯湯タンク(93)の上方には支持材(95)を介して浴槽(91)が設けられ、固体高分子形燃料電池(4)には温排水管(6A)が接続され、その温排水管(6A)は三方弁(100A)とポンプ(7A)とを介して前記貯湯タンク(93)に連通しており、前記固体高分子形燃料電池(4)に給水源(19)からの給水管(20A)が連通しており、その給水管(20A)には固体高分子形燃料電池(4)をバイパスするバイパス管(21A)が前記三方弁(100A)に接続され、前記貯湯タンク(93)には水温センサ(10A)が設けられ、その水温センサ(10A)は信号ライン(16A)を介して制御装置(14A)に接続され、その制御装置(14A)は貯湯タンク(93)の温度を下げる場合に、前記温度センサ(10A)の検出信号によって前記バイパス管(21A)の水量を制御する機能を有することを特徴とする排熱回収機構。  In the exhaust heat recovery mechanism using hot waste water of a polymer electrolyte fuel cell, a bathtub (91) is provided above a hot water storage tank (93) installed under the floor (Fh) via a support material (95). The solid polymer fuel cell (4) is connected to a hot drain pipe (6A), and the hot drain pipe (6A) is connected to the hot water storage tank (93 via a three-way valve (100A) and a pump (7A). ), A water supply pipe (20A) from a water supply source (19) is connected to the polymer electrolyte fuel cell (4), and the polymer electrolyte fuel cell is connected to the water supply pipe (20A). A bypass pipe (21A) for bypassing (4) is connected to the three-way valve (100A), a water temperature sensor (10A) is provided in the hot water storage tank (93), and the water temperature sensor (10A) is connected to a signal line (16A). ) To the control device (14A) via When the temperature of the hot water storage tank (93) is lowered, the control device (14A) has a function of controlling the amount of water in the bypass pipe (21A) by the detection signal of the temperature sensor (10A). Collection mechanism.
JP2001179100A 2001-06-13 2001-06-13 Fuel cell exhaust heat recovery mechanism Expired - Fee Related JP4007773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001179100A JP4007773B2 (en) 2001-06-13 2001-06-13 Fuel cell exhaust heat recovery mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001179100A JP4007773B2 (en) 2001-06-13 2001-06-13 Fuel cell exhaust heat recovery mechanism

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007158399A Division JP4236688B2 (en) 2007-06-15 2007-06-15 Fuel cell exhaust heat recovery mechanism

Publications (2)

Publication Number Publication Date
JP2002372303A JP2002372303A (en) 2002-12-26
JP4007773B2 true JP4007773B2 (en) 2007-11-14

Family

ID=19019710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001179100A Expired - Fee Related JP4007773B2 (en) 2001-06-13 2001-06-13 Fuel cell exhaust heat recovery mechanism

Country Status (1)

Country Link
JP (1) JP4007773B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211344B2 (en) 2003-05-14 2007-05-01 The Gillette Company Fuel cell systems
US7544435B2 (en) 2003-05-15 2009-06-09 The Gillette Company Electrochemical cell systems comprising fuel consuming agents
TW201122383A (en) * 2009-12-31 2011-07-01 Chung Hsin Elec & Mach Mfg Fuel cell apparatus combined heat and power system

Also Published As

Publication number Publication date
JP2002372303A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
JP3620701B2 (en) Cogeneration equipment
JP5388758B2 (en) Fuel cell cogeneration system
JP2007198708A (en) Hybrid hot water supply system
JP5851341B2 (en) Hybrid power supply system
JP2007032904A (en) Cogeneration system
JP4302686B2 (en) Hot water system
JP5359195B2 (en) Solar system
JP4007773B2 (en) Fuel cell exhaust heat recovery mechanism
JP2005147494A (en) Multi-temperature heat storage tank and heat storage system using the same
JP2002289212A (en) Fuel cell cogeneration system
JP2007003125A (en) Hot water supply system
JP2005076934A (en) Heat-recovery-combined heat pump water heater
JP2000121171A (en) Solar heat water heating system
JP6551062B2 (en) Cogeneration system
JP4236688B2 (en) Fuel cell exhaust heat recovery mechanism
JP2007248008A (en) Cogeneration system and its operation method
JP2001336822A (en) Hot water storing type hot water feeder
JP2009145042A (en) Hot water system
JP2002106206A (en) Base isolation building
CN115218248B (en) Cascade heat energy device and hot water system based on photovoltaic power generation coupling heat pump heats
CN218119876U (en) Waste heat recycling solar hot water heating device
JPH03294701A (en) Steam generator using solar battery
JP2004150682A (en) Co-generation system for central hot-water supply/heating of housing complex
JP2009273271A (en) Power generation system
JP2009181941A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4007773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees