JPS5927597A - Radio wave absorber - Google Patents

Radio wave absorber

Info

Publication number
JPS5927597A
JPS5927597A JP13634182A JP13634182A JPS5927597A JP S5927597 A JPS5927597 A JP S5927597A JP 13634182 A JP13634182 A JP 13634182A JP 13634182 A JP13634182 A JP 13634182A JP S5927597 A JPS5927597 A JP S5927597A
Authority
JP
Japan
Prior art keywords
radio wave
wave absorber
convex portion
absorber according
dielectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13634182A
Other languages
Japanese (ja)
Inventor
石野 健
太郎 三浦
謙一 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP13634182A priority Critical patent/JPS5927597A/en
Publication of JPS5927597A publication Critical patent/JPS5927597A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (技術分野) 本発明は電波吸収体に関し、特にマイクロ波に有効な電
波吸収体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a radio wave absorber, and particularly to a radio wave absorber effective for microwaves.

(背景技術) 本出願人は先に、電波吸収体の厚さのみの調整により吸
収体の中心周波数(電、波吸収量が最大となる周波数)
を決定することが可能なマイクロ波吸収体を掃案した(
特願昭56− (IJ 3777号)。
(Background Art) The applicant has previously determined that by adjusting only the thickness of the radio wave absorber, the center frequency of the absorber (the frequency at which the amount of electromagnetic wave absorption is maximum)
We swept a microwave absorber that can determine (
Patent application 1982- (IJ 3777).

これは第1図に示されるように、等厚の電波吸収層1と
該層1の一面に接合される金属板2を有し、を波吸収層
1を、ゴム又はプラスチックをベースとしてこれに体積
比でo、15〜0.35のフェライトと体積比で0.1
〜0.25のカーボニル鉄とを分散混入することにより
形成したものである。このような構成で電波吸収層10
表面に入射波aがあれば、この入射波aによる表面波す
と吸収層1内を通過して金属板2.で反射された第2次
反射波b′とが互いに打ち消し合って電波吸収体として
動作する。
As shown in Figure 1, this has a radio wave absorbing layer 1 of equal thickness and a metal plate 2 bonded to one side of the layer 1, and the wave absorbing layer 1 is made of rubber or plastic as a base. o in volume ratio, 15 to 0.35 ferrite and 0.1 in volume ratio
It is formed by dispersing and mixing 0.25 to 0.25 carbonyl iron. With such a configuration, the radio wave absorbing layer 10
If there is an incident wave a on the surface, the surface wave due to this incident wave a passes through the absorption layer 1 and is generated by the metal plate 2. The second-order reflected wave b' reflected by the antenna cancels each other and operates as a radio wave absorber.

上記構成の電波吸収体は、第2図に示すように吸収層の
厚さtの調整のみで中心周波数を変化させることができ
、従って製造工程の簡素化、歩留りの向上更には製造コ
ストの引下げに大きな効果を得ることができる。第2図
は体積比で0.18のニッケルジンクフェライトと0.
22のカーボニル鉄をエポキシ樹脂に分散混入して構成
した電波吸収体について行なった測定結果である。
As shown in Figure 2, the radio wave absorber with the above structure can change the center frequency by simply adjusting the thickness t of the absorption layer, which simplifies the manufacturing process, improves yield, and reduces manufacturing costs. can have a great effect. Figure 2 shows nickel zinc ferrite with a volume ratio of 0.18 and nickel zinc ferrite with a volume ratio of 0.18.
These are the results of measurements conducted on a radio wave absorber constructed by dispersing and mixing No. 22 carbonyl iron into an epoxy resin.

(発明の課題) 本発明は特願昭56−013777号を更に発展させた
もので、マイクロ波に対し、より広帯域で有効に機能す
る電波吸収体を提供することを目的とする。
(Problem of the Invention) The present invention is a further development of Japanese Patent Application No. 56-013777, and an object of the present invention is to provide a radio wave absorber that effectively functions over a wider range of microwaves.

この目的を達成するための本発明の特徴は、強磁性体粉
末を分散混入しほぼ一様な厚さを有する誘電体と、その
−面に結合する導体とを有する電波吸収体において、誘
電体の表面全体に凹部と凸部の配列がもうけられ、凸部
の面積が一辺が1,5λ(λは自由空間波長)の正方形
の面積より小であることを特徴とする電波吸収体にある
A feature of the present invention for achieving this object is that a radio wave absorber includes a dielectric material having a substantially uniform thickness in which ferromagnetic powder is dispersed, and a conductor coupled to the negative surface of the dielectric material. The radio wave absorber is characterized in that an array of concave portions and convex portions are formed on the entire surface of the radio wave absorber, and the area of the convex portions is smaller than the area of a square with a side of 1.5λ (λ is the free space wavelength).

(発明の構成および作用) 第3図(A)及び第3図(Blは本発明による電波吸収
体の一実施例で、第3図(Alは側面図、第3図(Bl
は平面図を示す。
(Structure and operation of the invention) FIGS. 3(A) and 3(Bl are one embodiment of the radio wave absorber according to the present invention, FIG. 3(Al is a side view,
shows a plan view.

図中の参照番号10は電波吸収層で、ゴム又はプラスチ
ックに体積比で0.15〜035のフェライトと体積比
で0.1〜0.25のカーボニル鉄とを分散混入して形
成され、特願昭56−013777号の組成と同一であ
る。フェライトとしてはニッケルジンク系を用いること
ができる。吸収層10の一面に(工金属板2゜カ接合さ
れ、他面には凸部]Oaと凹部10bとにより凹凸面が
形成される。電磁波はこの凹凸面に入射する。
Reference number 10 in the figure is a radio wave absorbing layer, which is formed by dispersing and mixing ferrite with a volume ratio of 0.15 to 0.35 and carbonyl iron with a volume ratio of 0.1 to 0.25 in rubber or plastic. The composition is the same as that of Application No. 56-013777. As the ferrite, nickel zinc type can be used. An uneven surface is formed on one surface of the absorbing layer 10 by Oa (worked metal plate 2° bonded, and a convex portion on the other surface) and the concave portions 10b. Electromagnetic waves are incident on this uneven surface.

凸部10aと凹部10bとは共に同一面積の正方形で、
第3図(Blに示すように(斜線は凹部10bを示す)
縦横方向で交互の格子状に配列形成される。
Both the convex portion 10a and the concave portion 10b are squares with the same area,
FIG. 3 (as shown in Bl (diagonal lines indicate the recess 10b)
They are arranged in an alternating grid pattern in the vertical and horizontal directions.

正方形の一辺の長さlは、吸収体としての効果的な機能
を期待するためには入射波の波長にほぼ等しいかもしく
は大とすることが望ましい。
The length l of one side of the square is desirably approximately equal to or larger than the wavelength of the incident wave in order to expect an effective function as an absorber.

なお、凹部と凸部の形状は正方形以外にも互いに同一面
積の任意の形状をとることができ、また縦横方向での交
互の配列は必ずしも必要ではない。
Note that the shape of the concave portion and the convex portion can be any shape other than square and have the same area, and it is not always necessary to arrange them alternately in the vertical and horizontal directions.

即ち、配列の乱れがあるとしても、実際上電波数ルドで
使用され ることを考えれば、平坦な入射面を有するものに比較し
てより広帯域の吸収体としての動作は充分に期待するこ
とができる。しかし、吸収体に偏波面特性をもたせない
こと及び製造上の容易性などを考慮すれば、凹部と凸部
は互いにほぼ同一面積の正方形で縦横方向に配列形成さ
れることが望ま−しい。
In other words, even if there is some disorder in the arrangement, considering that it is actually used in radio waves, it can be expected that it will function as a broader band absorber than one with a flat entrance surface. can. However, considering that the absorber does not have polarization characteristics and is easy to manufacture, it is desirable that the concave portions and the convex portions be squares having approximately the same area and arranged in the vertical and horizontal directions.

上記構成で凸部10aに対する凹部10bの深さΔdを
調節すれば、後述の実験例で明らかなように、Δdの増
加に従って反射減衰量20dBでの帯域幅の広がりを伴
ないながら中心周波数を高い方へ推移させることができ
、従って広帯域の電波吸収体が得られる。
If the depth Δd of the concave portion 10b relative to the convex portion 10a is adjusted in the above configuration, as is clear from the experimental example described later, as Δd increases, the center frequency can be increased while broadening the bandwidth at a return loss of 20 dB. Therefore, a broadband radio wave absorber can be obtained.

次に、上記構成が広帯域のマイクロ波吸収体として有効
に動作することを実験例で確かめる。
Next, it will be confirmed through an experimental example that the above configuration effectively operates as a broadband microwave absorber.

第4図は電波吸収体の実験構成例で、吸収層10を、ク
ロロプレンゴムにそれぞれ体積比で17.5%のニッケ
ルジンク系フェライトと21.5%のカーボニル鉄を分
散混入して厚さd = 3.3 %の板状とし、電波入
射面に第3図(Al及び第3図(Blで説明した凹凸面
を形成した。凸部10aと凹部10bの正方形の一辺の
長さlは10へとし、Δdの増加に伴なう周波数(G1
−1z )と反射減衰量(dB)との関係及び周波数(
G11z )と20dBでの比帯域との関係を測定した
Figure 4 shows an example of the experimental configuration of a radio wave absorber.The absorbing layer 10 is made by dispersing and mixing 17.5% of nickel zinc ferrite and 21.5% of carbonyl iron in chloroprene rubber in terms of volume ratio. = 3.3%, and the uneven surface explained in Fig. 3 (Al) and Fig. 3 (Bl) was formed on the radio wave incident surface. The frequency (G1
-1z) and return loss (dB) and frequency (
The relationship between G11z) and the fractional band at 20 dB was measured.

第5図はその実験結果で、Δ(Iの増加に従って2od
Bでの帯域幅の広がりを伴ないながら中心周波数の推移
することがわかる。図中の直線(イ)は、Δd == 
0.3%〜1.0Xにおける各々の20dBでの比帯域
の平均で、0.21以上の値の得られることがわかる。
Figure 5 shows the experimental results, and as Δ(I increases, 2od
It can be seen that the center frequency changes while the bandwidth at B increases. The straight line (A) in the figure is Δd ==
It can be seen that a value of 0.21 or more can be obtained as an average of the fractional bands at each 20 dB from 0.3% to 1.0X.

第6図は、第5図と同一組成で入射面を凹凸面とするこ
となく吸収層を構成し、その厚さdに対する周波数(G
Hz)と反射減衰量(dB)との関係及び周波数(GH
z)と20dBでの比帯域との関係を測定したものであ
る。
Figure 6 shows an example in which the absorption layer is constructed with the same composition as in Figure 5 without making the incident surface uneven, and the frequency (G
Hz) and return loss (dB) and frequency (GH
z) and the fractional band at 20 dB.

次に、凹凸形状の大きさと比帯域との関係に関する実験
結果を説明する。
Next, experimental results regarding the relationship between the size of the uneven shape and the fractional band will be explained.

第7図と第8図の曲線a、b、c、dは凸部の大きさと
比帯域との関係の実験例を示す。これらの実験での電波
吸収材は、Ni−Zn系フェライト粉末とクロロプレン
ゴムを体積比で40%対60%の割合で混合したもので
ある。
Curves a, b, c, and d in FIGS. 7 and 8 show experimental examples of the relationship between the size of the convex portion and the fractional band. The radio wave absorbing material used in these experiments was a mixture of Ni-Zn ferrite powder and chloroprene rubber at a volume ratio of 40% to 60%.

第7図の曲線(a)は、電波吸収材の凹部の厚さ2.9
朋、凸部の厚さd == 4.4 mm、凸部を正方形
としてその1辺の長さl=30mmの場合で、中心周波
数f−7,5GHz (λ=40mm)、比帯域(Δ/
// )2od++=0.29が得られている。このと
き、凸部の長さlの中心波長に対する割合は、 である。
Curve (a) in Figure 7 shows the thickness of the concave portion of the radio wave absorbing material, which is 2.9 mm.
In the case where the thickness of the convex part is d==4.4 mm, the convex part is a square, and the length of one side of the convex part is l=30 mm, the center frequency is f-7.5 GHz (λ=40 mm), and the fractional band (Δ /
// )2od++=0.29 is obtained. At this time, the ratio of the length l of the convex portion to the center wavelength is as follows.

第7図の曲線(blの場合は凹部の厚さ2.9朋、凸部
の厚さ3,3龍、凸部の長さ30mm、中心周波数9.
5 GHz(λ=32im)で比帯域(Δ//f 、)
 20 dn = 0.29が得らl−即= 0.95
である。
The curve in Figure 7 (in the case of BL, the thickness of the concave part is 2.9 mm, the thickness of the convex part is 3.3 mm, the length of the convex part is 30 mm, and the center frequency is 9 mm.
Fractional band (Δ//f,) at 5 GHz (λ=32im)
20 dn = 0.29 is obtained l - i.e. = 0.95
It is.

れ、このときT32 第8図の曲線(C1及び(d)は、凸部の長さを90 
mmとして第7図の曲線(al 、 (61と対応する
条件での実験結果で、(C)の場合には比帯域(Δf 
/f )zoan−0,160,185で了=3となる
At this time, T32 The curves (C1 and (d) in Fig. 8 have a length of 90
In the case of (C), the fractional band (Δf
/f) zoan-0, 160, 185 makes completion = 3.

第9図は第7図と第8図の実験結果をもとに、 ゛中心
波長に対する凸部の長さくl+と比帯域の関係を示し、
図から、l≦1.5λのときに比帯域0.25以上が得
られ、lblこれより太き(なると比帯域は急激に劣化
することがわかる。従って、凸部の長さlは1.5λ以
下であることが舅ましい。なお凸部の形状は正方形には
限定されず、面積が上記正方形より小の任意の形状が可
能である。
Figure 9 shows the relationship between the length l+ of the convex portion and the fractional band with respect to the center wavelength, based on the experimental results shown in Figures 7 and 8.
From the figure, it can be seen that when l≦1.5λ, a fractional bandwidth of 0.25 or more is obtained, and if lbl is thicker than this, the fractional bandwidth deteriorates rapidly.Therefore, the length l of the convex portion is 1. It is preferable that it is 5λ or less.The shape of the convex portion is not limited to a square, but any shape having an area smaller than the above-mentioned square is possible.

凸部の長さlが定まったときの四部の大きさくal、又
は凸部の間隔(C1は凸部と凹部の面積が等しいことか
ら、第1O図より a2 732−12 となる。
When the length l of the convex part is determined, the size a of the four parts or the interval between the convex parts (C1 is a2 732-12 from FIG. 1O since the areas of the convex part and the concave part are equal).

なお、電波吸収材としてはNi−Zn系フェライト粉末
又はNi−Zn系フェライト粉末とカーボニル鉄粉との
混合物を、ゴム、プラスチック等の高分子材料と混合し
たものが好ましい。Ni−Zn系フェライトの場合は、
全周波数に対してF=00線にそわせやすいのに対し、
Mn−Zn系フェライトは誘電率が高く1′=0の線に
そわせにくいので不利である。
The radio wave absorbing material is preferably a mixture of Ni-Zn ferrite powder or a mixture of Ni-Zn ferrite powder and carbonyl iron powder with a polymeric material such as rubber or plastic. In the case of Ni-Zn ferrite,
While it is easy to align with the F=00 line for all frequencies,
Mn--Zn ferrite is disadvantageous because it has a high dielectric constant and is difficult to align with the 1'=0 line.

(発明の効果) 以上説明したように本発明によれば、電波吸収層の入射
面を、同一面積の凸部と凹部による凹凸面とし、凸部の
一辺の長さを1.5λ以下としたので、マイクロ波に対
しより広帯域で機能する電波吸収体を提供することがで
きる。
(Effects of the Invention) As explained above, according to the present invention, the incident surface of the radio wave absorbing layer is an uneven surface with convex portions and concave portions having the same area, and the length of one side of the convex portion is 1.5λ or less. Therefore, it is possible to provide a radio wave absorber that functions over a wider range of microwaves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電波吸収体の従来例、第2図は第1図の構成の
特性例、第3図(At及び第3図(B)は本発明による
電波吸収体の一実施例、第4図は電波吸収体の実験構成
例、第5図は第4図の電波吸収体の周波数と反射減衰量
及び周波数と比帯域との関係を示す測定結果、第6図は
第5図と同一の組成の電波吸収体の厚さをパラメータと
して周波数と反射減衰量及び周波数と比帯域との関係を
示す測定結果を示す図、第7図と第8図と第9図は模様
の大きさと比帯域との関係を示す図、第10図は模様 
。 の大きさの関係の説明図である。 10・・・・・・・・・電波吸収層 ioa・・・・・・凸部 10b・・・・・・凹部 11・・・・・・・・・金属板 特許出願人 東京電気化学工業株式会社 特許出願代理人 °   弁理士   山  本  恵  −wh1図 ヒ1−+ 第2図 第3図(A)     第3図(B) 第4図 第9図 (a) (b) 03   \1 比02(d) 1            コ 鍼 亙       気 1        (c) 第10図
FIG. 1 shows a conventional example of a radio wave absorber, FIG. 2 shows an example of characteristics of the configuration shown in FIG. 1, FIG. The figure shows an example of the experimental configuration of a radio wave absorber, Figure 5 shows the measurement results showing the relationship between the frequency and return loss, and the frequency and fractional band of the radio wave absorber in Figure 4. Figure 6 shows the same as Figure 5. Figures 7, 8, and 9 show the measurement results showing the relationship between frequency, return loss, and frequency and fractional bandwidth using the thickness of the radio wave absorber of the composition as a parameter. Figures 7, 8, and 9 show the relationship between pattern size and fractional bandwidth. Figure 10 shows the relationship between
. FIG. 2 is an explanatory diagram of the relationship in size. 10...Radio wave absorbing layer ioa...Convex portion 10b...Concave portion 11...Metal plate patent applicant Tokyo Denki Kagaku Kogyo Co., Ltd. Company Patent Application Agent ° Patent Attorney Megumi Yamamoto -wh1 Figure 1-+ Figure 2 Figure 3 (A) Figure 3 (B) Figure 4 Figure 9 (a) (b) 03 \1 Ratio 02 (d) 1 Ko Acupuncture Qi 1 (c) Figure 10

Claims (6)

【特許請求の範囲】[Claims] (1)強磁性体粉末を分散混入しほぼ一様な厚さを有す
る誘電体と、その−面に結合する導体とを有する電波吸
収体において、誘電体の表面全体に凹部と凸部の配列が
もうけられ、凸部の面積が一辺が1.5λ(λは自由空
間波長)の正方形の面積より小であφことを特徴とする
電波吸収体。
(1) In a radio wave absorber that has a dielectric material that has ferromagnetic powder dispersed therein and has a substantially uniform thickness, and a conductor that is coupled to the negative surface of the dielectric material, concave portions and convex portions are arranged on the entire surface of the dielectric material. 1. A radio wave absorber characterized in that the area of the convex portion is smaller than the area of a square having a side of 1.5λ (λ is the free space wavelength) and φ.
(2)前記強磁性体粉末がNi−Zn系フェライト粉末
である特許請求の範囲雛1項記載の電波吸収体。
(2) The radio wave absorber according to claim 1, wherein the ferromagnetic powder is a Ni-Zn ferrite powder.
(3)前記強磁性体粉末がNi−Zn系フェライト粉末
とカーボニル鉄粉の混合物である特許請求の範囲第1項
記載の電波吸収体。
(3) The radio wave absorber according to claim 1, wherein the ferromagnetic powder is a mixture of Ni-Zn ferrite powder and carbonyl iron powder.
(4)前記誘電体がゴム又はプラスチックのごとき高分
子材料である特許請求の範囲第1項記載の電波吸収体。
(4) The radio wave absorber according to claim 1, wherein the dielectric material is a polymeric material such as rubber or plastic.
(5)凹部と凸部の面積が相互にほぼ等しいごとき特許
請求の範囲第1項記載の電波吸収体。
(5) The radio wave absorber according to claim 1, wherein the areas of the concave portion and the convex portion are approximately equal to each other.
(6)凸部が1辺の長さが15λ以下の正方形である特
許請求の範囲第1項記載の電波吸収体。
(6) The radio wave absorber according to claim 1, wherein the convex portion is a square with a side length of 15λ or less.
JP13634182A 1982-08-06 1982-08-06 Radio wave absorber Pending JPS5927597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13634182A JPS5927597A (en) 1982-08-06 1982-08-06 Radio wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13634182A JPS5927597A (en) 1982-08-06 1982-08-06 Radio wave absorber

Publications (1)

Publication Number Publication Date
JPS5927597A true JPS5927597A (en) 1984-02-14

Family

ID=15172933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13634182A Pending JPS5927597A (en) 1982-08-06 1982-08-06 Radio wave absorber

Country Status (1)

Country Link
JP (1) JPS5927597A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382993U (en) * 1986-11-19 1988-05-31
JPH07106785A (en) * 1993-10-05 1995-04-21 Fuji Elelctrochem Co Ltd Wave absorber for ghz band
JPH1187972A (en) * 1997-09-01 1999-03-30 Tokin Corp Electromagnetic interference suppressor
JPH11121976A (en) * 1997-10-15 1999-04-30 Kitagawa Ind Co Ltd Heat-radiating structure for electronic component
JP2000207694A (en) * 1999-01-13 2000-07-28 Honda Motor Co Ltd Gate for radar loaded vehicle
JP2001313521A (en) * 2000-04-28 2001-11-09 Tdk Corp Radio wave attenuation body
JP2002009483A (en) * 2000-06-26 2002-01-11 Kitagawa Ind Co Ltd Electric-wave absorbing body
JP2002043834A (en) * 2000-07-28 2002-02-08 Em Techno:Kk Radio absorber
JP2005323380A (en) * 2005-05-09 2005-11-17 Tdk Corp Electric wave attenuating body
JP2012033675A (en) * 2010-07-30 2012-02-16 Technical Research & Development Institute Ministry Of Defence Effective thickness control method of electromagnetic wave absorber and electromagnetic wave absorber
JP2019125662A (en) * 2018-01-16 2019-07-25 富士通コンポーネント株式会社 High frequency module
WO2021060353A1 (en) * 2019-09-25 2021-04-01 積水化学工業株式会社 λ/4 WAVE ABSORBER

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129899A (en) * 1977-04-19 1978-11-13 Kansai Paint Co Ltd Coating composition for absorbing electric waves
JPS555718A (en) * 1978-06-28 1980-01-16 Kawasaki Heavy Ind Ltd Turning crusher operation control method
JPS555719A (en) * 1978-06-28 1980-01-16 Suzuki Yasuo Centrifuge
JPS5620720A (en) * 1979-07-25 1981-02-26 Hino Motors Ltd Supercharger for internal combustion engine
JPS5635320A (en) * 1979-08-22 1981-04-08 Atari Inc Steering column control device
JPS5712319A (en) * 1980-06-24 1982-01-22 Fanuc Ltd Position detecting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129899A (en) * 1977-04-19 1978-11-13 Kansai Paint Co Ltd Coating composition for absorbing electric waves
JPS555718A (en) * 1978-06-28 1980-01-16 Kawasaki Heavy Ind Ltd Turning crusher operation control method
JPS555719A (en) * 1978-06-28 1980-01-16 Suzuki Yasuo Centrifuge
JPS5620720A (en) * 1979-07-25 1981-02-26 Hino Motors Ltd Supercharger for internal combustion engine
JPS5635320A (en) * 1979-08-22 1981-04-08 Atari Inc Steering column control device
JPS5712319A (en) * 1980-06-24 1982-01-22 Fanuc Ltd Position detecting device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382993U (en) * 1986-11-19 1988-05-31
JPH07106785A (en) * 1993-10-05 1995-04-21 Fuji Elelctrochem Co Ltd Wave absorber for ghz band
JPH1187972A (en) * 1997-09-01 1999-03-30 Tokin Corp Electromagnetic interference suppressor
JPH11121976A (en) * 1997-10-15 1999-04-30 Kitagawa Ind Co Ltd Heat-radiating structure for electronic component
JP2000207694A (en) * 1999-01-13 2000-07-28 Honda Motor Co Ltd Gate for radar loaded vehicle
JP2001313521A (en) * 2000-04-28 2001-11-09 Tdk Corp Radio wave attenuation body
JP2002009483A (en) * 2000-06-26 2002-01-11 Kitagawa Ind Co Ltd Electric-wave absorbing body
JP2002043834A (en) * 2000-07-28 2002-02-08 Em Techno:Kk Radio absorber
JP2005323380A (en) * 2005-05-09 2005-11-17 Tdk Corp Electric wave attenuating body
JP2012033675A (en) * 2010-07-30 2012-02-16 Technical Research & Development Institute Ministry Of Defence Effective thickness control method of electromagnetic wave absorber and electromagnetic wave absorber
JP2019125662A (en) * 2018-01-16 2019-07-25 富士通コンポーネント株式会社 High frequency module
WO2021060353A1 (en) * 2019-09-25 2021-04-01 積水化学工業株式会社 λ/4 WAVE ABSORBER

Similar Documents

Publication Publication Date Title
JP2536194B2 (en) Microstrip antenna
JPS5927597A (en) Radio wave absorber
US3789404A (en) Periodic surface for large scan angles
Yang et al. Design and analysis of 2-bit matrix-type coding metasurface for stealth application
US5162806A (en) Planar antenna with lens for controlling beam widths from two portions thereof at different frequencies
US3831176A (en) Partial-radial-line antenna
CN108429009B (en) Dual-polarized array antenna structure
US5883601A (en) Plural slot antenna fed with dielectric strip and dielectric resonators
JPH09181475A (en) Composite type wide band electromagnetic wave absorber
JPH06132691A (en) Radio wave absorber
KR100233837B1 (en) Triple square loop slot frequency selective surface
RU2083035C1 (en) High-frequency planar-array antenna
JPH0212996A (en) Radio wave absorber
Uslenghi Exact geometrical optics solution for an isorefractive wedge structure
JPS6247361B2 (en)
JPS5834602A (en) Wave absorber
JPH01293699A (en) Wave absorber
JPS63224507A (en) Antenna for loading beam displacement high efficiency/ high gain dielectric or the like
JP2000277972A (en) Wide band electromagnetic wave absorber
JP2002009483A (en) Electric-wave absorbing body
JPS5819000A (en) Pyramid radio wave absorber
JP2626182B2 (en) Radial line slot antenna
CN216958499U (en) Antenna structure and wireless system
CN218334334U (en) Novel circularly polarized lens antenna device
JPH04140906A (en) Planar antenna