JP4005137B2 - Equipment for cleaning exhaust gas from internal combustion engines - Google Patents

Equipment for cleaning exhaust gas from internal combustion engines Download PDF

Info

Publication number
JP4005137B2
JP4005137B2 JP52881497A JP52881497A JP4005137B2 JP 4005137 B2 JP4005137 B2 JP 4005137B2 JP 52881497 A JP52881497 A JP 52881497A JP 52881497 A JP52881497 A JP 52881497A JP 4005137 B2 JP4005137 B2 JP 4005137B2
Authority
JP
Japan
Prior art keywords
electrode
ceramic
stopper
ceramic body
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP52881497A
Other languages
Japanese (ja)
Other versions
JP2000504805A (en
Inventor
フレック、カール・マリア
Original Assignee
フレック、カール・マリア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フレック、カール・マリア filed Critical フレック、カール・マリア
Publication of JP2000504805A publication Critical patent/JP2000504805A/en
Application granted granted Critical
Publication of JP4005137B2 publication Critical patent/JP4005137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/60Use of special materials other than liquids
    • B03C3/62Use of special materials other than liquids ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/70Applications of electricity supply techniques insulating in electric separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/01Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/0217Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters the filtering elements having the form of hollow cylindrical bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • F01N3/0275Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means using electric discharge means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/12Cleaning the device by burning the trapped particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/30Details of magnetic or electrostatic separation for use in or with vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrostatic Separation (AREA)

Abstract

The invention relates to a device for the cleaning of exhaust gases from internal combustion engines, in particular a diesel exhaust soot filter. Said device has a discharge electrode (8), a counterelectrode (28) opposite thereto for electrical charging of the exhaust gas components, a ceramic structure (1) with a circular cross-section and ducts (20) extending therethrough in the direction of flow, and an internal electrode (5) at high voltage. This electrode is arranged on the inner cylinder wall (21) of the ceramic structure (1) and creates an electrical field at right angles to the ducts (20) passing through said ceramic structure. The soot particles are deposited and oxidised on the walls of the ducts (20), and a separation is provided to prevent flow through the hollow internal space (22) of the ceramic structure (1). To prevent the formation of conductive soot bridges between high-voltage-conducting components and earth the separation of the hollow internal space (22) of the ceramic structure (1) is an electrical insulator, preferably a ceramic stopper (4), arranged at the inlet side of the gas stream.

Description

本発明は、請求項1の上位概念に記載の、内燃機関、特にディーゼル排気粒子用フィルタからの排ガスをクリーンにする装置に関する。
例えばEP A 332609又はEP A 537219から公知のこうしたディーゼル排気粒子用フィルタの欠点は、セラミック製の本体の流路の外側にある排気粒子用フィルタに堆積された排気粒子が、幾らかの時間後に、内部電極とアースとの間に導電性のブリッジを形成し、このようなブリッジの結果として、寄生電流と、永続的に発生する火花ギャップとが生じること、である。
本発明の課題はこうした欠点を構造的な措置により防止することである。
このことは、冒頭に記載したタイプの装置の場合には、請求項1の特徴部分に記載した特徴によって達成される。
高電圧にある内部電極を含む中空空間を閉じることによって、セラミック製の本体の流路の外側には導電性の排気粒子の堆積が永続的に発生しない。
セラミック製の本体の中空の内部空間が、後側においても、絶縁体、好ましくは、セラミック製のストッパによって閉じられており、このストッパが内部電極に高電圧を供給する好ましくは1〜2mmの直径の貫通部を有することが、規定されていることは好ましい。
後側での高電圧の供給の利点は、この領域では既に非常にわずかな排気粒子の堆積があること、更に、貫通部における電界強度が供給線の縮径によって高いので、そこに堆積された排気粒子が即座に焼かれて、これによって、排気粒子の導電性のブリッジの形成が再度防止されること、である。
放電電極を特に絶縁するためには、放電電極がセラミック製の本体によって担持されて、内部電極と同一の高電圧電位にあることができる。
堆積された排気粒子により放電電極の領域において火花が発生し易くなる傾向は、本発明に基づき、放電電極に対向している対向電極が高い電気抵抗を持ったセラミック製の被覆層を有することによって、対処される。
放電電極の櫛状要素が、その先端に、0,05mm乃至0,2mmの厚さのセラミック製の被覆層を有し、各先端に、1メガオーム乃至1ギガオームの、好ましくは10メガオーム乃至100メガオームの電気的な体積抵抗率を有することが好都合であることが判明した。
対向電極の被覆層が0,1乃至0,5mmの厚さを有し、1メガオーム・cm2乃至1ギガオーム・cm2の、好ましくは10メガオーム・cm2乃至100メガオーム・cm2の電気的な体積抵抗率を有することが、本発明に基づいて、好都合であることができる。
放電電極及び/又は対向電極の被覆層が材料Al23,TiO,ZrO及びCrOのうちの1か又はこれらによる混合物からなることは好ましい。
本発明の他の特徴によれば、セラミック製の本体の内側に設けられた内部電極がセラミック製の本体の流路の入口側から及び好ましくは出口側からも間隔をあけて設けられていることが、規定されている。このことによって、セラミック製の本体の流路の入口領域及び出口領域に導電性の排気粒子のブリッジの発生が防止される。
本発明の他の実施の形態では、高電圧にある内部電極と、セラミック製の本体の、内側のシリンダ状の面との間には、正特性サーミスタが設けられていることが規定されている。正特性サーミスタが、100℃から500℃への昇温の際に、10メガオーム・cm2以下の値の体積抵抗率を、少なくとも100メガオーム・cm2、好ましくは300メガオーム・cm2に高めることは好ましい。
温度が高くなって、セラミック製の本体の抵抗が余りに著しく減少するときは、内部電極における高電圧を引き下げなければならない。何故ならば、高電圧を供給する電力供給装置が、車両の電気系統から、限られた電力しか取り出すことができないからである。このことによって、正特性サーミスタがないときは、内部電極に電気的に平行に接続された放電電極又は対向電極が自らの作動を中止するだろう。これに対し、正特性サーミスタは、抵抗が高くなることによって、セラミック製の本体の、昇温の際には弱まる抵抗を補償する。このことによって、放電電極又は対向電極の作動は損なわれない。不均等な電流分布がセラミック製の本体に生じるときは、更に、セラミック製の本体の局所的な加熱が生じて、この加熱の結果、セラミック製の本体の熱的な損傷が生じてしまう。局所的な加熱は、サーミスタの高まる抵抗によって、局所的な給電を制御して元に戻す。このことによって、供給された電力の均等な分布が生じる。
図面を参照して本発明を詳述する。
図1は本発明の装置の第1の実施の形態の縦断面図である。
図2は本発明の装置の他の実施の形態の縦断面図である。
図3は図2の線III−IIIに沿った断面図である。
環状の横断面を有するセラミック製の本体1は、プレスマット、ワイヤメッシュ3等によって、金属製のシリンダ状の管2に取着されている。セラミック製の本体1の中空のシリンダ状の内部空間22は両側でストッパ4,4′によって閉じられている。導電性の好ましくは金属製の層5は、セラミック製の本体1の内壁21に設けられており、高電圧源に接続された内部電極として用いられる。金属製の層6はセラミック製の本体1の外側のシリンダ状の壁に設けられており、外部電極として用いられ、接地されている。セラミック製の本体1は、長手方向に延び、かつEP-A 537219から公知のレンガ構造を有するのが好ましい貫通する流路20を有する。2つのストッパ4,4′は夫々貫通部23,23′を有し、軸方向に延びる金属製の管7が貫通部を通っており、この管は直径が出来る限り小さくて、入口側で対向電極28を有している。管7を位置決めするために、管の軸方向に延びる波形材又はリブを有するインサート(図示せず)を、管7と絶縁体4,4′との間の貫通部23,23′に設けることができる。管7は出口側でテーパをなして接続端部12になっており、この接続端部12は、シリンダ状のセラミック製の保持手段10の収容開口部13内に係合しており、保持手段10内を案内された導体11によって、高電圧が供給される。内部電極5は、導体11と、接続端部12と、管7と、この管7に取着された接触ばね9とによって、高電圧源に接続されている。高電圧が印加された内部電極5と、接地された外部電極6との間では、電界が、セラミック製の本体1内で、貫通する流路20に対し横方向に生起される。この電界を支持するために、絶縁体4,4′の間で管7は放出電極(Spruehelektrode)として形成されていることができる。セラミック製の本体1は、好ましくは菫青石の素材から、高圧押出成形によって製造され、続いて、高温で焼成されている。セラミック製の本体1は、好ましくは0.5%より低い、非常に低い多孔度を有しなければならない。流路の高さは通常0.6mm乃至1mmであり、流路20の幅は、半径方向の位置に従って、例えば3mm乃至6mmの間にある。
放電電極は、電子を放出する櫛状放出要素(Spruezaehne)24を有しかつ管2に接触しているシリンダ状の管本体8によって、形成されている。放電電極8に対向している対向電極28は、入口側に錐状にテーパをなしているシリンダ状の基礎的本体を有する。対向電極28はセラミック製の被覆層14を有する。この被覆層は0.1乃至0.5mmの厚さを有し、1メガオーム・cm2乃至1ギガオーム・cm2の、好ましくは10メガオーム・cm2乃至100メガオーム・cm2の、cm2に関する電気的な体積抵抗率を有する。内部電極5、従って対向電極28での高電圧は、約+8乃至12kVである。この高電圧は、排ガスの体積又は質量流量に応じて、内部電極5と外部電極6の間の距離に関連して2kV/cm乃至6kV/cmの差内で、制御される。
入口側Aから流入しかつディーゼル排気粒子を含んだ排ガスは、放電電極8と対向電極28とによって形成された環状流路26に入り、セラミック製の本体1の流路20の入口開口部へ向かって流れていく。排ガス成分は環状流路26でイオン化され、セラミック製の本体1の流路20へ入り込む。流路20に対し横方向に発生された電界により、排ガス中に含まれかつ放電電極28によって帯電された排気粒子は、流路20の壁面に堆積され、高い電界強度により放出された電子からなるガスプラズマによって電気化学的に酸化される。環状空間26を出て行く排ガスの排気粒子は、ストッパ4があるので、セラミック製の本体1の内部空間22に、従って内部電極5に達することができない。排ガス中に含まれる排気粒子の大部分は流路20へ浸入し、流路20の壁部に堆積した後、ガスプラズマによって酸化される。ストッパ4に形成された貫通部23の外側又は管5に堆積し、そこで排気粒子の導電性ブリッジを形成する排気粒子は、管7の短い直径と、狭いことによりそこで支配的な高い電界強度とのために、火花の発生によって焼かれる。それ故に、そこには、排気粒子の、より長い導電性ブリッジが全く形成され得ない。出口側Bからも、高電圧にある内部電極5がストッパ4′によって保護されている。出口側Bでは、流路から出る排ガスは既に著しく排気粒子が除去されている。しかし乍ら、排気粒子の残留分が出口側Bで管7又は終端部12に堆積されるときは、管7又は終端部12の直径が狭い故に、高い電界強度が生じ、このような電界強度によって、そこに堆積した排気粒子が火花の発生により焼かれる。図1から見て取れるように、内部電極5及び外部電極6はセラミック製の本体1の全長に亘って延びていないので、セラミック製の本体1の入口及び出口領域には、ほぼ零電界の流れ領域が保たれている。このことにより、内部電極5と外部電極6との短絡は、万一の場合には排気粒子のブリッジが流路の入口又は出口開口部にに生じることによって、防止される。
図2はディーゼル排気粒子用のコンバータの他の実施の形態の主軸に沿った断面を示している。図2に図示したディーゼル排気粒子用のコンバータの場合には、セラミック製の本体1は電気的及び機械的に放電電極29から分離されている。ディーゼル排ガス用の貫通する流路20を有するセラミック製の本体1は、同様に、円形の横断面を有し、プレスマット、ワイヤメッシュ3等によって、排ガス用管2の、拡径した管状の部分に取着されている。セラミック製の本体1の中空の内部22は、入口側では、非導電性の好ましくはセラミック製のストッパ4によって閉じられている。導電性の層は、セラミック製の本体1の、内側及び外側のシリンダ状のジャケットに設けられており、高電圧にある内部電極5又は接地している外部電極6として用いられる。セラミック製の本体1の中空の内部22は、出口側で、非導電性の好ましくはセラミック製のストッパ4′によって閉じられている。ストッパ4′は細い孔を有し、この孔を通って、直径が出来る限り細い金属製の管7が延びており、この管7は接触ばね9によって内部電極5と接触している。セラミック製のシリンダ状の保持手段10に設けられた導体11によって、管7に高電圧が印加される。管7の、後側の端部はテーパをなしてピン12になり、このピン12は導体11と電気接続されており、保持手段10のリセス13に係合している。高電圧値は、図1に図示した実施の形態の値と実質的に同一であるが、高電圧は、内部電極5及び放電電極29では負となっている。
放電電極29は、電気的及び機械的にセラミック製の本体1から分離された状態で、排ガス用ストランドで構成される管2に設けられている。放電電極29はシリンダ状の櫛状放出要素24を持ちかつ両側に細い例えば2乃至4mm厚のピン18,18′を備えたシリンダ状の基礎的本体25を有する。ピン18,18′によって、放電電極8は、セラミック製の保持手段15,16のリセス19,19′において支持されている。高電圧は、保持手段16内を案内される導体17によって、ピン18を介して放電電極29に供給される。放電電極29を囲繞する対向電極30は、管2に取着されかつ0,1乃至0,5mmの厚さを有するセラミック製の被覆層によって形成されている。電気抵抗値は図1の実施の形態の対向電極14の抵抗値に対応している。
温度の上昇に伴って抵抗値が高くなる正特性サーミスタ27が、セラミック製の本体1の内部電極5と内壁21との間に設けられている。サーミスタ27は、自らの抵抗が高くなることによって、セラミック製の本体1の、昇温の際に減少する抵抗を補償する。
参照符号Aの所から入る排ガスは放電電極29と対向電極30との間の環状空間26でイオン化され、セラミック製の本体1の流路20の中を流れ、参照符号Bの所で排気粒子フィルタを出る。内部電極5と外部電極6との間に生起された電界により、排ガスに含まれる排気粒子が分離されて流路20の側壁に堆積される。温度にもとづいて電子が流路20の壁から放出され、そこに支配的な電界によって排気粒子の堆積の方向に電子は加速され、かつ衝突の際に排気粒子の堆積物の酸化のきっかけとなる。
The present invention relates to an apparatus for cleaning exhaust gas from an internal combustion engine, in particular a diesel exhaust particle filter, according to the superordinate concept of claim 1.
The disadvantages of these diesel exhaust particle filters, known for example from EP A 332609 or EP A 537219, are that the exhaust particles deposited on the exhaust particle filter outside the ceramic body flow path, after some time, A conductive bridge is formed between the internal electrode and ground, and as a result of such a bridge, a parasitic current and a permanently generated spark gap are produced.
The object of the present invention is to prevent these drawbacks by structural measures.
This is achieved in the case of a device of the type described at the outset by the features described in the characterizing part of claim 1.
By closing the hollow space containing the internal electrode at a high voltage, the deposition of conductive exhaust particles does not occur permanently outside the flow path of the ceramic body.
The hollow internal space of the ceramic body is also closed on the rear side by an insulator, preferably a ceramic stopper, which preferably supplies a high voltage to the internal electrode with a diameter of 1-2 mm. It is preferable that the through portion is defined.
The advantage of supplying a high voltage on the rear side is that there is already very little exhaust particle deposition in this region, and furthermore, the electric field strength in the penetration is high due to the reduced diameter of the supply line, so it was deposited there The exhaust particles are burned immediately, which again prevents the formation of conductive bridges of the exhaust particles.
In order to insulate the discharge electrode in particular, the discharge electrode can be carried by a ceramic body and be at the same high voltage potential as the internal electrode.
The tendency that sparks are easily generated in the region of the discharge electrode due to the accumulated exhaust particles is based on the present invention that the counter electrode facing the discharge electrode has a ceramic coating layer having a high electric resistance. Will be dealt with.
The comb-like element of the discharge electrode has a ceramic coating layer with a thickness of 0.05 mm to 0.2 mm at its tip, and 1 megaohm to 1 gigaohm, preferably 10 megaohm to 100 megaohm at each tip. It has proved advantageous to have an electrical volume resistivity of
The counter electrode covering layer has a thickness of 0,1 to 0.5 mm and has an electrical resistance of 1 megaohm · cm 2 to 1 gigaohm · cm 2 , preferably 10 megaohm · cm 2 to 100 megaohm · cm 2. Having a volume resistivity can be advantageous in accordance with the present invention.
It is preferable that the coating layer of the discharge electrode and / or the counter electrode is made of one of the materials Al 2 O 3 , TiO, ZrO and CrO or a mixture thereof.
According to another feature of the invention, the internal electrodes provided on the inside of the ceramic body are provided at a distance from the inlet side and preferably also from the outlet side of the flow path of the ceramic body. Is specified. This prevents the generation of conductive exhaust particle bridges in the inlet and outlet regions of the ceramic body flow path.
In another embodiment of the present invention, it is specified that a positive temperature coefficient thermistor is provided between the internal electrode at a high voltage and the inner cylindrical surface of the ceramic body. . When the positive temperature coefficient thermistor increases the temperature resistivity from 10 ° C. to 500 ° C., the volume resistivity having a value of 10 mega ohm · cm 2 or less is increased to at least 100 mega ohm · cm 2 , preferably 300 mega ohm · cm 2. preferable.
When the temperature rises and the resistance of the ceramic body decreases too much, the high voltage at the internal electrodes must be lowered. This is because a power supply device that supplies a high voltage can extract only limited power from the electrical system of the vehicle. As a result, when there is no positive thermistor, the discharge electrode or the counter electrode electrically connected in parallel to the internal electrode will stop its operation. On the other hand, the positive temperature coefficient thermistor compensates for the resistance of the ceramic body that weakens when the temperature rises due to the high resistance. This does not impair the operation of the discharge electrode or the counter electrode. When an uneven current distribution occurs in the ceramic body, further heating of the ceramic body occurs and this heating results in thermal damage of the ceramic body. The local heating is controlled by the increased resistance of the thermistor to restore the local power supply. This results in an even distribution of the supplied power.
The present invention will be described in detail with reference to the drawings.
FIG. 1 is a longitudinal sectional view of a first embodiment of the apparatus of the present invention.
FIG. 2 is a longitudinal sectional view of another embodiment of the apparatus of the present invention.
3 is a cross-sectional view taken along line III-III in FIG.
A ceramic main body 1 having an annular cross section is attached to a metal cylindrical tube 2 by a press mat, a wire mesh 3 or the like. The hollow cylindrical inner space 22 of the ceramic body 1 is closed on both sides by stoppers 4, 4 '. A conductive, preferably metal layer 5 is provided on the inner wall 21 of the ceramic body 1 and is used as an internal electrode connected to a high voltage source. The metal layer 6 is provided on a cylindrical wall outside the ceramic main body 1 and is used as an external electrode and is grounded. The ceramic body 1 has a channel 20 extending therethrough and preferably having a brick structure known from EP-A 537219. The two stoppers 4 and 4 'have through portions 23 and 23', respectively, and an axially extending metal tube 7 passes through the through portion, and this tube is as small as possible in diameter and is opposed on the inlet side. An electrode 28 is provided. In order to position the tube 7, an insert (not shown) with corrugated material or ribs extending in the axial direction of the tube is provided in the penetrations 23, 23 'between the tube 7 and the insulators 4, 4'. Can do. The tube 7 is tapered at the outlet side to form a connecting end 12 which is engaged in the receiving opening 13 of the cylindrical ceramic holding means 10 and holds the holding means. A high voltage is supplied by the conductor 11 guided in 10. The internal electrode 5 is connected to a high voltage source by a conductor 11, a connection end 12, a tube 7, and a contact spring 9 attached to the tube 7. Between the internal electrode 5 to which a high voltage is applied and the grounded external electrode 6, an electric field is generated in the transverse direction with respect to the through-flow path 20 in the ceramic body 1. In order to support this electric field, the tube 7 can be formed as an emission electrode (Spruehelektrode) between the insulators 4, 4 '. The ceramic body 1 is preferably manufactured from a cordierite material by high pressure extrusion and subsequently fired at a high temperature. The ceramic body 1 should have a very low porosity, preferably lower than 0.5%. The height of the flow path is usually 0.6 mm to 1 mm, and the width of the flow path 20 is, for example, between 3 mm and 6 mm according to the position in the radial direction.
The discharge electrode is formed by a cylindrical tube body 8 having a comb-like emission element (Spruezaehne) 24 that emits electrons and in contact with the tube 2. The counter electrode 28 facing the discharge electrode 8 has a cylindrical basic main body tapered in a conical shape on the inlet side. The counter electrode 28 has a ceramic coating layer 14. The coating layer has a thickness of 0.1 to 0.5 mm, 1 of mega ohm · cm 2 to 1 Gohm · cm 2, electrical preferably 10 megohm · cm 2 to 100 mega ohm · cm 2, about cm 2 Volume resistivity. The high voltage at the internal electrode 5, and thus the counter electrode 28, is about +8 to 12 kV. This high voltage is controlled within a difference of 2 kV / cm to 6 kV / cm in relation to the distance between the internal electrode 5 and the external electrode 6 depending on the volume or mass flow rate of the exhaust gas.
The exhaust gas flowing in from the inlet side A and containing diesel exhaust particles enters the annular flow path 26 formed by the discharge electrode 8 and the counter electrode 28, and travels toward the inlet opening of the flow path 20 of the ceramic body 1. And flow. The exhaust gas component is ionized in the annular flow path 26 and enters the flow path 20 of the ceramic main body 1. The exhaust particles contained in the exhaust gas and charged by the discharge electrode 28 due to the electric field generated in the lateral direction with respect to the flow path 20 are deposited on the wall surface of the flow path 20 and are made of electrons emitted with high electric field strength. It is oxidized electrochemically by the gas plasma. Exhaust particles of the exhaust gas leaving the annular space 26 cannot reach the internal space 22 of the ceramic body 1 and thus the internal electrode 5 because of the stopper 4. Most of the exhaust particles contained in the exhaust gas enter the flow path 20 and are deposited on the wall portion of the flow path 20 and then oxidized by the gas plasma. Exhaust particles that accumulate outside the penetration 23 formed in the stopper 4 or on the tube 5 where they form a conductive bridge of exhaust particles, have a short diameter of the tube 7 and a high electric field strength that dominates there due to the narrowness. For, it is burned by the occurrence of sparks. Therefore, no longer conductive bridges of exhaust particles can be formed there. Also from the outlet side B, the internal electrode 5 at a high voltage is protected by the stopper 4 '. On the outlet side B, the exhaust gas from the flow path has already been significantly removed of exhaust particles. However, when the exhaust particle residue is deposited on the tube 7 or the terminal end 12 on the outlet side B, a high electric field strength is generated because the diameter of the tube 7 or the terminal end 12 is small. As a result, the exhaust particles accumulated there are burned by the generation of sparks. As can be seen from FIG. 1, the internal electrode 5 and the external electrode 6 do not extend over the entire length of the ceramic body 1, so that a flow area of substantially zero electric field is present in the inlet and outlet areas of the ceramic body 1. It is kept. As a result, a short circuit between the internal electrode 5 and the external electrode 6 is prevented by generating a bridge of exhaust particles at the inlet or outlet opening of the flow path in the unlikely event.
FIG. 2 shows a section along the main axis of another embodiment of a converter for diesel exhaust particles. In the case of the diesel exhaust particle converter shown in FIG. 2, the ceramic body 1 is electrically and mechanically separated from the discharge electrode 29. A ceramic main body 1 having a flow path 20 for passing through diesel exhaust gas similarly has a circular cross section, and a tubular portion having an enlarged diameter of the exhaust gas pipe 2 by a press mat, a wire mesh 3 or the like. Has been attached to. The hollow interior 22 of the ceramic body 1 is closed on the inlet side by a non-conductive, preferably ceramic stopper 4. The conductive layer is provided on the inner and outer cylindrical jackets of the ceramic body 1 and is used as the internal electrode 5 at a high voltage or the grounded external electrode 6. The hollow interior 22 of the ceramic body 1 is closed on the outlet side by a non-conductive, preferably ceramic stopper 4 '. The stopper 4 ′ has a thin hole through which a metal pipe 7 having the smallest possible diameter extends, and this pipe 7 is in contact with the internal electrode 5 by a contact spring 9. A high voltage is applied to the tube 7 by the conductor 11 provided in the ceramic cylindrical holding means 10. The rear end of the tube 7 is tapered to form a pin 12, which is electrically connected to the conductor 11 and is engaged with the recess 13 of the holding means 10. The high voltage value is substantially the same as the value of the embodiment shown in FIG. 1, but the high voltage is negative in the internal electrode 5 and the discharge electrode 29.
The discharge electrode 29 is provided on the tube 2 composed of exhaust gas strands while being electrically and mechanically separated from the ceramic body 1. The discharge electrode 29 has a cylindrical basic body 25 with a cylindrical comb-like discharge element 24 and with thin pins 18, 18 ', for example 2 to 4 mm thick, on both sides. The discharge electrode 8 is supported by the pins 18, 18 'in the recesses 19, 19' of the ceramic holding means 15, 16. The high voltage is supplied to the discharge electrode 29 via the pin 18 by the conductor 17 guided in the holding means 16. The counter electrode 30 surrounding the discharge electrode 29 is formed by a ceramic coating layer attached to the tube 2 and having a thickness of 0, 1 to 0.5 mm. The electric resistance value corresponds to the resistance value of the counter electrode 14 in the embodiment of FIG.
A positive temperature coefficient thermistor 27 whose resistance value increases as the temperature rises is provided between the internal electrode 5 and the inner wall 21 of the ceramic body 1. The thermistor 27 compensates for the resistance of the ceramic main body 1 that decreases when the temperature rises, as its resistance increases.
The exhaust gas entering from the reference symbol A is ionized in the annular space 26 between the discharge electrode 29 and the counter electrode 30 and flows in the flow path 20 of the ceramic body 1, and the exhaust particle filter at the reference symbol B. Exit. Due to the electric field generated between the internal electrode 5 and the external electrode 6, exhaust particles contained in the exhaust gas are separated and deposited on the side wall of the flow path 20. Electrons are emitted from the walls of the flow path 20 based on the temperature, the electrons are accelerated in the direction of the exhaust particle deposition by the dominant electric field there, and trigger the oxidation of the exhaust particle deposits in the event of a collision. .

Claims (19)

放電電極(8;29)と、この放電電極に対向している排ガス成分を帯電するための対向電極(28;30)と、環状の横断面のセラミック製の本体(1)と、流れ方向に延びる貫通する流路(20)と、高電圧にある内部電極(5)と、を具備し、この内部電極(5)は、前記セラミック製の本体(1)の、内側のシリンダ状の壁(21)に設けられており、前記貫通する流路(20)に対し横方向に電界を生起し、排気粒子は前記流路(20)の壁に堆積かつ酸化され、排ガスが前記セラミック製の本体(1)の中空の内部空間(22)内を貫流するのを防止するために、分離手段が設けられてなる、ディーゼル排気粒子用フィルタからの排ガスをクリーンにする装置において、前記セラミック製の本体(1)の前記中空の内部空間(22)の分離手段は、排ガス流の入口側に設けられた電気絶縁体の第1のストッパ(4)によって形成されていること、を特徴とする装置。A discharge electrode (8; 29), a counter electrode (28; 30) for charging an exhaust gas component facing the discharge electrode, a ceramic body (1) having an annular cross section, and a flow direction An extending through-flow channel (20) and an internal electrode (5) at a high voltage are provided, and the internal electrode (5) is an inner cylindrical wall (1) of the ceramic body (1). 21), an electric field is generated in a transverse direction with respect to the through-flow channel (20), exhaust particles are deposited and oxidized on the wall of the flow channel (20), and exhaust gas is the ceramic body. In the apparatus for cleaning exhaust gas from a filter for diesel exhaust particles, provided with a separating means in order to prevent flow through the hollow internal space (22) of (1), the ceramic body The hollow internal space (2) of (1) Separation means) may be formed by the first stopper electrical insulator provided on the inlet side of the exhaust gas stream (4), and wherein the. 前記電気絶縁体の第1のストッパ(4)は、セラミック製のストッパ(4)であることを特徴とする請求項1に記載の装置。Device according to claim 1, characterized in that the first stopper (4) of the electrical insulator is a ceramic stopper (4). 前記セラミック製の本体(1)の前記中空の内部空間(22)は、後側においても、絶縁体の第2のストッパ(4')によって閉じられており、この第2のストッパ(4')は、前記内部電極(5)に高電圧を供給する貫通部(23')を有すること、を特徴とする請求項1もしくは2のいずれ1に記載の装置。The hollow internal space (22) of the ceramic body (1) is also closed by a second stopper (4 ′) made of an insulator on the rear side, and the second stopper (4 ′). 3. The device according to claim 1, further comprising a through portion (23 ′) for supplying a high voltage to the internal electrode (5). 前記電気絶縁体の第2のストッパ(4')は、セラミック製のストッパ(4')であり、また、前記貫通部(23')は、1〜2mmの直径を有していること、を特徴とする請求項3に記載の装置。The second stopper (4 ′) of the electrical insulator is a ceramic stopper (4 ′), and the through portion (23 ′) has a diameter of 1 to 2 mm. The device according to claim 3. 前記電気絶縁体の第1のストッパ(4)は、排ガス流の入口側で、前記対向電極(28)を有する導電性の接続要素(7)が通過している貫通部(23)を有すること、を特徴とする請求項1ないし4のいずれか1に記載の装置。The first stopper (4) of the electrical insulator has a through portion (23) through which the conductive connecting element (7) having the counter electrode (28) passes, on the inlet side of the exhaust gas flow. The device according to any one of claims 1 to 4, characterized in that: 前記電気絶縁体の第1のストッパ(4)の前記貫通部(23)は、排ガス流の入口側で10mm以下の直径を有すること、を特徴とする請求項5に記載の装置。The device according to claim 5, characterized in that the penetration (23) of the first stopper (4) of the electrical insulator has a diameter of 10 mm or less on the inlet side of the exhaust gas flow. 前記放電電極(29)は、両側でテーパをなして細いピン(18,18')
になっており、これらピン(18,18')は、セラミック製の保持手段(15,16)に夫々保持されており、これらセラミック製の保持手段(15,16)は、管状の対向電極(30)を両側で貫通し及び/又はこの対向電極(30)に支えられており、2つのセラミック製の保持手段(16)のうちの少なくとも1は、前記放電電極(29)用の高電圧供給手段(17)を含むこと、を特徴とする請求項1に記載の装置。
The discharge electrode (29) is tapered on both sides and is a thin pin (18, 18 ').
These pins (18, 18 ') are respectively held by ceramic holding means (15, 16), and these ceramic holding means (15, 16) are formed as tubular counter electrodes ( 30) on both sides and / or supported by this counter electrode (30), at least one of the two ceramic holding means (16) being a high voltage supply for the discharge electrode (29) Device according to claim 1, characterized in that it comprises means (17).
前記ピン(18,18')の各々は、2〜4mmの厚さを有することを特徴とする請求項7に記載の装置。8. Device according to claim 7, characterized in that each of said pins (18, 18 ') has a thickness of 2-4 mm. 前記放電電極(8;29)、及び/又はこの放電電極に対向している対向電極(28;30)は、高い電気抵抗を持ったセラミック製の被覆層を有すること、を特徴とする請求項1ないし8のいずれか1に記載の装置。The discharge electrode (8; 29) and / or the counter electrode (28; 30) facing the discharge electrode has a ceramic coating layer having a high electrical resistance. The apparatus according to any one of 1 to 8. 前記放電電極(8;29)は、櫛状放出要素(24)を有し、この櫛状放出要素(24)は、先端に、0,05mm乃至0,2mmの厚さのセラミック製の被覆層を有し、各先端は、1メガオーム乃至1ギガオームの電気的な体積抵抗率を有すること、を特徴とする請求項9に記載の装置。The discharge electrode (8; 29) has a comb-shaped discharge element (24), and the comb-shaped discharge element (24) has a ceramic coating layer having a thickness of 0.05 mm to 0.2 mm at the tip. 10. The apparatus of claim 9, wherein each tip has an electrical volume resistivity of 1 megaohm to 1 gigaohm. 前記、各先端は、10メガオーム乃至100メガオームの電気的な体積抵抗率を有すること、を特徴とする請求項10に記載の装置。11. The apparatus of claim 10, wherein each tip has an electrical volume resistivity of 10 megaohms to 100 megaohms. 前記対向電極(28;30)の被覆層は、0,1乃至0,5mmの厚さを有し、1メガオーム・cm2乃至1ギガオーム・cm2の電気的な体積抵抗率を有すること、を特徴とする請求項9に記載の装置。The counter electrode; covering layer (28 30) has a thickness of 0,1 to 0.5 mm, to have an electrical volume resistivity of 1 megohm · cm 2 or 1 Gohm · cm 2, the The apparatus of claim 9. 前記放電電極(8;29)及び/又は対向電極(28;30)は、材料がAl23,TiO,ZrO及びCrOのうちの1か又はこれらによる混合物からなること、を特徴とする請求項9に記載の装置。The discharge electrode (8; 29) and / or the counter electrode (28; 30) are made of one of Al 2 O 3 , TiO, ZrO and CrO or a mixture thereof. Item 10. The apparatus according to Item 9. 前記セラミック製の本体(1)の内側に設けられた前記内部電極(5)は、前記セラミック製の本体(1)の前記流路(20)の入口側から間隔をあけて設けられていること、を特徴とする請求項1乃至13のいずれか1に記載の装置。The internal electrode (5) provided inside the ceramic body (1) is provided at a distance from the inlet side of the flow path (20) of the ceramic body (1). 14. The apparatus according to any one of claims 1 to 13, characterized in that: 高電圧にある前記内部電極(5)と、前記セラミック製の本体(1)の、内側のシリンダ状の壁(21)との間には、正特性サーミスタ(27)が設けられていること、を特徴とする請求項1乃至14のいずれか1に記載の装置。A positive temperature coefficient thermistor (27) is provided between the internal electrode (5) at a high voltage and the inner cylindrical wall (21) of the ceramic body (1); The device according to claim 1, characterized in that: 前記正特性サーミスタ(27)は、100℃から500℃への昇温の際に、10メガオーム・cm2より下の値の体積抵抗率を、少なくとも100メガオーム・cm2に高めること、を特徴とする請求項15に記載の装置。The positive temperature coefficient thermistor (27), when the temperature increase from 100 ° C. to 500 ° C., the volume resistivity of the values below 10 megohm · cm 2, and wherein, to increase to at least 100 mega-ohms · cm 2 The apparatus of claim 15. 前記正特性サーミスタ(27)は、100℃から500℃への昇温の際に、10メガオーム・cm2より下の値の体積抵抗率を300メガオーム・cm2に高めること、を特徴とする請求項16に記載の装置。Wherein said positive temperature coefficient thermistor (27), when the temperature increase from 100 ° C. to 500 ° C., which can increase the volume resistivity of the values below 10 megohm · cm 2 to 300 megohms · cm 2, and wherein Item 17. The device according to Item 16. 前記対向電極(28)を有する前記導電性の接続要素(7)は、前記電気絶縁体の第1並びに第2のストッパ(4,4')の間の前記セラミック製の本体(1)の前記内部空間(22)に放出電極として形成されていること、を特徴とする請求項5に記載の装置。The conductive connecting element (7) having the counter electrode (28) is formed by the ceramic body (1) between the first and second stoppers (4, 4 ') of the electrical insulator. Device according to claim 5, characterized in that it is formed as an emission electrode in the internal space (22). 軸方向に延びる波形材又はリブを有するインサートが、前記接続要素(7)と前記電気絶縁体の第1並びに第2のストッパ(4,4')との間の、前記電気絶縁体の第1並びに第2のストッパ(4,4')の前記貫通部(23,23')に、設けられていること、を特徴とする請求項5又は18に記載の装置。A first insert of the electrical insulator between the connecting element (7) and the first and second stoppers (4, 4 ') of the electrical insulator is provided with an axially extending corrugated material or rib. The device according to claim 5 or 18, characterized in that it is provided in the penetration (23, 23 ') of the second stopper (4, 4').
JP52881497A 1996-02-12 1997-02-10 Equipment for cleaning exhaust gas from internal combustion engines Expired - Fee Related JP4005137B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT246/96 1996-02-12
AT0024696A ATA24696A (en) 1996-02-12 1996-02-12 DEVICE FOR PURIFYING EXHAUST GASES FROM INTERNAL COMBUSTION ENGINES
PCT/AT1997/000024 WO1997030274A1 (en) 1996-02-12 1997-02-10 Device for the cleaning of exhaust gases from internal combustion engines

Publications (2)

Publication Number Publication Date
JP2000504805A JP2000504805A (en) 2000-04-18
JP4005137B2 true JP4005137B2 (en) 2007-11-07

Family

ID=3485438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52881497A Expired - Fee Related JP4005137B2 (en) 1996-02-12 1997-02-10 Equipment for cleaning exhaust gas from internal combustion engines

Country Status (11)

Country Link
EP (1) EP0880642B1 (en)
JP (1) JP4005137B2 (en)
AT (2) ATA24696A (en)
AU (1) AU1711997A (en)
BR (1) BR9707497A (en)
CA (1) CA2246353A1 (en)
CZ (1) CZ254898A3 (en)
DE (1) DE59700888D1 (en)
HU (1) HUP9901677A3 (en)
PL (1) PL328241A1 (en)
WO (1) WO1997030274A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2781690B1 (en) * 1998-08-03 2002-04-12 Ecia Equip Composants Ind Auto DEVICE FOR REGENERATING A PARTICLE FILTER FOR PURIFYING EXHAUST GASES OF A MOTOR VEHICLE
GB2351923A (en) * 1999-07-12 2001-01-17 Perkins Engines Co Ltd Self-cleaning particulate filter utilizing electric discharge currents
GB2358149A (en) * 2000-01-14 2001-07-18 Quantum Fuel Technology Ltd Ionising chamber for reducing exhaust emissions
DE10102491C2 (en) * 2001-01-19 2003-04-17 Walter Hofmann Method for operating a device in the exhaust system of an internal combustion engine for checking the pollution of the exhaust gas flow with soot particles, and this device
AT410761B (en) * 2001-03-26 2003-07-25 Meier Stauffer Gerd Dr Soot filter and catalyst for diesel engines includes differential pressure measurement controlling high voltage discharge to burn-off soot
US7514047B2 (en) 2003-01-15 2009-04-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus
AT500959B1 (en) * 2004-11-09 2007-05-15 Carl M Dr Fleck METHOD AND FILTER ARRANGEMENT FOR SEPARATING RUSSIAN PARTICLES
AT501888B1 (en) 2005-06-08 2006-12-15 Fleck Carl M Dr WAVE FILTER WITH PLANAR ELECTRODES
AT503022B1 (en) * 2006-06-29 2007-07-15 Fleck Carl M Dr Filter arrangement for separating soot particles from an exhaust flow, comprises electrode arrangement through which exhaust gas flows and which charges soot particles, which are removed from exhaust flow by electrical field or mechanically
FR2907843B1 (en) * 2006-10-26 2009-01-23 Renault Sas ELECTRIC SOFT PARTICLE CAPTURING DEVICE OF EXHAUST GAS OF INTERNAL COMBUSTION ENGINE.
CH702125B1 (en) * 2007-03-27 2011-05-13 Rudolf Bolliger Dipl. Ei. Ing. Htl An electrostatic dust filter.
DE102010044252B4 (en) * 2010-09-02 2014-03-27 Reinhausen Plasma Gmbh Apparatus and method for generating a barrier discharge in a gas stream
DE102010044343A1 (en) 2010-09-03 2012-03-08 Emitec Gesellschaft Für Emissionstechnologie Mbh Device with an annular electrode for reducing soot particles in the exhaust gas of an internal combustion engine
CN107684976A (en) * 2016-08-05 2018-02-13 刘景文 Air electrostatic branner
TWI678233B (en) * 2019-03-29 2019-12-01 劉景文 Combined structure of electrostatic dust cleaning machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979364A (en) * 1988-03-11 1990-12-25 Fleck Carl M Diesel fuel exhaust gas filter
DE3834920A1 (en) * 1988-10-13 1990-04-19 Man Nutzfahrzeuge Ag METHOD AND DEVICE FOR ELIMINATING SOOT SEPARATED IN AN EXHAUST FILTER OF AN INTERNAL COMBUSTION ENGINE
CA2086675C (en) * 1990-07-02 2003-01-28 Carl M. Fleck Process and device for cleaning exhaust gases
DE4200343C2 (en) * 1992-01-09 1993-11-11 Metallgesellschaft Ag Electrostatic separator
JPH05277313A (en) * 1992-03-31 1993-10-26 Teikoku Piston Ring Co Ltd Fine particle separating device

Also Published As

Publication number Publication date
ATA24696A (en) 2000-10-15
AU1711997A (en) 1997-09-02
EP0880642B1 (en) 1999-12-22
ATE188015T1 (en) 2000-01-15
EP0880642A1 (en) 1998-12-02
PL328241A1 (en) 1999-01-18
DE59700888D1 (en) 2000-01-27
CZ254898A3 (en) 1998-11-11
HUP9901677A3 (en) 2000-03-28
HUP9901677A2 (en) 1999-08-30
CA2246353A1 (en) 1997-08-21
BR9707497A (en) 2000-01-04
WO1997030274A1 (en) 1997-08-21
JP2000504805A (en) 2000-04-18

Similar Documents

Publication Publication Date Title
JP4005137B2 (en) Equipment for cleaning exhaust gas from internal combustion engines
US5402639A (en) Device for cleaning exhaust gases
US20080017030A1 (en) Method And Filter Arrangement For Separating Exhaust Particulates
JP6045346B2 (en) Exhaust gas treatment device having two honeycomb bodies for generating electric potential
FI90480B (en) Without the Transport Arrangement
US9683962B2 (en) Apparatus for monitoring particles in an aerosol
US4216000A (en) Resistive anode for corona discharge devices
EP1890014B1 (en) Exhaust emission control method and exhaust emission control system
KR20070119526A (en) Electrical processing method and apparatus for diesel engine exhaust gas
US4634806A (en) High-voltage insulator
KR101503619B1 (en) Device for treating soot particle-containing exhaust gases
US4852349A (en) Arrangement for the removal of soot particles from the exhaust gas stream of a diesel internal combustion engine
KR20150110576A (en) Device and method for treating an exhaust gas containing particles
US7776140B2 (en) Device for removing soot particles from an exhaust gas stream
US4890455A (en) Coagulator for an exhaust gas scrubbing system for internal combustion engines
KR101601572B1 (en) Retainer having at least one electrode
JP2005232971A (en) Exhaust emission control device
US20210252524A1 (en) Device for purifying a gaseous medium loaded with particles
US20140366736A1 (en) Device for treating a gas stream flowing radially outwardly from a central area
JP2004055317A (en) Nozzle type static eliminator
JPH0153105B2 (en)
TW202040115A (en) Sensor or sensor element, sensor system, method for production and use
KR101492749B1 (en) Holder for at least one electrode in an exhaust-gas line
JPS60500342A (en) Device for purifying gas

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees