JP4005678B2 - Heat dissipation structure for electronic parts - Google Patents

Heat dissipation structure for electronic parts Download PDF

Info

Publication number
JP4005678B2
JP4005678B2 JP28202697A JP28202697A JP4005678B2 JP 4005678 B2 JP4005678 B2 JP 4005678B2 JP 28202697 A JP28202697 A JP 28202697A JP 28202697 A JP28202697 A JP 28202697A JP 4005678 B2 JP4005678 B2 JP 4005678B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
electronic component
heat dissipation
wave absorber
dissipation structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28202697A
Other languages
Japanese (ja)
Other versions
JPH11121976A (en
Inventor
徹 松崎
晃生 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Industries Co Ltd
Original Assignee
Kitagawa Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Industries Co Ltd filed Critical Kitagawa Industries Co Ltd
Priority to JP28202697A priority Critical patent/JP4005678B2/en
Publication of JPH11121976A publication Critical patent/JPH11121976A/en
Application granted granted Critical
Publication of JP4005678B2 publication Critical patent/JP4005678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、集積回路などの電子部品からの放熱を促すために用いられる放熱構造に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
近年、高速動作が可能なCPU(Central Processing Unit )が開発されたことにより、コンピュータの性能が目覚ましく向上している。そしてこれに伴いCPUから発せられる大量の熱を効率よく発散させ、CPUが誤動作しないように、多数のフィンを備えた放熱体をCPUの上面に固定したり、これに更にファンを設けて風を当てる等の配慮が為されている。
【0003】
また、電子部品から発せられるものとしては、熱もさることながら、電磁波も問題となる場合がある。すなわち、前記のフィン等から熱だけでなく電磁波もその周辺へと放出され、その電子部品の近傍の他の電子部品に動作に悪影響を及ぼすことや、当該電子部品が適用されている電子機器の周辺へ電磁波が漏洩することによる障害が危惧されている。こうした課題はCPUに限らず、様々な電子部品において同様に発生する。
【0004】
本発明はかかる課題に鑑みなされたもので、電子部品用放熱構造において、熱だけでなく、電子部品から発せられる電磁波の吸収をも良好に行なえるようにすることを目的としている。
【0005】
【課題を解決するための手段】
かかる課題を解決するためになされた本発明の請求項1記載の電子部品用放熱構造は、放熱対象となる電子部品の上面に、少なくとも板状の電磁波吸収体と、該電磁波吸収体にて吸収しきれなかった電磁波を該電磁波吸収体へと反射するための金属板と、板状の誘電体と、複数の放熱フィンを備えた放熱体と、をこの順序で積層してなり、前記電磁波吸収体は、電波吸収材料を厚さが0.1ないし1mmの板状にしたものである吸収基板に、整合周波数を調整する貫通穴である調整穴を形成したものであることを特徴とする。
【0007】
請求項2に記載の本発明は、請求項1に記載の電子部品用放熱構造において、前記放熱体をアースしたことを特徴とする。
【0008】
【発明の実施の形態】
請求項1に記載の電子部品用放熱構造は、CPU等の電子部品の上面に、板状の電磁波吸収体と、金属板と、板状の誘電体と、複数の放熱フィンを備えた放熱体と、をこの順序で積層したものである。なお、これ以外にも、例えば電磁波吸収体を電子部品の上面に固定するためのパテや接着剤を積層してももちろん構わない。また、電子部品の「上面」とは、電子部品が実装されるプリント基板等から離れた面を指すものとする。従って、水平にされたプリント基板の裏面に電子部品が実装されている場合には、上面は下方を向くことになる。
【0009】
この電子部品用放熱構造においては、電子部品から発せられた電磁波はまず、電磁波吸収体にてある程度吸収される。吸収しきれず貫通した電磁波は、その一部が金属板にて反射され、再び電磁波吸収体にて吸収を受ける。残りの電磁波は金属板上で渦電流となって停留するが、この金属板と放熱体とで誘電体を挟んでいることにより容量素子が形成されているため、この箇所の積層構造が、渦電流と相俟って一種のLCフィルタを為す。このLCフィルタにより、渦電流が減衰され、放熱体のフィンなどから外部へと放出される電磁波はごくわずかとなる。
【0010】
従って、この電子部品用放熱構造によれば、電子部品の熱を効率的に放出すると共に、電磁波を効率よく吸収することができる。ここで誘電体としては、樹脂、セラミックス、樹脂にフィラーを混練したもの、等が挙げられる。ここで樹脂としてはエポキシ、ポリエチレン、ポリカーボネイト、シリコーン等が挙げられ、セラミックスとしてはチタン酸バリウム、SiC、Al2O3、BeO、MgO、AlN、BN等が挙げられる。また電磁波吸収体としては、フェライト(酸化鉄を粉砕し、焼結したもの)、フェライトと合成樹脂の複合材、金属磁性粉体(鉄アルミ珪素合金(センダスト)、鉄ニッケル合金(パーマロイ)、鉄珪素合金)と合成樹脂の複合材、等が挙げられる。
【0011】
請求項1に記載の電子部品用放熱構造の電磁波吸収体として、電波吸収材料を厚さが0.1ないし1mmの板状にしたものである吸収基板に、整合周波数を調整する貫通穴である調整穴を形成したものを採用している。
電磁波吸収体の厚さは、一般にその電波吸収基板を構成する材料の材料定数と吸収させようとする電波の周波数とから一義的に決まってしまい、例えば、マイクロ波帯1.0mm以下と言う薄さは、従来、極めて困難とされて来た。このような薄さが実現できたのは、吸収基板に、調整穴を形成したことによる。これについて図1および図2を用いて説明する。
【0012】
図1(a)は、実験に用いた被験体を示す斜視図で、図1(b)は吸収基板の正面図である。図1(a)に示すように、被験体は、直径19.44mm、厚さ0.9mmの円盤状に形成した吸収基板11を同軸管13の終端に装荷したもので、ここでは吸収基板11を形成する電波吸収材料としてゴムフェライトを用いた。同軸管13は外導体15と内導体17とから成り、吸収基板の裏側には外導体15と内導体17とを短絡する導体板19が設けられている。そして図1(b)に示すように、基板には直径11.0mmの周上に等間隔で調整穴(直径2mm)21を形成した。調整穴21を形成しないもの、4個形成したもの、8個形成したものを用意した。なお、吸収基板11の中央の穴23は内導体17が通る穴である。
【0013】
これら3種類の吸収基板11を夫々同軸管13に取り付け、本図の左方からTEM波を照射し、同じ側で計測された電波の強さから算出された電波反射減衰量を示したのが図2のグラフである。図2のグラフは、横軸に周波数、縦軸に各周波数にて計測された電波反射減衰量を示したものである。本図に示すように、調整穴21を8個形成することによって、2.2〜3GHzの周波数において−20dBという電波反射減衰量を呈する。つまり、0.9mmという薄い吸収基板11においても、微小な調整穴を多数形成することによって、形成しない場合に比べ、吸収基板11の整合特性を改善し、2.2〜3GHzの範囲で吸収可能にすることができる。
【0014】
また、吸収基板11の厚さを0.8mmに変えたときのグラフを図3に示す。図3に示すように、厚さを0.8mmにすると、調整穴の数が8個のときの整合周波数が1.5〜2.2GHzとなる。すなわち、1mm以下の厚さであっても適宜調整穴を設けることによって、ゴムフェライトを用いた実施例では、1GHz以上の周波数の電波を吸収することができる。
【0015】
これは、本願発明者が実験を行なった結果判明した、1mm以下という薄さの吸収基板に貫通孔を形成すると、予想に反し、比透磁率の値μr=μr'−jμr''の虚部が増大し実部が1となる周波数が低下するという事実、による。具体的には、磁性電波吸収材が電波を吸収する条件である
μr''>μr' (ただしμr'はほぼ1)……(1)
の関係が貫通孔を設けても保たれる。この場合、吸収基板が2〜8mmといった厚さの場合には、貫通孔を形成すると、μr'、μr''が何れも増加し、とくに整合周波数に関連する透磁率実部μr'がほぼ1となる周波数が高周波域へ移行する。しかし、1mm以下になると貫通孔を設けることにより透磁率の実部μr'、虚部μr''の値が増加状態から減少しはじめ、μr'が1となる周波数が再び低周波側へ移行してくる。しかし、この場合依然μr''の値は上記(1)の関係を維持し、本来の整合時(貫通孔を設けない場合)のμr''の値と同等かやや大きな値をとる。この結果、本来の整合厚(例えば8mm)における整合特性と同等の特性を、わずか1mm以下という薄さの吸収基板に貫通孔を形成することにより備えさせることができる。この貫通孔が本発明の調整孔である。
【0016】
このように、請求項1に記載の電子部品用放熱構造によれば、電磁波吸収体が1mm以下という薄さであるため、金属板や誘電体と共に積層しても、かさばることがなく、また金属板が、図1に示した導体板19と同等の作用をするので、電子部品から漏洩する電波を効果的に吸収することができる。
【0017】
請求項2に記載の電子部品用放熱構造では、放熱体がアースされている。これにより放熱体にまで到達した電磁波を、グランドや筐体へ流すことができ、当該電子部品の周辺への電磁波の漏洩を着実に防ぐことができる。
【0018】
【実施例】
以下に本発明の実施例を図面と共に説明する。まず、図4は、本発明の第1実施例としての電子部品用放熱構造を、集積回路24に適用した様子を示した側面図である。本図に示すように集積回路24と放熱体25との間には、集積回路24の方から、パテ27と、電磁波吸収体29と、金属板31と、誘電体33とが積層されている。集積回路24はプリント基板35上に実装されており、また放熱体25は導線37にてアースされている。また、金属板31と放熱体25とで誘電体33を挟んでいることにより容量素子が形成されている。
【0019】
このような電子部品用放熱構造によれば、集積回路24から発せられ、パテ27を貫通した電磁波は、電磁波吸収体29にてある程度吸収される。ここで吸収されなかった電磁波は、その一部が金属板31にて反射され、再び電磁波吸収体29にて吸収を受ける。残りの電磁波は金属板31上で渦電流となって停留するが、金属板31、誘電体33、放熱体25にてなる容量素子により、この箇所の積層構造が、渦電流と相俟って一種のLCフィルタを為す。このLCフィルタにより、渦電流が減衰される。しかも、放熱体25は導線37にてアースされているため、放熱体25のフィンなどから外部へと放出される電磁波はごくわずかとなる。
【0020】
従って、この電子部品用放熱構造によれば、集積回路24の熱を放熱体25から効率的に放出するだけでなく、電磁波が周囲に漏れ出すのを効率的に防ぐことができる。
次に、本発明の第2実施例を図5に示す。図5(a)は、第2実施例の電子部品用放熱構造を、集積回路24に適用した様子を示した側面図、図5(b)は、吸収基板11および金属板31のみを取り出し拡大した断面図、図5(c)は吸収基板11および金属板31の他の態様を示す断面図である。
【0021】
この第2実施例の電子部品用放熱構造では、第1実施例における電磁波吸収体29を吸収基板11に変えたものである。この吸収基板11は、図5(b)に示すように、その上に積層される金属板31と共に大小の貫通穴21a、21bが形成されている。これら調整穴21a、21bにより吸収基板11の吸収特性を改善することができ、吸収基板11が第1実施例の電磁波吸収体29と同等の吸収効果を発揮する。
【0022】
以上、本発明を適用した実施例について説明してきたが、本発明はこうした実施例に何等限定されるものではなく様々な態様で実施しうる。
例えば、吸収したい電磁波の周波数によっては、図5(c)に示すように、調整穴21を吸収基板11のみに形成したり、大きさを均一にしたりしてもよい。またこのようにしても所望の周波数の電磁波を吸収できない場合には、調整穴21内に誘電体を充填しても良い。こうすると、吸収できる周波数を低い側へシフトさせることができる。
【図面の簡単な説明】
【図1】 本発明の効果を示すために行なった実験の被験体を示す説明図である。
【図2】 図1に示した被験体を用いて行なった実験の結果を示すグラフである。
【図3】 図2とは吸収基板の厚さを変えて行なった実験の結果を示すグラフである。
【図4】 本発明の第1実施例を示す側面図である。
【図5】 本発明の第2実施例を示す説明図である。
【符号の説明】
11、11a、11b…吸収基板 13…同軸管
15…外導体 17…内導体 19…導体板
21、22a、22b…調整穴 24…集積回路
25…放熱器 27…パテ
29…電磁波吸収体 31…金属板
33…誘電体 35…プリント基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat dissipation structure used to promote heat dissipation from an electronic component such as an integrated circuit.
[0002]
[Background Art and Problems to be Solved by the Invention]
In recent years, the development of CPUs (Central Processing Units) capable of high-speed operation has dramatically improved the performance of computers. Along with this, a large amount of heat generated from the CPU is efficiently dissipated, and a heat radiator with a large number of fins is fixed to the upper surface of the CPU so that the CPU does not malfunction. Consideration such as hitting is made.
[0003]
Moreover, as what is emitted from an electronic component, not only heat but electromagnetic waves may be a problem. In other words, not only heat but also electromagnetic waves are emitted from the fins and the like to the periphery, adversely affecting the operation of other electronic components in the vicinity of the electronic component, and the electronic device to which the electronic component is applied. There are concerns about the damage caused by electromagnetic waves leaking to the surrounding area. Such a problem occurs not only in the CPU but also in various electronic components.
[0004]
The present invention has been made in view of such a problem, and an object of the present invention is to make it possible to satisfactorily absorb not only heat but also electromagnetic waves emitted from electronic components in a heat dissipation structure for electronic components .
[0005]
[Means for Solving the Problems]
The heat dissipation structure for an electronic component according to claim 1 of the present invention, which has been made to solve such a problem, is absorbed by at least a plate-shaped electromagnetic wave absorber and an electromagnetic wave absorber on the upper surface of the electronic component to be radiated. A metal plate for reflecting unsuccessful electromagnetic waves to the electromagnetic wave absorber, a plate-like dielectric, and a heat radiator provided with a plurality of heat radiation fins are laminated in this order, and the electromagnetic wave absorption The body is characterized in that an adjustment hole which is a through hole for adjusting a matching frequency is formed on an absorption substrate which is a plate having a thickness of 0.1 to 1 mm made of a radio wave absorption material .
[0007]
According to a second aspect of the present invention, in the heat dissipation structure for an electronic component according to the first aspect, the heat dissipating body is grounded.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The heat dissipating structure for an electronic component according to claim 1 includes a plate-shaped electromagnetic wave absorber, a metal plate, a plate-shaped dielectric, and a plurality of heat dissipating fins on an upper surface of an electronic component such as a CPU. Are stacked in this order. In addition to this, for example, a putty or an adhesive for fixing the electromagnetic wave absorber to the upper surface of the electronic component may be laminated. The “upper surface” of the electronic component refers to a surface away from a printed circuit board or the like on which the electronic component is mounted. Therefore, when an electronic component is mounted on the back surface of the horizontal printed circuit board, the upper surface faces downward.
[0009]
In this heat dissipation structure for electronic parts, electromagnetic waves emitted from the electronic parts are first absorbed to some extent by the electromagnetic wave absorber. A portion of the electromagnetic wave that has penetrated without being absorbed is partially reflected by the metal plate and again absorbed by the electromagnetic wave absorber. The remaining electromagnetic wave remains as an eddy current on the metal plate, but a capacitive element is formed by sandwiching a dielectric between the metal plate and the heat dissipator. Combined with the current, a kind of LC filter is made. This LC filter attenuates eddy currents, and very little electromagnetic waves are emitted to the outside from the fins of the heat dissipating body.
[0010]
Therefore, according to the heat dissipation structure for an electronic component, the heat of the electronic component can be efficiently released and the electromagnetic wave can be efficiently absorbed. Here, examples of the dielectric include resins, ceramics, and resins obtained by kneading fillers. Here, examples of the resin include epoxy, polyethylene, polycarbonate, and silicone, and examples of the ceramic include barium titanate, SiC, Al2O3, BeO, MgO, AlN, and BN. Electromagnetic wave absorbers include ferrite (pulverized and sintered iron oxide), composite material of ferrite and synthetic resin, metal magnetic powder (iron aluminum silicon alloy (Sendust), iron nickel alloy (Permalloy), iron (A silicon alloy) and a synthetic resin composite material .
[0011]
As an electromagnetic wave absorber of the heat dissipation structure for electronic components according to claim 1 , a through hole for adjusting a matching frequency is formed on an absorption substrate made of a radio wave absorbing material in a plate shape having a thickness of 0.1 to 1 mm. The one with an adjustment hole is used.
In general, the thickness of the electromagnetic wave absorber is uniquely determined from the material constant of the material constituting the radio wave absorption substrate and the frequency of the radio wave to be absorbed. For example, the thickness of the microwave band is as thin as 1.0 mm or less. Conventionally, it has been considered extremely difficult. The reason why such a thinness was realized is that an adjustment hole was formed in the absorption substrate. This will be described with reference to FIGS.
[0012]
Fig.1 (a) is a perspective view which shows the test subject used for experiment, FIG.1 (b) is a front view of an absorption board | substrate. As shown in FIG. 1 (a), the test subject is the one in which the absorbing substrate 11 formed in a disk shape having a diameter of 19.44 mm and a thickness of 0.9 mm is loaded at the end of the coaxial tube 13. Rubber ferrite was used as a radio wave absorbing material for forming the film. The coaxial tube 13 includes an outer conductor 15 and an inner conductor 17, and a conductor plate 19 that short-circuits the outer conductor 15 and the inner conductor 17 is provided on the back side of the absorption substrate. And as shown in FIG.1 (b), the adjustment hole (diameter 2mm) 21 was formed in the board | substrate on the periphery of a diameter 11.0mm at equal intervals. The thing which formed the adjustment hole 21, the thing which formed four, and the thing which formed eight were prepared. The central hole 23 of the absorption substrate 11 is a hole through which the inner conductor 17 passes.
[0013]
These three kinds of absorption substrates 11 are respectively attached to the coaxial tube 13 and irradiated with a TEM wave from the left side of the figure, and the radio wave reflection attenuation amount calculated from the intensity of the radio wave measured on the same side is shown. It is a graph of FIG. In the graph of FIG. 2, the horizontal axis represents frequency and the vertical axis represents radio wave reflection attenuation measured at each frequency. As shown in the figure, by forming eight adjustment holes 21, a radio wave reflection attenuation amount of −20 dB is exhibited at a frequency of 2.2 to 3 GHz. That is, even in the thin absorption substrate 11 of 0.9 mm, by forming a large number of minute adjustment holes, the matching characteristics of the absorption substrate 11 can be improved compared to the case where it is not formed, and absorption is possible in the range of 2.2 to 3 GHz. Can be.
[0014]
FIG. 3 shows a graph when the thickness of the absorption substrate 11 is changed to 0.8 mm. As shown in FIG. 3, when the thickness is 0.8 mm, the matching frequency when the number of adjustment holes is 8 is 1.5 to 2.2 GHz. That is, even if the thickness is 1 mm or less, by appropriately providing an adjustment hole, in an embodiment using rubber ferrite, radio waves having a frequency of 1 GHz or more can be absorbed.
[0015]
This is, as a result of an experiment conducted by the present inventor, that, when a through hole is formed in an absorption substrate having a thickness of 1 mm or less, contrary to expectation, the imaginary part of the relative permeability value μr = μr′−jμr ″. Due to the fact that the frequency at which the real part becomes 1 decreases and the frequency at which the real part becomes 1. Specifically, μr ″> μr ′ (where μr ′ is approximately 1), which is a condition for magnetic wave absorbers to absorb radio waves.
This relationship is maintained even if through holes are provided. In this case, when the absorption substrate has a thickness of 2 to 8 mm, when the through-hole is formed, both μr ′ and μr ″ increase, and in particular, the magnetic permeability μr ′ related to the matching frequency is approximately 1. Shifts to a high frequency range. However, when the thickness is less than 1 mm, the values of the real part μr ′ and the imaginary part μr ″ of the magnetic permeability begin to decrease from the increased state by providing a through hole, and the frequency at which μr ′ becomes 1 shifts again to the low frequency side. Come. However, in this case, the value of μr ″ still maintains the relationship of (1) above and takes a value equal to or slightly larger than the value of μr ″ at the time of original alignment (when no through hole is provided). As a result, it is possible to provide characteristics equivalent to the matching characteristics at the original matching thickness (for example, 8 mm) by forming through holes in the absorption substrate having a thickness of only 1 mm or less. This through hole is the adjustment hole of the present invention.
[0016]
Thus, according to the heat dissipation structure for an electronic component according to claim 1 , since the electromagnetic wave absorber is as thin as 1 mm or less, it is not bulky even when laminated with a metal plate or dielectric, Since the plate operates in the same manner as the conductor plate 19 shown in FIG. 1, it is possible to effectively absorb radio waves leaking from the electronic component.
[0017]
In the heat dissipating structure for electronic parts according to claim 2 , the heat dissipating body is grounded. As a result, the electromagnetic wave reaching the heat radiating body can flow to the ground or the housing, and leakage of the electromagnetic wave to the periphery of the electronic component can be steadily prevented.
[0018]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. First, FIG. 4 is a side view showing a state in which the electronic component heat dissipation structure as the first embodiment of the present invention is applied to the integrated circuit 24. As shown in this figure, a putty 27, an electromagnetic wave absorber 29, a metal plate 31, and a dielectric 33 are laminated from the integrated circuit 24 between the integrated circuit 24 and the radiator 25. . The integrated circuit 24 is mounted on a printed circuit board 35 , and the heat radiating body 25 is grounded by a conducting wire 37. In addition, the capacitor 33 is formed by sandwiching the dielectric 33 between the metal plate 31 and the radiator 25.
[0019]
According to such a heat dissipation structure for electronic components, the electromagnetic wave emitted from the integrated circuit 24 and penetrating the putty 27 is absorbed to some extent by the electromagnetic wave absorber 29. A part of the electromagnetic wave not absorbed here is reflected by the metal plate 31 and is again absorbed by the electromagnetic wave absorber 29. The remaining electromagnetic wave remains as an eddy current on the metal plate 31, but the laminated structure of this portion is combined with the eddy current by the capacitive element composed of the metal plate 31, the dielectric 33, and the radiator 25. Do a kind of LC filter. The eddy current is attenuated by this LC filter. Moreover, since the heat radiating body 25 is grounded by the conducting wire 37, the electromagnetic wave emitted from the fins of the heat radiating body 25 to the outside is very small.
[0020]
Therefore, according to the heat dissipation structure for an electronic component, not only the heat of the integrated circuit 24 can be efficiently released from the heat radiator 25 but also the electromagnetic wave can be effectively prevented from leaking out.
Next, a second embodiment of the present invention is shown in FIG. 5A is a side view showing a state in which the electronic component heat dissipation structure of the second embodiment is applied to the integrated circuit 24, and FIG. 5B is an enlarged view of only the absorption substrate 11 and the metal plate 31 taken out. FIG. 5C is a cross-sectional view showing another aspect of the absorption substrate 11 and the metal plate 31.
[0021]
In the heat dissipation structure for electronic parts of the second embodiment, the electromagnetic wave absorber 29 in the first embodiment is changed to the absorption substrate 11. As shown in FIG. 5 (b), the absorption substrate 11 is formed with large and small through holes 21a and 21b together with a metal plate 31 laminated thereon. These adjustment holes 21a and 21b can improve the absorption characteristics of the absorption substrate 11, and the absorption substrate 11 exhibits an absorption effect equivalent to that of the electromagnetic wave absorber 29 of the first embodiment.
[0022]
Although the embodiments to which the present invention is applied have been described above, the present invention is not limited to these embodiments and can be implemented in various modes.
For example, depending on the frequency of the electromagnetic wave to be absorbed, as shown in FIG. 5C, the adjustment hole 21 may be formed only in the absorption substrate 11 or the size thereof may be made uniform. If the electromagnetic wave having a desired frequency cannot be absorbed even in this way, the adjustment hole 21 may be filled with a dielectric. In this way, the frequency that can be absorbed can be shifted to the lower side.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a subject of an experiment conducted to show the effect of the present invention.
FIG. 2 is a graph showing the results of an experiment conducted using the subject shown in FIG.
FIG. 2 is a graph showing the results of an experiment conducted by changing the thickness of the absorption substrate.
FIG. 4 is a side view showing a first embodiment of the present invention.
FIG. 5 is an explanatory view showing a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11, 11a, 11b ... Absorption board | substrate 13 ... Coaxial pipe 15 ... Outer conductor 17 ... Inner conductor 19 ... Conductor board 21, 22a, 22b ... Adjustment hole 24 ... Integrated circuit 25 ... Radiator 27 ... Putty 29 ... Electromagnetic wave absorber 31 ... Metal plate 33 ... Dielectric 35 ... Printed circuit board

Claims (2)

放熱対象となる電子部品の上面に、少なくとも板状の電磁波吸収体と、該電磁波吸収体にて吸収しきれなかった電磁波を該電磁波吸収体へと反射するための金属板と、板状の誘電体と、複数の放熱フィンを備えた放熱体と、をこの順序で積層してなり、
前記電磁波吸収体は、電波吸収材料を厚さが0.1ないし1mmの板状にしたものである吸収基板に、整合周波数を調整する貫通穴である調整穴を形成したものである
ことを特徴とする電子部品用放熱構造。
On the upper surface of the electronic component to be radiated, at least a plate-like electromagnetic wave absorber, a metal plate for reflecting electromagnetic waves that could not be absorbed by the electromagnetic wave absorber to the electromagnetic wave absorber, and a plate-like dielectric The body and the heat dissipating body having a plurality of heat dissipating fins are laminated in this order ,
The electromagnetic wave absorber is obtained by forming an adjustment hole, which is a through hole for adjusting a matching frequency, on an absorption substrate in which a radio wave absorption material is formed in a plate shape having a thickness of 0.1 to 1 mm <br / > Heat dissipation structure for electronic parts.
前記放熱体をアースしたことを特徴とする請求項1記載の電子部品用放熱構造。 The heat dissipating structure for an electronic component according to claim 1, wherein the heat dissipating member is grounded .
JP28202697A 1997-10-15 1997-10-15 Heat dissipation structure for electronic parts Expired - Fee Related JP4005678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28202697A JP4005678B2 (en) 1997-10-15 1997-10-15 Heat dissipation structure for electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28202697A JP4005678B2 (en) 1997-10-15 1997-10-15 Heat dissipation structure for electronic parts

Publications (2)

Publication Number Publication Date
JPH11121976A JPH11121976A (en) 1999-04-30
JP4005678B2 true JP4005678B2 (en) 2007-11-07

Family

ID=17647209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28202697A Expired - Fee Related JP4005678B2 (en) 1997-10-15 1997-10-15 Heat dissipation structure for electronic parts

Country Status (1)

Country Link
JP (1) JP4005678B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081973A1 (en) * 2002-03-27 2003-10-02 Toyo Services,Corp. Electromagnetic wave shielding sheet, electromagnetic wave shielding transmission cable and electromagnetic wave shielding lsi
JP2009123785A (en) * 2007-11-12 2009-06-04 Kitagawa Ind Co Ltd Heat-transfer-emission material
JP7145413B2 (en) 2018-10-25 2022-10-03 セイコーエプソン株式会社 Printed circuit boards, electronics, and thermal sheets

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128014U (en) * 1976-03-26 1977-09-29
JPS5927597A (en) * 1982-08-06 1984-02-14 ティーディーケイ株式会社 Radio wave absorber
JPS61292998A (en) * 1985-06-21 1986-12-23 横浜ゴム株式会社 Radio wave absorbing material
JPS6441248A (en) * 1987-08-07 1989-02-13 Hitachi Ltd Hermetically sealed type semiconductor device
JP2807198B2 (en) * 1994-10-12 1998-10-08 北川工業株式会社 Heat radiator
JPH08204377A (en) * 1995-01-24 1996-08-09 Nec Eng Ltd Shielding body

Also Published As

Publication number Publication date
JPH11121976A (en) 1999-04-30

Similar Documents

Publication Publication Date Title
US5639989A (en) Shielded electronic component assembly and method for making the same
US6962753B1 (en) Highly heat-conductive composite magnetic material
US6448491B1 (en) Electromagnetic interference suppressing body having low electromagnetic transparency and reflection, and electronic device having the same
JP3426023B2 (en) Package for integrated circuit and method for attenuating electromagnetic radiation
KR100453982B1 (en) EMI protection components and active devices with them
US20020166686A1 (en) Sheet for electronic parts and method of producing the same
JP6687469B2 (en) Millimeter wave communication device
CN103929933A (en) Structure for inhibition of electromagnetic wave interference and flexible printed circuit comprising same
JP2021085775A (en) Millimeter wave radio sensor and vehicle including the same
JP4005678B2 (en) Heat dissipation structure for electronic parts
JP3528455B2 (en) Electromagnetic interference suppressor
WO2013024809A1 (en) Electromagnetically absorbing, thermally conductive sheet and electronic instrument
WO2022089366A1 (en) Heat dissipation assembly reducing electromagnetic noise of chip, chip packaging assembly, and electronic device
US20010014012A1 (en) Electronic instrument having a heat sink
JP7272146B2 (en) radar equipment
JP7230713B2 (en) radar equipment
JP2000133986A (en) Mounting structure of radiation noise suppressing part
JP4543864B2 (en) Heat dissipation component and manufacturing method thereof
JPH08204380A (en) Noise suppressing method for electric apparatus and noise suppressed electronic apparatus using this method
JPH0818271A (en) Electronic device and noise suppressing method
JP3528255B2 (en) Hybrid integrated circuit device and method of manufacturing the same
JP3278054B2 (en) Shield case
US20230290743A1 (en) Reinforcement Structure and Electronic Device
JP2018006586A (en) Electronic control device
US6563198B1 (en) Adhesive pad having EMC shielding characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees