JP4003584B2 - Metallic material for structural bonding and its composite material with wood - Google Patents

Metallic material for structural bonding and its composite material with wood Download PDF

Info

Publication number
JP4003584B2
JP4003584B2 JP2002245228A JP2002245228A JP4003584B2 JP 4003584 B2 JP4003584 B2 JP 4003584B2 JP 2002245228 A JP2002245228 A JP 2002245228A JP 2002245228 A JP2002245228 A JP 2002245228A JP 4003584 B2 JP4003584 B2 JP 4003584B2
Authority
JP
Japan
Prior art keywords
metal material
chemical conversion
wood
adhesive
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002245228A
Other languages
Japanese (ja)
Other versions
JP2004083977A (en
Inventor
健 富安
修 平岡
泰 高本
唯一 宍戸
章人 迫田
通泰 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002245228A priority Critical patent/JP4003584B2/en
Publication of JP2004083977A publication Critical patent/JP2004083977A/en
Application granted granted Critical
Publication of JP4003584B2 publication Critical patent/JP4003584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/26Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also organic compounds
    • C23C22/27Acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/10Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of wood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/04Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/14Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood board or veneer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D15/00Woodstains
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/26Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also organic compounds
    • C23C22/28Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/542Shear strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、構造接着用金属材およびこの構造接着用金属材と木材との複合金属材に関する。
【0002】
【従来の技術】
木材は、住宅用材料として、構造部材(柱、梁) 、非構造部材 (面材、床下地、壁下地、天井下地) 、建具、インテリア、エクステリア(木材の外観、意匠性を有する部位) 等、あらゆる部分に多用されている。
【0003】
材料としての木材には、“切ったら植える”のサイクルが守られる限りにおいて、究極の低環境負荷材料とも言える利点が存在する一方で、生育条件の違い等によって、機械的特性の変動が大きいことや、経時的に寸法や形状に狂いが生じ易いこと (形状安定性に欠ける) 等の工業材料として扱われるには性能変動が大きい点で問題がある。特に昨今の住宅要求品質の高度化により、材料にも、より高度な寸法精度、施工精度が要求されてくるからである。
【0004】
また、自然環境保護の意義が高まっている現在、大規模な森林伐採は制限される一方で、放置された森林が社会基盤に及ぼす悪影響が問題化しており、例えば、間伐材の応用技術開発など、林産業の生産性向上は焦眉の課題である。
【0005】
このような木材利用の問題点を解決するために、高強度で機械的特性が安定している金属材との複合材としての使用や、意匠性・質感を木材 (間伐材) 、構造強度を金属材に分担させる複合材使用の有効性が考えられる。
【0006】
木材と金属材との接合方法としては応力集中の無い面接合としての接着技術が不可欠であるが、木材と金属材との接着について、従来技術の中に、最適といえる技術は存在しない。
【0007】
従来の技術としては、例えば特開平5−185404号公報には、接着耐久性に優れた金属材と木材との接着方法が開示されている。この方法は、金属材の表面に亜鉛−鉄系合金粒を投射して耐食性に優れた合金皮膜を形成した後、更に化成処理を施すZ−S処理を行い、木材の表面には石油系の保護液を塗布し、接着剤により両者を接着する方法で、木材と金属材との接着部に高度の耐久性を与えるとされている。
【0008】
また、特開平4−143352号公報に開示されている建築用木質複合材においても、木質被覆材で被覆されている芯材(鋼材)の表面に、接着剤や塗料との密着性を向上させ、更には耐食性を増す目的でZ−S処理が施されている。
【0009】
ところが、前記のZ−S処理を行うには非常に複雑な工程を経なければならず、コスト高になるという欠点がある。
また、金属材用として優れた構造接着技術が確立しつつあるが、金属材用と木質材用とで接着の技術思想は以下のように全く異なる。
【0010】
すなわち、一般に、金属材の接着においては化学的な接着力(分子間力:水素結合、双極子間相互作用、4極子間相互作用、ファンデルワールス力、等)が支配的と言われる。一方、木質材の接着においては、化学的な接着力よりもむしろ、投錨効果と言われる機械的な接着力が作用することが知られている。木材は多孔質であり、接着剤が木材内部に入り込み硬化するためである。
【0011】
さらに、接着耐久性の観点からは、金属材の接着と木質材の接着との間で以下のような技術思想の違いがある。
すなわち、金属材の構造接着においては、材料自体には透水性がないため、貼り合わせた接着面の端部からのみ水が接着層に侵入し、水が侵入した部分の接着性が劣化する。従って、耐久仕様は水侵入による接着劣化と乾燥による接着回復との両方を考慮して、接着端部からの充分な距離を有する接着面積を確保することで設計されている。
【0012】
一方で、木質材の構造接着においては、材料自体が透水性であるため、接着面が侵水しても、所定の強度が保持されなければならない。更に、木質材自身が吸水により膨潤すると接着面に応力が発生することを考え併せると、接着耐久性に寄与するのは化学的接着よりもむしろ機械的接着であると考えられている。
【0013】
【発明が解決しようとする課題】
本発明は、このような状況に鑑みなされたもので、金属材と木材とを接着するに際し、木質系材料との接着性に優れた化成皮膜を形成した金属材、および、この金属材と木質材との接着複合物を提供することを目的としている。
【0014】
【課題を解決するための手段】
本発明者らは、木質材と金属材との構造接着技術においては、木質系接着における投錨効果に匹敵する接着界面の仕組みを金属材表面に設けることが不可欠と考え、検討を重ねた。
【0015】
その結果、金属材表面に析出、強固に固着させた化成処理皮膜層に木質系接着剤の架橋剤成分を含有させておき、接着時に、接着剤の架橋剤成分と、もしくは、主剤成分と架橋反応させることにより、木質系接着における投錨効果に匹敵する機械的接着を金属材/接着剤界面で発現させることに成功した。
【0016】
ここに、本発明は次の通りである。
(1)金属材と、該金属材の最表層として設けた化成処理皮膜層とから構成され、該化成処理皮膜層が、ポリエチレンイミンおよびポリエチレンオキサゾリンから成る群から選んだ少なくとも1種以上であって分子量が1000以上で100000以下の有機高分子化合物を含有し、前記化成処理皮膜層の平均付着量が50mgm- 以上、5000mgm- 以下であり、該化成処理皮膜層の全体の重量に占める前記有機高分子化合物の量が、質量%で、5%以上50%以下であることを特徴とする金属材
【0019】
(2) 前記化成処理皮膜層が、クロメート処理皮膜、リン酸塩処理皮膜、およびシリカ皮膜のいずれかから構成される上記(1)に記載の金属材。
【0021】
(3) 前記金属材が、亜鉛系めっき鋼材またはステンレス鋼材である上記(1)または(2)に記載の金属材
(4) 木材との接着に用いられる請求項(1)ないし(3)のいずれかに記載の木質系材料との接着性に優れた化成皮膜を形成した金属材。
【0022】
(5) 金属材と、該金属材の最表層として設けた化成処理皮膜層と、該化成処理皮膜層に接着剤を介して接着された木材とから構成され、該化成処理皮膜層が、ポリアクリル酸、ポリエチレンイミン、およびポリエチレンオキサゾリンから成る群から選んだ少なくとも1種以上であって分子量が1000以上で100000以下の有機高分子化合物を含有することを特徴とする木材との複合金属材。
【0024】
(6) 前記接着剤が、水性高分子−イソシアネート系接着剤であることを特徴とする上記(5)記載の複合金属材。
【0025】
(7) 前記化成処理皮膜層が、塗布型クロメート処理皮膜、塗布型リン酸塩処理皮膜、またはシリカ皮膜のいずれかから構成される上記(5)または(6)に記載の複合金属材。
【0026】
(8) 前記金属材が、亜鉛系めっき鋼材もしくはステンレス鋼材である上記(5)ないし(7)のいずれかに記載の複合金属材。
【0027】
【発明の実施の形態】
次に、本発明において採用する化成処理液の組成、化成処理すべき金属材、そして化成処理方法について詳述する。
【0028】
本発明における金属材の表面には架橋反応可能な官能基の存在が必要である。金属材表面の官能基と接着剤成分との架橋反応により、両者を接着する強固な1次結合を形成するためである。
【0029】
使用する木質系構造接着剤としては、水性高分子−イソシアネート系接着剤、レゾルシノール樹脂系接着剤、フェノール樹脂系接着剤、メラミン・ユリア共重合樹脂系接着剤等が想定される
【0031】
このため、ここに言う官能基を有する高分子化合物の種類として、ポリアクリル酸、ポリエチレンイミン、ポリエチレンオキサゾリン等から選ばれる1種類以上が挙げられ、ここにいう高分子化合物とは分子量が1000以上である。分子量が1000未満であると充分な接着耐水性が発現できない。一方、分子量が100000を超えると、金属材製造の際、化成処理薬液の粘性が著しく上昇し、化成処理作業が困難となる。好ましい分子量の範囲は5000以上50000以下である。以後、該官能基を有する高分子成分を高分子架橋剤と呼ぶ。
【0032】
ここに言う化成処理とは、薬液と金属材(基材)とを反応させ(化成反応)、化成反応、および、乾燥の工程によって基材表面に皮膜を形成する方法の総称である。クロメート処理、リン酸塩処理、シリカ系処理等が挙げられる。
【0033】
これらの化成処理の内容は、クロメート処理、リン酸塩処理、シリカ系処理のいずれにおいても、化成処理液の種類および操作法それ自体は、慣用のそれを用いればよく、高分子架橋剤を含有する限り、本発明においても特に制限はない。高分子架橋剤自体が化成処理液の他の成分と反応して、接着剤との架橋効果が失われてしまう場合は、当該高分子をエマルションとして添加してもよい
【0034】
序いでながら、本発明においてクロメート処理液は、6価のクロムを含むものばかりでなく、いわゆる6価クロムフリーのクロメート処理液をも包含するものである。
【0035】
リン酸塩処理の場合、リン酸化合物を主成分とするリン酸酸性水溶液に高分子架橋剤を含有させ、この液を用いた化成反応により、金属材表面に皮膜を形成させる。
【0036】
ここに、「シリカ系処理」とは、シリカおよび/またはシランカップリング剤を含有する処理液 (例えば、リチウムシリケート水溶液、コロイダルシリカの分散液等) に高分子架橋剤を含有させ、この液を用いた化成反応により、金属材表面に皮膜を形成させる処理である。
【0037】
化成反応とは、基材のエッチング、基材表面の酸化物層の溶解、薬液成分と基材との物質交換(電子、イオン)等であり、生成する化成処理皮膜の成分は主に不溶性の塩、酸化物、水酸化物である。化成皮膜は、一般に、基材との界面に上記化成反応生成物が析出しているため、基材との密着性、特に、耐水密着性に優れることから、塗装下地処理として用いられている。
【0038】
化成皮膜中に含有される高分子架橋剤の量は、化成皮膜全体の重量に占める高分子架橋剤の質量%として、好ましくは5%以上50%以下である。5%に満たない場合は木材との接着耐久性が充分には得られず、50%を超えると再び木材との接着耐久性が悪化する。より好ましくは10%以上30%以下である。
【0039】
高分子架橋剤を含有する化成処理皮膜層の平均付着量は、好ましくは、50 mgm-2以上、5000 mgm-2以下である。50 mgm-2に満たない場合は接着性の改善効果が発揮されない。5000 mgm-2を超えると、化成皮膜層が脆性破壊し易くなり、接着強度が得られない。より好ましくは 100 mgm-2以上3000 mgm-2以下である。
【0040】
このように、本発明によれば、所定の官能基を有し、かつ、所定の分子量を有する高分子架橋剤を含有する化成処理皮膜層を金属材の最表層に設けることによって、良好な接着性が得られるが、その理由として、本発明者らは、接着剤と官能基との間には架橋反応により形成される機械的接着が発現し、官能基と化成皮膜との間には高分子と化成皮膜組成物との“からまり”による機械的接着が発現し、化成皮膜と鋼材との間には化成反応生成物析出による機械的接着が発現するためであると考えている。
【0041】
化成処理方法としては、基材と化成処理液とを接触させ皮膜を化成した後に余分な化成液を洗い流す、“反応型化成処理”と化成液を基材に塗布し水洗することなく乾燥させて皮膜化成を行う“塗布型化成処理”とがあるが、本発明における化成処理方法としては塗布型化成処理が好ましい。塗布型化成処理は化成処理液中に添加した成分の概ね全てを化成皮膜中に含有させられるためである。逆に、塗布型化成処理においては、化成処理液中に性能を悪化させる成分を添加してはならない。例えば、塩化物根、硫酸根、ナトリウム根、カリウム根等の存在により、接着耐水性が著しく低下する。
【0042】
本発明における「金属材」としての形態は、板材、管材、棒材、形材など適宜形態を取ることができ、特に制限されないが、木材との複合材を構成する場合には、予め成形された形材が一般的であろう。
【0043】
ここに、そのような金属材の材質としては様々な種類が挙げられる。鉄鋼(例:ステンレス鋼)、アルミニウム合金、チタン合金、マグネシウム合金等である。
【0044】
材料リサイクルの観点からは高炉や電炉でリサイクルし易い、鋼、特にステンレス鋼が好ましい。
耐食性の観点からは、鉄鋼のうち各種ステンレス鋼、各種耐候性鋼が挙げられ、普通鋼であれば亜鉛系、アルミニウム系めっき等のめっき鋼材が挙げられる。
【0045】
めっき鋼材としては、連続電気めっき鋼板や連続溶融めっき鋼板等の“プレめっき" 鋼板を使用すると生産性が高い。これらのプレめっきの種類としては、電気めっき系では、電気亜鉛めっき、Ni−Zn合金電気めっき等が挙げられ、溶融めっき系では、溶融亜鉛めっき、合金化溶融亜鉛めつき、5%Al−Zn合金溶融めっき、Al−Mg−Zn合金溶融めっき(Al:2〜15%、Mg:0.5 〜5%)、55%Al−Zn合金めっき等が挙げられる。
【0046】
本発明における木材接着剤としては、水性高分子−イソシアネート系木材接着剤、レゾルシノール樹脂系木材接着剤、フェノール樹脂系木材接着剤、メラミン・ユリア共重合樹脂系木材接着剤、1液形ウレタン系木材接着剤等が使用できる。接着剤の硬化反応において、有毒なホルムアルデヒドが発生しない点で水性高分子−イソシアネート系木材接着剤が好ましい。また、住宅建設現場等での現場施工性については1液形ウレタン系木材接着剤が良好である。
【0047】
本発明における化成処理金属材は、被着材としての木材の材質として、スギ、ヒノキ、ベイマツ、アカマツ、ラワン、カバノキ等の様々な天然木との構造接着が可能であることから、単純な接着接合のみに留まらず、構造用合板や構造用集成材、構造用LVL 等への金属材の接着複合化が可能であり、構造、非構造を問わず、様々な接着用途に適用できる。
【0048】
【実施例】
本例では、各種有機高分子化合物を有する各種化成処理液を調整し、これを各種金属材表面に塗布して化成処理皮膜を形成し、それらの化成皮膜と木材との接着性を評価した。
【0049】
化成処理薬液調製
化成処理液として表1〜表3の水溶液・水分散液を調製した。
クロメート系処理液(表1)は、予め、クロム酸(CrO3)水溶液と酒石酸(C4H6O6)水溶液とを混合させることで、還元クロメート液を調製しておき、この還元クロメート液にその他の成分を添加することで調製した。
【0050】
リン酸塩処理液 (表2) は、市販の重リン酸マグネシウム水溶液を、所定濃度に希釈したものに、その他の成分を添加することで調製した。
シリカ系処理液 (表3) は、市販のリチウムシリケート処理液 (日産化学製、LSS45)に、その他の成分を添加することで調製した。
【0051】
なお、これらの処理液に、本発明の有機高分子化合物を添加する際にはポリアクリル酸は水溶液として、ポリエチレンオキサゾリン、ポリエチレンイミンは、エマルションとして添加した。
【0052】
金属基材表面洗浄
表4に示す各種金属材の圧延板について、何れもアルカリ脱脂を行うことで表面洗浄を行った。
【0053】
化成処理
表4に示す化成処理液と金属材との各種組み合わせについて化成処理を行った。バーコーティングで金属基材上に化成処理液を塗布し、熱風オーブンで乾燥(最高到達温度120 ℃)することによって、化成処理皮膜を備えた金属材を調製した。
【0054】
化成皮膜質量測定
20%NaOH、5%グルコン酸ナトリウム水溶液に化成処理金属材を浸漬することによって、化成皮膜を溶解させた。このとき、溶解条件(水溶液の温度、浸漬時間)を変化させて化成皮膜溶解を行い、化成皮膜溶解前後の金属材の質量と蛍光X線で化成皮膜成分(クロメート系はCr、リン酸塩系はP、シリカ系はSi)の付着量(残存量)とを測定した。グラフ上の縦軸に初期質量と化成皮膜溶解後の質量との差、横軸に蛍光X線で測定した化成皮膜成分付着量とをプロットし、グラフ上に現れる変曲点のY軸の値を化成皮膜付着量とした。
【0055】
有機高分子化合物の種類の同定は化成皮膜溶解液について、C13-NMR や赤外吸光分析等を行えば可能であり、定量も可能である。
本例においては、化成皮膜成分付着量(上述のように蛍光X線で測定)から、化成処理液塗布量を求め、表1〜表3の薬液組成から有機高分子化合物の付着量を算出した。
【0056】
接着継ぎ手試験片寸法
JIS K 6852に定める接着剤の圧縮剪断強さ試験方法に準ずる寸法として、化成処理金属材、つまり金属板 [30mm(長:圧縮方向)×25mm (巾)×4.5mm(厚)]と表4に示す種類の木材 [30mm(長:圧縮方向=繊維方向)×25mm(巾)×10mm (厚)]とを接着面積 [25mm(長)×25mm(巾)]で接着した。
【0057】
接着剤
本例では次の木材接着剤を使用した。
水性高分子−イソシアネート系:大鹿振興(株)製、ピーアイボンドTP-111レゾルシノール−フェノール共重合樹脂系:大鹿振興(株)製、ディアノールD33
メラミン−ユリア共縮合樹脂系:大鹿振興(株)製、大鹿レヂン105
一液湿気硬化型ポリウレタン樹脂系:大鹿振興(株)製、UR−10
接着条件
接着剤塗布:くし目ごてを用いて、1kgm-2を目安に、接着剤を被着材に塗布した。
【0058】
貼合 :接着剤の仕様に従う、可使時間内に被着材同志を貼り合わせ、圧締した。
圧締 :1MPa 、12hrで行った。
【0059】
養生 :大気下、48hr以上で行った。
接着性評価
接着耐久性を煮沸繰り返し試験(JIS K 6857記載の耐水試験の処理条件G)履歴後の圧縮剪断接着強さ(JIS K 6852に準ずる)で評価した。
【0060】
評価基準は、被着木材がJIS 指定のかばまさ目材とは限らないため、以下を基準とした。
接着性評価結果を表4に示す。
【0061】
○:常態、耐水試験後の接着破断面全体に占める木材の凝集破壊が6割以上を示す
△:○基準と、×基準との間で、変動がある
×:常態もしくは耐水試験後の接着破断面が金属材/接着剤の界面剥離を 示す
【0062】
【表1】

Figure 0004003584
【0063】
【表2】
Figure 0004003584
【0064】
【表3】
Figure 0004003584
【0065】
【表4】
Figure 0004003584
【0066】
【表5】
Figure 0004003584
【0067】
【発明の効果】
本発明における化成処理を金属材表面に施すことによって、金属材と木材との木材接着剤を用いての構造材としての接着が可能となった。このことから、住宅の構造部位、非構造部位を問わず、木材の性能変動の影響を免れ、金属材の安定した性能での設計、施工、長期使用における信頼性獲得が可能となる。一方で、木材品質の厳格管理が必要でなくなるため、木材利用の効率が改善される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structural adhesive metal material and a composite metal material of the structural adhesive metal material and wood.
[0002]
[Prior art]
Wood is a material for housing, such as structural members (columns, beams), non-structural members (face materials, floor foundations, wall foundations, ceiling foundations), joinery, interiors, exteriors (parts with wood appearance and design), etc. , Is used extensively in every part.
[0003]
Wood as a material has the advantage that it can be said to be the ultimate low environmental load material as long as the cycle of “planting when cut” is observed, but the mechanical characteristics vary greatly due to differences in growth conditions, etc. In addition, there is a problem in that the performance fluctuation is large in order to be handled as an industrial material such as the possibility that the size and shape are likely to be distorted with time (lack of shape stability). This is because, in particular, due to the recent sophistication of the required housing quality, higher dimensional accuracy and construction accuracy are required for materials.
[0004]
In addition, while the significance of protecting the natural environment is increasing, large-scale deforestation is restricted, but the negative impact of neglected forests on social infrastructure has become a problem. For example, the development of applied technology for thinned wood The productivity improvement of the forest industry is a serious issue.
[0005]
In order to solve these problems of using wood, use it as a composite material with a metal material that has high strength and stable mechanical properties, design quality and texture as wood (thinned wood), and structural strength. The effectiveness of using a composite material shared by metal materials is considered.
[0006]
As a method for joining wood and metal material, adhesion technology as surface joining without stress concentration is indispensable, but there is no technology that can be said to be optimal among conventional technologies for adhesion between wood and metal material.
[0007]
As a conventional technique, for example, Japanese Patent Application Laid-Open No. 5-185404 discloses a method for bonding a metal material having excellent adhesion durability to wood. In this method, zinc-iron alloy grains are projected on the surface of a metal material to form an alloy film having excellent corrosion resistance, and then Z-S treatment is performed to perform chemical conversion treatment. It is said that a high degree of durability is imparted to the bonded portion between the wood and the metal material by applying a protective liquid and bonding them together with an adhesive.
[0008]
In addition, the building wood composite material disclosed in Japanese Patent Laid-Open No. 4-143352 also improves the adhesiveness to the surface of the core material (steel material) covered with the wood coating material. Furthermore, ZS treatment is performed for the purpose of increasing the corrosion resistance.
[0009]
However, in order to perform the Z-S process, a very complicated process has to be performed, and there is a disadvantage that the cost is increased.
In addition, excellent structural bonding technology for metal materials is being established, but the technical idea of bonding is completely different between metal materials and wood materials as follows.
[0010]
That is, it is generally said that chemical adhesion (intermolecular force: hydrogen bond, dipole interaction, quadrupole interaction, van der Waals force, etc.) is dominant in bonding metal materials. On the other hand, it is known that a mechanical adhesive force called a throwing effect acts rather than a chemical adhesive force in bonding wood materials. This is because wood is porous and the adhesive penetrates into the wood and hardens.
[0011]
Further, from the viewpoint of adhesion durability, there is a difference in the technical idea as described below between adhesion of a metal material and adhesion of a wood material.
That is, in the structural bonding of metal materials, since the material itself does not have water permeability, water enters the adhesive layer only from the end portion of the bonded bonding surface, and the adhesiveness of the portion where the water has entered deteriorates. Therefore, the durability specification is designed by ensuring a bonding area having a sufficient distance from the bonding end portion in consideration of both bonding deterioration due to water intrusion and bonding recovery due to drying.
[0012]
On the other hand, in the structural bonding of wooden materials, the material itself is water permeable, so that a predetermined strength must be maintained even if the bonding surface is flooded. Further, considering that the wood material itself swells due to water absorption, stress is generated on the adhesion surface, and it is considered that it is mechanical adhesion rather than chemical adhesion that contributes to adhesion durability.
[0013]
[Problems to be solved by the invention]
The present invention has been made in view of such a situation, and in bonding a metal material and wood, a metal material having a chemical conversion film excellent in adhesiveness with a wood-based material, and the metal material and wood The object is to provide an adhesive composite with the material.
[0014]
[Means for Solving the Problems]
The inventors of the present invention have considered the structure bonding technique between a wood material and a metal material, considering that it is essential to provide a mechanism of an adhesion interface comparable to the anchoring effect in the wood-based adhesion on the surface of the metal material.
[0015]
As a result, the cross-linking agent component of the wood-based adhesive is included in the chemical conversion coating layer deposited and firmly fixed on the surface of the metal material, and at the time of bonding, the cross-linking agent component of the adhesive or the main agent component is cross-linked. By making it react, it succeeded in expressing the mechanical adhesion comparable to the anchoring effect in wood-based adhesion at the metal / adhesive interface.
[0016]
Here, the present invention is as follows.
(1) It is composed of a metal material and a chemical conversion coating layer provided as the outermost layer of the metal material, and the chemical conversion coating layer is at least one selected from the group consisting of polyethyleneimine and polyethyleneoxazoline. molecular weight contained 100,000 of organic polymer compound with 1,000 or more, the chemical conversion average coating weight of treated film layer 50 mgm - 2 or more, 5000Mgm - 2 or less, the to the total weight of the chemical conversion coating layer A metal material , wherein the amount of the organic polymer compound is 5% to 50% by mass.
[0019]
(2) The metal material according to (1), wherein the chemical conversion treatment film layer is composed of any one of a chromate treatment film, a phosphate treatment film, and a silica film.
[0021]
(3) The metal material according to (1) or (2), wherein the metal material is a zinc-based plated steel material or a stainless steel material .
(4) A metal material on which a chemical conversion film excellent in adhesiveness with a woody material according to any one of claims (1) to (3) is used for adhesion to wood.
[0022]
(5) It is comprised from the metal material, the chemical conversion treatment film layer provided as the outermost layer of this metal material, and the wood adhere | attached on this chemical conversion treatment film layer through the adhesive agent, A composite metal material with wood, comprising at least one organic polymer compound selected from the group consisting of acrylic acid, polyethyleneimine, and polyethyleneoxazoline and having a molecular weight of 1,000 or more and 100,000 or less.
[0024]
(6) The composite metal material according to (5) , wherein the adhesive is an aqueous polymer-isocyanate adhesive.
[0025]
(7) The composite metal material according to the above (5) or (6) , wherein the chemical conversion treatment film layer is composed of any one of a coating type chromate processing coating, a coating type phosphate processing coating, and a silica coating.
[0026]
(8) The composite metal material according to any one of ( 5) to (7) , wherein the metal material is a zinc-based plated steel material or a stainless steel material.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Next, the composition of the chemical conversion treatment liquid employed in the present invention, the metal material to be subjected to chemical conversion treatment, and the chemical conversion treatment method will be described in detail.
[0028]
The surface of the metal material in the present invention needs to have a functional group capable of crosslinking reaction. This is to form a strong primary bond that bonds the functional group on the surface of the metal material and the adhesive component to bond them together.
[0029]
As the woody structure adhesive to be used, an aqueous polymer-isocyanate adhesive, a resorcinol resin adhesive, a phenol resin adhesive, a melamine / urea copolymer resin adhesive, and the like are assumed .
[0031]
For this reason, one or more types selected from polyacrylic acid, polyethyleneimine, polyethylene oxazoline and the like are listed as the types of the polymer compound having a functional group referred to here, and the polymer compound referred to here has a molecular weight of 1000 or more. is there. If the molecular weight is less than 1000, sufficient adhesion water resistance cannot be expressed. On the other hand, when the molecular weight exceeds 100,000, the viscosity of the chemical conversion treatment solution is remarkably increased during the production of the metal material, and the chemical conversion treatment work becomes difficult. A preferred molecular weight range is 5000 or more and 50000 or less. Hereinafter, the polymer component having the functional group is referred to as a polymer crosslinking agent.
[0032]
The chemical conversion treatment mentioned here is a general term for a method in which a chemical solution and a metal material (base material) are reacted (chemical conversion reaction), and a film is formed on the surface of the base material by a chemical conversion reaction and a drying process. Examples include chromate treatment, phosphate treatment, and silica-based treatment.
[0033]
The contents of these chemical conversion treatments include any one of the chemical conversion treatment liquid and the operation method itself in any of chromate treatment, phosphate treatment, and silica-based treatment. As long as it does, there is no restriction | limiting in particular also in this invention. When the polymer crosslinking agent itself reacts with other components of the chemical conversion treatment solution and the crosslinking effect with the adhesive is lost, the polymer may be added as an emulsion .
[0034]
In the meantime, in the present invention, the chromate treatment solution includes not only hexavalent chromium but also so-called hexavalent chromium-free chromate treatment solution.
[0035]
In the case of phosphating, a polymeric crosslinking agent is contained in a phosphoric acid aqueous solution containing a phosphoric acid compound as a main component, and a film is formed on the surface of the metal material by a chemical conversion reaction using this liquid.
[0036]
Here, “silica-based treatment” refers to a treatment liquid containing silica and / or a silane coupling agent (for example, a lithium silicate aqueous solution, a colloidal silica dispersion, etc.) containing a polymer crosslinking agent, It is the process which forms a membrane | film | coat on the metal material surface by the used chemical reaction.
[0037]
The chemical conversion reaction includes etching of the base material, dissolution of the oxide layer on the base material surface, substance exchange (electron, ion) between the chemical solution component and the base material, and the components of the chemical conversion treatment film to be produced are mainly insoluble. Salts, oxides and hydroxides. In general, the chemical conversion film is used as a coating base treatment because the chemical conversion reaction product is deposited on the interface with the base material, and thus has excellent adhesion to the base material, particularly water-resistant adhesion.
[0038]
The amount of the polymer crosslinking agent contained in the chemical conversion film is preferably 5% or more and 50% or less as mass% of the polymer crosslinking agent in the total weight of the chemical conversion film. If it is less than 5%, sufficient adhesion durability with wood cannot be obtained, and if it exceeds 50%, adhesion durability with wood deteriorates again. More preferably, it is 10% or more and 30% or less.
[0039]
The average deposition amount of the chemical conversion film layer containing the polymer crosslinking agent is preferably 50 mgm −2 or more and 5000 mgm −2 or less. If it is less than 50 mgm -2 , the adhesive improvement effect is not exhibited. If it exceeds 5000 mgm -2 , the chemical conversion film layer is liable to brittlely break, and the adhesive strength cannot be obtained. More preferably, it is 100 mgm -2 or more and 3000 mgm -2 or less.
[0040]
As described above, according to the present invention, by providing a chemical conversion treatment film layer having a predetermined functional group and a polymer cross-linking agent having a predetermined molecular weight on the outermost layer of the metal material, good adhesion can be achieved. The reason for this is that the present inventors developed a mechanical adhesion formed by a cross-linking reaction between the adhesive and the functional group, and a high level between the functional group and the chemical conversion film. It is considered that mechanical adhesion due to “entanglement” between the molecule and the chemical conversion film composition appears, and mechanical adhesion due to chemical conversion reaction product precipitation appears between the chemical conversion film and the steel material.
[0041]
As the chemical conversion treatment method, the base material and the chemical conversion treatment liquid are brought into contact with each other to form a film, and then the excess chemical conversion liquid is washed away. The “reactive chemical conversion treatment” and the chemical conversion liquid are applied to the base material and dried without washing. Although there exists "coating type chemical conversion treatment" which performs film chemical conversion, as a chemical conversion processing method in this invention, a coating type chemical conversion treatment is preferable. This is because the coating type chemical conversion treatment allows almost all of the components added to the chemical conversion liquid to be contained in the chemical conversion film. On the contrary, in the coating type chemical conversion treatment, a component that deteriorates the performance must not be added to the chemical conversion treatment solution. For example, the presence of chloride roots, sulfate roots, sodium roots, potassium roots and the like significantly reduces the adhesion water resistance.
[0042]
The form as the “metal material” in the present invention can take a suitable form such as a plate material, a tube material, a bar material, a shape material, etc., and is not particularly limited, but is formed in advance when constituting a composite material with wood. A common shape would be common.
[0043]
Here, there are various kinds of materials of such a metal material. Iron (eg, stainless steel), aluminum alloy, titanium alloy, magnesium alloy and the like.
[0044]
From the viewpoint of material recycling, steel, particularly stainless steel, which can be easily recycled in a blast furnace or an electric furnace, is preferable.
From the viewpoint of corrosion resistance, various stainless steels and various weathering steels can be cited among steels. For ordinary steels, plated steel materials such as zinc-based and aluminum-based plating can be used.
[0045]
Productivity is high when “pre-plated” steel sheets such as continuous electroplated steel sheets and continuous hot-dip galvanized steel sheets are used as the plated steel materials. Examples of these types of pre-plating include electrogalvanizing and Ni-Zn alloy electroplating in the electroplating system, and hot dip galvanizing and alloying hot dip galvanizing in the hot dipping system, and 5% Al-Zn. Examples thereof include alloy hot dipping, Al-Mg-Zn alloy hot dipping (Al: 2 to 15%, Mg: 0.5 to 5%), 55% Al-Zn alloy plating, and the like.
[0046]
Examples of the wood adhesive in the present invention include aqueous polymer-isocyanate wood adhesive, resorcinol resin wood adhesive, phenol resin wood adhesive, melamine-urea copolymer resin wood adhesive, and one-component urethane wood. An adhesive or the like can be used. In the curing reaction of the adhesive, an aqueous polymer-isocyanate wood adhesive is preferred in that no toxic formaldehyde is generated. In addition, the one-pack type urethane wood adhesive is good for on-site workability at home construction sites.
[0047]
The chemical conversion treatment metal material in the present invention is a simple material because it can be structurally bonded to various natural trees such as cedar, cypress, bay pine, red pine, lauan, birch, etc. In addition to bonding, it is possible to bond metal materials to structural plywood, structural laminated materials, structural LVL, etc., and it can be applied to various bonding applications regardless of structure or non-structure.
[0048]
【Example】
In this example, various chemical conversion treatment liquids having various organic polymer compounds were prepared and applied to the surfaces of various metal materials to form chemical conversion treatment films, and the adhesion between these chemical conversion films and wood was evaluated.
[0049]
Table 1 to Table 3 for the aqueous solution, water dispersion as chemical conversion treatment solution prepared <br/> chemical conversion treatment solution was prepared.
The chromate treatment liquid (Table 1) is prepared in advance by mixing a chromic acid (CrO 3 ) aqueous solution and a tartaric acid (C 4 H 6 O 6 ) aqueous solution, and this reduced chromate liquid is prepared. It was prepared by adding other components to
[0050]
The phosphating solution (Table 2) was prepared by adding other components to a commercially available magnesium diphosphate aqueous solution diluted to a predetermined concentration.
The silica-based treatment liquid (Table 3) was prepared by adding other components to a commercially available lithium silicate treatment liquid (Nissan Chemical, LSS45).
[0051]
In addition, when adding the organic polymer compound of this invention to these process liquids , polyacrylic acid was added as aqueous solution, and polyethylene oxazoline and polyethyleneimine were added as emulsion.
[0052]
Metal substrate surface cleaning The rolled plates of various metal materials shown in Table 4 were subjected to surface cleaning by alkaline degreasing.
[0053]
Chemical conversion treatment Chemical conversion treatment was performed for various combinations of chemical conversion treatment liquids and metal materials shown in Table 4. The metal material provided with the chemical conversion film was prepared by applying the chemical conversion solution on the metal substrate by bar coating and drying it in a hot air oven (maximum temperature of 120 ° C.).
[0054]
Chemical film mass measurement
The chemical conversion film was dissolved by immersing the chemical conversion treatment metal material in an aqueous solution of 20% NaOH and 5% sodium gluconate. At this time, the chemical film is dissolved by changing the dissolution conditions (temperature of the aqueous solution, immersion time), and the chemical film component (chromate is Cr, phosphate based on the mass of the metal material before and after the chemical film is dissolved and fluorescent X-rays) Was measured for the adhesion amount (residual amount) of P. The vertical axis on the graph plots the difference between the initial mass and the mass after dissolution of the chemical conversion film, and the horizontal axis plots the amount of chemical conversion film component measured by fluorescent X-rays. Was defined as the amount of chemical conversion coating.
[0055]
The type of the organic polymer compound can be identified by performing C 13 -NMR, infrared absorption analysis or the like on the chemical film solution, and can be quantified.
In this example, the amount of chemical conversion solution applied was determined from the amount of chemical conversion film component adhering (measured with fluorescent X-ray as described above), and the amount of organic polymer compound was calculated from the chemical composition shown in Tables 1 to 3. .
[0056]
Bonded joint specimen dimensions
Table 4 shows the dimensions in accordance with the compression shear strength test method for adhesives specified in JIS K 6852, namely, chemical conversion treated metal material, that is, metal plate [30 mm (length: compression direction) x 25 mm (width) x 4.5 mm (thickness)]. Wood [30 mm (length: compression direction = fiber direction) × 25 mm (width) × 10 mm (thickness)] was bonded with an adhesion area [25 mm (length) × 25 mm (width)].
[0057]
Adhesive The following wood adhesive was used in this example.
Aqueous polymer-isocyanate system: manufactured by Oshika Kogyo Co., Ltd., PI Bond TP-111 resorcinol-phenol copolymer resin system: manufactured by Oka Shinko Co., Ltd., Dianol D33
Melamine-Yurea co-condensation resin system: Oka Shinko Co., Ltd., Oka Resin 105
One-part moisture-curing polyurethane resin: UR-10, manufactured by Oshika Shinko Co., Ltd.
Adhesion conditions Adhesive application: Using a comb iron, the adhesive was applied to the adherend using 1 kgm -2 as a guide.
[0058]
Bonding: The adherends were bonded and pressed within the pot life according to the adhesive specifications.
Crushing: 1 MPa, 12 hr.
[0059]
Curing: Performed in air for at least 48 hours.
Adhesive evaluation The adhesive durability was evaluated by the compression shear adhesive strength (according to JIS K 6852) after history of boiling repeated test (treatment condition G of water resistance test described in JIS K 6857).
[0060]
The evaluation criteria were based on the following because the wood to be deposited is not necessarily a JIS-specified scabbard material.
The adhesion evaluation results are shown in Table 4.
[0061]
○: The cohesive failure of wood occupies 60% or more of the entire bonded fracture surface after normal and water resistance tests. Δ: There is a change between the standard and the × standard. ×: Adhesive fracture after normal or water resistance test. Cross section shows metal / adhesive interface debonding. [0062]
[Table 1]
Figure 0004003584
[0063]
[Table 2]
Figure 0004003584
[0064]
[Table 3]
Figure 0004003584
[0065]
[Table 4]
Figure 0004003584
[0066]
[Table 5]
Figure 0004003584
[0067]
【The invention's effect】
By applying the chemical conversion treatment in the present invention to the surface of the metal material, it is possible to bond the metal material and the wood as a structural material using a wood adhesive. Therefore, regardless of the structural part or non-structural part of the house, it is possible to avoid the influence of the fluctuation of the performance of the wood, and to obtain the reliability in the design, construction and long-term use with the stable performance of the metal material. On the other hand, the efficiency of wood utilization is improved because strict management of wood quality is no longer necessary.

Claims (8)

金属材と、該金属材の最表層として設けた化成処理皮膜層とから構成され、
該化成処理皮膜層が、ポリエチレンイミン、およびポリエチレンオキサゾリンから成る群から選んだ少なくとも1種以上であって分子量が1000以上で100000以下の有機高分子化合物を含有し、
前記化成処理皮膜層の平均付着量が50mgm- 以上、5000mgm- 以下であり、
該化成処理皮膜層の全体の重量に占める前記有機高分子化合物の量が、質量%で、5%以上50%以下である
ことを特徴とする金属材。
It is composed of a metal material and a chemical conversion coating layer provided as the outermost layer of the metal material,
The chemical conversion coating layer contains at least one selected from the group consisting of polyethyleneimine and polyethyleneoxazoline, and contains an organic polymer compound having a molecular weight of 1,000 to 100,000.
The average coating weight of the chemical conversion coating layer 50 mgm - 2 or more, 5000Mgm - 2 or less,
The metal material, wherein the amount of the organic polymer compound in the total weight of the chemical conversion coating layer is 5% to 50% by mass%.
前記化成処理皮膜層が、クロメート処理皮膜、リン酸塩処理皮膜、およびシリカ皮膜のいずれかから構成される請求項1に記載の金属材。  The metal material according to claim 1, wherein the chemical conversion treatment film layer is composed of any one of a chromate treatment film, a phosphate treatment film, and a silica film. 前記金属材が、亜鉛系めっき鋼材またはステンレス鋼材である請求項1または2に記載の金属材The metal material according to claim 1 , wherein the metal material is a zinc-based plated steel material or a stainless steel material . 木材との接着に用いられる請求項1ないし3のいずれかに記載の金属材。  The metal material according to any one of claims 1 to 3, which is used for adhesion to wood. 金属材と、該金属材の最表層として設けた化成処理皮膜層と、該化成処理皮膜層に接着剤を介して接着された木材とから構成され、該化成処理皮膜層が、ポリアクリル酸、ポリエチレンイミン、およびポリエチレンオキサゾリンから成る群から選んだ少なくとも1種以上であって分子量が1000以上で100000以下の有機高分子化合物を含有することを特徴とする木材との複合金属材。  A metal material, a chemical conversion coating layer provided as an outermost layer of the metal material, and wood bonded to the chemical conversion coating layer via an adhesive, the chemical conversion coating layer is made of polyacrylic acid, A composite metal material with wood, comprising at least one organic polymer compound selected from the group consisting of polyethyleneimine and polyethyleneoxazoline and having a molecular weight of 1000 or more and 100000 or less. 前記接着剤が、水性高分子−イソシアネート系接着剤であることを特徴とする請求項5記載の複合金属材。  The composite metal material according to claim 5, wherein the adhesive is an aqueous polymer-isocyanate adhesive. 前記化成処理皮膜層が、塗布型クロメート処理皮膜、塗布型リン酸塩処理皮膜、またはシリカ皮膜のいずれかから構成される請求項5または6に記載の複合金属材。  The composite metal material according to claim 5 or 6, wherein the chemical conversion coating layer is composed of any one of a coating type chromate processing coating, a coating type phosphate processing coating, or a silica coating. 前記金属材が、亜鉛系めっき鋼材もしくはステンレス鋼材である請求項5ないし7のいずれかに記載の複合金属材。  The composite metal material according to claim 5, wherein the metal material is a zinc-based plated steel material or a stainless steel material.
JP2002245228A 2002-08-26 2002-08-26 Metallic material for structural bonding and its composite material with wood Expired - Fee Related JP4003584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002245228A JP4003584B2 (en) 2002-08-26 2002-08-26 Metallic material for structural bonding and its composite material with wood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002245228A JP4003584B2 (en) 2002-08-26 2002-08-26 Metallic material for structural bonding and its composite material with wood

Publications (2)

Publication Number Publication Date
JP2004083977A JP2004083977A (en) 2004-03-18
JP4003584B2 true JP4003584B2 (en) 2007-11-07

Family

ID=32053485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002245228A Expired - Fee Related JP4003584B2 (en) 2002-08-26 2002-08-26 Metallic material for structural bonding and its composite material with wood

Country Status (1)

Country Link
JP (1) JP4003584B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590952B2 (en) * 2004-07-05 2010-12-01 住友金属工業株式会社 Surface-treated steel sheet, surface-treated chemical, and surface treatment method
JP4765902B2 (en) * 2006-11-09 2011-09-07 住友金属工業株式会社 Surface-treated metal material with excellent adhesion and film adhesion
JP5089737B2 (en) * 2009-09-23 2012-12-05 三菱樹脂株式会社 Laminated polyester film
JP6155006B2 (en) * 2012-10-12 2017-06-28 日油株式会社 Aqueous chromium-free treatment solution
JP2015196878A (en) * 2014-04-01 2015-11-09 株式会社神戸製鋼所 Surface-treated steel sheet and composite member
US11904948B2 (en) 2018-09-28 2024-02-20 Nippon Steel Corporation Adhesively joined structure and component for vehicle

Also Published As

Publication number Publication date
JP2004083977A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
Critchlow et al. Review of surface pretreatments for aluminium alloys
US6887321B2 (en) Corrosion resistant surface treatment for structural adhesive bonding to metal
JP4003584B2 (en) Metallic material for structural bonding and its composite material with wood
JP4935902B2 (en) Acrylic rubber-metal composite
JP4007626B2 (en) Aqueous metal surface pretreatment composition for enhancing adhesion durability
WO2007119769A1 (en) Acrylic rubber-metal composite body
JP4765902B2 (en) Surface-treated metal material with excellent adhesion and film adhesion
US5318640A (en) Surface treatment method and composition for zinc coated steel sheet
JP5413329B2 (en) Bonding method of metal material
JP2003034881A (en) Method for manufacturing steel material with corrosion protective coating
JPH0671806A (en) Composite damping steel plate having high corrosion resistance
JP5905733B2 (en) Composite in which painted stainless steel plate and molded body of acrylonitrile-butadiene-styrene resin composition are joined, and method for producing the same
JP2006110753A (en) Resin coated heavy corrosion-proof steel material
JP4882217B2 (en) Resin coated heavy duty steel
JPH10337530A (en) Organic surface-treated metal plate and organic metal surface treating liquid
JP2005344147A (en) Steel material coated with organic resin, and manufacturing method therefor
US20030104228A1 (en) Hureaulite conversion coating as a base for the bonding of rubber to metal
JP4617575B2 (en) Method for producing anti-corrosion coated steel
JPH0957902A (en) Adhesive composite body
JP3424084B2 (en) Painted stainless steel sheet excellent in weather resistance and adhesion, and method for producing the same
JP5905745B2 (en) Composite in which painted stainless steel plate and molded article of polycarbonate resin composition are joined, and method for producing the same
KR100550832B1 (en) A thin, water-borne, high-corrosion resisting organic coating material to be coated and adhered polyethylene foam, polystylene foam, and polyurethane foam in zinc/zinc-aluminum coated steel sheet, and method for producing the said coated steel sheets therewith
JP2017043845A (en) Metal material surface treatment agent, metal joint body and method for bonding metal material
JP5800668B2 (en) Composite in which painted stainless steel plate and molded article of polycarbonate resin composition are joined, and method for producing the same
JP2682869B2 (en) Titanium laminated steel sheet with excellent workability and corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

R150 Certificate of patent or registration of utility model

Ref document number: 4003584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees