JP4004423B2 - Road three-dimensional intersection construction method and pier connection structure - Google Patents

Road three-dimensional intersection construction method and pier connection structure Download PDF

Info

Publication number
JP4004423B2
JP4004423B2 JP2003074093A JP2003074093A JP4004423B2 JP 4004423 B2 JP4004423 B2 JP 4004423B2 JP 2003074093 A JP2003074093 A JP 2003074093A JP 2003074093 A JP2003074093 A JP 2003074093A JP 4004423 B2 JP4004423 B2 JP 4004423B2
Authority
JP
Japan
Prior art keywords
pier
pile
bridge girder
road
upper plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003074093A
Other languages
Japanese (ja)
Other versions
JP2004278230A (en
Inventor
均 浅野
弘明 朝倉
光芳 林
正水 落合
佳則 町田
浩研 立田
修二 大波
杉生 北嶋
正幸 栗原
孝浩 菱木
大次郎 長澤
明 新田
眞二 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Corp
Original Assignee
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Corp filed Critical Toda Corp
Priority to JP2003074093A priority Critical patent/JP4004423B2/en
Publication of JP2004278230A publication Critical patent/JP2004278230A/en
Application granted granted Critical
Publication of JP4004423B2 publication Critical patent/JP4004423B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、道路立体交差施工方法及び橋脚接続構造に関し、特に、既設道路の交差点部における道路立体交差施工方法及び橋脚接続構造に関する。
【0002】
【背景技術】
近年、交通量の多い都市部の交差点あるいは踏切では、日常的に交通渋滞が発生し、これらの解消には一刻も早い立体交差化が望まれている。
【0003】
このような、既設の道路交差点における立体交差化の施工では、通常、場所打ちRC橋脚基礎施工後に鋼桁を架設し、その上にRC床版を施工するようにしている。
【0004】
しかし、このような施工法では、施工時の占用領域が大きくなり、長期にわたる広範囲な交通規制が必要となり、仮設道路の確保やその間のさらなる渋滞と周辺環境の悪化、住民の不自由さを強いることになる。
【0005】
そのため、橋梁上部工をモジュール分割し、仮設支柱を兼用した移動装置により現地にて所定位置まで移動し、応急的な連結装置により連結一体化した後に、その路面を仮設橋として供用し、その後、別途恒久的な建設部材による橋梁上部工を恒久的に連結し、仮設支柱を恒久支柱としての橋脚で置換することで、施工期間を短縮し、早期供用を図り、現状交通量への影響を最小限化した提案がなされている(特許文献1参照)。
【0006】
【特許文献1】
特開平6−272214号公報
【0007】
【発明が解決しようとする課題】
前述の提案では、工期短縮による早期供用及び交通量への影響の最小限化が可能であるが、施工期間においては交通の遮断を前提としており、施工期間中における仮設道路の確保や二次渋滞を解消することはできない。
【0008】
また、仮設支柱を兼用した移動装置を用いているため、恒久支柱としての橋脚を設置した後、仮設支柱を撤去しなければならない。
【0009】
さらに、橋脚の設置に際しては、仮設支柱を兼用した移動装置によって作業空間に制約を受けてしまうこととなる。
【0010】
本発明の目的は、工期短縮を前提としつつ、仮設道路を確保することなく、施工期間における交通を確保して二次渋滞の大幅緩和を図るとともに、仮設支柱を用いることなく施工可能な道路立体交差施工方法を提供することにある。
【0011】
本発明の他の目的は、杭に対して橋脚柱を、杭心のずれ及びレベル調整し、かつ、確実に荷重を伝達可能な橋脚接続構造を提供することにある。
【0012】
【課題を解決するための手段】
前記目的を達成するため、本発明の道路立体交差施工方法は、既設道路の交差点部における一方の道路を高架部として立体交差化させる道路立体交差施工方法であって、
前記高架部施工位置付近に組立ヤードを配設し、この組立ヤード内で搬送車両により搬送した橋桁を移動多軸台車上で複数連結して所定長さに組み立てる工程と、
前記組み立てた所定長さの橋桁を前記移動多軸台車により所定の設置位置まで搬送する工程と、
前記所定の設置位置で前記所定長さの橋桁を橋脚に支持させる工程と、
前記所定の設置位置から前記移動多軸台車を前記組立ヤードまで戻す工程と、
を有し、
前記橋脚は、杭と橋脚柱とが橋脚接続構造にて接続され、
前記橋脚接続構造は、杭頭に取り付けられる下部プレートと、この下部プレート上に取り付けられる上部プレートと、前記下部プレート及び上部プレートのそれぞれ対向面に取り付けられて杭心のずれ及び杭頭のレベルを調整可能で、かつ、荷重を伝達可能な下部荷重伝達調整部材及び上部荷重伝達調整部材と、下部プレートと上部プレートを連結する連結部材及び連結部材を水平方向で移動可能にする長孔並びに前記上部プレートに形成された水平回転方向での橋脚柱と上部プレートとのずれを吸収する長孔とを有し、
前記下部荷重伝達調整部材及び上部荷重伝達調整部材により杭心のずれ及び杭頭のレベルを調整したり、橋脚柱との水平回転方向の位置ずれを吸収して前記下部プレート及び上部プレートを介して杭と橋脚柱を連結し、
前記橋桁は高架部の幅方向両側部または片側部が折り畳み可能に形成され、
前記橋桁は、高架部の幅方向両側部または片側部が折り畳まれた状態で搬送され、前記橋脚に支持させた後展開して拡幅され、
前記各工程を繰り返して所定距離の高架部を構築することを特徴とする。
【0013】
本発明によれば、高架部施工位置付近の道路用地上に組立ヤードを配設することで、道路脇に組立ヤードを設置する場合に比し、道路脇の組立ヤードから道路上に橋桁を搬送する場合のように、交通を遮断したり、交通規制を行ったりする必要がない状態で通行車線を確保できるため、二次渋滞の発生を大幅に減少させることができる。
【0014】
また、組立ヤード内で搬送車両により搬送した橋桁を移動多軸台車上で複数連結して所定長さに組み立てることで、一端道路外で組み立てた橋桁を道路上に搬送する場合に比し、道路上で受け取った橋桁をそのまま道路上で複数連結することができるので、工期の短縮を図ることができる。
【0015】
さらに、組立ヤード内で組み立てた所定長さの橋桁を移動多軸台車により所定の設置位置まで搬送することで、他の車線に何ら影響を与えることなく所定の設置位置まで確実に搬送することができ、より一層二次渋滞の発生を減少させることができる。
【0016】
そして、設置位置で所定長さの橋桁を橋脚に支持させれば、仮設支柱を用いることなく本設の橋脚のみによって橋桁を支持することができ、仮設支柱の撤去等の作業を不要として、工期短縮に寄与することができ、しかも、橋脚設置の作業空間に制約が生じることもない。
【0018】
また、高架部の両側部または片側部を折り畳んで高架部の施工占用幅を縮小することによって、施工時の日中における右折車線を確保でき、より一層二次渋滞抑制を図ることができる。
さらに、下部荷重伝達調整部材及び上部荷重伝達調整部材により杭心のずれ及び杭頭のレベルを調整して、下部プレートと上部プレートを連結し、この下部プレート及び上部プレートを介して杭と橋脚柱とを連結することで、上部荷重を杭にスムーズに伝達することができるとともに、橋脚柱の建方開始までの工程を省略して、建方開始までの時間を短縮することができる。
【0019】
本発明においては、前記搬送車両から前記移動多軸台車への前記橋桁の搬送は、前記搬送車両及び前記移動多軸台車を跨ぐ門型荷取設備によって行われるようにすることができる。
【0020】
このような構成とすることにより、クレーン等による旋回を行うことなく搬送車両から橋桁を移動多軸台車上に移すことができ、旋回領域が不要となるので、施工時の占用領域を小さくして、仮設道路の確保や交通規制を不要とし、二次渋滞をより一層抑制することができる。
【0021】
本発明においては、記橋脚柱は前記橋桁の所定の設置位置で前記橋桁に接続された後、前記杭に接続されるようにすることができる。
【0022】
このような構成とすることにより、橋脚柱を杭に立設する前に橋桁を設置位置まで搬送することができ、設置位置で橋桁に橋脚柱を接続した後、杭に接続することで橋桁の所定の設置位置までの搬送と橋脚柱による橋桁の支持等を確実に行うことができる。
【0023】
本発明においては、記橋脚柱は前記橋桁の所定の設置位置で前記杭に接続された後、前記橋桁に接続されるようにすることができる。
【0024】
このような構成とすることにより、橋桁を所定の設置位置に搬送した後、橋脚柱を杭に接続し、その後橋桁に接続することで、所定の設置位置への橋桁の搬送と橋脚柱による支持等を確実に行うことができる。
【0025】
本発明においては、記橋脚柱は予め前記橋桁に取り付けられて所定の設置位置に搬送されるようにすることができる。
【0026】
このような構成とすることにより、橋脚柱を予め橋桁に取り付けた状態で所定の設置位置に搬送し、その後橋脚柱を杭に接続することで、確実に所定の設置位置で橋脚柱に橋桁を支持させることができる。
【0031】
本発明の橋脚接続構造は、杭と橋脚柱とを接続する橋脚接続構造において、
杭頭に取り付けられる下部プレートと、この下部プレート上に取り付けられる上部プレートと、前記下部プレート及び上部プレートのそれぞれ対向面に取り付けられて杭心のずれ及び杭頭のレベルを調整可能で、かつ、荷重を伝達可能な下部荷重伝達調整部材及び上部荷重伝達調整部材と、下部プレートと上部プレートを連結する連結部材及び連結部材を水平方向で移動可能にする長孔並びに前記上部プレートに形成された水平回転方向での橋脚柱と上部プレートとのずれを吸収する長孔とを有し、
前記下部荷重伝達調整部材及び上部荷重伝達調整部材により杭心のずれ及び杭頭のレベルを調整したり、橋脚柱との水平回転方向の位置ずれを吸収して前記下部プレート及び上部プレートを介して杭と橋脚柱を連結することを特徴とする。
【0032】
本発明によれば、下部荷重伝達調整部材及び上部荷重伝達調整部材により杭心のずれ及び杭頭のレベルを調整して、下部プレートと上部プレートを連結し、この下部プレート及び上部プレートを介して杭と橋脚柱とを連結することで、上部荷重を杭にスムーズに伝達することができるとともに、橋脚柱の建方開始までの工程を省略して、建方開始までの時間を短縮することができる。
【0033】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0034】
図1〜図13は、本発明の一実施の形態に係る道路立体交差施工方法を示す図である。
【0035】
この道路立体交差施工方法は、図1に示すように、既設の道路10、12の交差点部14における一方の道路10の直進車線16を高架部として立体交差させるようにしている。
【0036】
この一方の道路10は、片側2車線ずつで中央に中央分離帯18を有する4車線道路となっており、中央側の直進車線16の2車線が高架部として立体交差化されるようになっている。
【0037】
そして、高架部施工位置付近の中央分離帯18を含む直進車線16上に組立ヤード20を配設するようにしている。
【0038】
この高架部は、その両端部に盛土領域22を有し、この盛土領域22間を橋桁施工領域24とし、2つの盛土領域22に直進車線16を2本分及び中央分離帯18を含む組立ヤード20が配設され、橋桁施工領域24に中央分離帯18の幅に相当する施工ヤード26を配設するようにしている。
【0039】
従って、交差点部14においては、片側2車線ずつを確保し、左折車線28のみならず右折車線30を確保して、交通を遮断したり、交通規制を行ったりすることなく、直進車線を除く他の車線をそのまま通行車線として用いることで、二次渋滞の発生を大幅に減少させることが可能となる。
【0040】
次に、図2(1)及び(2)に示すように、施工ヤード26内において基礎工を行うとともに、組立ヤード20内において上部工地組を行う。
【0041】
基礎工は、例えば中央径間部32位置を中心にそれぞれ所定個所にPHC杭34の打ち込み、仮設土留36の設置、掘削・仮設覆工等を行うようにしている。
【0042】
また、中央径間部32の右側では、PHC杭34上に橋脚柱38を建て込んで橋脚40を構築する。
【0043】
この橋脚40の構築は、図12に示すように、同図(イ)のPHC杭34の打ち込み、仮設土留36の配設及び掘削・仮設覆工を行った後、同図(ロ)に示すように、中央のPHC杭34の杭頭にレベル調整治具42を取り付けて、杭心のずれ及び杭頭のレベルを調整し、このレベル調整治具42以上に橋脚柱38を載置して接続するようにしている。
【0044】
このレベル調整治具42は、図13に示すように、杭頭に取り付けられる下部プレート44と、この下部プレート44に取り付けられる上部プレート46と、下部プレート44及び上部プレート46のそれぞれ対向面に取り付けられて杭心のずれ及び杭頭のレベルを調整可能で、かつ、荷重を伝達可能な下部荷重伝達調整部材48及び上部荷重伝達調整部材50とを有している。
【0045】
下部プレート44は、図示せぬPHC杭34に対する取付孔及び上部プレート46との連結用の長孔52を有している。
【0046】
上部プレート46は、下部プレート44の長孔52対応位置に連結ボルト54を取り付けるとともに、橋脚柱38連結用の長孔56を有している。
【0047】
下部荷重伝達調整部材48は、十字状に配設されて上方に開口する溝部58が形成され、部荷重伝達調整部材50を受け入れる状態となっている。
【0048】
上部荷重伝達調整部材50は、下部荷重伝達調整部材48と応して十字状に形成され、下部荷重伝達調整部材48の溝部58への差し込み凸部60を有する状態となっている。
【0049】
そして、PHC杭34の天端のボルト孔59を利用して、下部プレート44をPHC杭34の天端にボルト61で固定する。
【0050】
次に、下部プレート44上に基準墨出しを行い、X、Y軸方向の位置を合わせ下部荷重伝達調整部材48を下部プレート44に溶接し固定する。
【0051】
ついで、上部プレート46と、上部荷重伝達調整部材50とを予め溶接し、固定しておき、下部荷重伝達調整部材48をガイドとして上部荷重伝達調整部材50の差し込み凸部60を差し込み、上部プレート46と下部プレート44とを連結ボルト54で取り付ける。
【0052】
この上部プレート46と下部プレート44との取り付けは、予め上部プレート46に上部荷重伝達調整部材50を取り付けた状態で上部プレート46を橋脚柱38の下端に取り付けておき、PHC杭34の天端に下部プレート44を固定した状態で橋脚柱38を降ろし、下部プレート44に下部荷重伝達調整部材48を取り付けて上部荷重伝達調整部材50を固定するようにしてもよい。
【0053】
この場合、溝部58を構成する一方の部材を先に下部プレート44に取り付けて、この部材をガイドにして上部荷重伝達調整部材50を降ろした後、他方の部材を下部プレート44に取り付けるようにしてもよい。
【0054】
次に、連結ボルト54を調節することにより、高さ(Z)及び傾き(θX、θY)を合わせ上部プレート46を固定する。
【0055】
ついで、下部荷重伝達調整部材48及び上部荷重伝達調整部材50のかみ合わせ部分を溶接、あるいは不飽和ポリエステル樹脂等の注入により固定する。
【0056】
次に、上部プレート46上に橋脚柱38を建て込み固定する。
【0057】
θZ方向の回転の誤差は、上部プレート46の長孔56により吸収する。
【0058】
これによって、PHC杭34上に橋脚柱38が立設固定されて橋脚40が構築されることとなる。
【0059】
このように、レベル調整治具42を用いて橋脚40を接続することで、杭心のずれ及び杭頭のレベルを調整するとともに、下部荷重伝達調整部材48及び上部荷重伝達調整部材50によって、上部荷重をPHC杭34に確実に伝達することができる。
【0060】
上部工地組は、図3に示すように、組立ヤード20内で、搬送車両であるトレーラ62により搬送した橋桁66を移動多軸台車64上で複数連結して所定長さに組み立てるようにしている。
【0061】
トレーラ62から移動多軸台車64への橋桁66の搬送は、トレーラ62及び移動多軸台車64を跨ぐ門型荷取設備68によって行われるようになっており、クレーン等による旋回を行うことなくトレーラ62から移動多軸台車64上に移すことができ、旋回領域は不要となるので、施工時の占用領域を小さくして、仮設道路の確保や交通規制を不要とし、二次渋滞をより一層抑制することができる。
【0062】
また、橋桁66は、図7に示すように、高架部の幅方向両側部69が折り畳まれた状態で搬送されるようになっており、これによって高架部の施工占用幅を縮小することによって、施工時の日中における右折車線を確保でき、より一層二次渋滞抑制を図ることができることとなる。
【0063】
移動多軸台車64上で組み立てた所定長さの橋桁66を、図4に示すように、移動多軸台車64の直線移動により中央径間部32位置まで移動させるとともに、橋脚柱移動・設置用の移動多軸台車70にて橋脚柱38を縦型で支持させたまま中央径間部32の左側のPHC杭34対応位置まで移動させる。
【0064】
基礎掘削部には、移動多軸台車64の走行が可能なように覆工板を設置しておき、移動完了後、立柱部の覆工板を撤去する。
【0065】
ついで、図5(1)及び(2)に示すように、中央径間部32対応位置で、橋桁66を右側の橋脚40及び左側の橋脚40にそれぞれ橋桁66を支持させる。
【0066】
この場合、図6及び図7に示すように、移動多軸台車64のリフト装置72を上昇させて、橋桁66が、右側の橋脚柱38及び左側の橋脚柱38の上端よりも上方に位置するようにし、左側の橋脚柱38の上端を橋桁66の下面に溶接またはボルト接合して固定する。
【0067】
また、この場合、左側のPHC杭34の上端には、レベル調整治具42を取り付けてPHC杭34の杭心ずれ及び杭頭のレベル調整を行っておく。
【0068】
そして、この状態で、図8に示すように、移動多軸台車64のリフト装置72を下降させて右側の橋脚柱38の上端に橋桁66の下面を当接させ、左側の橋脚柱38の下端をレベル調整治具42上に当接させ、右側の橋脚柱38の上端と橋桁66とを溶接固定するとともに、左側の橋脚柱38の下端とレベル調整治具42とを接続固定する。
【0069】
その後、移動多軸台車64を中央径間部32位置から組立ヤード20まで戻し、次の移動多軸台車64上での橋桁66の連結組立作業を行い、側径間部74位置での橋桁66の架設を順次行って中央径間部32から左側の上部工架設を行う。
【0070】
なお、移動多軸台車64の組立ヤード20までの戻しは、一旦横の車線に移動して左側の橋脚40をこえた位置で施工ヤード26に戻って組立ヤード20まで移動する。
【0071】
この移動は夜間に交通規制して行うとよい。
【0072】
また、側径間部74での橋桁66の左端は左側の橋桁66の右端に添接される。
【0073】
この場合、順次上部工架設済みの橋脚40に対して、図12(ニ)に示すように、基礎コンクリートを打設してフーチング部76を形成するとともに、橋桁の両側部69を展開して固定することで拡幅を行う。
【0074】
この橋桁66の両側部69の展開作業は、夜間に交通規制をして行うとよい。
【0075】
そして、左側の上部工架設の終了した後、左側の組立ヤード20を解体して、移動多軸台車64、70を右側の組立ヤード20に移動させる。
【0076】
ついで、図10に示すように、右側の側径間部架設工を左側施工と同じ手順で行うとともに、左側橋脚基礎コンクリート打設後、盛土領域22にH鋼杭78を打設し盛土造成を行う。
【0077】
次に、図11に示すように、右側橋脚基礎コンクリート打設後、右側の盛土領域22に左側と同様にH鋼杭78を打設し盛土造成を行い、仮設土留36を撤去して、図12(ホ)に示すように埋め戻しを行う。
【0078】
以上の工事と併行して上部工仕上工を行い、既設道路復旧工事を行えば、高架部80が構築されることとなる。
【0079】
図14(1)及び(2)は、橋脚接続構造の変形例を示す図である。
【0080】
この橋脚40は、場所打ち杭82を用いており、橋脚柱38を取り付ける場所打ち杭82の上部は、鋼管コンクリート杭84となっており、この鋼管コンクリート杭84の上面にレベル調整治具42の下部プレート44を溶接にて固定するようにしている。
【0081】
レベル調整治具42の他の構成は、前記実施の形態と同様につき説明を省略する。
【0082】
また、この実施の形態では、基礎コンクリートを打設してフーチング部76を構築する際に、周囲の場所打ち杭82の上部をはつって鉄筋86を露出させた状態で基礎コンクリートの打設が行われるようになっている。
【0083】
図15は、橋脚接続構造のさらに他の実施の形態を示す図である。
【0084】
この橋脚40は、PCウェル88を用いており、PCウェル88の上部内面に4つのブラケット90を取り付け、このブラケット90にクロス梁92をボルトで固定し、下部プレート44はクロス梁92に予め溶接しておくようにしている。
【0085】
クロス梁92は、施工時の荷重に応じて必要な補強をしておくようになっており、レベル調整治具42を介して橋脚柱38を連結固定した後、PCウェル88の上端に半割ブロック93を設置し、柱基部回りを背筋補強して、PCウェル88内にコンクリートを打設して一体化するようにしている。
【0086】
レベル調整治具42の構成は、前記実施の形態と同様につき説明を省略する。
【0087】
図16は、さらに本発明の他の実施の形態に係る橋脚を示す図である。
【0088】
この橋脚40は、複数、例えば5本の杭96の杭頭部に杭頭連結治具94を取り付け、これら杭頭連結治具94をボルトで固定し、中央の杭96とレベル調整治具42の下部プレート44とを固定し、レベル調整治具42を介して橋脚柱38を連結固定するとともに、基礎コンクリートを打設してフーチング部76を構築するようにしている。
【0089】
レベル調整治具42の構成は、前記実施の形態と同様につき説明を省略する。
【0090】
本発明は、前記各実施の形態に限定されるものではなく、本発明の要旨の範囲内において種々の形態に変形可能である。
【0091】
例えば、前記実施の形態では、橋脚柱が橋桁の所定の設置位置で橋桁に接続された後、杭に接続される状態について説明したが、この例に限らず、橋脚柱を橋桁の所定の設置位置で杭に接続した後、橋桁に接続するようにしてもよく、あるいは、橋脚柱を予め橋桁に取り付けた状態で所定の設置位置に搬送するようにしてもよく、要は、橋桁を所定の設置位置に搬送する際に橋脚柱が搬送移動の妨げにならないようにしてあればよい。
【0092】
また、前記実施の形態においては、橋桁が高架部の幅方向両側部が折り畳まれた状態となっているが、十分な道路幅がある場合には、必ずしも橋桁の高架部幅方向両側部を折り畳み状態にせずに側方に張り出した状態で用いることも可能である。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る道路立体交差施工方法の準備工の状態を示す平面図である。
【図2】(1)は図1の状態から基礎工を行う状態を示す平面図で、(2)はその縦断面図である。
【図3】図2の組立ヤードにおける上部工地組の状態を示す側面図である。
【図4】図3の状態から橋桁及び橋脚柱を搬送する状態を示す側面図である。
【図5】(1)は図2の状態から中央径間架設工の状態を示す平面図で、(2)はその縦断面図である。
【図6】図5の中央径間架設工の状態を示す側面図である。
【図7】移動多軸台車により橋桁をリフトアップした状態を示す拡大正面図である。
【図8】図6の状態から橋桁を左右の橋脚に支持させた状態を示す側面図である。
【図9】(1)は図5の状態から左側の側径間架設工の状態を示す平面図で、(2)はその縦断面図である。
【図10】(1)は図9の状態から右側の側径間架設工を行い、左側の盛土領域の造成を行う状態を示す平面図で、(2)はその縦断面図である。
【図11】(1)は図10の状態から仕上げ工を行う状態を示す平面図で、(2)はその縦断面図である。
【図12】本実施の形態における橋脚の施工工程を示す断面図である。
【図13】PHC杭と橋脚柱とをレベル調整治具を介して連結する橋脚接続工程を示す斜視図である。
【図14】(1)は本発明の他の実施の形態に係る場所打ち杭を用いた橋脚接続構造を示す断面図で、(2)は場所打ち杭とレベル調整治具との関係を示す斜視図である。
【図15】(1)は本発明のさらに他の実施の形態に係るPCウェルを用いた橋脚接続構造を示す断面図で、(2)はそのPCウェルとレベル調整治具との連結状態を示す斜視図である。
【図16】本発明のさらに他の実施の形態に係る杭頭連結治具を用いて杭を連結する状態の橋脚接続構造を示す斜視図である。
【符号の説明】
10、12 道路
14 交差点部
16 直進車線
20 組立ヤード
24 橋桁施工領域
26 施工ヤード
32 中央径間部
34 PHC杭
38 橋脚柱
40 橋脚
42 レベル調整治具
44 下部プレート
46 上部プレート
48 下部荷重伝達調整部材
50 上部荷重伝達調整部材
58 溝部
60 差し込み凸部
62 トレーラ
64、70 移動多軸台車
66 橋桁
68 門型荷取設備
69 橋桁の両側部
72 リフト装置
74 側径間部
78 H鋼杭
80 高架部
82 場所打ち杭
88 PCウェル
96 杭
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a road three-dimensional intersection construction method and a pier connection structure, and more particularly to a road three-dimensional intersection construction method and a pier connection structure at an intersection of an existing road.
[0002]
[Background]
In recent years, traffic congestion frequently occurs at intersections or railroad crossings in urban areas where there is a lot of traffic, and three-dimensional intersections are desired as soon as possible to resolve these.
[0003]
In construction of such a three-dimensional intersection at an existing road intersection, a steel girder is usually constructed after the cast-in-place RC pier foundation construction, and an RC floor slab is constructed thereon.
[0004]
However, such a construction method increases the occupied area during construction and requires extensive traffic control over a long period of time, securing temporary roads, further congestion during that time, deterioration of the surrounding environment, and inconvenience to residents. It will be.
[0005]
Therefore, the bridge superstructure is divided into modules, moved to a predetermined position on the site by a moving device that also serves as a temporary support column, connected and integrated by an emergency connecting device, and then the road surface is used as a temporary bridge, Separately connect the bridge superstructure with permanent construction members, and replace the temporary struts with the piers as permanent struts to shorten the construction period, shorten the service period and minimize the impact on the current traffic volume A limited proposal has been made (see Patent Document 1).
[0006]
[Patent Document 1]
JP-A-6-272214 [0007]
[Problems to be solved by the invention]
In the above proposal, it is possible to reduce the construction period and minimize the impact on traffic volume, but it is assumed that the traffic will be blocked during the construction period. Cannot be resolved.
[0008]
In addition, since a moving device that also serves as a temporary support is used, the temporary support must be removed after installing the pier as a permanent support.
[0009]
Further, when installing the pier, the work space is restricted by the moving device that also serves as a temporary support column.
[0010]
The object of the present invention is to provide a road solid body that can be constructed without using temporary columns, while ensuring temporary roads, ensuring traffic during the construction period, and significantly reducing secondary traffic jams, while presuming shortening of the construction period. It is to provide a cross construction method.
[0011]
Another object of the present invention is to provide a bridge pier connection structure that can adjust the displacement and level of a pile center of a bridge pier column with respect to a pile and can reliably transmit a load.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the road three-dimensional intersection construction method of the present invention is a road three-dimensional intersection construction method in which one road at an intersection of an existing road is three-dimensionally crossed as an elevated part,
An assembly yard is disposed near the elevated part construction position, and a plurality of bridge girders transported by a transport vehicle in the assembly yard are connected to each other on a movable multi-axis carriage and assembled to a predetermined length.
Transporting the assembled bridge girder of a predetermined length to a predetermined installation position by the movable multi-axis carriage;
Supporting the bridge girder of the predetermined length on the pier at the predetermined installation position;
Returning the movable multi-axle cart from the predetermined installation position to the assembly yard;
Have
In the pier, a pile and a pier column are connected by a pier connection structure,
The pier connection structure includes a lower plate attached to the pile head, an upper plate attached on the lower plate, and a lower face of the pile center and a level of the pile head attached to the opposing surfaces of the lower plate and the upper plate. A lower load transmission adjustment member and an upper load transmission adjustment member that are adjustable and capable of transmitting a load, a connecting member that connects the lower plate and the upper plate, a long hole that allows the connecting member to move in the horizontal direction, and the upper portion It has a long hole that absorbs the deviation between the pier column and the upper plate in the horizontal rotation direction formed in the plate,
The lower load transmission adjusting member and the upper load transmission adjusting member adjust the displacement of the pile center and the level of the pile head, and absorb the positional displacement in the horizontal rotation direction with the pier column via the lower plate and the upper plate. Connecting the pile and the pier,
The bridge girder is formed so that both sides or one side in the width direction of the elevated part can be folded,
The bridge girder is transported in a state where both sides or one side in the width direction of the elevated portion is folded, expanded after being supported by the pier, and widened.
The elevated portion having a predetermined distance is constructed by repeating the above steps.
[0013]
According to the present invention, the assembly yard is disposed on the ground for the road near the construction position of the elevated part, so that the bridge girder is transported from the assembly yard on the road side to the road as compared with the case where the assembly yard is installed on the road side. Since traffic lanes can be secured without the need to block traffic or restrict traffic as in the case of traffic, the occurrence of secondary traffic congestion can be greatly reduced.
[0014]
The bridge girder transported by the transport vehicle in the assembly yard is connected to the movable multi-axle carriage and assembled to a predetermined length, so that the bridge girder assembled outside the road is transported on the road compared to Since a plurality of bridge girders received above can be connected on the road as they are, the construction period can be shortened.
[0015]
Furthermore, by transporting a bridge girder of a predetermined length in the assembly yard to a predetermined installation position by a moving multi-axle carriage, it can be reliably transferred to a predetermined installation position without affecting other lanes. This can further reduce the occurrence of secondary congestion.
[0016]
If the bridge girder of a predetermined length is supported on the pier at the installation position, the bridge girder can be supported only by the main pier without using the temporary support post, and the work such as removal of the temporary support post is unnecessary, It can contribute to shortening, and there is no restriction on the work space for installing piers.
[0018]
In addition, by folding both sides or one side of the elevated part to reduce the construction occupation width of the elevated part, it is possible to secure a right turn lane in the daytime during construction, and to further suppress secondary congestion.
In addition, the lower load transmission adjustment member and the upper load transmission adjustment member adjust the displacement of the pile core and the level of the pile head to connect the lower plate and the upper plate, and the pile and the pier column via the lower plate and the upper plate. And the upper load can be smoothly transmitted to the pile, and the process to start the construction of the pier column can be omitted, and the time to start the construction can be shortened.
[0019]
In the present invention, conveyance of the bridge girder from the conveyance vehicle to the movable multi-axle carriage can be performed by a gate-type loading facility that straddles the conveyance vehicle and the movable multi-axis carriage.
[0020]
By adopting such a configuration, the bridge girder can be moved from the transport vehicle to the moving multi-axle carriage without turning by a crane or the like, and the turning area is not required. Securing of temporary roads and traffic regulation are unnecessary, and secondary traffic congestion can be further suppressed.
[0021]
In the present invention, it is possible before Symbol abutment post after it has been connected to the girders at a predetermined installation position of the bridge girder, to be connected to the pile.
[0022]
With this configuration, the bridge girder can be transported to the installation position before the pier column is erected on the pile. After connecting the bridge pier column to the bridge girder at the installation position, the bridge girder can be connected to the pile. Transport to a predetermined installation position and support of a bridge girder by a bridge pier can be reliably performed.
[0023]
In the present invention, it is possible before Symbol abutment post after it has been connected to the pile at a predetermined installation position of the bridge girder, to be connected to the bridge girder.
[0024]
By adopting such a configuration, after the bridge girder is transported to the predetermined installation position, the bridge pier column is connected to the pile and then connected to the bridge girder, so that the bridge girder is transported to the predetermined installation position and supported by the pier column. Etc. can be performed reliably.
[0025]
In the present invention, it can be made to prior Symbol abutment posts mounted to advance the bridge deck is conveyed to a predetermined installation position.
[0026]
By adopting such a configuration, the pier column is transported to a predetermined installation position in a state where the pier column is previously attached to the bridge girder, and then the bridge pier column is connected to the pile so that the bridge girder can be securely attached to the pier column at the predetermined installation position. Can be supported.
[0031]
The pier connection structure of the present invention is a pier connection structure that connects a pile and a pier column,
A lower plate attached to the pile head, an upper plate attached on the lower plate, and attached to the respective opposing surfaces of the lower plate and the upper plate to adjust the displacement of the pile core and the level of the pile head; and A lower load transmission adjusting member and an upper load transmission adjusting member capable of transmitting a load, a connecting member that connects the lower plate and the upper plate, a long hole that allows the connecting member to move in the horizontal direction, and a horizontal formed in the upper plate It has a long hole that absorbs the deviation between the pier column and the upper plate in the rotation direction ,
The lower load transmission adjusting member and the upper load transmission adjusting member adjust the displacement of the pile center and the level of the pile head, and absorb the positional displacement in the horizontal rotation direction with the pier column via the lower plate and the upper plate. It is characterized by connecting piles and pier columns.
[0032]
According to the present invention, the displacement of the pile core and the level of the pile head are adjusted by the lower load transmission adjusting member and the upper load transmission adjusting member, the lower plate and the upper plate are connected, and the lower plate and the upper plate are connected to each other. By connecting the pile and the pier column, the upper load can be smoothly transmitted to the pile, and the process to start the construction of the pier column can be omitted to shorten the time to the construction start. it can.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0034]
FIGS. 1-13 is a figure which shows the road solid intersection construction method which concerns on one embodiment of this invention.
[0035]
As shown in FIG. 1, this road three-dimensional intersection construction method is configured to make a three-dimensional intersection with a straight lane 16 of one road 10 at an intersection 14 of existing roads 10 and 12 as an elevated part.
[0036]
This one road 10 is a four-lane road having a central separation band 18 in the center in two lanes on each side, and the two lanes of the straight lane 16 on the center side are three-dimensionally crossed as an elevated part. Yes.
[0037]
And the assembly yard 20 is arrange | positioned on the straight lane 16 including the center separation zone 18 near an elevated part construction position.
[0038]
This elevated portion has embankment regions 22 at both ends thereof, an assembly yard including a bridge girder construction region 24 between the embankment regions 22 and two straight lanes 16 and a median strip 18 in the two embankment regions 22. 20 is arranged, and a construction yard 26 corresponding to the width of the central separation band 18 is arranged in the bridge girder construction area 24.
[0039]
Therefore, at the intersection portion 14, two lanes on each side are secured, and not only the left turn lane 28 but also the right turn lane 30 is secured, and the straight lane is excluded without blocking traffic or restricting traffic. By using this lane as a traffic lane, the occurrence of secondary traffic congestion can be greatly reduced.
[0040]
Next, as shown in FIGS. 2 (1) and 2 (2), the foundation work is performed in the construction yard 26 and the upper work ground group is performed in the assembly yard 20.
[0041]
The foundation works, for example, by driving PHC piles 34 at predetermined locations around the center span portion 32, installing temporary earth retaining 36, excavating / temporary lining, and the like.
[0042]
Further, on the right side of the central span 32, the pier 40 is constructed by building the pier column 38 on the PHC pile 34.
[0043]
As shown in FIG. 12, the construction of this pier 40 is shown in FIG. 12 (b) after driving the PHC pile 34 in FIG. 12 (b), disposing the temporary earth retaining 36 and excavating / temporary lining. Thus, the level adjustment jig 42 is attached to the pile head of the central PHC pile 34 to adjust the displacement of the pile core and the level of the pile head, and the bridge pier column 38 is placed on the level adjustment jig 42 or more. I try to connect.
[0044]
As shown in FIG. 13, the level adjusting jig 42 is attached to the lower plate 44 attached to the pile head, the upper plate 46 attached to the lower plate 44, and the opposing surfaces of the lower plate 44 and the upper plate 46, respectively. Thus, it has a lower load transmission adjusting member 48 and an upper load transmission adjusting member 50 capable of adjusting the displacement of the pile core and the level of the pile head and transmitting the load.
[0045]
The lower plate 44 has a mounting hole for the PHC pile 34 (not shown) and a long hole 52 for connection to the upper plate 46.
[0046]
The upper plate 46 is provided with a connecting bolt 54 at a position corresponding to the long hole 52 of the lower plate 44 and has a long hole 56 for connecting the pier column 38.
[0047]
Lower load transfer adjusting member 48 is a groove 58 which opens upward is formed is arranged in a cross shape in a state to accept the upper portion load transfer adjusting member 50.
[0048]
Upper load transmission adjustment member 50 is formed in a cross shape and corresponds with the lower load transfer adjusting member 48 is in a state having a plug projecting portion 60 into the groove 58 of the lower load transfer adjusting member 48.
[0049]
Then, the lower plate 44 is fixed to the top end of the PHC pile 34 with bolts 61 using the bolt hole 59 at the top end of the PHC pile 34.
[0050]
Next, reference marking is performed on the lower plate 44, the positions in the X and Y axis directions are aligned, and the lower load transmission adjusting member 48 is welded and fixed to the lower plate 44.
[0051]
Next, the upper plate 46 and the upper load transmission adjusting member 50 are welded and fixed in advance, and the insertion convex portion 60 of the upper load transmission adjusting member 50 is inserted using the lower load transmission adjusting member 48 as a guide. And the lower plate 44 are attached by connecting bolts 54.
[0052]
The upper plate 46 and the lower plate 44 are attached in such a manner that the upper plate 46 is attached to the lower end of the pier pillar 38 with the upper load transmission adjusting member 50 attached to the upper plate 46 in advance. The pier column 38 may be lowered with the lower plate 44 fixed, and the lower load transmission adjusting member 48 may be attached to the lower plate 44 to fix the upper load transmission adjusting member 50.
[0053]
In this case, one member constituting the groove portion 58 is first attached to the lower plate 44, the upper load transmission adjusting member 50 is lowered using this member as a guide, and then the other member is attached to the lower plate 44. Also good.
[0054]
Next, by adjusting the connecting bolt 54, the height (Z) and the inclination (θX, θY) are matched, and the upper plate 46 is fixed.
[0055]
Next, the meshing portions of the lower load transmission adjusting member 48 and the upper load transmission adjusting member 50 are fixed by welding or injection of unsaturated polyester resin or the like.
[0056]
Next, the pier column 38 is built and fixed on the upper plate 46.
[0057]
The rotation error in the θZ direction is absorbed by the long hole 56 of the upper plate 46.
[0058]
As a result, the pier column 38 is erected and fixed on the PHC pile 34 and the pier 40 is constructed.
[0059]
In this way, by connecting the pier 40 using the level adjusting jig 42, the displacement of the pile core and the level of the pile head are adjusted, and the lower load transmission adjusting member 48 and the upper load transmission adjusting member 50 are used to adjust the upper portion. The load can be reliably transmitted to the PHC pile 34.
[0060]
As shown in FIG. 3, in the upper yard group, a plurality of bridge girders 66 conveyed by a trailer 62 as a conveyance vehicle are connected to each other on a movable multi-axis carriage 64 and assembled to a predetermined length in the assembly yard 20. .
[0061]
The conveyance of the bridge girder 66 from the trailer 62 to the moving multi-axis carriage 64 is performed by a gate-type load taking facility 68 that straddles the trailer 62 and the moving multi-axis carriage 64, and the trailer is not turned by a crane or the like. Since it can be moved from 62 to the moving multi-axle carriage 64 and no turning area is required, the occupied area at the time of construction is made smaller, provision of a temporary road and traffic regulation are unnecessary, and secondary congestion is further suppressed. can do.
[0062]
Further, as shown in FIG. 7, the bridge girder 66 is transported in a state in which both sides 69 in the width direction of the elevated portion are folded, thereby reducing the construction occupation width of the elevated portion, It is possible to secure a right turn lane in the daytime during construction, and to further suppress secondary traffic congestion.
[0063]
As shown in FIG. 4, the bridge girder 66 having a predetermined length assembled on the moving multi-axis carriage 64 is moved to the position of the center span 32 by linear movement of the moving multi-axis carriage 64, and is used for moving and installing the pier pillars. The movable multi-axle carriage 70 is moved to the position corresponding to the PHC pile 34 on the left side of the central span 32 while the pier column 38 is supported vertically.
[0064]
A lining plate is installed in the foundation excavation part so that the traveling multi-axis carriage 64 can travel, and after the movement is completed, the lining plate of the upright column part is removed.
[0065]
Next, as shown in FIGS. 5A and 5B, the bridge girder 66 is supported by the right pier 40 and the left pier 40 at the position corresponding to the central span 32, respectively.
[0066]
In this case, as shown in FIGS. 6 and 7, the lift device 72 of the movable multi-axle carriage 64 is raised so that the bridge girder 66 is positioned above the upper ends of the right pier column 38 and the left pier column 38. Then, the upper end of the left pier column 38 is fixed to the lower surface of the bridge girder 66 by welding or bolting.
[0067]
In this case, a level adjustment jig 42 is attached to the upper end of the left PHC pile 34 to adjust the pile misalignment of the PHC pile 34 and the level of the pile head.
[0068]
In this state, as shown in FIG. 8, the lift device 72 of the movable multi-axis carriage 64 is lowered so that the lower surface of the bridge girder 66 is brought into contact with the upper end of the right pier column 38, and the lower end of the left pier column 38. Is brought into contact with the level adjustment jig 42, and the upper end of the right pier column 38 and the bridge girder 66 are welded and fixed, and the lower end of the left pier column 38 and the level adjustment jig 42 are connected and fixed.
[0069]
Thereafter, the moving multi-shaft carriage 64 is returned from the position of the central span 32 to the assembly yard 20, and the next bridge girder 66 is connected and assembled on the moving multi-shaft carriage 64, so that the bridge girder 66 at the position of the side span 74 is obtained. Are constructed in order, and the left superstructure is constructed from the central span 32.
[0070]
In addition, the return of the movable multi-axis carriage 64 to the assembly yard 20 is once moved to the horizontal lane and returned to the construction yard 26 at a position beyond the left pier 40 and moved to the assembly yard 20.
[0071]
This movement may be performed with traffic restrictions at night.
[0072]
Further, the left end of the bridge beam 66 at the side span portion 74 is joined to the right end of the left bridge beam 66.
[0073]
In this case, as shown in FIG. 12 (d), the foundation concrete is sequentially cast on the pier 40 on which the superstructure has been erected to form the footing portion 76, and both side portions 69 of the bridge girder are deployed and fixed. To widen.
[0074]
The unfolding operation of both side portions 69 of the bridge girder 66 may be performed by restricting traffic at night.
[0075]
Then, after completion of the left superstructure, the left assembly yard 20 is disassembled, and the movable multi-axle carts 64 and 70 are moved to the right assembly yard 20.
[0076]
Next, as shown in FIG. 10, the right side span span construction work is performed in the same manner as the left side construction, and after placing the left pier foundation concrete, an H steel pile 78 is placed in the embankment region 22 to create the embankment. Do.
[0077]
Next, as shown in FIG. 11, after placing the right pier foundation concrete, the H steel pile 78 is cast in the right embankment region 22 in the same manner as the left side, and embankment is created, and the temporary earth retaining 36 is removed, Backfill is performed as shown in 12 (e).
[0078]
If the superstructure finishing work is performed in parallel with the above construction and the existing road restoration work is performed, the elevated portion 80 will be constructed.
[0079]
FIGS. 14A and 14B are diagrams showing a modification of the pier connection structure.
[0080]
This pier 40 uses a cast-in-place pile 82, and the upper portion of the cast-in-place pile 82 to which the pier column 38 is attached is a steel pipe concrete pile 84, and the level adjusting jig 42 is placed on the upper surface of the steel pipe concrete pile 84. The lower plate 44 is fixed by welding.
[0081]
Other configurations of the level adjusting jig 42 are the same as those of the above-described embodiment, and the description thereof is omitted.
[0082]
Further, in this embodiment, when the foundation concrete is placed and the footing portion 76 is constructed, the foundation concrete is placed in a state where the reinforcing bars 86 are exposed through the upper part of the surrounding cast-in-place pile 82. To be done.
[0083]
FIG. 15 is a diagram showing still another embodiment of the pier connection structure.
[0084]
This pier 40 uses a PC well 88, four brackets 90 are attached to the upper inner surface of the PC well 88, a cross beam 92 is fixed to the bracket 90 with bolts, and the lower plate 44 is welded to the cross beam 92 in advance. I try to keep it.
[0085]
The cross beam 92 is reinforced in accordance with the load at the time of construction. After the bridge pier column 38 is connected and fixed via the level adjusting jig 42, the cross beam 92 is halved at the upper end of the PC well 88. A block 93 is installed to reinforce the back around the base of the column, and concrete is placed in the PC well 88 to be integrated.
[0086]
The configuration of the level adjusting jig 42 is the same as in the above embodiment, and the description thereof is omitted.
[0087]
FIG. 16 is a view showing an abutment according to another embodiment of the present invention.
[0088]
In this pier 40, pile head coupling jigs 94 are attached to the pile heads of a plurality of, for example, five piles 96, these pile head coupling jigs 94 are fixed with bolts, and the central pile 96 and level adjustment jig 42 are fixed. The lower plate 44 is fixed, the pier column 38 is connected and fixed via the level adjusting jig 42, and the footing portion 76 is constructed by placing foundation concrete.
[0089]
The configuration of the level adjusting jig 42 is the same as in the above embodiment, and the description thereof is omitted.
[0090]
The present invention is not limited to the embodiments described above, and can be modified into various forms within the scope of the gist of the present invention.
[0091]
For example, in the above-described embodiment, the state in which the pier column is connected to the pile after being connected to the bridge girder at the predetermined installation position of the bridge girder is described, but not limited to this example, the pier column is set to the predetermined installation of the bridge girder. After connecting to the pile at the position, it may be connected to the bridge girder, or it may be transported to a predetermined installation position with the pier column pre-attached to the bridge girder. What is necessary is just to make it a bridge pier pillar not interfere with conveyance movement when conveying to an installation position.
[0092]
In the above embodiment, the bridge girder is in a state where both sides in the width direction of the elevated portion are folded. However, when there is a sufficient road width, the both sides in the elevated portion width direction of the bridge girder are not necessarily folded. It is also possible to use it in a state of projecting to the side without being in a state.
[Brief description of the drawings]
FIG. 1 is a plan view showing a state of a preparatory work for a road three-dimensional intersection construction method according to an embodiment of the present invention.
2 is a plan view showing a state in which foundation work is performed from the state of FIG. 1, and FIG. 2 is a longitudinal sectional view thereof.
3 is a side view showing a state of an upper construction group in the assembly yard of FIG. 2; FIG.
4 is a side view showing a state in which a bridge girder and a pier column are transported from the state of FIG. 3. FIG.
FIG. 5 is a plan view showing a state of the span span construction from the state of FIG. 2 and (2) is a longitudinal sectional view thereof.
6 is a side view showing a state of the span span construction in FIG.
FIG. 7 is an enlarged front view showing a state where a bridge girder is lifted up by a moving multi-axis carriage.
8 is a side view showing a state in which the bridge girder is supported by the left and right piers from the state of FIG. 6. FIG.
9 is a plan view showing a state of the spanning construction on the left side span from the state of FIG. 5, and (2) is a longitudinal sectional view thereof.
10 is a plan view showing a state in which the right side span construction is performed from the state of FIG. 9 and the left embankment area is created, and (2) is a longitudinal sectional view thereof. FIG.
11 is a plan view showing a state in which finishing work is performed from the state of FIG. 10, and (2) is a longitudinal sectional view thereof.
FIG. 12 is a cross-sectional view showing a pier construction process in the present embodiment.
FIG. 13 is a perspective view showing a pier connection process for connecting a PHC pile and a pier column via a level adjustment jig.
FIG. 14 is a cross-sectional view showing a pier connection structure using a cast-in-place pile according to another embodiment of the present invention, and (2) shows a relationship between the cast-in-place pile and the level adjusting jig. It is a perspective view.
15A is a cross-sectional view showing an abutment connection structure using a PC well according to still another embodiment of the present invention, and FIG. 15B is a diagram showing a connection state between the PC well and the level adjusting jig. It is a perspective view shown.
FIG. 16 is a perspective view showing a pier connection structure in a state in which piles are connected using a pile head connection jig according to still another embodiment of the present invention.
[Explanation of symbols]
10, 12 Road 14 Intersection 16 Straight lane 20 Assembly yard 24 Bridge girder construction area 26 Construction yard 32 Central span 34 PHC pile 38 Bridge pier 40 Bridge pier 42 Level adjustment jig 44 Lower plate 46 Upper plate 48 Lower load transmission adjustment member 50 Upper load transmission adjusting member 58 Groove portion 60 Insertion convex portion 62 Trailer 64, 70 Moving multi-shaft carriage 66 Bridge girder 68 Gate-type unloading equipment 69 Both sides of bridge girder 72 Lift device 74 Side span portion 78 H steel pile 80 Elevated portion 82 Cast-in-place pile 88 PC well 96 pile

Claims (6)

既設道路の交差点部における一方の道路を高架部として立体交差化させる道路立体交差施工方法であって、
前記高架部施工位置付近に組立ヤードを配設し、この組立ヤード内で搬送車両により搬送した橋桁を移動多軸台車上で複数連結して所定長さに組み立てる工程と、
前記組み立てた所定長さの橋桁を前記移動多軸台車により所定の設置位置まで搬送する工程と、
前記所定の設置位置で前記所定長さの橋桁を橋脚に支持させる工程と、
前記所定の設置位置から前記移動多軸台車を前記組立ヤードまで戻す工程と、
を有し、
前記橋脚は、杭と橋脚柱とが橋脚接続構造にて接続され、
前記橋脚接続構造は、杭頭に取り付けられる下部プレートと、この下部プレート上に取り付けられる上部プレートと、前記下部プレート及び上部プレートのそれぞれ対向面に取り付けられて杭心のずれ及び杭頭のレベルを調整可能で、かつ、荷重を伝達可能な下部荷重伝達調整部材及び上部荷重伝達調整部材と、下部プレートと上部プレートを連結する連結部材及び連結部材を水平方向で移動可能にする長孔並びに前記上部プレートに形成された水平回転方向での橋脚柱と上部プレートとのずれを吸収する長孔とを有し、
前記下部荷重伝達調整部材及び上部荷重伝達調整部材により杭心のずれ及び杭頭のレベルを調整したり、橋脚柱との水平回転方向の位置ずれを吸収して前記下部プレート及び上部プレートを介して杭と橋脚柱を連結し、
前記橋桁は高架部の幅方向両側部または片側部が折り畳み可能に形成され、
前記橋桁は、高架部の幅方向両側部または片側部が折り畳まれた状態で搬送され、前記橋脚に支持させた後展開して拡幅され、
前記各工程を繰り返して所定距離の高架部を構築することを特徴とする道路立体交差施工方法。
A road three-dimensional intersection construction method in which one road at an intersection of an existing road is three-dimensionally crossed as an elevated part,
An assembly yard is disposed near the elevated part construction position, and a plurality of bridge girders transported by a transport vehicle in the assembly yard are assembled on a movable multi-axis carriage and assembled to a predetermined length;
Transporting the assembled bridge girder of a predetermined length to a predetermined installation position by the movable multi-axis carriage;
Supporting the bridge girder of the predetermined length on the pier at the predetermined installation position;
Returning the movable multi-axle cart from the predetermined installation position to the assembly yard;
Have
In the pier, a pile and a pier column are connected by a pier connection structure,
The pier connection structure includes a lower plate attached to a pile head, an upper plate attached on the lower plate, and attached to the opposing surfaces of the lower plate and the upper plate, respectively. Lower load transmission adjustment member and upper load transmission adjustment member that are adjustable and capable of transmitting a load, a connecting member that connects the lower plate and the upper plate, a long hole that allows the connecting member to move in the horizontal direction, and the upper portion It has a long hole that absorbs the deviation between the pier column and the upper plate in the horizontal rotation direction formed in the plate
The lower load transmission adjusting member and the upper load transmission adjusting member adjust the displacement of the pile core and the level of the pile head, or absorb the positional displacement in the horizontal rotation direction with the pier column via the lower plate and the upper plate. Connecting the pile and the pier,
The bridge girder is formed so that both sides or one side in the width direction of the elevated part can be folded,
The bridge girder is conveyed in a state where both sides or one side in the width direction of the elevated portion is folded, expanded after being supported by the pier, and widened.
A road three-dimensional intersection construction method characterized by constructing an elevated part of a predetermined distance by repeating the above steps.
請求項1において、
前記搬送車両から前記移動多軸台車への前記橋桁の搬送は、前記搬送車両及び前記移動多軸台車を跨ぐ門型荷取設備によって行われることを特徴とする道路立体交差施工方法。
In claim 1,
The road three-dimensional intersection construction method characterized in that the conveyance of the bridge girder from the transport vehicle to the movable multi-axle carriage is performed by a gate-type loading facility that straddles the transport vehicle and the movable multi-axle truck.
請求項1又は2において、
前記橋脚柱は前記橋桁の所定の設置位置で前記橋桁に接続された後、前記杭に接続されることを特徴とする道路立体交差施工方法。
In claim 1 or 2,
The road pier column is connected to the pile after being connected to the bridge girder at a predetermined installation position of the bridge girder.
請求項1又は2において、
前記橋脚柱は前記橋桁の所定の設置位置で前記杭に接続された後、前記橋桁に接続されることを特徴とする道路立体交差施工方法。
In claim 1 or 2,
The road pier pillar is connected to the bridge girder after the bridge pier column is connected to the pile at a predetermined installation position of the bridge girder.
請求項1又は2において、
前記橋脚柱は予め前記橋桁に取り付けられて所定の設置位置に搬送されることを特徴とする道路立体交差施工方法。
In claim 1 or 2,
The road pier pillar is attached to the bridge girder in advance and transported to a predetermined installation position.
杭と橋脚柱とを接続する橋脚接続構造において、
杭頭に取り付けられる下部プレートと、この下部プレート上に取り付けられる上部プレートと、前記下部プレート及び上部プレートのそれぞれ対向面に取り付けられて杭心のずれ及び杭頭のレベルを調整可能で、かつ、荷重を伝達可能な下部荷重伝達調整部材及び上部荷重伝達調整部材と、下部プレートと上部プレートを連結する連結部材及び連結部材を水平方向で移動可能にする長孔並びに前記上部プレートに形成された水平回転方向での橋脚柱と上部プレートとのずれを吸収する長孔とを有し、
前記下部荷重伝達調整部材及び上部荷重伝達調整部材により杭心のずれ及び杭頭のレベルを調整したり、橋脚柱との水平回転方向の位置ずれを吸収して前記下部プレート及び上部プレートを介して杭と橋脚柱を連結することを特徴とする橋脚接続構造。
In the pier connection structure that connects the pile and the pier column,
A lower plate attached to the pile head, an upper plate attached on the lower plate, and attached to the respective opposing surfaces of the lower plate and the upper plate to adjust the displacement of the pile core and the level of the pile head; and A lower load transmission adjusting member and an upper load transmission adjusting member capable of transmitting a load, a connecting member that connects the lower plate and the upper plate, a long hole that allows the connecting member to move in the horizontal direction, and a horizontal formed in the upper plate It has a long hole that absorbs the deviation between the pier column and the upper plate in the rotation direction,
The lower load transmission adjusting member and the upper load transmission adjusting member adjust the displacement of the pile center and the level of the pile head, and absorb the positional displacement in the horizontal rotation direction with the pier column via the lower plate and the upper plate. A pier connection structure characterized by connecting piles and pier columns.
JP2003074093A 2003-03-18 2003-03-18 Road three-dimensional intersection construction method and pier connection structure Expired - Lifetime JP4004423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003074093A JP4004423B2 (en) 2003-03-18 2003-03-18 Road three-dimensional intersection construction method and pier connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003074093A JP4004423B2 (en) 2003-03-18 2003-03-18 Road three-dimensional intersection construction method and pier connection structure

Publications (2)

Publication Number Publication Date
JP2004278230A JP2004278230A (en) 2004-10-07
JP4004423B2 true JP4004423B2 (en) 2007-11-07

Family

ID=33289827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003074093A Expired - Lifetime JP4004423B2 (en) 2003-03-18 2003-03-18 Road three-dimensional intersection construction method and pier connection structure

Country Status (1)

Country Link
JP (1) JP4004423B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4916272B2 (en) * 2006-10-19 2012-04-11 片山ストラテック株式会社 PC well and bridge construction method
JP5534861B2 (en) * 2010-02-26 2014-07-02 片山ストラテック株式会社 PC well and bridge construction method
CN113668388B (en) * 2021-07-14 2023-12-19 中交特种工程有限公司 Pier-beam collaborative integral rapid installation and removal method based on vehicle-mounted equipment
CN113802459A (en) * 2021-09-14 2021-12-17 广东省交通规划设计研究院集团股份有限公司 Bridge construction method and bridge
JP7439332B1 (en) 2023-09-11 2024-02-27 エム・エムブリッジ株式会社 Girder construction method and girder erection method

Also Published As

Publication number Publication date
JP2004278230A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
JP4504910B2 (en) Dolly and method of erection of temporary pier using it
JP5140475B2 (en) Block for foundation
JP5295989B2 (en) Rotating support structure for construction of overhanging beam of bridge pier
US4953249A (en) Modular overpass or raised parking structure
JP6770763B2 (en) Rail foundation construction method and rail foundation block
JP7319887B2 (en) Bridge pier construction method
JP4004423B2 (en) Road three-dimensional intersection construction method and pier connection structure
JP5184248B2 (en) Construction method of level crossing
JP3851539B2 (en) Block-type traffic roads, split-bridge-type traffic roads, and bridge traffic roads
JP4406577B2 (en) Digging road
KR101187282B1 (en) Railway bridge constructing method using 2 post type abutment structure
JP4685341B2 (en) Viaduct construction method
JP4422978B2 (en) Steel shell for footing foundation, bridge structure, bridge construction method, and three-dimensional intersection bridge construction method
KR20020089690A (en) A pier structure of assembly elevated road for a vehicle under 4.5 ton
JP4153456B2 (en) Construction method of steel element / concrete type underground structure
JP3940587B2 (en) Construction method of divided bridge type traffic route
KR101932118B1 (en) Apparatus of Installing Pillar for Mulriplex arch tunnel and Installing Method thereof
JP4094416B2 (en) Construction method of multilevel intersection
JP4047660B2 (en) Elevated traffic road foundation structure and elevated traffic road
JP4233025B2 (en) How to construct a three-dimensional intersection
JP6627177B2 (en) Construction method of vehicle-mounted lifter and pier
JP3682247B2 (en) Construction method of elevated traffic route
JP4047093B2 (en) Construction method of multilevel intersection road
JP4210157B2 (en) How to connect between bridge girder of ramen type bridge
CN218713281U (en) Near-track foundation pit external construction platform

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070821

R150 Certificate of patent or registration of utility model

Ref document number: 4004423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term