JP4003160B2 - Pyrolysis apparatus and pyrolysis method for plastic - Google Patents

Pyrolysis apparatus and pyrolysis method for plastic Download PDF

Info

Publication number
JP4003160B2
JP4003160B2 JP2001350261A JP2001350261A JP4003160B2 JP 4003160 B2 JP4003160 B2 JP 4003160B2 JP 2001350261 A JP2001350261 A JP 2001350261A JP 2001350261 A JP2001350261 A JP 2001350261A JP 4003160 B2 JP4003160 B2 JP 4003160B2
Authority
JP
Japan
Prior art keywords
exhaust gas
distillation
heating
thermal decomposition
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001350261A
Other languages
Japanese (ja)
Other versions
JP2003147120A (en
Inventor
隆 神山
昌弘 小笠原
佳則 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Systems and Services Corp filed Critical Toshiba Plant Systems and Services Corp
Priority to JP2001350261A priority Critical patent/JP4003160B2/en
Publication of JP2003147120A publication Critical patent/JP2003147120A/en
Application granted granted Critical
Publication of JP4003160B2 publication Critical patent/JP4003160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はプラスチックを熱分解し、その生成物を蒸留する熱分解装置及び熱分解方法に関し、詳しくは熱分解手段の加熱部からの排ガスを蒸留手段の加熱部に供給するようにした熱分解装置および熱分解方法に関する。
【0002】
【従来の技術】
工場設備や家庭からは多量のプラスチック類が排出される。廃プラスチックをそのまま外部に排出すると環境を汚染するため、再利用できる形態にすることが望ましい。そのため従来から廃プラスチックを熱分解手段により熱分解して燃料油として回収する方法が広く採用されている。
【0003】
熱分解手段として槽形の熱分解槽方式や管形の反応管方式があるが、連続運転を行う場合は後者の反応管方式が望ましい。熱分解手段には電気ヒータ加熱方式もしくは高温ガス加熱方式による加熱部が設けられるが、燃焼ガス発生手段で発生した燃焼ガスを用いる高温ガス加熱方式が数多く採用されている。熱分解温度は、例えばポリスチレンでは500℃〜800℃の範囲の高温であるため、高温ガス加熱方式を採用する場合、その燃焼ガスの温度はそれより若干高めに設定される。
【0004】
しかしながら、廃プラスチックを燃料油に変換するだけでは付加価値がそれ程大きくないので、最近では熱分解による生成物、即ち廃プラスチック由来のモノマー成分を含む生成物をさらに蒸留塔などの蒸留手段で蒸留し、高純度のモノマーを回収する方法も採用されつつある。
【0005】
熱分解手段と蒸留手段を組み合わせた熱分解装置として、特開2001−123007号公報に開示されたものがある。同公報に開示された熱分解装置は、廃プラスチックとしてのスチレン共重合体を連続的に溶融して熱分解手段に供給する供給手段と、供給された溶融プラスチックを酸素不存在下で熱分解する熱分解手段と、熱分解手段を加熱するための加熱部と、熱分解の生成物を蒸留する蒸留手段と、蒸留手段を加熱するためのリボイラなどの加熱部を備えている。そして熱分解手段の加熱部から排出される排ガスを蒸留手段の加熱部に熱源として供給して熱回収を図っている。
【0006】
【発明が解決しようとする課題】
しかし上記公報では熱分解手段と蒸留手段の熱エネルギーバランス、または加熱部から排出する排ガスの流量調整等については何ら言及されていない。本発明者らの研究によれば、熱分解装置は熱分解手段と蒸留手段の有機的な連携操作により効率よく運転されるが、熱分解手段からの排ガスの熱量と蒸留手段で必要とする最適な熱量は必ずしも一致せず、直列に接続された排ガス路を有するシステムでは総合的で且つ安定した運転管理もしくは運転制御がしばしば困難になることが分かった。
そこで本発明はこのような問題を解決することを課題とし、そのための新しい熱分解装置および熱分解方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記課題を解決するための本発明に係るプラスチックの熱分解装置は、プラスチックを熱分解する熱分解手段5と、熱分解による生成物を蒸留する蒸留手段9と、熱分解手段5の加熱部7に熱源としての燃焼ガスを供給する燃焼ガス発生手段18を備え、前記熱分解手段5の加熱部7からの排ガスを排ガス供給路21に排出し、その排ガス供給路21中に蒸留手段9の加熱部12が配置されて排ガスを供給するようにした熱分解装置において、前記蒸留手段9の加熱部12に並列に排ガスのバイパス路22を設け、前記蒸留手段の加熱部12への排ガス供給路とバイパス路22にそれぞれ流量調整手段23、24を設け、前記加熱部12への排ガス供給路の流量調整手段23には前記蒸留手段9の加熱部12の温度が予め定めた値になるように制御する温度制御部25が接続されており、前記バイパス路22に設けられた流量調整手段24には前記加熱部7から排出する排ガスが供給される排ガス供給路21の圧力が予め設定された値になるように制御する圧力制御部28が接続されていることを特徴とする(請求項1)。
【0010】
また、前記課題を解決するための本発明に係るプラスチックの熱分解方法は、燃焼ガスでプラスチックを加熱する加熱部7を有する熱分解手段5でプラスチックを熱分解し、その生成物を蒸留手段9で蒸留し、前記熱分解手段5の加熱部7からの燃焼ガスの排ガスを排ガス供給路21に排出し、その排ガス供給路21中に蒸留手段9の加熱部12が配置されて排ガスを供給するようにした熱分解方法において、
前記蒸留手段9の加熱部12に並列に排ガスのバイパス路22を設け、前記蒸留手段9の加熱部12の温度が予め設定された値になるように排ガス供給路21から蒸留手段9の加熱部12に供給される排ガス流量を調整し、前記排ガス供給路21の排ガスの圧力が予め設定された値になるように前記バイパス路22の排ガス流量を調整し余剰の排ガスをバイパス路22に分岐することを特徴とする(請求項)。
【0012】
【発明の実施の形態】
次に本発明の実施の形態を図面により説明する。
図1は本発明に係る熱分解装置のプロセスフロー図である。図中、1は供給手段、2はホッパ、3は溶融部、4は押出部、5は熱分解手段、6は反応管、7は加熱部、8は凝縮器、9は蒸留手段、10は第1の蒸留塔、11は第2の蒸留塔、12は加熱部、13、14は凝縮器、15は減圧手段、16はモノマー回収タンク、17は重質成分回収タンク、18は燃焼ガス発生手段、19はバーナ、20は燃焼ガス供給路、21は排ガス供給路、22はバイパス路、23,24は流量調整手段、25は温度制御部、26は温度検出器、27は温度制御器、28は圧力制御部、29は圧力検出器、30は圧力制御器、31は排気ファン、32〜34はポンプ、a〜kは配管である。
【0013】
供給手段1は一般にプラスチックの射出成形に用いられる押出機、またはそれに類する構造の押出機を使用することができる。図示の供給手段1はそのような押出機であり、廃プラスチックを一時的に貯留するホッパ2と、ホッパ2から供給されたプラスチックを加熱混連して溶融する溶融部3と、溶融プラスチックを回転スクリューで押し出す押出部4を備えている。なお廃プラスチック等の熱分解に適するプラスチックは粉砕機で10mm程度以下に細かく粉砕され、空気搬送器などによりホッパ2に適宜供給される。
【0014】
熱分解手段5は管形の反応管方式であり、耐火断熱材料で作られた本体内に反応管6が配置され、その周囲が加熱部7を構成する空間とされる。なお本発明の熱分解装置には槽形の熱分解槽方式を採用することもできる。
加熱部7の一方の端部はダクト等からなる燃焼ガス供給路20を介して燃焼ガス発生手段18に接続され、他方の端部はダクト等からなる排ガス供給路21、蒸留手段9の加熱部12および、その加熱部12に並列するバイパス路22と連通し、さらにそれらの出口側は排気ファン31に接続される。なお燃焼ガス発生手段18は耐火材料で作られた燃焼室と重油燃焼用のバーナ19等を備えたものが好適に使用される。
【0015】
反応管6の一方の端部は配管aを介して前記供給手段1に接続され、他方の端部は配管bを介して凝縮器8に接続される。なお熱分解による副生物の生成をできるだけ抑制し、目的とするモノマー成分を高い収率で得るためには減圧下(例えば圧力20Toor〜100Toor程度の範囲)で熱分解することが望ましい。
凝縮器8は熱分解手段5の生成物である分解ガスを冷却水で冷却することにより凝縮して液化するものであり、得られた凝縮液は蒸留手段9を構成する第1の蒸留塔10の中段に供給される。
【0016】
蒸留手段9は第1の蒸留塔10と第2の蒸留塔11により構成される。しかし場合によっては目的とするモノマー純度がそれ程高くなくてもよい場合などは、蒸留手段9を第1の蒸留塔10のみで構成してもよい。蒸留塔10,11の下部にリボイラからなる加熱部12が設けられる。塔型の蒸留部はトレイ式、またはラッシリングやポーリング,その他高性能な規則充填物などを充填した充填式があるが、低い温度で蒸留可能な減圧蒸留(例えば20Toor〜100Toor)を行う場合には後者の充填式が望ましい。
【0017】
第1の蒸留塔10の塔頂には留出成分を冷却して凝縮する凝縮器13が接続され、該凝縮器13には配管eを介して真空ポンプなどにより構成される減圧手段15が接続される。凝縮器13で得られた凝縮液はポンプ32を設けた還流用の配管dにより塔頂に還流され、凝縮しない僅かな量(通常、投入プラスチック量の1%程度)のガス成分は配管eを経て減圧手段15の出口側から排出する。なお、この排出成分は悪臭物質を含むので焼却炉で焼却するか、燃焼ガス発生手段18で燃焼することが望ましい。
【0018】
第1の蒸留塔10の下部(この例では加熱部12を構成するリボイラ部分)には蒸留により分離された高沸点成分を排出する配管fが接続され、その配管fは第2の蒸留塔11の中段に接続される。
第2の蒸留塔11も第1の蒸留塔10と同様に構成される。すなわち、第2の蒸留塔11の塔頂には留出成分を冷却して凝縮する凝縮器14が接続され、得られた凝縮液はポンプ33を設けた還流用の配管iにより塔頂に還流される。さらに凝縮器14には配管eを介して前記減圧手段15が接続され、僅かな未凝縮成分が減圧手段15の出口側から排出する。
【0019】
さらに、凝縮器14には配管hを介してモノマー回収タンク16が接続され、凝縮器14で得られた凝縮液である高純度のモノマー成分がモノマー回収タンク16に回収される。一方、第2の蒸留塔11の塔底には配管jを介して重質成分タンク17が接続され、蒸留によって分離した重質成分が重質成分タンク17に貯蔵される。
【0020】
第1の蒸留塔10および第2の蒸留塔11の各加熱部12には排ガス供給路21がそれぞれ接続され、それら排ガス供給路21に遠隔操作可能な調整弁または調整ダンパなどからなる流量調整手段23が設けられる。
各流量調整手段23はそれぞれ独立した温度制御部25で制御される。各温度制御部25は加熱部12の温度を検出する温度検出器26と、その温度検出値が予め設定された値になるように流量調整手段23を駆動制御する温度制御器27により構成される。なお温度制御器27はPID(比例・積分・微分)制御モードを有するものを使用することが望ましい。
【0021】
排ガス供給路21の加熱部12にはバイパス路22が並列接続され、そのバイパス路22に流量調整手段24が設けられ、該流量調整手段24は圧力制御部28で制御される。圧力制御部28は排ガス供給路21の圧力を検出する圧力検出器29と、その圧力検出値が予め設定された値になるように流量調整手段24を駆動制御する圧力制御器30により構成される。なお圧力制御器30もPID制御モードを有するものを使用することが望ましい。
【0022】
次に上記熱分解装置を用いてプラスチックを熱分解する方法について説明する。なお、以下の条件等はプラスチックとしてポリスチレンを対象とした場合であるが、他の熱分解可能なプラスチックについても、これに準じて実施できることは言うまでもない。
【0023】
先ず、減圧手段15を運転して熱分解手段5の反応菅6、第1の蒸留塔10および第2の蒸留塔11の各内部空気、およびそれらを接続する配管類の内部を窒素などの不活性ガスで置換して酸素不存在状態にすると共に、それらの内部圧が例えば20Toor〜100Toorになるように減圧手段15に設けた圧力調整弁などを調整する。それと共に、燃焼ガス発生手段18を運転して熱分解手段5の加熱部7に燃焼ガスを供給し、反応菅6の温度を例えば500℃〜800℃に昇温する。
【0024】
さらに、加熱部7から排ガス供給路21に排出する排ガスを第1の蒸留塔10および第2の蒸留塔11の各加熱部12に供給し、それらを所定温度に昇温する。なお各加熱部12の温度は温度制御部25で駆動制御される流量調整手段23により70〜150℃程度の範囲に調整される。
【0025】
排気ファン31を一定の吸引力で運転しているとき、流量調整手段23の調整により排ガス供給路21の排ガス流量が変化する。排ガス流量が変化すると、それに応じて熱分解手段5の加熱部7に供給される燃焼ガス流量も変化するので好ましくない。すなわち熱分解手段5で消費される熱エネルギーは、プラスチックの熱分解に必要な熱量により一義的に決める必要があり、他の要因で変動することは好ましくない。
【0026】
そこで本発明の熱分解装置では、バイパス路22の流量調整手段24を前記流量調整手段23と逆比例して開度調整することにより、燃焼ガス流量を一定に維持することができる。この逆比例制御は手動で行うこともある程度可能であるが、自動的に行うことが望ましい。本実施の形態では排ガス供給路21の圧力を自動制御することにより、燃焼ガス流量を所定値に維持するようにしている。即ち、排ガス供給路21の圧力を所定値に自動制御することにより、それより上流側の圧力、特に燃焼ガス発生手段18の炉内圧を安定化させることができる。
【0027】
燃焼ガス発生手段18の炉内圧が変動すると、燃焼ガス発生手段18のバーナの燃焼も不安定になり、特に加熱部12の流量調整手段23が全閉になったときに炉内圧もそれに応じて変動し、燃焼不安定性はより大きくなる。なお本実施の形態で採用した燃焼ガス発生手段18におけるバーナ19の最適燃焼雰囲気は、炉内圧力が数十mm水頭の負圧領域である。
【0028】
本実施の形態では排ガス供給路21の圧力が予め設定された値になるように、圧力制御部28でバイパス路22に設けた流量調整手段24を調整している。例えば加熱部12の排ガス流量調整手段23が閉じる方向に調整されると、排ガス供給路21の圧力は予め設定された値より上昇する。すると圧力検出器29からの圧力上昇信号を受けた圧力制御器30は、その圧力を予め設定された値に戻すように、流量調整手段24を開ける方向に調整する。逆に排ガス供給流量が増加して排ガス供給路21の圧力が低下したときは、バイパス路22のバイパス流量がそれに応じて減少するように、流量調整手段24を閉じる方向に調整する。
【0029】
次に、熱分解すべきプラスチックはホッパ2から溶融部3に連続的に供給され、そこで200℃程度に加熱されて溶融し、押出部4から配管aに吐出する。配管aに流入した溶融プラスチックは熱分解手段5における反応管6の一方の端部に連続的に供給され、反応管6を通過する間に加熱部7より加熱され熱分解する。
【0030】
熱分解により生成して蒸発する生成物は、配管bから排出して凝縮器8で冷却され凝縮する。例えばポリスチレンを500℃〜800℃、圧力50Toorで熱分解した場合、蒸発する生成物の約70%程度がスチレンモノマーとなり、他にスチレンダイマー、スチレントリマー、トルエン、その他の高沸点成分などが副生物として生成する。
【0031】
凝縮液は前記の圧力範囲に調整された第1の蒸留塔10の中段に供給され、減圧蒸留によりトルエンなどの低沸点成分とスチレンを含むそれより高沸点の成分に分離される。蒸留温度はその下部に設けた加熱部12の温度により制御することができ、通常50〜60℃程度の範囲で運転する。
低沸点成分は熱分解手段5に供給するプラスチックの3〜5%程度であり、その大部分は凝縮器13で凝縮されてポンプ32により第1の蒸留塔10の塔頂に還流する。なお還流比は通常20〜50程度とする。
【0032】
第1の蒸留塔10の下部から蒸留操作により分離された高沸点成分が排出する。排出時の高沸点成分の温度はかなり高いので、図示しない冷却器などで適宜冷却することが望ましい。高沸点成分は次に前記の圧力範囲に調整された第2の蒸留塔11の中段に供給され、そこでさらに減圧蒸留される。第2の蒸留塔11の温度もその下部に設けた加熱部12の温度により調整でき、通常60〜70℃程度の範囲に設定する。
【0033】
第2の蒸留塔11では塔頂から留出する低沸点成分であるスチレンモノマーは凝縮器14で冷却されて凝縮し、その凝縮液は配管hからモノマー回収タンク16に回収され、一部がポンプ33により塔頂に還流する。なお還流比は通常2〜3程度とする。
【0034】
第2の蒸留塔11で分離されるスチレンダイマー、スチレントリマー、およびその他重質成分は、供給された成分の20〜30%程度であり、それらは第2の蒸留塔11の下部から配管jを経て重質成分回収タンク17に回収される。重質成分回収タンクに貯留された重質成分はポンプ34により燃焼ガス発生手段18のバーナ19に供給され、そこで燃料として燃焼される。このような操作により純度99%のスチレンモノマーがポリマー供給量の70%程度回収される。
【0035】
前記熱分解手段5の加熱部7に供給する燃焼ガスの温度が800℃程度の場合、加熱部7から排出する排ガスの温度は600度程度になり、かかる高温の排ガスが排ガス供給路21を経て第1の蒸留塔10および第2の蒸留塔11の加熱部12にそれぞれ供給される。
【0036】
そして各加熱部12の温度は前記のように温度調整部25で制御される流量調整手段23により調整され、さらにその排ガス供給路21の圧力は圧力制御部28で制御されるバイパス路22の流量調整手段24で調整される。そして流量調整手段23と流量調整手段24の協調的な調整操作により、熱分解手段5に消費される熱エネルギーと第1の蒸留塔10および第2の蒸留塔11で構成される蒸留手段9に消費される熱エネルギーの不一致が解消され、システム全体の熱バランスが安定化する。また、燃焼ガス発生手段18におけるバーナ19の燃焼不安定性も解消する。
【0037】
【発明の効果】
以上のように本発明に係る熱分解装置は、熱分解手段の加熱部からの排ガスを排ガス供給路に排出し、その排ガス供給路中に蒸留手段の加熱部が配置されて排ガスを供給するように構成したので、熱エネルギーの回収率が向上する。さらに蒸留手段の加熱部に並列にバイパス路を設け、その加熱部への排ガス供給路とバイパス路にそれぞれ流量調整手段を設けたので、それらの調整により熱分解手段で消費される熱エネルギーと蒸留手段で消費される熱エネルギーの不一致を解消することができ、システム全体の熱バランスが安定化する。
さらに、排ガス供給路の圧力が予め設定された値になるようにバイパス路の流量調整手段を制御する圧力制御部を設けたので、蒸留操作の安定化の効果に加え、燃焼ガス発生手段におけるバーナの燃焼不安定性を解消することができる。
【0038】
上記熱分解装置において、蒸留手段の加熱部の温度が予め設定された値になるように排ガス供給路の流量調整手段を制御する温度制御部を設けることができる。このようにすると、蒸留手段の温度を自動調整して蒸留操作の安定化を図ることができる。
【0040】
また、本発明に係るプラスチックの熱分解方法は、熱分解手段の加熱部からの燃焼ガスの排ガスを排ガス供給路に排出し、その排ガス供給路中に蒸留手段の加熱部が配置されて排ガスを供給するようにしているので、熱エネルギーの回収率が向上する。さらに蒸留手段の加熱部に並列してバイパス路を設け、前記蒸留手段の加熱部の温度が予め設定された値になるように加熱部に供給される排ガス流量を調整し、余剰の排ガスをバイパス路に分岐するようにしたので、熱分解手段で消費される熱エネルギーと蒸留手段で消費される熱エネルギーの不一致を解消することができ、システム全体の熱バランスが安定化する。
【0041】
さらに、排ガス供給路の排ガス圧力が予め設定された値になるように、バイパス路へ分岐する排ガスの流量を調整したので、安定化の効果に加え、燃焼ガス発生手段におけるバーナの燃焼不安定性を解消することができる。
【図面の簡単な説明】
【図1】本発明に係る熱分解装置のプロセスフロー図。
【符号の説明】
1 供給手段
2 ホッパ
3 溶融部
4 押出部
5 熱分解手段
6 反応管
7 加熱部
8 凝縮器
9 蒸留手段
10 第1の蒸留塔
11 第2の蒸留塔
12 加熱部
13,14 凝縮器
15 減圧手段
16 モノマー回収タンク
17 重質成分回収タンク
18 燃焼ガス発生手段
19 バーナ
20 燃焼ガス供給路
21 排ガス供給路
22 バイパス路
23 流量調整手段
24 流量調整手段
25 温度制御部
26 温度検出器
27 温度制御器
28 圧力制御部
29 圧力検出器
30 圧力制御器
31 排気ファン
32〜34 ポンプ
a〜k 配管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermal decomposition apparatus and a thermal decomposition method for thermally decomposing plastic and distilling a product thereof, and more specifically, a thermal decomposition apparatus configured to supply exhaust gas from a heating section of a thermal decomposition means to a heating section of a distillation means. And a thermal decomposition method.
[0002]
[Prior art]
Large quantities of plastics are discharged from factory facilities and households. If waste plastic is discharged to the outside as it is, the environment will be polluted, so it is desirable to make it reusable. Therefore, conventionally, a method of thermally decomposing waste plastic by a thermal decomposition means and recovering it as fuel oil has been widely adopted.
[0003]
As the thermal decomposition means, there are a tank-type pyrolysis tank method and a tube-shaped reaction tube method, but the latter reaction tube method is desirable when continuous operation is performed. The pyrolysis means is provided with a heating section using an electric heater heating method or a high temperature gas heating method, and many high temperature gas heating methods using combustion gas generated by the combustion gas generation means are employed. The thermal decomposition temperature is, for example, a high temperature in the range of 500 ° C. to 800 ° C. for polystyrene. Therefore, when the high temperature gas heating method is adopted, the temperature of the combustion gas is set slightly higher than that.
[0004]
However, since the added value is not so great just by converting the waste plastic into fuel oil, recently, the product by pyrolysis, that is, the product containing monomer components derived from the waste plastic is further distilled by distillation means such as a distillation tower. Also, a method for recovering a high-purity monomer is being adopted.
[0005]
As a thermal decomposition apparatus combining a thermal decomposition means and a distillation means, there is one disclosed in JP 2001-123007 A. The thermal decomposition apparatus disclosed in the publication discloses a supply unit that continuously melts a styrene copolymer as waste plastic and supplies it to the thermal decomposition unit, and thermally decomposes the supplied molten plastic in the absence of oxygen. A thermal decomposition unit, a heating unit for heating the thermal decomposition unit, a distillation unit for distilling the product of thermal decomposition, and a heating unit such as a reboiler for heating the distillation unit are provided. The exhaust gas discharged from the heating section of the thermal decomposition means is supplied to the heating section of the distillation means as a heat source for heat recovery.
[0006]
[Problems to be solved by the invention]
However, the above publication does not mention anything about the thermal energy balance between the thermal decomposition means and the distillation means or the flow rate adjustment of the exhaust gas discharged from the heating section. According to the study by the present inventors, the pyrolysis apparatus is efficiently operated by an organic cooperative operation of the pyrolysis means and the distillation means, but the optimum amount of heat of the exhaust gas from the pyrolysis means and the distillation means is required. It has been found that the total amount of heat does not always match, and comprehensive and stable operation management or operation control is often difficult in a system having exhaust gas passages connected in series.
Therefore, the present invention has an object to solve such a problem, and an object thereof is to provide a new thermal decomposition apparatus and a thermal decomposition method therefor.
[0007]
[Means for Solving the Problems]
The plastic pyrolysis apparatus according to the present invention for solving the above-mentioned problems includes a thermal decomposition means 5 for thermally decomposing plastic, a distillation means 9 for distilling a product resulting from the thermal decomposition, and a heating section 7 of the thermal decomposition means 5. Is provided with combustion gas generation means 18 for supplying combustion gas as a heat source , exhaust gas from the heating section 7 of the thermal decomposition means 5 is discharged to the exhaust gas supply path 21, and the distillation means 9 is heated in the exhaust gas supply path 21. part 12 is arranged in the pyrolyzer which is adapted to supply exhaust gas, a bypass passage 22 of the exhaust gas provided in parallel to the heating portion 12 of the distillation unit 9, and the exhaust gas supply path to the heating portion 12 of the distillation unit each provided flow rate adjusting means 23, 24 to the bypass passage 22, the exhaust gas supply passage of the flow rate adjusting means 23 to the heating unit 12 to a value that the temperature of the heating portion 12 of the distillation unit 9 is predetermined A temperature controller 25 to be controlled is connected, and the pressure of the exhaust gas supply path 21 to which the exhaust gas discharged from the heating section 7 is supplied to the flow rate adjusting means 24 provided in the bypass path 22 is a preset value. A pressure control unit 28 is connected to control so as to become (Claim 1).
[0010]
Further, in the method for thermally decomposing plastic according to the present invention for solving the above-mentioned problems, the plastic is pyrolyzed by the pyrolyzing means 5 having the heating section 7 for heating the plastic with combustion gas, and the product is distilled by means 9 And the exhaust gas of the combustion gas from the heating part 7 of the thermal decomposition means 5 is discharged to the exhaust gas supply path 21, and the heating part 12 of the distillation means 9 is arranged in the exhaust gas supply path 21 to supply the exhaust gas. In the pyrolysis method as described above,
An exhaust gas bypass path 22 is provided in parallel with the heating section 12 of the distillation means 9 so that the temperature of the heating section 12 of the distillation means 9 is set to a preset value from the exhaust gas supply path 21 to the heating section of the distillation means 9. The exhaust gas flow rate supplied to the exhaust gas supply channel 21 is adjusted, the exhaust gas flow rate of the bypass channel 22 is adjusted so that the pressure of the exhaust gas in the exhaust gas supply channel 21 becomes a preset value, and excess exhaust gas is branched to the bypass channel 22. (Claim 2 ).
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a process flow diagram of a thermal decomposition apparatus according to the present invention. In the figure, 1 is a supply means, 2 is a hopper, 3 is a melting section, 4 is an extrusion section, 5 is a thermal decomposition means, 6 is a reaction tube, 7 is a heating section, 8 is a condenser, 9 is a distillation means, 10 is 1st distillation column, 11 is 2nd distillation column, 12 is a heating part, 13 and 14 are condensers, 15 is a decompression means, 16 is a monomer recovery tank, 17 is a heavy component recovery tank, 18 is combustion gas generation Means, 19 is a burner, 20 is a combustion gas supply path, 21 is an exhaust gas supply path, 22 is a bypass path, 23 and 24 are flow rate adjusting means, 25 is a temperature controller, 26 is a temperature detector, 27 is a temperature controller, 28 is a pressure controller, 29 is a pressure detector, 30 is a pressure controller, 31 is an exhaust fan, 32 to 34 are pumps, and a to k are pipes.
[0013]
As the supply means 1, an extruder generally used for plastic injection molding or an extruder having a similar structure can be used. The supply means 1 shown in the figure is such an extruder, and a hopper 2 that temporarily stores waste plastic, a melting part 3 that heats and melts the plastic supplied from the hopper 2, and rotates the molten plastic. The extrusion part 4 extruded with a screw is provided. A plastic suitable for thermal decomposition such as waste plastic is finely pulverized to about 10 mm or less by a pulverizer, and is appropriately supplied to the hopper 2 by an air conveyor or the like.
[0014]
The thermal decomposition means 5 is a tubular reaction tube system, in which a reaction tube 6 is arranged in a main body made of a refractory heat insulating material, and its periphery is a space that constitutes the heating unit 7. In addition, the thermal decomposition apparatus of this invention can also employ | adopt a tank-shaped thermal decomposition tank system.
One end of the heating unit 7 is connected to the combustion gas generating means 18 via a combustion gas supply path 20 made of a duct or the like, and the other end is an exhaust gas supply path 21 made of a duct or the like, and the heating part of the distillation means 9. 12 and a bypass path 22 in parallel with the heating unit 12 , and their outlet sides are connected to an exhaust fan 31. The combustion gas generating means 18 preferably includes a combustion chamber made of a refractory material and a burner 19 for burning heavy oil.
[0015]
One end of the reaction tube 6 is connected to the supply means 1 via a pipe a, and the other end is connected to the condenser 8 via a pipe b. In order to suppress generation of by-products due to thermal decomposition as much as possible and to obtain a target monomer component with high yield, it is desirable to perform thermal decomposition under reduced pressure (for example, a pressure range of about 20 Toor to 100 Toor).
The condenser 8 condenses and liquefies the decomposition gas, which is a product of the thermal decomposition means 5, by cooling with cooling water, and the obtained condensate is a first distillation column 10 constituting the distillation means 9. To the middle stage.
[0016]
The distillation means 9 includes a first distillation column 10 and a second distillation column 11. However, in some cases, when the target monomer purity does not have to be so high, the distillation means 9 may be composed of only the first distillation column 10. A heating unit 12 made of a reboiler is provided below the distillation columns 10 and 11. The tower-type distillation section has a tray type or a packed type filled with lashing, poling, and other high-performance ordered packings. However, when performing vacuum distillation (for example, 20 Toor to 100 Toor) that can be distilled at a low temperature. The latter filling type is desirable.
[0017]
A condenser 13 that cools and condenses the distillate component is connected to the top of the first distillation column 10, and a decompression means 15 configured by a vacuum pump or the like is connected to the condenser 13 via a pipe e. Is done. The condensate obtained in the condenser 13 is refluxed to the top of the tower by a reflux pipe d provided with a pump 32, and a slight amount of gas components (usually about 1% of the amount of plastic input) is not condensed. Then, it is discharged from the outlet side of the decompression means 15. Since this exhaust component contains malodorous substances, it is desirable to incinerate in an incinerator or to combust in the combustion gas generating means 18.
[0018]
A pipe f for discharging a high-boiling component separated by distillation is connected to the lower part of the first distillation column 10 (in this example, the reboiler part constituting the heating unit 12), and the pipe f is connected to the second distillation column 11. Connected to the middle stage.
The second distillation column 11 is configured in the same manner as the first distillation column 10. That is, a condenser 14 for cooling and condensing the distillate component is connected to the top of the second distillation column 11, and the resulting condensate is refluxed to the top of the tower through a reflux pipe i provided with a pump 33. Is done. Further, the pressure reducing means 15 is connected to the condenser 14 via a pipe e, and a small amount of uncondensed components is discharged from the outlet side of the pressure reducing means 15.
[0019]
Furthermore, a monomer recovery tank 16 is connected to the condenser 14 via a pipe h, and a high-purity monomer component that is a condensate obtained in the condenser 14 is recovered in the monomer recovery tank 16. On the other hand, a heavy component tank 17 is connected to the bottom of the second distillation column 11 via a pipe j, and a heavy component separated by distillation is stored in the heavy component tank 17.
[0020]
An exhaust gas supply path 21 is connected to each heating unit 12 of the first distillation column 10 and the second distillation column 11, and a flow rate adjusting means including an adjustment valve or an adjustment damper that can be remotely operated to the exhaust gas supply path 21. 23 is provided.
Each flow rate adjusting means 23 is controlled by an independent temperature control unit 25. Each temperature control unit 25 includes a temperature detector 26 that detects the temperature of the heating unit 12 and a temperature controller 27 that drives and controls the flow rate adjusting means 23 so that the temperature detection value becomes a preset value. . The temperature controller 27 preferably has a PID (proportional / integral / derivative) control mode.
[0021]
A bypass path 22 is connected in parallel to the heating unit 12 of the exhaust gas supply path 21 , and a flow rate adjusting unit 24 is provided in the bypass path 22, and the flow rate adjusting unit 24 is controlled by a pressure control unit 28. The pressure control unit 28 includes a pressure detector 29 that detects the pressure in the exhaust gas supply passage 21 and a pressure controller 30 that drives and controls the flow rate adjusting unit 24 so that the detected pressure value becomes a preset value. . It is desirable to use the pressure controller 30 having the PID control mode.
[0022]
Next, a method for thermally decomposing plastic using the above pyrolyzer will be described. In addition, although the following conditions are the cases where polystyrene is used as a plastic, it goes without saying that other thermally decomposable plastics can be implemented in accordance with this.
[0023]
First, the decompression means 15 is operated, and the reaction tank 6 of the thermal decomposition means 5, the internal air of the first distillation column 10 and the second distillation column 11, and the pipes connecting them to the interior of the piping are connected to a While substituting with active gas to make it oxygen-free, the pressure adjusting valve provided in the decompression means 15 is adjusted so that the internal pressure thereof becomes, for example, 20 Toor to 100 Toor. At the same time, the combustion gas generating means 18 is operated to supply the combustion gas to the heating section 7 of the thermal decomposition means 5, and the temperature of the reaction vessel 6 is raised to, for example, 500 ° C to 800 ° C.
[0024]
Further, the exhaust gas discharged from the heating unit 7 to the exhaust gas supply path 21 is supplied to each heating unit 12 of the first distillation column 10 and the second distillation column 11, and the temperature is raised to a predetermined temperature. The temperature of each heating unit 12 is adjusted to a range of about 70 to 150 ° C. by the flow rate adjusting unit 23 that is driven and controlled by the temperature control unit 25.
[0025]
When the exhaust fan 31 is operated with a constant suction force, the exhaust gas flow rate in the exhaust gas supply path 21 is changed by the adjustment of the flow rate adjusting means 23. If the exhaust gas flow rate changes, the flow rate of the combustion gas supplied to the heating unit 7 of the thermal decomposition means 5 changes accordingly, which is not preferable. That is, the thermal energy consumed by the thermal decomposition means 5 must be uniquely determined by the amount of heat required for the thermal decomposition of the plastic, and it is not preferable that the thermal energy fluctuates due to other factors.
[0026]
Therefore, in the thermal decomposition apparatus of the present invention, the flow rate of the combustion gas can be kept constant by adjusting the flow rate adjusting means 24 of the bypass passage 22 in inverse proportion to the flow rate adjusting means 23. Although this inverse proportional control can be performed manually to some extent, it is desirable to perform it automatically. In the present embodiment, the combustion gas flow rate is maintained at a predetermined value by automatically controlling the pressure of the exhaust gas supply passage 21. That is, by automatically controlling the pressure of the exhaust gas supply passage 21 to a predetermined value, the pressure on the upstream side, in particular, the furnace pressure of the combustion gas generating means 18 can be stabilized.
[0027]
When the furnace pressure of the combustion gas generating means 18 fluctuates, the combustion of the burner of the combustion gas generating means 18 also becomes unstable. In particular, when the flow rate adjusting means 23 of the heating unit 12 is fully closed, the furnace pressure also changes accordingly. Fluctuates and combustion instability becomes greater. Note that the optimum combustion atmosphere of the burner 19 in the combustion gas generation means 18 employed in the present embodiment is a negative pressure region in which the pressure in the furnace is several tens of millimeters of water head.
[0028]
In the present embodiment, the flow rate adjusting means 24 provided in the bypass path 22 is adjusted by the pressure control unit 28 so that the pressure of the exhaust gas supply path 21 becomes a preset value. For example, when the exhaust gas flow rate adjusting means 23 of the heating unit 12 is adjusted in the closing direction, the pressure of the exhaust gas supply path 21 rises from a preset value. Then, the pressure controller 30 that has received the pressure increase signal from the pressure detector 29 adjusts the flow rate adjusting means 24 in the opening direction so as to return the pressure to a preset value. Conversely, when the exhaust gas supply flow rate increases and the pressure of the exhaust gas supply channel 21 decreases, the flow rate adjusting means 24 is adjusted in the closing direction so that the bypass flow rate of the bypass channel 22 decreases accordingly.
[0029]
Next, the plastic to be thermally decomposed is continuously supplied from the hopper 2 to the melting section 3 where it is heated to about 200 ° C. to melt and discharged from the extrusion section 4 to the pipe a. The molten plastic that has flowed into the pipe a is continuously supplied to one end of the reaction tube 6 in the thermal decomposition means 5, and is heated and thermally decomposed by the heating unit 7 while passing through the reaction tube 6.
[0030]
The product generated and evaporated by thermal decomposition is discharged from the pipe b, cooled by the condenser 8, and condensed. For example, when polystyrene is pyrolyzed at 500 ° C. to 800 ° C. under a pressure of 50 Torr, about 70% of the evaporated product becomes styrene monomer, and other products such as styrene dimer, styrene trimer, toluene, and other high-boiling components are by-products. Generate as
[0031]
The condensate is supplied to the middle stage of the first distillation column 10 adjusted to the above pressure range, and is separated into a low boiling point component such as toluene and a higher boiling point component containing styrene by vacuum distillation. The distillation temperature can be controlled by the temperature of the heating unit 12 provided in the lower part, and is usually operated in the range of about 50 to 60 ° C.
The low boiling point component is about 3 to 5% of the plastic supplied to the thermal decomposition means 5, most of which is condensed by the condenser 13 and refluxed to the top of the first distillation column 10 by the pump 32. The reflux ratio is usually about 20-50.
[0032]
The high-boiling components separated by the distillation operation are discharged from the lower part of the first distillation column 10. Since the temperature of the high boiling point component at the time of discharge is quite high, it is desirable to cool appropriately with a cooler (not shown). The high boiling point component is then fed to the middle stage of the second distillation column 11 adjusted to the above pressure range, where it is further distilled under reduced pressure. The temperature of the 2nd distillation column 11 can also be adjusted with the temperature of the heating part 12 provided in the lower part, and is normally set to the range of about 60-70 degreeC.
[0033]
In the second distillation column 11, the styrene monomer, which is a low boiling point component distilled from the top of the column, is cooled and condensed by the condenser 14, and the condensate is recovered from the pipe h to the monomer recovery tank 16, and partly pumped. 33 reflux to the top of the column. The reflux ratio is usually about 2-3.
[0034]
The styrene dimer, styrene trimer, and other heavy components separated in the second distillation column 11 are about 20 to 30% of the supplied components, and they are connected to the pipe j from the lower portion of the second distillation column 11. After that, it is recovered in the heavy component recovery tank 17. The heavy component stored in the heavy component recovery tank is supplied to the burner 19 of the combustion gas generating means 18 by the pump 34 and burned there as fuel. By such an operation, styrene monomer having a purity of 99% is recovered about 70% of the polymer supply amount.
[0035]
When the temperature of the combustion gas supplied to the heating unit 7 of the thermal decomposition means 5 is about 800 ° C., the temperature of the exhaust gas discharged from the heating unit 7 is about 600 degrees, and the high temperature exhaust gas passes through the exhaust gas supply path 21. It is supplied to the heating unit 12 of the first distillation column 10 and the second distillation column 11, respectively.
[0036]
The temperature of each heating unit 12 is adjusted by the flow rate adjusting means 23 controlled by the temperature adjusting unit 25 as described above, and the pressure of the exhaust gas supply path 21 is further controlled by the pressure control unit 28. Adjustment is performed by the adjusting means 24. Then, by cooperative adjustment operation of the flow rate adjusting means 23 and the flow rate adjusting means 24, the thermal energy consumed by the thermal decomposition means 5 and the distillation means 9 constituted by the first distillation column 10 and the second distillation column 11 are changed. The mismatch of the consumed heat energy is eliminated, and the heat balance of the entire system is stabilized. Further, the combustion instability of the burner 19 in the combustion gas generation means 18 is also eliminated.
[0037]
【The invention's effect】
As described above, the thermal decomposition apparatus according to the present invention discharges exhaust gas from the heating section of the thermal decomposition means to the exhaust gas supply path, and supplies the exhaust gas by arranging the heating section of the distillation means in the exhaust gas supply path. As a result, the heat energy recovery rate is improved. Furthermore, since a bypass passage is provided in parallel with the heating section of the distillation means, and a flow rate adjusting means is provided for each of the exhaust gas supply path and the bypass path to the heating section, the heat energy consumed by the pyrolysis means and the distillation due to these adjustments. The inconsistency of the heat energy consumed by the means can be eliminated, and the heat balance of the entire system is stabilized.
Further, since the pressure control unit for controlling the flow rate adjusting means of the bypass path is provided so that the pressure of the exhaust gas supply path becomes a preset value, in addition to the effect of stabilizing the distillation operation, the burner in the combustion gas generating means The combustion instability can be eliminated.
[0038]
In the above thermal decomposition apparatus, a temperature control unit for controlling the flow rate adjusting unit of the exhaust gas supply path can be provided so that the temperature of the heating unit of the distillation unit becomes a preset value. In this way, the distillation operation can be stabilized by automatically adjusting the temperature of the distillation means.
[0040]
The plastic pyrolysis method according to the present invention exhausts the exhaust gas of combustion gas from the heating section of the pyrolysis means to the exhaust gas supply path, and the heating section of the distillation means is disposed in the exhaust gas supply path to discharge the exhaust gas. Since the energy is supplied, the heat energy recovery rate is improved. Further, a bypass path is provided in parallel with the heating unit of the distillation unit, and the flow rate of the exhaust gas supplied to the heating unit is adjusted so that the temperature of the heating unit of the distillation unit becomes a preset value, thereby bypassing excess exhaust gas. Since the branching is made to the path, the mismatch between the thermal energy consumed by the thermal decomposition means and the thermal energy consumed by the distillation means can be eliminated, and the thermal balance of the entire system is stabilized.
[0041]
Furthermore, since the flow rate of the exhaust gas branched to the bypass passage is adjusted so that the exhaust gas pressure in the exhaust gas supply passage becomes a preset value, in addition to the stabilization effect, the combustion instability of the burner in the combustion gas generation means is reduced. Can be resolved.
[Brief description of the drawings]
FIG. 1 is a process flow diagram of a thermal decomposition apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Supply means 2 Hopper 3 Melting part 4 Extrusion part 5 Thermal decomposition means 6 Reaction tube 7 Heating part 8 Condenser 9 Distilling means 10 First distillation tower 11 Second distillation tower 12 Heating parts 13, 14 Condenser 15 Decompression means 16 Monomer recovery tank 17 Heavy component recovery tank 18 Combustion gas generation means 19 Burner 20 Combustion gas supply path 21 Exhaust gas supply path 22 Bypass path 23 Flow rate adjustment means 24 Flow rate adjustment means 25 Temperature controller 26 Temperature detector 27 Temperature controller 28 Pressure controller 29 Pressure detector 30 Pressure controller 31 Exhaust fans 32 to 34 Pumps a to k Piping

Claims (2)

プラスチックを熱分解する熱分解手段5と、熱分解による生成物を蒸留する蒸留手段9と、熱分解手段5の加熱部7に熱源としての燃焼ガスを供給する燃焼ガス発生手段18を備え、前記熱分解手段5の加熱部7からの排ガスを排ガス供給路21に排出し、その排ガス供給路21中に蒸留手段9の加熱部12が配置されて排ガスを供給するようにした熱分解装置において、
前記蒸留手段9の加熱部12に並列に排ガスのバイパス路22を設け、前記蒸留手段の加熱部12への排ガス供給路とバイパス路22にそれぞれ流量調整手段23、24を設け、前記加熱部12への排ガス供給路の流量調整手段23には前記蒸留手段9の加熱部12の温度が予め定めた値になるように制御する温度制御部25が接続されており、前記バイパス路22に設けられた流量調整手段24には前記加熱部7から排出する排ガスが供給される排ガス供給路21の圧力が予め設定された値になるように制御する圧力制御部28が接続されていることを特徴とするプラスチックの熱分解装置。
A thermal decomposition means 5 for thermally decomposing plastic, a distillation means 9 for distilling the product of the thermal decomposition, and a combustion gas generating means 18 for supplying a combustion gas as a heat source to the heating section 7 of the thermal decomposition means 5, In the thermal decomposition apparatus in which the exhaust gas from the heating section 7 of the thermal decomposition means 5 is discharged to the exhaust gas supply path 21 and the heating section 12 of the distillation means 9 is arranged in the exhaust gas supply path 21 to supply the exhaust gas .
Wherein the heating portion 12 of the distillation unit 9 the exhaust gas bypass passage 22 provided in parallel, respectively provided flow rate adjusting means 23, 24 to the exhaust gas supply passage and the bypass passage 22 to the heating portion 12 of the distillation unit, the heating unit 12 A temperature control unit 25 for controlling the temperature of the heating unit 12 of the distillation unit 9 to be a predetermined value is connected to the flow rate adjustment unit 23 of the exhaust gas supply path to the exhaust path, and is provided in the bypass path 22. The flow rate adjusting unit 24 is connected to a pressure control unit 28 for controlling the pressure of the exhaust gas supply path 21 to which the exhaust gas discharged from the heating unit 7 is supplied to a preset value. Plastic pyrolysis equipment.
燃焼ガスでプラスチックを加熱する加熱部7を有する熱分解手段5でプラスチックを熱分解し、その生成物を蒸留手段9で蒸留し、前記熱分解手段5の加熱部7からの燃焼ガスの排ガスを排ガス供給路21に排出し、その排ガス供給路21中に蒸留手段9の加熱部12が配置されて排ガスを供給するようにした熱分解方法において、
前記蒸留手段9の加熱部12に並列に排ガスのバイパス路22を設け、前記蒸留手段9の加熱部12の温度が予め設定された値になるように排ガス供給路21から蒸留手段9の加熱部12に供給される排ガス流量を調整し、前記排ガス供給路21の排ガスの圧力が予め設定された値になるように前記バイパス路22の排ガス流量を調整し余剰の排ガスをバイパス路22に分岐することを特徴とするプラスチックの熱分解方法。
The plastic is pyrolyzed by the pyrolysis means 5 having the heating section 7 for heating the plastic with the combustion gas, the product is distilled by the distillation means 9, and the exhaust gas of the combustion gas from the heating section 7 of the pyrolysis means 5 is removed. In the pyrolysis method in which the exhaust gas is supplied to the exhaust gas supply passage 21 and the heating unit 12 of the distillation means 9 is arranged in the exhaust gas supply passage 21 to supply the exhaust gas .
An exhaust gas bypass path 22 is provided in parallel with the heating section 12 of the distillation means 9, and the heating section of the distillation means 9 from the exhaust gas supply path 21 so that the temperature of the heating section 12 of the distillation means 9 becomes a preset value. The exhaust gas flow rate supplied to the exhaust gas supply channel 21 is adjusted, the exhaust gas flow rate of the bypass channel 22 is adjusted so that the pressure of the exhaust gas in the exhaust gas supply channel 21 becomes a preset value, and excess exhaust gas is branched to the bypass channel 22. A method for thermally decomposing plastics.
JP2001350261A 2001-11-15 2001-11-15 Pyrolysis apparatus and pyrolysis method for plastic Expired - Fee Related JP4003160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001350261A JP4003160B2 (en) 2001-11-15 2001-11-15 Pyrolysis apparatus and pyrolysis method for plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001350261A JP4003160B2 (en) 2001-11-15 2001-11-15 Pyrolysis apparatus and pyrolysis method for plastic

Publications (2)

Publication Number Publication Date
JP2003147120A JP2003147120A (en) 2003-05-21
JP4003160B2 true JP4003160B2 (en) 2007-11-07

Family

ID=19162797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001350261A Expired - Fee Related JP4003160B2 (en) 2001-11-15 2001-11-15 Pyrolysis apparatus and pyrolysis method for plastic

Country Status (1)

Country Link
JP (1) JP4003160B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102341860B1 (en) * 2020-03-13 2021-12-22 주식회사 알앤이 waste acrylic treatment apparatus
KR102363342B1 (en) * 2020-03-24 2022-02-16 주식회사 알앤이 waste acrylic recycling apparatus
KR102251376B1 (en) * 2020-10-16 2021-05-12 (주)리보테크 Apparatus for loading for the waste synthetic resin pyrolysis

Also Published As

Publication number Publication date
JP2003147120A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
JP2791985B2 (en) Waste heat treatment equipment and method of operating the equipment
JP2009536259A (en) Heat recycling system for use with gasifier
JP5704427B2 (en) Thermal decomposition apparatus, dechlorination treatment apparatus, thermal decomposition method and dechlorination method
JP2023507514A (en) Method and system for pyrolyzing plastic materials
JP4003160B2 (en) Pyrolysis apparatus and pyrolysis method for plastic
JP2019531458A5 (en)
JP2007187340A (en) Boiler main steam temperature control method for waste treatment facility
FR2913236B1 (en) METHOD FOR MANUFACTURING HIGH-CARBON VEGETABLE CHARCOAL AND SYSTEM FOR IMPLEMENTING THE PROCESS
SE532711C2 (en) Process and plant for producing synthesis gas
JP4161293B2 (en) Monomer recovery method and recovery device
US4883115A (en) Method and apparatus for cooling high-temperature processes
JP4131428B2 (en) Thermal decomposition apparatus and thermal decomposition method
JP2608376B2 (en) Plastic waste treatment equipment
CN211497509U (en) Organic solid waste pyrolysis and in-situ modification device
JP2001147009A (en) Method for discharging slag of waste melting furnace and waste melting furnace
KR102363342B1 (en) waste acrylic recycling apparatus
JP3348378B2 (en) Method for recovering useful components from waste plastic
JP4055114B2 (en) Pyrolysis equipment
JP2004002519A (en) Method for producing polystyrene
GB2364257A (en) System for oxidising a gas flow containing volatile organic compounds
JP2001040136A (en) Process for recovering styrene
JP2001181442A (en) Pyrolysis device and pyrolysis method
JP2006000787A (en) Distillation method and system for polystyrene degraded and produced oil
JP2001335658A (en) Thermal cracking equipment of polystyrene and thermal cracking method
JP3235643B2 (en) Combustion control method and apparatus for sludge incinerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees