JP2017043845A - Metal material surface treatment agent, metal joint body and method for bonding metal material - Google Patents

Metal material surface treatment agent, metal joint body and method for bonding metal material Download PDF

Info

Publication number
JP2017043845A
JP2017043845A JP2016164323A JP2016164323A JP2017043845A JP 2017043845 A JP2017043845 A JP 2017043845A JP 2016164323 A JP2016164323 A JP 2016164323A JP 2016164323 A JP2016164323 A JP 2016164323A JP 2017043845 A JP2017043845 A JP 2017043845A
Authority
JP
Japan
Prior art keywords
surface treatment
metal
treatment agent
adhesive
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016164323A
Other languages
Japanese (ja)
Other versions
JP6834247B2 (en
Inventor
山辺 秀敏
Hidetoshi Yamabe
秀敏 山辺
晴美 永尾
Harumi Nagao
晴美 永尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2017043845A publication Critical patent/JP2017043845A/en
Application granted granted Critical
Publication of JP6834247B2 publication Critical patent/JP6834247B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface treatment agent capable of providing high bond strength and bond durability and having a low environmental load.SOLUTION: The surface treatment agent consists of a solution including an azole silane compound, such as an imidazole silane and an amino based silane coupling agent. The concentration of the azole silane compound in the solution is 0.1 mass% or more and 4.2 mass% or less, and the concentration of the amino based silane coupling agent in the solution is 0.1 mass% or more and 0.5 mass% or less. After the surface treatment agent is applied to the bonding surfaces of both metal materials to form ground layers, the metal materials are preferably bonded with a modified acrylic or epoxy adhesive.SELECTED DRAWING: None

Description

本発明は、金属材料用表面処理剤、金属接合体および金属材料の接着方法に関し、さらに詳しくは金属部材の表面において接着剤に対する親和性を改善して該接着剤による強固な接着を可能にする表面処理剤およびこれを使用して接着剤で金属材料を接着させる方法ならびに該表面処理剤で処理された金属材料を接着剤で接合してなる金属接合体に関する。   The present invention relates to a surface treatment agent for a metal material, a metal joined body, and a method for bonding a metal material. More specifically, the present invention improves the affinity for an adhesive on the surface of a metal member and enables strong bonding with the adhesive. The present invention relates to a surface treatment agent, a method for bonding a metal material with an adhesive using the surface treatment agent, and a metal joined body obtained by joining a metal material treated with the surface treatment agent with an adhesive.

ステンレス鋼、冷延鋼、ニッケル、アルミニウム、アルミニウム合金、銅、亜鉛めっき鋼などの各種金属材料は、優れた耐食性や表面外観を活かして建材や電子機器など多くの分野で幅広く使用されている。これらの金属材料を構造材や各種部品として使用する場合は、金属板などの金属部材同士を相互に接合したり、金属板を他の部品や部材と接合したりすることを要求されることが多い。このような場合、従来は溶接やロウ接によって金属部材同士を接合することが多かった。   Various metal materials such as stainless steel, cold-rolled steel, nickel, aluminum, aluminum alloy, copper, and galvanized steel are widely used in many fields such as building materials and electronic devices utilizing their excellent corrosion resistance and surface appearance. When these metal materials are used as structural materials or various parts, it is required to join metal members such as metal plates to each other or to join metal plates to other parts or members. Many. In such cases, conventionally, metal members are often joined together by welding or brazing.

しかし、例えば溶接により金属板を接合する場合、溶接された金属板の表面に溶接痕が残るため金属板特有の優れた表面外観が損なわれやすく、特にステンレス鋼の場合は溶接痕により美麗な意匠性が著しく損なわれることが問題になることがある。また、金属部材に溶接を行った場合は溶接歪みが問題になることがあり、亜鉛めっき鋼板の場合は溶接部の亜鉛層が下地鉄層と合金化して耐食性が低下するおそれがある。溶接痕や溶接歪みは板金加工で除去することができるが、板金加工は多くの労力と長時間の作業を要する上、騒音の発生等の作業環境上の問題も抱えている。そのため、作業者はもちろん周辺住民からも敬遠されている。   However, for example, when joining metal plates by welding, welding marks remain on the surface of the welded metal plates, so that the excellent surface appearance unique to the metal plates is likely to be damaged. It can be a problem that the properties are significantly impaired. In addition, when welding is performed on a metal member, welding distortion may be a problem. In the case of a galvanized steel sheet, the zinc layer of the welded part may be alloyed with the base iron layer to reduce the corrosion resistance. Although welding marks and welding distortion can be removed by sheet metal processing, sheet metal processing requires a lot of labor and long work, and also has problems in working environment such as generation of noise. For this reason, it has been avoided by the local residents as well as the workers.

そこで、溶接に代わる金属材料の接合方法として、近年、接着剤を用いて接合する接着法が注目されている。接着剤を用いる接着法は、金属部材の表面外観をほとんど損なわないため、上記した板金加工が不要になるという利点がある。しかし、一般に金属材料の表面は安定な酸化皮膜で覆われている場合が多く、特にステンレス鋼の酸化皮膜は耐食性に優れている反面、接着剤との親和性が極めて低く、接着力に劣るという問題があった。   Therefore, in recent years, an adhesion method using an adhesive has attracted attention as a method for joining metal materials instead of welding. The bonding method using an adhesive has an advantage that the above-described sheet metal processing becomes unnecessary because the surface appearance of the metal member is hardly impaired. However, in general, the surface of a metal material is often covered with a stable oxide film. In particular, the oxide film of stainless steel is excellent in corrosion resistance, but has a very low affinity with an adhesive and is inferior in adhesive strength. There was a problem.

また、電子機器の発熱部にヒートシンク部材を取り付ける場合、ニッケルめっきされたステンレス鋼にTIM(Thermal Interface Material:熱伝導性インターフェース材料)を確実に接着させることが放熱性にとって重要であるが、ニッケルの表面は不活性であるため、TIMの素材であるシリコーン系ポリマーとの親和性が低くなり、十分な放熱性が得られないことがあった。更にニッケル等の金属板は接着接合界面の耐水性に劣るので、金属板の接着部を高温高湿雰囲気に曝すと接着力が短期間で著しく低下するという問題も抱えていた。   In addition, when attaching a heat sink member to the heat generating part of an electronic device, it is important for heat dissipation to adhere TIM (Thermal Interface Material) to nickel-plated stainless steel. Since the surface is inactive, the affinity with the silicone polymer, which is the TIM material, is low, and sufficient heat dissipation may not be obtained. Furthermore, since a metal plate such as nickel is inferior in water resistance at the adhesive bonding interface, there has been a problem that when the bonded portion of the metal plate is exposed to a high-temperature and high-humidity atmosphere, the adhesive strength is remarkably reduced in a short period of time.

このような金属材料の接着剤に対する親和性、特にエポキシ系やアクリル系の接着剤に対する親和性は、予め金属材料の表面を酸で活性化処理することにより改善することができる。例えば、ステンレス鋼板の表面を硫酸と蓚酸との混合水溶液で処理する方法が知られている。また、アルミニウム板やアルミニウム合金板をリン酸水溶液または重クロム酸水溶液に浸漬するか、あるいは浸漬しながら陽極で電気的に酸化させる方法も知られている。これらの処理方法は、優れた接着性を発現することが知られており、航空機の組立工程等で実用化されている。また、亜鉛めっき鋼板では、防錆力向上のためリン酸処理やクロメート処理が行われており、これら処理は接着性の向上にも寄与している。   The affinity of such a metal material for an adhesive, particularly the affinity for an epoxy or acrylic adhesive, can be improved by previously activating the surface of the metal material with an acid. For example, a method of treating the surface of a stainless steel plate with a mixed aqueous solution of sulfuric acid and oxalic acid is known. In addition, a method is also known in which an aluminum plate or an aluminum alloy plate is immersed in a phosphoric acid aqueous solution or a dichromic acid aqueous solution, or is electrically oxidized at the anode while being immersed. These processing methods are known to exhibit excellent adhesiveness and have been put into practical use in aircraft assembly processes and the like. Moreover, in the galvanized steel sheet, phosphoric acid treatment and chromate treatment are performed for improving rust prevention power, and these treatments also contribute to improvement of adhesiveness.

しかし、上記酸処理によりステンレス鋼表面を活性化させる方法は、ステンレス鋼表面にスマットを発生させるという問題がある。このスマットは、重クロム酸と硫酸との混合水溶液でステンレス鋼表面を処理する脱スマット処理によって除去することができる。しかしながら、脱スマット処理はクロム含有排水を発生させるため、環境破壊の観点から厳しく制限されている。また、亜鉛めっき鋼板用のリン酸処理やクロメート処理においても、その排液が環境汚染を引き起こすおそれがあるので廃液処理等を考慮する必要が生じ得る。   However, the method of activating the stainless steel surface by the acid treatment has a problem of generating smut on the stainless steel surface. This smut can be removed by a desmutting treatment in which the stainless steel surface is treated with a mixed aqueous solution of dichromic acid and sulfuric acid. However, the desmutting treatment generates chrome-containing wastewater, and is severely restricted from the viewpoint of environmental destruction. In addition, in the phosphoric acid treatment and chromate treatment for galvanized steel sheets, it may be necessary to consider waste liquid treatment and the like because the waste liquid may cause environmental pollution.

最近では、このような脱スマット処理の必要がない接合方法として、予めステンレス鋼板の表面にプライマーを塗装して有機系薄膜(プライマー層)を形成させることで接着性を高める方法が試みられている。例えば、特許文献1には、ステンレス鋼板の接着性を高めるため、酸性リン酸エステルおよび/またはその塩と水とを含む水性プライマーを用いてステンレス鋼板を処理する方法が記載されている。また、シランカップリング剤を用いてステンレス鋼板に接着性を付与する技術が知られており、例えば、特許文献2には、シラン系カップリング剤を用いてステンレス鋼の表面を処理することにより、フッ素系塗膜との接着性を改善する方法が記載されている。   Recently, as a joining method that does not require such desmutting treatment, a method has been attempted in which adhesion is improved by previously applying a primer to the surface of a stainless steel plate to form an organic thin film (primer layer). . For example, Patent Document 1 describes a method of treating a stainless steel plate using an aqueous primer containing an acidic phosphate ester and / or a salt thereof and water in order to improve the adhesion of the stainless steel plate. Moreover, the technique which provides adhesiveness to a stainless steel plate using a silane coupling agent is known, for example, in patent document 2, by processing the surface of stainless steel using a silane coupling agent, A method for improving the adhesion with a fluorine-based coating film is described.

特開平6−93211号公報JP-A-6-93211 特公平6−57872号公報Japanese Patent Publication No. 6-57872

上記したように、特許文献1や特許文献2にはステンレス鋼板等の金属板に対して酸性リン酸エステルやシラン系カップリング剤を用いて表面処理することによって、これら金属板のエポキシ系接着剤に対する親和性を向上させることが記載されている。しかしながら、これらの表面処理法で処理した後に接着したステンレス鋼板の接着強度および耐久性は実用上十分とは言えず、接着構造体として長期に安定して使用することはできなかった。   As described above, in Patent Document 1 and Patent Document 2, an epoxy-based adhesive for a metal plate such as a stainless steel plate is obtained by surface-treating the metal plate using an acidic phosphate ester or a silane coupling agent. It is described to improve the affinity for. However, the adhesive strength and durability of the stainless steel plates bonded after being treated by these surface treatment methods cannot be said to be practically sufficient, and cannot be stably used as a bonded structure for a long time.

そこで、化学的な接着法に代えて例えばサンドペーパーやサンドブラストによる表面粗面化を行うなどの物理的(機械的)な手法で金属面の接着力を高めることがある。この場合、金属表面の粗面化により接着面積が増大するため見掛けの接着力は増大するが、高温高湿雰囲気下での曝露試験では接着力は大きく低下することがあった。   Therefore, in some cases, the adhesive force of the metal surface may be increased by a physical (mechanical) method such as surface roughening by sandpaper or sandblasting instead of the chemical bonding method. In this case, the apparent adhesion force is increased because the adhesion area is increased by roughening the metal surface, but the adhesion force may be greatly reduced in an exposure test in a high temperature and high humidity atmosphere.

本発明は上記した従来の課題に鑑みてなされたものであり、接着剤に対する付着性に優れた下地層を金属材料の表面に形成することが可能な表面処理剤を提供することを目的としている。特に、エポキシ系やアクリル系等の接着剤による金属材料の接着に際して、高い接着強度と接着耐久性を付与することが可能な環境負荷の低い表面処理剤を提供することを目的としている。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a surface treatment agent capable of forming a base layer having excellent adhesion to an adhesive on the surface of a metal material. . In particular, an object of the present invention is to provide a surface treatment agent with a low environmental load that can impart high adhesive strength and adhesion durability when a metal material is bonded by an epoxy or acrylic adhesive.

上記目的を達成するため、本発明者らは金属材料の接着法について鋭意研究を重ねた結果、アゾールシラン化合物とアミノ系シランカップリング剤とを所定の割合で配合して得た溶液を表面処理剤として金属等の表面に塗布し、これにより形成される下地層としての塗膜の上にエポキシ系やアクリル系の接着剤を塗布して接着することで、接着強度の耐久性を大幅に向上できることを見出し、本発明を完成するに至った。   In order to achieve the above object, the present inventors conducted extensive research on the adhesion method of metal materials, and as a result, surface-treated a solution obtained by blending an azole silane compound and an amino silane coupling agent at a predetermined ratio. It is applied to the surface of metal, etc. as an agent, and by applying an epoxy or acrylic adhesive on the coating film as the underlayer formed thereby, the durability of the adhesive strength is greatly improved. The present inventors have found that this can be done and have completed the present invention.

すなわち、本発明が提供する表面処理剤は、アゾールシラン化合物およびアミノ系シランカップリング剤を含有する溶液からなる表面処理剤であって、該溶液中の該アゾールシラン化合物の濃度が0.1質量%以上4.2質量%以下であり、該溶液中の該アミノ系シランカップリング剤の濃度が0.1質量%以上0.5質量%以下であることを特徴としている。   That is, the surface treatment agent provided by the present invention is a surface treatment agent comprising a solution containing an azole silane compound and an amino silane coupling agent, and the concentration of the azole silane compound in the solution is 0.1 mass. % To 4.2% by mass, and the concentration of the amino silane coupling agent in the solution is from 0.1% by mass to 0.5% by mass.

また、本発明が提供する金属接合体は、金属材同士が接着剤で接合されてなる金属接合体であって、該金属材同士の対向する両接合面のうち少なくとも一方に上記本発明の表面処理剤からなる表面処理剤層が形成されていることを特徴としている。   Further, the metal joined body provided by the present invention is a metal joined body in which metal materials are joined with an adhesive, and the surface of the present invention is provided on at least one of both facing joint surfaces of the metal materials. A surface treatment agent layer made of a treatment agent is formed.

また、本発明が提供する金属材料の接着方法は、接着剤を用いて金属材料同士を接着する金属材料の接着方法であって、双方の金属材料の接着面の少なくとも一方に対して上記本発明の表面処理剤を塗布して下地層を成膜した後、アクリル系接着剤またはエポキシ系接着剤で接着することを特徴としている。   The metal material bonding method provided by the present invention is a metal material bonding method in which metal materials are bonded to each other using an adhesive, and the present invention is applied to at least one of the bonding surfaces of both metal materials. After the surface treatment agent is applied to form a base layer, the substrate is bonded with an acrylic adhesive or an epoxy adhesive.

本発明によれば、接着剤に対する付着性に優れた下地層を金属材料の表面に成膜できるので、接着剤による金属材料の接着に際して高い接着強度および接着耐久性が得られる。   According to the present invention, since the base layer having excellent adhesion to the adhesive can be formed on the surface of the metal material, high adhesion strength and adhesion durability can be obtained when the metal material is adhered by the adhesive.

以下、本発明の金属材料用の表面処理剤の一具体例について説明する。この本発明の一具体例の表面処理剤は、アゾールシラン化合物およびアミノ系シランカップリング剤の双方を必須成分として含有する溶液であり、ステンレス鋼、普通鋼、ニッケル、アルミニウム、アルミニウム合金、銅、亜鉛めっき鋼などの各種金属材料に適用することができ、これらの中では特にステンレス鋼、普通鋼、ニッケルに好適に適用することができる。互いに接合させる金属同士は同種の金属材料であってもよいし、異種の金属材料の組合せでもよい。適用する金属材料の形状については特に限定はなく、板材や金属部品などの様々な形態の部材に適用できる。また、金属材料を樹脂やプラスチック等の金属以外の材料と接合する場合に適用してもよい。   Hereinafter, a specific example of the surface treatment agent for a metal material of the present invention will be described. The surface treating agent of one specific example of the present invention is a solution containing both an azole silane compound and an amino silane coupling agent as essential components, stainless steel, ordinary steel, nickel, aluminum, aluminum alloy, copper, It can be applied to various metal materials such as galvanized steel, and among these, it can be suitably applied particularly to stainless steel, ordinary steel, and nickel. The metals to be joined together may be the same type of metal material or a combination of different types of metal materials. The shape of the metal material to be applied is not particularly limited, and can be applied to various forms of members such as plate materials and metal parts. Moreover, you may apply when joining metal materials with materials other than metals, such as resin and a plastics.

上記した2種類の必須成分を溶解させる表面処理剤の溶媒には水や有機溶剤を使用することができるが、水を溶媒として用いるのが好ましい。以下、溶媒に水を用いた水溶液の表面処理剤の場合について説明する。上記の2種類の必須成分のうちの一方のアゾールシラン化合物は、その分子内にアゾール環またはアゾール環とベンゼン環との縮合環と、アルコキシシリル基とを有する構造であることが好ましい。特に、アゾールシラン化合物は、イミダゾールシラン、ベンズイミダゾールシラン、ベンゾトリアゾールシラン、およびこれらの誘導体からなる群より選択される1種以上であることが好ましい。   Water or an organic solvent can be used as the solvent for the surface treatment agent for dissolving the two essential components described above, but water is preferably used as the solvent. Hereinafter, the case of an aqueous surface treatment agent using water as a solvent will be described. One azole silane compound of the above two types of essential components preferably has a structure having an azole ring or a condensed ring of an azole ring and a benzene ring and an alkoxysilyl group in the molecule. In particular, the azole silane compound is preferably at least one selected from the group consisting of imidazole silane, benzimidazole silane, benzotriazole silane, and derivatives thereof.

上記アゾールシラン化合物は、表面処理剤としての水溶液中の濃度が0.1質量%以上4.2質量%以下であることが重要である。この濃度が0.1質量%未満では金属材料の表面を下地層で略均一に被覆することが困難になり、未処理部ができやすくなるため好ましくない。逆に、4.2質量%を超えるとアゾールシラン層が嵩高くなり、凝集破壊し易くなるため好ましくない。   It is important that the concentration of the azolesilane compound in the aqueous solution as the surface treatment agent is 0.1% by mass or more and 4.2% by mass or less. If the concentration is less than 0.1% by mass, it is difficult to coat the surface of the metal material with the base layer substantially uniformly, and an untreated part is likely to be formed, which is not preferable. On the other hand, if it exceeds 4.2% by mass, the azolesilane layer becomes bulky and is liable to cohesive failure.

アゾールシラン化合物は、例えば10%水溶液の形態の金属表面処理剤(日鉱金属株式会社製、商品名:PA−2)として市販されており、これを使用して表面処理剤を調製してもよい。この市販品(PA−2)のアゾールシラン化合物は、オリゴマー化された状態で作製されているため造膜性に優れており、また、そのアゾール構造に由来する極性の高さからステンレス鋼、普通鋼、ニッケル等の金属表面との親和性が高く、下地層として優れた特性を有している。なお、アゾールシランには、必要に応じて触媒としてのホウ素化合物や界面活性剤としての脂肪族カルボン酸等の添加物が添加されていてもよい。   The azolesilane compound is commercially available, for example, as a metal surface treatment agent in the form of a 10% aqueous solution (trade name: PA-2, manufactured by Nikko Metal Co., Ltd.), and the surface treatment agent may be prepared using this. . The azole silane compound of this commercial product (PA-2) is produced in an oligomerized state and thus has excellent film-forming properties. Also, due to its high polarity derived from its azole structure, stainless steel, ordinary It has high affinity with metal surfaces such as steel and nickel, and has excellent properties as an underlayer. Note that additives such as a boron compound as a catalyst and an aliphatic carboxylic acid as a surfactant may be added to the azolesilane as necessary.

アゾールシラン化合物は上記したように金属用表面処理剤として普及しているが、構造材の接着用としては接着耐久性がやや不足しているため、改善が求められていた。そこで本発明の一具体例の表面処理剤では、もう一方の必須成分であるアミノ基を有するシランカップリング剤(以下、アミノ系シランカップリング剤とも称する)がアゾールシラン化合物と共に水溶液に含まれている。これにより表面処理剤の接着性が大きく向上し、優れた接着強度と接着耐久性が発現される。   As described above, the azole silane compound is widely used as a metal surface treatment agent. However, since the bonding durability is slightly insufficient for bonding a structural material, improvement has been demanded. Therefore, in the surface treating agent of one specific example of the present invention, the other essential component, a silane coupling agent having an amino group (hereinafter also referred to as an amino-based silane coupling agent) is contained in an aqueous solution together with an azolesilane compound. Yes. Thereby, the adhesiveness of the surface treatment agent is greatly improved, and excellent adhesive strength and adhesive durability are exhibited.

このように、アミノ系シランカップリング剤をアゾールシラン化合物に加えることにより接着性が改善される理由は、アミノ系シランカップリング剤のアミノ基は極性が非常に強いため、ステンレスの酸化クロム層、ニッケル層等の金属層に強固に吸着することによるものと考えられる。例えばステンレス表面の酸化クロム層は大気中の水分により一部が水和されており、その表面等電点(Isoelectric Point of Surface)は7付近にあり、塩基性のアミノ基が吸着し易くなっている。また、アゾールシラン化合物中に存在するエトキシ基やメトキシ基は、アミノ系シランカップリング剤中に存在するエトキシ基やメトキシ基と脱水縮合により結合するため、非常に強固なハイブリッド膜が形成される。上記の理由により、表面処理剤は優れた接着性能を発揮すると考えられる。   As described above, the reason why the adhesion is improved by adding the amino silane coupling agent to the azole silane compound is that the amino group of the amino silane coupling agent has a very strong polarity. This is thought to be due to strong adsorption to a metal layer such as a nickel layer. For example, the chromium oxide layer on the surface of stainless steel is partly hydrated by moisture in the atmosphere, and its isoelectric point is near 7, which makes it easy for basic amino groups to be adsorbed. Yes. Moreover, since the ethoxy group and methoxy group present in the azolesilane compound are bonded to the ethoxy group and methoxy group present in the amino silane coupling agent by dehydration condensation, an extremely strong hybrid film is formed. For the above reasons, it is considered that the surface treatment agent exhibits excellent adhesion performance.

このような特徴を有するアミノ系シランカップリング剤には、各種のアミノ基を有するシランカップリング剤を使用でき、例えば、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメトキシシラン、3−トリエトキシル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシランが好ましい。これらの中では3−アミノプロピルトリエトキシシランがより好ましい。   As amino-based silane coupling agents having such characteristics, silane coupling agents having various amino groups can be used, such as 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, N-2, and the like. -(Aminoethyl) -3-aminopropylmethoxysilane, 3-triethoxyl-N- (1,3-dimethyl-butylidene) propylamine, and N-phenyl-3-aminopropyltrimethoxysilane are preferred. Among these, 3-aminopropyltriethoxysilane is more preferable.

本発明の一具体例の表面処理剤は、上記した効果が安定的に得られるようにするため、水溶液中のアミノ系シランカップリング剤の濃度を0.1質量%以上0.5質量%以下にすることが重要である。この濃度が0.1質量%未満ではアゾールシランとの併用により得られる効果が不十分になるおそれがあり、逆に0.5質量%を超えると、アミノ系シランカップリング剤自身の脱水縮合反応が優先して進み、アゾール系シランとの併用により得られる効果が発揮されにくくなる。   In the surface treating agent of one specific example of the present invention, the concentration of the amino-based silane coupling agent in the aqueous solution is 0.1 mass% or more and 0.5 mass% or less so that the above-described effects can be stably obtained. It is important to make it. If this concentration is less than 0.1% by mass, the effect obtained by the combined use with azolesilane may be insufficient. Conversely, if it exceeds 0.5% by mass, the dehydration condensation reaction of the amino silane coupling agent itself. Is preferentially advanced, and the effect obtained by the combined use with the azole-based silane is hardly exhibited.

次に、上記した本発明の一具体例の表面処理剤を用いて金属材料同士を接着する方法について説明する。なお、本発明の一具体例の表面処理剤を用いた金属材料の接着方法は、前述したようにステンレス鋼、普通鋼、ニッケル、アルミニウム、アルミニウム合金、銅、亜鉛めっき鋼などの各種金属材料に適用できるが、以下の説明ではステンレス鋼に適用する場合について説明する。   Next, a method for adhering metal materials to each other using the surface treating agent of one specific example of the present invention described above will be described. In addition, the adhesion method of the metal material using the surface treating agent of one specific example of the present invention can be applied to various metal materials such as stainless steel, ordinary steel, nickel, aluminum, aluminum alloy, copper, and galvanized steel as described above. Although applicable, the following description demonstrates the case where it applies to stainless steel.

先ず、好ましくは純水にアゾールシラン化合物およびアミノ系シランカップリング剤をそれぞれ上記した所定の濃度範囲内になるように添加して攪拌機で混合する。これにより、表面処理剤としての水溶液を調製する。次に、調製した表面処理剤としての水溶液を、互に接着される2枚のステンレス鋼板の各々の接着面に塗布する。塗布法については特に限定はなく、表面処理剤としての水溶液に金属材料を浸漬する方法や金属材料の表面にハケなどで塗布する方法など、公知の手段が使用できる。浸漬の場合は浸漬時間は1秒から10分程度でよく、好ましくは1秒から60秒である。表面処理剤の塗布後は、100〜150℃の温度で乾燥させる。   First, preferably, an azole silane compound and an amino-based silane coupling agent are added to pure water so as to be within the above-described predetermined concentration ranges and mixed with a stirrer. Thereby, the aqueous solution as a surface treating agent is prepared. Next, the prepared aqueous solution as a surface treatment agent is applied to each bonding surface of the two stainless steel plates to be bonded to each other. There is no particular limitation on the coating method, and known means such as a method of immersing a metal material in an aqueous solution as a surface treating agent or a method of coating the surface of the metal material with a brush or the like can be used. In the case of immersion, the immersion time may be about 1 second to 10 minutes, preferably 1 second to 60 seconds. After application of the surface treatment agent, it is dried at a temperature of 100 to 150 ° C.

このようにして下地層が成膜された2枚のステンレス鋼板の片方または両方の下地層の上に接着剤を塗布し、両下地層側が対向するように2枚の板材を重ね合わせて接着させる。これにより、高い接着強度および接着耐久性を有する接合体が得られる。接着に用いる接着剤としては、シランカップリング剤と化学結合(共有結合)を形成するものであれば特に限定はなく、例えば市販の1液型または2液型エポキシ接着剤、イソシアネートを硬化剤とするウレタン系接着剤、ラジカル硬化型の変性アクリル系接着剤、加熱硬化型のシリコーン系接着剤などを挙げることができる。これらの中ではステンレス鋼板用には油面接着性にも優れるラジカル硬化型の変性アクリル系接着剤や2液型エポキシ接着剤が好ましい。例えば、変性アクリル系接着剤ではスリーエム製のスコッチウェルドEPX メタルグリップを挙げることができ、2液型エポキシ接着剤ではスリーエム製のスコッチウェルドEP190を挙げることができる。   In this way, an adhesive is applied on one or both of the two stainless steel plates on which the base layer is formed, and the two plate materials are overlapped and bonded so that the two base layer sides face each other. . Thereby, the joined body which has high adhesive strength and adhesive durability is obtained. The adhesive used for adhesion is not particularly limited as long as it forms a chemical bond (covalent bond) with the silane coupling agent. For example, a commercially available one-component or two-component epoxy adhesive, isocyanate and a curing agent are used. And urethane-type adhesives, radical-curing modified acrylic adhesives, heat-curing silicone adhesives, and the like. Among these, radical curable modified acrylic adhesives and two-component epoxy adhesives that are excellent in oil surface adhesion are preferable for stainless steel sheets. For example, a modified acrylic adhesive may include 3M Scotchweld EPX metal grip, and a two-component epoxy adhesive may include 3M Scotchweld EP190.

以上説明したように、本発明の表面処理剤を使用して下地層を形成することにより、接着剤を用いて同種の金属材料や異種の金属材料を接着するという簡単な施工によって、従来の酸混合水溶液での表面処理やシランカップリング剤などの化学処理による表面処理を行う場合とほぼ同等以上の高い接着強度と優れた耐久性を有する建材その他の構造材等の金属接合体を有害な公害物質を生じることなく作製することができる。特に、この金属接合体の接着部は高温での耐湿性に優れており、沸騰水による浸漬のような高温高湿環境下に曝されても高い接着強度を長期間にわたって保持することができる。   As described above, by using the surface treatment agent of the present invention to form a base layer, a simple construction in which the same kind of metal material or a different kind of metal material is bonded using an adhesive, a conventional acid is used. Hazardous pollution to metal joints such as building materials and other structural materials with high adhesive strength and excellent durability almost equal to or higher than when surface treatment with mixed aqueous solution or chemical treatment such as silane coupling agent It can be produced without producing a substance. In particular, the bonded portion of the metal joined body is excellent in moisture resistance at high temperatures, and can maintain high adhesive strength over a long period of time even when exposed to a high temperature and high humidity environment such as immersion in boiling water.

また、ニッケル等の金属材にTIMを適用する場合の表面処理剤としても好適に使用することができる。即ち、ニッケル表面は非常に不活性であるため有機材料に対する接着性を高めるのが難しく、その表面に接着させたTIMとの接着力が熱負荷により著しく低下することがあるが、上記の表面処理剤でニッケル板の表面を処理することで、サンドブラストなどの表面粗面化を行うことなくニッケルの平滑な表面を維持したまま、TIMの素材である例えば有機・無機複合系薄膜との接着性を極めて簡便に高めることができる。   Moreover, it can be used conveniently also as a surface treating agent in the case of applying TIM to metal materials, such as nickel. That is, since the nickel surface is very inactive, it is difficult to increase the adhesion to organic materials, and the adhesive force with the TIM adhered to the surface may be significantly reduced by the thermal load. By treating the surface of the nickel plate with an agent, adhesion to the TIM material, for example, an organic / inorganic composite thin film, while maintaining a smooth surface of nickel without roughening the surface such as sandblasting It can be increased very simply.

更に、本発明の表面処理剤は電気絶縁材料の接着に用いることもできる。すなわち、本発明の表面処理剤は、高温の強酸または強アルカリの水溶液中のような過酷な使用条件においても接着部は安定した接着性を維持できる上、塗膜の架橋密度が非常に高いので、強酸、強塩基性水溶液中で使用される金属用絶縁膜などの各種電気化学プロセスへの適用という新たな展開が可能である。   Furthermore, the surface treating agent of the present invention can also be used for adhesion of electrically insulating materials. That is, the surface treatment agent of the present invention can maintain a stable adhesive property even under severe use conditions such as a high temperature strong acid or strong alkali aqueous solution, and the cross-linking density of the coating film is very high. In addition, new developments such as application to various electrochemical processes such as insulating films for metals used in strong acid and strong basic aqueous solutions are possible.

[実施例A]
以下、実施例および比較例の表面処理剤を用いて表面処理した金属板同士を接着剤で接着し、その接着強度および耐久性を評価した。なお、下記の実施例や比較例によって本発明が制限されるものではない。先ず、アゾールシラン化合物およびアミノ系シランカップリング剤として、それぞれ日鉱商事製のアゾールシラン重合体(商品名PA−2:10質量%水溶液)および信越シリコーン製の3−アミノプロピルトリエトキシシラン(商品名KBE−903)を用意した。
[Example A]
Hereinafter, the metal plates surface-treated using the surface treating agents of Examples and Comparative Examples were bonded with an adhesive, and the adhesive strength and durability were evaluated. The present invention is not limited by the following examples and comparative examples. First, as an azole silane compound and an amino-based silane coupling agent, respectively, an azole silane polymer (trade name PA-2: 10% by mass aqueous solution) manufactured by Nikko Shoji and 3-aminopropyltriethoxysilane (trade name) manufactured by Shin-Etsu Silicone. KBE-903) was prepared.

次に、30〜50gの範囲内で純水が入れられている複数のビーカーのそれぞれにアゾールシラン化合物としてのPA−2を0.5〜21gの範囲内で様々な含有量となるように秤量して添加し、スターラーにより3分間撹拌することで溶解させた。続いて、上記複数のビーカーのそれぞれにアミノ系シランカップリング剤としてのKBE−903を0.05〜0.20gの範囲内で様々な含有量となるように秤量して添加し、更に3分間撹拌することで溶解させた。このようにして試料1〜16の表面処理剤の水溶液を調製した。   Next, each of a plurality of beakers in which pure water is contained within a range of 30 to 50 g is weighed so that PA-2 as an azolesilane compound has various contents within a range of 0.5 to 21 g. And dissolved by stirring for 3 minutes with a stirrer. Subsequently, KBE-903 as an amino-based silane coupling agent was weighed and added to each of the plurality of beakers so as to have various contents within a range of 0.05 to 0.20 g, and further added for 3 minutes. It was dissolved by stirring. In this manner, aqueous solutions of the surface treatment agents for Samples 1 to 16 were prepared.

また、アミノ系シランカップリング剤としてKBE−903の代わりに信越シリコーン製のN-2−(アミノエチル)−3−アミノプロピルトリメトキシシラン(商品名KBM−603)を使用して試料17の表面処理剤を作製した。更に、比較のため、純水にアゾールシラン重合体のみを添加して試料18および19の表面処理剤を作製した。このようにして作製した試料1〜19の表面処理剤の各々に含まれる純水、アゾールシラン化合物およびアミノ系シランカップリング剤の量と濃度を下記表1に示す。   Further, the surface of sample 17 using N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (trade name KBM-603) made by Shin-Etsu Silicone instead of KBE-903 as an amino silane coupling agent. A treating agent was prepared. For comparison, surface treatment agents for Samples 18 and 19 were prepared by adding only the azolesilane polymer to pure water. Table 1 below shows the amounts and concentrations of pure water, azole silane compound, and amino silane coupling agent contained in each of the surface treatment agents of Samples 1 to 19 thus prepared.

Figure 2017043845
Figure 2017043845

次に、接着対象となる板厚1.2mmのSUS304ステンレス鋼板から幅25mm、長さ100mmの複数の矩形の試験片をそれらの長手方向が圧延方向に向くように切り出した。これら複数の試験片を常温のアセトンに3分間浸漬して脱脂した後、常温の10%塩酸水溶液に3分間浸漬させて酸洗し、蒸留水で洗浄した。そして、上記の試料1〜19の表面処理剤の各々に、上記試験片を4枚ずつ60秒間浸漬させた。浸漬後は温度100℃の乾燥機内で乾燥させた。   Next, a plurality of rectangular test pieces having a width of 25 mm and a length of 100 mm were cut from a SUS304 stainless steel plate having a thickness of 1.2 mm to be bonded so that the longitudinal direction thereof was in the rolling direction. These test pieces were degreased by immersing them in normal temperature acetone for 3 minutes, then immersed in normal temperature 10% aqueous hydrochloric acid for 3 minutes, pickled, and washed with distilled water. Then, four test pieces were immersed in each of the surface treatment agents of Samples 1 to 19 for 60 seconds. After the immersion, it was dried in a dryer at a temperature of 100 ° C.

このようにして得た表面処理剤の各試料当たり4枚の処理済み試験片に対して、2枚ずつ変性アクリル系接着剤(スリーエム製スコッチウェルドEPX メタルグリップ)を塗布してラップ幅12.5mmで接着した。これにより、試料1〜19の表面処理剤でそれぞれ処理した試料1A〜19Aの接合体を各々2個ずつ作製した。更に、表面処理剤による表面処理を行わずに前述した脱脂、酸洗および水洗のみを行った4枚の試験片の2枚ずつに対して同様に変性アクリル系接着剤で接着して試料20Aの接合体を2個作製した。   A modified acrylic adhesive (Scotchweld EPX Metal Grip manufactured by 3M) was applied to each of the four treated specimens for each sample of the surface treatment agent thus obtained, and a lap width of 12.5 mm. Glued with. Thus, two bonded bodies of Samples 1A to 19A each treated with the surface treatment agent of Samples 1 to 19 were produced. Further, two samples of the four test pieces subjected to only the degreasing, pickling and water washing described above without performing the surface treatment with the surface treatment agent were similarly adhered with a modified acrylic adhesive to prepare the sample 20A. Two joined bodies were produced.

そして、上記各試料2個の接合体のうちの一方に対して、その接着部を室温で7日間かけて完全に硬化させた後、JIS K6850に準拠して剪断接着強度を測定して初期せん断強度を調べた。更に、接着部の耐湿性を調査するため、上記各試料2個の接合体のうちのもう一方に対して、温度80℃で相対湿度98%以上の雰囲気に60日間暴露した後、同様にせん断接着強度を測定して60日後せん断強度を調べた。その測定結果を下記表2に示す。   Then, after bonding the bonded portion to one of the two bonded bodies of each sample for 7 days at room temperature, the shear bond strength was measured according to JIS K6850, and the initial shear was measured. The strength was examined. Further, in order to investigate the moisture resistance of the bonded portion, the other of the two joined bodies of each sample was exposed to an atmosphere having a relative humidity of 98% or more at a temperature of 80 ° C. for 60 days, and then sheared in the same manner. The adhesive strength was measured and the shear strength was examined after 60 days. The measurement results are shown in Table 2 below.

Figure 2017043845
Figure 2017043845

上記表2の結果から、本発明の要件を満たす試料1〜17の表面処理剤でそれぞれ表面処理した試料1A〜17Aの接合体は、高温高湿度下でも高い接着性耐久性が維持されていることがわかる。これに対して、試料18〜19のアゾールシラン化合物だけでそれぞれ表面処理した試料18A〜19Aの接合体および表面処理剤での表面処理を行わなかった試料20Aの接合体の接着強度は、初期および60日後のいずれにおいても試料1A〜17Aの接合体に比べて劣っていた。
[実施例B]
接着剤に変性アクリル系接着剤に代えてエポキシ系接着剤(スリーエム製スコッチウェルドEP−190)を用いた以外は実施例Aと同様にして作製した試料1B〜20Bの接合体に対して、実施例Aと同様にして初期と60日後のせん断強度を測定した。その測定結果を下記表3に示す。
From the results of Table 2 above, the bonded assemblies of Samples 1A to 17A that were surface-treated with the surface treatment agents of Samples 1 to 17 that satisfy the requirements of the present invention maintain high adhesive durability even under high temperature and high humidity. I understand that. On the other hand, the bonding strengths of the bonded body of Samples 18A to 19A that were surface-treated with only the azolesilane compound of Samples 18 to 19 and the bonded body of Sample 20A that was not subjected to the surface treatment with the surface treatment agent were initial and In any case after 60 days, it was inferior to the joined bodies of Samples 1A to 17A.
[Example B]
Implemented on samples 1B to 20B, which were produced in the same manner as in Example A, except that an epoxy adhesive (Scotch Weld EP-190 manufactured by 3M) was used instead of the modified acrylic adhesive. In the same manner as in Example A, the shear strength at the initial stage and after 60 days was measured. The measurement results are shown in Table 3 below.

Figure 2017043845
Figure 2017043845

上記表3の結果から、本発明の要件を満たす試料1〜17の表面処理剤でそれぞれ表面処理した試料1B〜17Bの接合体は、高温高湿度下でも高い接着性耐久性が維持されていることがわかる。これに対して、試料18〜19のアゾールシラン化合物だけでそれぞれ表面処理した試料18B〜19Bの接合体および表面処理剤での表面処理を行わなかった試料20Bの接合体の接着強度は、初期および60日後のいずれにおいても試料1B〜17Bの接合体に比べて劣っていた。   From the results of Table 3 above, the bonded assemblies of Samples 1B to 17B, which were surface-treated with the surface treatment agents of Samples 1 to 17 that satisfy the requirements of the present invention, maintained high adhesive durability even under high temperature and high humidity. I understand that. On the other hand, the bonding strengths of the joined body of Samples 18B to 19B surface-treated with only the azolesilane compound of Samples 18 to 19 and the joined body of Sample 20B not subjected to the surface treatment with the surface treatment agent are initial and In any case after 60 days, it was inferior to the joined bodies of Samples 1B to 17B.

[実施例C]
SUS304ステンレス鋼板に代えて板厚1.6mmの冷間圧延鋼板を金属板に使用し、接着剤には変性アクリル系接着剤に代えてエポキシ系接着剤(スリーエム製スコッチウェルドEP−190)を用いた以外は実施例Aと同様にして作製した試料1C〜20Cの接合体に対して、実施例Aと同様にして初期と60日後のせん断強度を測定した。その測定結果を下記表4に示す。
[Example C]
A cold rolled steel plate with a thickness of 1.6 mm is used for the metal plate instead of the SUS304 stainless steel plate, and an epoxy adhesive (Scotch Weld EP-190 manufactured by 3M) is used for the adhesive instead of the modified acrylic adhesive. Except for the above, for the joined bodies of Samples 1C to 20C produced in the same manner as in Example A, the initial and 60-day shear strengths were measured in the same manner as in Example A. The measurement results are shown in Table 4 below.

Figure 2017043845
Figure 2017043845

上記表4の結果から、本発明の要件を満たす試料1〜17の表面処理剤でそれぞれ表面処理した試料1C〜17Cの接合体は、高温高湿度下でも高い接着性耐久性が維持されていることがわかる。これに対して、試料18〜19のアゾールシラン化合物だけでそれぞれ表面処理した試料18C〜19Cの接合体および表面処理剤での表面処理を行わなかった試料20Cの接合体の接着強度は、初期および60日後のいずれにおいても試料1C〜17Cの接合体に比べて劣っていた。   From the results in Table 4 above, the bonded assemblies of Samples 1C to 17C that were surface-treated with the surface treatment agents of Samples 1 to 17 that satisfy the requirements of the present invention maintained high adhesive durability even under high temperature and high humidity. I understand that. In contrast, the bonding strengths of the joined body of Samples 18C to 19C surface-treated with only the azole silane compound of Samples 18 to 19 and the joined body of Sample 20C that was not subjected to the surface treatment with the surface treatment agent were initial and In any case after 60 days, it was inferior to the joined bodies of Samples 1C to 17C.

[実施例D]
SUS304ステンレス鋼板に代えて板厚1.6mmのアルミニウム・チタン合金(2024−T3)を金属板に使用し、接着剤には変性アクリル系接着剤に代えてエポキシ系接着剤(スリーエム製スコッチウェルドEP−190)を用いた以外は実施例Aと同様にして作製した試料1D〜20Dの接合体に対して、実施例Aと同様にして初期と60日後のせん断強度を測定した。その測定結果を下記表5に示す。
[Example D]
Instead of the SUS304 stainless steel plate, a 1.6 mm thick aluminum / titanium alloy (2024-T3) is used for the metal plate, and an epoxy adhesive (3M Scotch Weld EP manufactured by 3M) is used instead of the modified acrylic adhesive. With respect to the joined bodies of Samples 1D to 20D prepared in the same manner as in Example A except that -190) was used, the shear strengths at the initial stage and after 60 days were measured in the same manner as in Example A. The measurement results are shown in Table 5 below.

Figure 2017043845
Figure 2017043845

上記表5の結果から、本発明の要件を満たす試料1〜17の表面処理剤でそれぞれ表面処理した試料1D〜17Dの接合体は、高温高湿度下でも高い接着性耐久性が維持されていることがわかる。これに対して、試料18〜19のアゾールシラン化合物だけでそれぞれ表面処理した試料18D〜19Dの接合体および表面処理剤での表面処理を行わなかった試料20Dの接合体の接着強度は、初期および60日後のいずれにおいても試料1D〜17Dの接合体に比べて劣っていた。   From the results of Table 5 above, the bonded assemblies of Samples 1D to 17D that were surface-treated with the surface treatment agents of Samples 1 to 17 that satisfy the requirements of the present invention maintained high adhesive durability even under high temperature and high humidity. I understand that. On the other hand, the bonding strengths of the joined body of Samples 18D to 19D surface-treated with only the azolesilane compound of Samples 18 to 19 and the joined body of Sample 20D not subjected to the surface treatment with the surface treatment agent are initial and In any case after 60 days, it was inferior to the joined bodies of Samples 1D to 17D.

[実施例E]
SUS304ステンレス鋼板に代えて板厚1.2mmの熔融亜鉛めっき鋼板を金属板に使用し、接着剤には変性アクリル系接着剤に代えてエポキシ系接着剤(スリーエム製スコッチウェルドEP−190)を用いた以外は実施例Aと同様にして作製した試料1E〜20Eの接合体に対して、実施例Aと同様にして初期と60日後のせん断強度を測定した。その測定結果を下記表6に示す。
[Example E]
Instead of the SUS304 stainless steel plate, a hot-dip galvanized steel plate with a thickness of 1.2 mm is used for the metal plate, and an epoxy adhesive (Scotch Weld EP-190 manufactured by 3M) is used as the adhesive instead of the modified acrylic adhesive. Except that, the shear strengths at the initial stage and after 60 days were measured in the same manner as in Example A for the joined bodies of Samples 1E to 20E prepared in the same manner as in Example A. The measurement results are shown in Table 6 below.

Figure 2017043845
Figure 2017043845

上記表6の結果から、本発明の要件を満たす試料1〜17の表面処理剤でそれぞれ表面処理した試料1E〜17Eの接合体は、高温高湿度下でも高い接着性耐久性が維持されていることがわかる。これに対して、試料18〜19のアゾールシラン化合物だけでそれぞれ表面処理した試料18E〜19Eの接合体および表面処理剤での表面処理を行わなかった試料20Eの接合体の接着強度は、初期および60日後のいずれにおいても試料1E〜17Eの接合体に比べて劣っていた。   From the results of Table 6 above, the bonded assemblies of Samples 1E to 17E that were surface-treated with the surface treatment agents of Samples 1 to 17 that satisfy the requirements of the present invention maintained high adhesive durability even under high temperature and high humidity. I understand that. On the other hand, the bonding strengths of the joined body of samples 18E to 19E surface-treated with only the azolesilane compound of samples 18 to 19 and the joined body of sample 20E not subjected to the surface treatment with the surface treatment agent are initial and In any case after 60 days, it was inferior to the joined bodies of Samples 1E to 17E.

[実施例F]
SUS304ステンレス鋼板に代えて板厚1.0mmのJIS H4551ニッケル板(スタンダードテストピース社)を金属板に使用し、接着剤には変性アクリル系接着剤に代えてエポキシ系接着剤(スリーエム製スコッチウェルドEP−190)を用いた以外は実施例Aと同様にして試料1F〜20Fの接合体を作製した。これら試料1F〜20Fの接合体に対して、初期のせん断強度は実施例Aと同様に試験を行ったが、耐湿性試験では接合体を60℃、相対湿度98%以上の雰囲気に60日間暴露した後、実施例Aと同様にしてせん断接着強度を測定した。その測定結果を下記表7に示す。
[Example F]
Instead of the SUS304 stainless steel plate, a JIS H4551 nickel plate (Standard Test Piece) with a thickness of 1.0 mm is used for the metal plate, and an epoxy adhesive (Scotch Weld made by 3M) is used instead of the modified acrylic adhesive as the adhesive. A joined body of Samples 1F to 20F was produced in the same manner as in Example A except that EP-190) was used. The initial shear strength was tested on the joined bodies of Samples 1F to 20F in the same manner as in Example A. In the moisture resistance test, the joined body was exposed to an atmosphere of 60 ° C. and a relative humidity of 98% or more for 60 days. After that, the shear adhesive strength was measured in the same manner as in Example A. The measurement results are shown in Table 7 below.

Figure 2017043845
Figure 2017043845

上記表7の結果から、本発明の要件を満たす試料1〜17の表面処理剤でそれぞれ表面処理した試料1F〜17Fの接合体は、高温高湿度下でも高い接着性耐久性が維持されていることがわかる。これに対して、試料18〜19のアゾールシラン化合物だけでそれぞれ表面処理した試料18F〜19Fの接合体および表面処理剤での表面処理を行わなかった試料20Fの接合体の接着強度は、60日後において試料1F〜17Fの接合体に比べて劣っていた。   From the results in Table 7 above, the bonded assemblies of Samples 1F to 17F that were surface-treated with the surface treatment agents of Samples 1 to 17 that satisfy the requirements of the present invention maintained high adhesive durability even under high temperature and high humidity. I understand that. On the other hand, the adhesion strength of the joined body of samples 18F to 19F surface-treated with only the azolesilane compound of samples 18 to 19 and the joined body of sample 20F not subjected to the surface treatment with the surface treatment agent was 60 days later. Was inferior to the joined bodies of Samples 1F to 17F.

[実施例G]
接着剤にエポキシ系接着剤に代えて変性アクリル系接着剤(スリーエム製スコッチウェルドEPX メタルグリップ)を用いた以外は実施例Fと同様にして作製した試料1G〜20Gの接合体に対して、実施例Fと同様にして初期と60日後のせん断強度を測定した。その測定結果を下記表8に示す。
[Example G]
Implemented on samples 1G to 20G, which were prepared in the same manner as in Example F, except that a modified acrylic adhesive (Scotch Weld EPX Metal Grip manufactured by 3M) was used instead of the epoxy adhesive. In the same manner as in Example F, the shear strength at the initial stage and after 60 days was measured. The measurement results are shown in Table 8 below.

Figure 2017043845
Figure 2017043845

上記表8の結果から、本発明の要件を満たす試料1〜17の表面処理剤でそれぞれ表面処理した試料1G〜17Gの接合体は、高温高湿度下でも高い接着性耐久性が維持されていることがわかる。これに対して、試料18〜19のアゾールシラン化合物だけでそれぞれ表面処理した試料18G〜19Gの接合体および表面処理剤での表面処理を行わなかった試料20Gの接合体の接着強度は、60日後において試料1G〜17Gの接合体に比べて劣っていた。   From the results of Table 8 above, the bonded assemblies of Samples 1G to 17G that were surface-treated with the surface treatment agents of Samples 1 to 17 that satisfy the requirements of the present invention maintained high adhesive durability even under high temperature and high humidity. I understand that. On the other hand, the adhesion strength of the joined body of samples 18G to 19G surface-treated with only the azolesilane compound of samples 18 to 19 and the joined body of sample 20G not subjected to the surface treatment with the surface treatment agent was 60 days later. In comparison with the joined bodies of Samples 1G to 17G.

[実施例H]
SUS304ステンレス鋼板に代えて板厚1.6mmの銅板を使用した以外はそれぞれ実施例Aの試料7および実施例Bの試料7と同様の条件で2種類の接合体を作製した。これらに対して実施例Aと同様にして初期と60日後のせん断接着強度を測定した。その結果、前者は初期のせん断強度が14MPa、60日後のせん断強度が12MPaであり、後者は初期のせん断強度が18MPa、60日後のせん断強度が14MPaであった。よって、銅板においてもSUS304ステンレス鋼板と同様に高温高湿度下でも高い接着性耐久性が維持されることがわかる。
[Example H]
Two types of joined bodies were prepared under the same conditions as Sample 7 of Example A and Sample 7 of Example B, respectively, except that a copper plate having a thickness of 1.6 mm was used instead of the SUS304 stainless steel plate. In the same manner as in Example A, the shear bond strength at the initial stage and after 60 days was measured. As a result, the former had an initial shear strength of 14 MPa and a shear strength after 60 days of 12 MPa, and the latter had an initial shear strength of 18 MPa and a shear strength after 60 days of 14 MPa. Therefore, it can be seen that high adhesion durability is maintained even at high temperature and high humidity in the copper plate as in the case of the SUS304 stainless steel plate.

[実施例I]
SUS304ステンレス鋼板に代えて板厚1.6mmのアルミニウム板を使用した以外はそれぞれ実施例Aの試料7および実施例Bの試料7と同様の条件で2種類の接合体を作製した。これらに対して実施例Aと同様にして初期と60日後のせん断接着強度を測定した。その結果、前者は初期のせん断強度が14MPa、60日後のせん断強度が10MPaであり、後者は初期のせん断強度が18MPa、60日後のせん断強度が14MPaであった。よって、アルミニウム板においてもSUS304ステンレス鋼板と同様に高温高湿度下でも高い接着性耐久性が維持されることがわかる。


[Example I]
Two types of joined bodies were produced under the same conditions as Sample 7 of Example A and Sample 7 of Example B, respectively, except that an aluminum plate having a thickness of 1.6 mm was used instead of the SUS304 stainless steel plate. In the same manner as in Example A, the shear bond strength at the initial stage and after 60 days was measured. As a result, the former had an initial shear strength of 14 MPa and a shear strength after 60 days of 10 MPa, and the latter had an initial shear strength of 18 MPa and a shear strength after 60 days of 14 MPa. Therefore, it can be seen that also in the aluminum plate, high adhesive durability is maintained even under high temperature and high humidity as in the case of the SUS304 stainless steel plate.


Claims (6)

アゾールシラン化合物およびアミノ系シランカップリング剤を含有する溶液からなる表面処理剤であって、該溶液中の該アゾールシラン化合物の濃度が0.1質量%以上4.2質量%以下であり、該溶液中の該アミノ系シランカップリング剤の濃度が0.1質量%以上0.5質量%以下であることを特徴とする金属材料用表面処理剤。   A surface treatment agent comprising a solution containing an azole silane compound and an amino silane coupling agent, wherein the concentration of the azole silane compound in the solution is 0.1% by mass or more and 4.2% by mass or less, A surface treatment agent for a metal material, wherein the concentration of the amino silane coupling agent in the solution is 0.1% by mass or more and 0.5% by mass or less. 前記アゾールシラン化合物が、イミダゾールシラン、ベンズイミダゾールシラン、ベンゾトリアゾールシラン、およびこれらの誘導体からなる群より選択される1種以上であることを特徴とする、請求項1に記載の金属材料用表面処理剤。   The surface treatment for a metal material according to claim 1, wherein the azole silane compound is at least one selected from the group consisting of imidazole silane, benzimidazole silane, benzotriazole silane, and derivatives thereof. Agent. 前記金属材料が、ステンレス鋼、普通鋼、ニッケル、アルミニウム、アルミニウム合金、銅、亜鉛めっき鋼からなる群より選択される1種または2種であることを特徴とする、請求項1または2に記載の金属材料用表面処理剤。   The metal material is one or two selected from the group consisting of stainless steel, ordinary steel, nickel, aluminum, aluminum alloy, copper, and galvanized steel. Surface treatment agent for metal materials. 金属材同士が接着剤で接合されてなる金属接合体であって、該金属材同士の対向する両接合面のうち少なくとも一方に請求項1から3のいずれか1項に記載の表面処理剤からなる表面処理剤層が形成されていることを特徴とする金属接合体。   It is a metal joined body formed by joining metal materials with an adhesive, and the surface treatment agent according to any one of claims 1 to 3 is applied to at least one of both facing joint surfaces of the metal materials. A metal joined body characterized in that a surface treatment agent layer is formed. 接着剤を用いて金属材料同士を接着する金属材料の接着方法であって、双方の金属材料の接着面の少なくとも一方に対して請求項1または2に記載の表面処理剤を塗布して下地層を成膜した後、アクリル系接着剤またはエポキシ系接着剤で接着することを特徴とする金属材料の接着方法。   A method for adhering metal materials using an adhesive, wherein the surface treatment agent according to claim 1 or 2 is applied to at least one of the adhesion surfaces of both metal materials to form an underlayer After the film is formed, the metal material is bonded with an acrylic adhesive or an epoxy adhesive. 前記金属材料が、ステンレス鋼、普通鋼、ニッケル、アルミニウム、アルミニウム合金、銅、および亜鉛めっき鋼のうちの1種または2種であることを特徴とする、請求項3に記載の金属材料の接着方法。


The metal material adhesion according to claim 3, wherein the metal material is one or two of stainless steel, ordinary steel, nickel, aluminum, aluminum alloy, copper, and galvanized steel. Method.


JP2016164323A 2015-08-25 2016-08-25 Surface treatment agents for metal materials, metal joints and methods for adhering metal materials Active JP6834247B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015166102 2015-08-25
JP2015166102 2015-08-25

Publications (2)

Publication Number Publication Date
JP2017043845A true JP2017043845A (en) 2017-03-02
JP6834247B2 JP6834247B2 (en) 2021-02-24

Family

ID=58209204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016164323A Active JP6834247B2 (en) 2015-08-25 2016-08-25 Surface treatment agents for metal materials, metal joints and methods for adhering metal materials

Country Status (1)

Country Link
JP (1) JP6834247B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094258A (en) * 2018-12-14 2020-06-18 日本パーカライジング株式会社 Surface treatment agent and use of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177535A (en) * 1992-12-09 1994-06-24 Japan Energy Corp Metal surface treatment agent
JP2001316835A (en) * 2000-04-28 2001-11-16 Nikko Materials Co Ltd Surface treatment agent for metal material and surface treated metal material
WO2005031037A1 (en) * 2003-09-29 2005-04-07 Toray Industries, Inc. Titanium or titanium alloy, resin composition for adhesion, prepreg and composite material
WO2006001199A1 (en) * 2004-06-25 2006-01-05 Nippon Mining & Metals Co., Ltd. Metal surface-treating agents for promoting adhesion between rubber and the metal
JP2013500378A (en) * 2009-07-29 2013-01-07 イルジン カッパー ホイル カンパニー リミテッド Surface treatment agent composition, method for producing the same, copper foil for printed circuit board, and flexible copper foil laminated film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177535A (en) * 1992-12-09 1994-06-24 Japan Energy Corp Metal surface treatment agent
JP2001316835A (en) * 2000-04-28 2001-11-16 Nikko Materials Co Ltd Surface treatment agent for metal material and surface treated metal material
WO2005031037A1 (en) * 2003-09-29 2005-04-07 Toray Industries, Inc. Titanium or titanium alloy, resin composition for adhesion, prepreg and composite material
WO2006001199A1 (en) * 2004-06-25 2006-01-05 Nippon Mining & Metals Co., Ltd. Metal surface-treating agents for promoting adhesion between rubber and the metal
JP2013500378A (en) * 2009-07-29 2013-01-07 イルジン カッパー ホイル カンパニー リミテッド Surface treatment agent composition, method for producing the same, copper foil for printed circuit board, and flexible copper foil laminated film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094258A (en) * 2018-12-14 2020-06-18 日本パーカライジング株式会社 Surface treatment agent and use of the same

Also Published As

Publication number Publication date
JP6834247B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
US6761934B2 (en) Electroless process for treating metallic surfaces and products formed thereby
Lunder et al. Effect of pre-treatment on the durability of epoxy-bonded AA6060 aluminium joints
KR100548797B1 (en) Corrosion resistant surface treatment for structural adhesive bonding to metal
US20060234072A1 (en) Process for forming a well visible non-chromate conversion coating for magnesium and magnesium alloys
WO2011070978A1 (en) Process for production of steel plate/aluminum plate joint structure, and steel plate and aluminum plate produced by the process
TWI572743B (en) Application of coating pretreating agent and coating type coating method for coating type coating
CA2857309C (en) Primer composition
Rudawska et al. The effect of cataphoretic and powder coatings on the strength and failure modes of EN AW-5754 aluminium alloy adhesive joints
Van Ooij et al. Testing the adhesion of paint films to metals by swelling in N-methyl pyrrolidone
JP6834247B2 (en) Surface treatment agents for metal materials, metal joints and methods for adhering metal materials
JP4007626B2 (en) Aqueous metal surface pretreatment composition for enhancing adhesion durability
Bretz et al. Adhesive bonding and corrosion protection of a die cast magnesium automotive door
KR101315533B1 (en) Surface treated aluminium alloy material and bonded body using thereof
JP5413329B2 (en) Bonding method of metal material
JP4765902B2 (en) Surface-treated metal material with excellent adhesion and film adhesion
JP5835302B2 (en) Primer composition
JP7006493B2 (en) Adhesive method for metal materials using adhesives and metal material joints
JP6060880B2 (en) Primer composition
Svoboda et al. Alternative methods of chemical pre-treatment on hot-dip galvanization surface for adhesion organic coatings
JP3405260B2 (en) Organic composite coated steel sheet
JP6623543B2 (en) Organic resin coated steel
JP2010168535A (en) Method of bonding metallic material, and bonding layer for metallic material
Janoško et al. Influence of conversion coatings on the resistance of adhesive joints to undercorrosion
Rudawska et al. The impact of selected technological and material parameters on the strength of adhesive steel sheets joints
JPS61283675A (en) Method of treating surface of copper plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6834247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150