JP2003147120A - Apparatus and method for thermal decomposition of plastic - Google Patents

Apparatus and method for thermal decomposition of plastic

Info

Publication number
JP2003147120A
JP2003147120A JP2001350261A JP2001350261A JP2003147120A JP 2003147120 A JP2003147120 A JP 2003147120A JP 2001350261 A JP2001350261 A JP 2001350261A JP 2001350261 A JP2001350261 A JP 2001350261A JP 2003147120 A JP2003147120 A JP 2003147120A
Authority
JP
Japan
Prior art keywords
exhaust gas
thermal decomposition
distillation
gas supply
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001350261A
Other languages
Japanese (ja)
Other versions
JP4003160B2 (en
Inventor
Takashi Kamiyama
隆 神山
Masahiro Ogasawara
昌弘 小笠原
Yoshinori Koyama
佳則 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Construction Corp
Original Assignee
Toshiba Plant Construction Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Construction Corp filed Critical Toshiba Plant Construction Corp
Priority to JP2001350261A priority Critical patent/JP4003160B2/en
Publication of JP2003147120A publication Critical patent/JP2003147120A/en
Application granted granted Critical
Publication of JP4003160B2 publication Critical patent/JP4003160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance heat recovery efficiency in an apparatus for thermal decomposition of plastics and for distillation, and to carry on a stable distillation operation. SOLUTION: Combustion gas from a combustion gas-generating means 18 is fed into a heating part 7 of a thermal decomposition means 5. A by-pass line 22 is arranged in parallel with an exhaust gas-feeding line 21 from a heating part 7 of the thermal decomposition means 5 to a heating part 12 of a distillation means 9, and the exhaust gas-feeding line 21 and the by-pass line 22 are equipped with a flow rate regulation means 23 and 24, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はプラスチックを熱分
解し、その生成物を蒸留する熱分解装置及び熱分解方法
に関し、詳しくは熱分解手段の加熱部からの排ガスを蒸
留手段の加熱部に供給するようにした熱分解装置および
熱分解方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal decomposition apparatus and a thermal decomposition method for thermally decomposing a plastic and distilling a product thereof, and more specifically, supplying exhaust gas from the heating section of the thermal decomposition means to the heating section of the distillation means. The present invention relates to a thermal decomposition device and a thermal decomposition method.

【0002】[0002]

【従来の技術】工場設備や家庭からは多量のプラスチッ
ク類が排出される。廃プラスチックをそのまま外部に排
出すると環境を汚染するため、再利用できる形態にする
ことが望ましい。そのため従来から廃プラスチックを熱
分解手段により熱分解して燃料油として回収する方法が
広く採用されている。
2. Description of the Related Art Large amounts of plastics are discharged from factory facilities and households. It is desirable to put it in a reusable form, because the waste plastic will be polluted to the environment if it is discharged outside. Therefore, conventionally, a method of thermally decomposing waste plastic by thermal decomposition means and recovering it as fuel oil has been widely adopted.

【0003】熱分解手段として槽形の熱分解槽方式や管
形の反応管方式があるが、連続運転を行う場合は後者の
反応管方式が望ましい。熱分解手段には電気ヒータ加熱
方式もしくは高温ガス加熱方式による加熱部が設けられ
るが、燃焼ガス発生手段で発生した燃焼ガスを用いる高
温ガス加熱方式が数多く採用されている。熱分解温度
は、例えばポリスチレンでは500℃〜800℃の範囲
の高温であるため、高温ガス加熱方式を採用する場合、
その燃焼ガスの温度はそれより若干高めに設定される。
As the thermal decomposition means, there are a tank type thermal decomposition tank system and a tubular reaction tube system, but the latter reaction tube system is preferable when performing continuous operation. The thermal decomposition means is provided with a heating section using an electric heater heating method or a high temperature gas heating method, but many high temperature gas heating methods using combustion gas generated by the combustion gas generating means are adopted. Since the thermal decomposition temperature is a high temperature in the range of 500 ° C. to 800 ° C. for polystyrene, for example, when the high temperature gas heating method is adopted,
The temperature of the combustion gas is set slightly higher than that.

【0004】しかしながら、廃プラスチックを燃料油に
変換するだけでは付加価値がそれ程大きくないので、最
近では熱分解による生成物、即ち廃プラスチック由来の
モノマー成分を含む生成物をさらに蒸留塔などの蒸留手
段で蒸留し、高純度のモノマーを回収する方法も採用さ
れつつある。
However, since the added value is not so large only by converting waste plastic into fuel oil, recently, the product by thermal decomposition, that is, the product containing a monomer component derived from waste plastic is further used for distillation means such as a distillation column. A method of recovering a high-purity monomer by distilling with the method is being adopted.

【0005】熱分解手段と蒸留手段を組み合わせた熱分
解装置として、特開2001−123007号公報に開
示されたものがある。同公報に開示された熱分解装置
は、廃プラスチックとしてのスチレン共重合体を連続的
に溶融して熱分解手段に供給する供給手段と、供給され
た溶融プラスチックを酸素不存在下で熱分解する熱分解
手段と、熱分解手段を加熱するための加熱部と、熱分解
の生成物を蒸留する蒸留手段と、蒸留手段を加熱するた
めのリボイラなどの加熱部を備えている。そして熱分解
手段の加熱部から排出される排ガスを蒸留手段の加熱部
に熱源として供給して熱回収を図っている。
As a thermal decomposition apparatus in which the thermal decomposition means and the distillation means are combined, there is one disclosed in Japanese Patent Laid-Open No. 2001-123007. The thermal decomposition apparatus disclosed in the publication discloses a supply means for continuously melting a styrene copolymer as waste plastic and supplying it to the thermal decomposition means, and a thermal decomposition of the supplied molten plastic in the absence of oxygen. It is provided with a thermal decomposition means, a heating part for heating the thermal decomposition means, a distillation means for distilling a product of thermal decomposition, and a heating part such as a reboiler for heating the distillation means. Then, the exhaust gas discharged from the heating part of the thermal decomposition means is supplied to the heating part of the distillation means as a heat source for heat recovery.

【0006】[0006]

【発明が解決しようとする課題】しかし上記公報では熱
分解手段と蒸留手段の熱エネルギーバランス、または加
熱部から排出する排ガスの流量調整等については何ら言
及されていない。本発明者らの研究によれば、熱分解装
置は熱分解手段と蒸留手段の有機的な連携操作により効
率よく運転されるが、熱分解手段からの排ガスの熱量と
蒸留手段で必要とする最適な熱量は必ずしも一致せず、
直列に接続された排ガス路を有するシステムでは総合的
で且つ安定した運転管理もしくは運転制御がしばしば困
難になることが分かった。そこで本発明はこのような問
題を解決することを課題とし、そのための新しい熱分解
装置および熱分解方法を提供することを目的とする。
However, the above publication makes no mention of the thermal energy balance between the thermal decomposition means and the distillation means, or the adjustment of the flow rate of the exhaust gas discharged from the heating section. According to the research conducted by the present inventors, the thermal decomposition apparatus is efficiently operated by the organically linked operation of the thermal decomposition means and the distillation means, but the heat quantity of the exhaust gas from the thermal decomposition means and the optimum amount required for the distillation means Calories do not always match,
It has been found that comprehensive and stable operation management or operation control is often difficult in systems with exhaust gas lines connected in series. Then, this invention makes it a subject to solve such a problem, and it aims at providing the novel thermal decomposition apparatus and thermal decomposition method for that.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
の本発明に係るプラスチックの熱分解装置は、プラスチ
ックを熱分解する熱分解手段と、熱分解による生成物を
蒸留する蒸留手段と、熱分解手段の加熱部に熱源として
の燃焼ガスを供給する燃焼ガス発生手段を備え、前記熱
分解手段の加熱部から排出する排ガスを排ガス供給路に
より蒸留手段の加熱部に供給するようにした熱分解装置
である。そしてこの装置は、前記熱分解手段の加熱部か
ら蒸留手段の加熱部への排ガス供給路と並列にバイパス
路を設け、それら排ガス供給路とバイパス路にそれぞれ
流量調整手段を設けたことを特徴とする(請求項1)。
To solve the above problems, a plastic thermal decomposition apparatus according to the present invention comprises a thermal decomposition means for thermally decomposing a plastic, a distillation means for distilling a product of the thermal decomposition, and a thermal decomposition means. Pyrolysis comprising combustion gas generating means for supplying combustion gas as a heat source to the heating part of the decomposition means, and exhaust gas discharged from the heating part of the thermal decomposition means is supplied to the heating part of the distillation means through an exhaust gas supply path. It is a device. This apparatus is characterized in that a bypass passage is provided in parallel with the exhaust gas supply passage from the heating portion of the thermal decomposition means to the heating portion of the distillation means, and flow rate adjusting means is provided in each of the exhaust gas supply passage and the bypass passage. (Claim 1).

【0008】上記熱分解装置において、蒸留手段の加熱
部の温度が予め設定された値になるように排ガス供給路
の流量調整手段を制御する温度制御部を設けることがで
きる(請求項2)。
In the thermal decomposition apparatus, it is possible to provide a temperature control section for controlling the flow rate adjusting means of the exhaust gas supply path so that the temperature of the heating section of the distillation means becomes a preset value.

【0009】さらに、上記いずれかの熱分解装置におい
て、排ガス供給路の圧力が予め設定された値になるよう
にバイパス路の流量調整手段を制御する圧力制御部を設
けることができる(請求項3)。
Further, in any one of the above thermal decomposition devices, a pressure control section for controlling the flow rate adjusting means of the bypass passage may be provided so that the pressure of the exhaust gas supply passage becomes a preset value. ).

【0010】また、前記課題を解決するための本発明に
係るプラスチックの熱分解方法は、燃焼ガスでプラスチ
ックを加熱する加熱部を有する熱分解手段でプラスチッ
クを熱分解し、その生成物を蒸留手段で蒸留し、前記熱
分解手段の加熱部から排出される燃焼ガスの排ガスを排
ガス供給路で蒸留手段の加熱部に供給するようにした熱
分解方法である。そしてこの方法は、排ガス供給路にバ
イパス路を設け、前記蒸留手段の加熱部の温度が予め設
定された値になるように排ガス供給路から加熱部に供給
される排ガス流量を調整し、余剰の排ガスをバイパス路
に分岐することを特徴とする(請求項4)。
Further, in the method for thermally decomposing plastics according to the present invention for solving the above-mentioned problems, the thermally decomposing means having a heating portion for heating the plastics with combustion gas thermally decomposes the plastics, and the product thereof is distilled means. In the thermal decomposition method, the exhaust gas of the combustion gas that is distilled from the heating unit of the thermal decomposition unit is supplied to the heating unit of the distillation unit through the exhaust gas supply passage. And this method, by providing a bypass passage in the exhaust gas supply path, the flow rate of the exhaust gas supplied from the exhaust gas supply path to the heating section is adjusted so that the temperature of the heating section of the distillation means becomes a preset value, The exhaust gas is branched into a bypass passage (claim 4).

【0011】上記熱分解方法において、排ガス供給路の
排ガス圧力が予め設定された値になるように、バイパス
路へ分岐する排ガスの流量を調整することができる(請
求項5)。
In the above thermal decomposition method, the flow rate of the exhaust gas branched to the bypass passage can be adjusted so that the exhaust gas pressure in the exhaust gas supply passage becomes a preset value.

【0012】[0012]

【発明の実施の形態】次に本発明の実施の形態を図面に
より説明する。図1は本発明に係る熱分解装置のプロセ
スフロー図である。図中、1は供給手段、2はホッパ、
3は溶融部、4は押出部、5は熱分解手段、6は反応
管、7は加熱部、8は凝縮器、9は蒸留手段、10は第
1の蒸留塔、11は第2の蒸留塔、12は加熱部、1
3、14は凝縮器、15は減圧手段、16はモノマー回
収タンク、17は重質成分回収タンク、18は燃焼ガス
発生手段、19はバーナ、20は燃焼ガス供給路、21
は排ガス供給路、22はバイパス路、23,24は流量
調整手段、25は温度制御部、26は温度検出器、27
は温度制御器、28は圧力制御部、29は圧力検出器、
30は圧力制御器、31は排気ファン、32〜34はポ
ンプ、a〜kは配管である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a process flow diagram of a thermal decomposition apparatus according to the present invention. In the figure, 1 is a supply means, 2 is a hopper,
3 is a melting part, 4 is an extrusion part, 5 is a thermal decomposition means, 6 is a reaction tube, 7 is a heating part, 8 is a condenser, 9 is a distillation means, 10 is a first distillation column, 11 is a second distillation. Tower, 12 is heating part, 1
3, 14 are condensers, 15 is a decompression means, 16 is a monomer recovery tank, 17 is a heavy component recovery tank, 18 is a combustion gas generation means, 19 is a burner, 20 is a combustion gas supply passage, 21
Is an exhaust gas supply path, 22 is a bypass path, 23 and 24 are flow rate adjusting means, 25 is a temperature control unit, 26 is a temperature detector, and 27 is a temperature detector.
Is a temperature controller, 28 is a pressure controller, 29 is a pressure detector,
30 is a pressure controller, 31 is an exhaust fan, 32 to 34 are pumps, and a to k are pipes.

【0013】供給手段1は一般にプラスチックの射出成
形に用いられる押出機、またはそれに類する構造の押出
機を使用することができる。図示の供給手段1はそのよ
うな押出機であり、廃プラスチックを一時的に貯留する
ホッパ2と、ホッパ2から供給されたプラスチックを加
熱混連して溶融する溶融部3と、溶融プラスチックを回
転スクリューで押し出す押出部4を備えている。なお廃
プラスチック等の熱分解に適するプラスチックは粉砕機
で10mm程度以下に細かく粉砕され、空気搬送器など
によりホッパ2に適宜供給される。
The supplying means 1 may be an extruder generally used for injection molding of plastic, or an extruder having a similar structure. The supply means 1 shown in the figure is such an extruder, and includes a hopper 2 for temporarily storing waste plastic, a melting section 3 for heating and mixing the plastic supplied from the hopper 2, and melting the melted plastic. An extrusion unit 4 that pushes out with a screw is provided. A plastic suitable for thermal decomposition, such as waste plastic, is finely crushed to a size of about 10 mm or less by a crusher and appropriately supplied to the hopper 2 by an air carrier or the like.

【0014】熱分解手段5は管形の反応管方式であり、
耐火断熱材料で作られた本体内に反応管6が配置され、
その周囲が加熱部7を構成する空間とされる。なお本発
明の熱分解装置には槽形の熱分解槽方式を採用すること
もできる。加熱部7の一方の端部はダクト等からなる燃
焼ガス供給路20を介して燃焼ガス発生手段18に接続
され、他方の端部はダクト等からなる排ガス供給路21
とそれに並列するバイパス路22と連通し、さらにその
排ガス供給路21の出口側は排気ファン31に接続され
る。なお燃焼ガス発生手段18は耐火材料で作られた燃
焼室と重油燃焼用のバーナ19等を備えたものが好適に
使用される。
The thermal decomposition means 5 is a tubular reaction tube system,
The reaction tube 6 is arranged in the main body made of refractory insulation material,
The surrounding area is a space forming the heating unit 7. The thermal decomposition apparatus of the present invention may employ a tank-type thermal decomposition tank system. One end of the heating portion 7 is connected to the combustion gas generating means 18 via a combustion gas supply passage 20 formed of a duct or the like, and the other end is connected to an exhaust gas supply passage 21 formed of a duct or the like.
And an outlet side of the exhaust gas supply passage 21 connected to an exhaust fan 31. The combustion gas generating means 18 preferably includes a combustion chamber made of a refractory material, a burner 19 for burning heavy oil, and the like.

【0015】反応管6の一方の端部は配管aを介して前
記供給手段1に接続され、他方の端部は配管bを介して
凝縮器8に接続される。なお熱分解による副生物の生成
をできるだけ抑制し、目的とするモノマー成分を高い収
率で得るためには減圧下(例えば圧力20Toor〜1
00Toor程度の範囲)で熱分解することが望まし
い。凝縮器8は熱分解手段5の生成物である分解ガスを
冷却水で冷却することにより凝縮して液化するものであ
り、得られた凝縮液は蒸留手段9を構成する第1の蒸留
塔10の中段に供給される。
One end of the reaction tube 6 is connected to the supply means 1 via a pipe a, and the other end is connected to the condenser 8 via a pipe b. In addition, in order to suppress the generation of by-products due to thermal decomposition as much as possible and to obtain a target monomer component in a high yield, a reduced pressure (for example, a pressure of 20 Toor-1
Pyrolysis is desirable in the range of about 00Toor). The condenser 8 condenses and liquefies the decomposition gas, which is the product of the thermal decomposition means 5, by cooling with cooling water, and the obtained condensate is the first distillation column 10 constituting the distillation means 9. Is supplied to the middle stage.

【0016】蒸留手段9は第1の蒸留塔10と第2の蒸
留塔11により構成される。しかし場合によっては目的
とするモノマー純度がそれ程高くなくてもよい場合など
は、蒸留手段9を第1の蒸留塔10のみで構成してもよ
い。蒸留塔10,11の下部にリボイラからなる加熱部
12が設けられる。塔型の蒸留部はトレイ式、またはラ
ッシリングやポーリング,その他高性能な規則充填物な
どを充填した充填式があるが、低い温度で蒸留可能な減
圧蒸留(例えば20Toor〜100Toor)を行う
場合には後者の充填式が望ましい。
The distillation means 9 comprises a first distillation column 10 and a second distillation column 11. However, in some cases, if the desired monomer purity does not need to be so high, the distillation means 9 may be composed of only the first distillation column 10. A heating unit 12 including a reboiler is provided below the distillation columns 10 and 11. The column-type distillation unit may be a tray type or a filling type filled with lashing, poling, or other high-performance ordered packing, but when performing vacuum distillation (for example, 20Toor-100Toor) that can distill at a low temperature. The latter filling method is desirable.

【0017】第1の蒸留塔10の塔頂には留出成分を冷
却して凝縮する凝縮器13が接続され、該凝縮器13に
は配管eを介して真空ポンプなどにより構成される減圧
手段15が接続される。凝縮器13で得られた凝縮液は
ポンプ32を設けた還流用の配管dにより塔頂に還流さ
れ、凝縮しない僅かな量(通常、投入プラスチック量の
1%程度)のガス成分は配管eを経て減圧手段15の出
口側から排出する。なお、この排出成分は悪臭物質を含
むので焼却炉で焼却するか、燃焼ガス発生手段18で燃
焼することが望ましい。
A condenser 13 for cooling and condensing distillate components is connected to the top of the first distillation column 10, and the decompression means constituted by a vacuum pump or the like via the pipe e to the condenser 13. 15 are connected. The condensate obtained in the condenser 13 is recirculated to the top of the tower through a reflux pipe d provided with a pump 32, and a slight amount of gas components that do not condense (usually about 1% of the amount of plastic input) is in the pipe e. Then, it is discharged from the outlet side of the pressure reducing means 15. Since this discharged component contains a malodorous substance, it is desirable to incinerate it in an incinerator or combust it in the combustion gas generating means 18.

【0018】第1の蒸留塔10の下部(この例では加熱
部12を構成するリボイラ部分)には蒸留により分離さ
れた高沸点成分を排出する配管fが接続され、その配管
fは第2の蒸留塔11の中段に接続される。第2の蒸留
塔11も第1の蒸留塔10と同様に構成される。すなわ
ち、第2の蒸留塔11の塔頂には留出成分を冷却して凝
縮する凝縮器14が接続され、得られた凝縮液はポンプ
33を設けた還流用の配管iにより塔頂に還流される。
さらに凝縮器14には配管eを介して前記減圧手段15
が接続され、僅かな未凝縮成分が減圧手段15の出口側
から排出する。
A pipe f for discharging the high boiling point component separated by distillation is connected to the lower part of the first distillation column 10 (the reboiler part constituting the heating part 12 in this example), and the pipe f is the second pipe. It is connected to the middle stage of the distillation column 11. The second distillation column 11 is also configured similarly to the first distillation column 10. That is, a condenser 14 for cooling and condensing distillate components is connected to the top of the second distillation column 11, and the obtained condensate is refluxed to the top of the column through a reflux pipe i provided with a pump 33. To be done.
Further, the pressure reducing means 15 is connected to the condenser 14 via a pipe e.
Are connected to discharge a small amount of uncondensed components from the outlet side of the pressure reducing means 15.

【0019】さらに、凝縮器14には配管hを介してモ
ノマー回収タンク16が接続され、凝縮器14で得られ
た凝縮液である高純度のモノマー成分がモノマー回収タ
ンク16に回収される。一方、第2の蒸留塔11の塔底
には配管jを介して重質成分タンク17が接続され、蒸
留によって分離した重質成分が重質成分タンク17に貯
蔵される。
Further, a monomer recovery tank 16 is connected to the condenser 14 via a pipe h, and a high-purity monomer component which is a condensate obtained in the condenser 14 is recovered in the monomer recovery tank 16. On the other hand, a heavy component tank 17 is connected to the bottom of the second distillation column 11 via a pipe j, and the heavy component separated by distillation is stored in the heavy component tank 17.

【0020】第1の蒸留塔10および第2の蒸留塔11
の各加熱部12には排ガス供給路21がそれぞれ接続さ
れ、それら排ガス供給路21に遠隔操作可能な調整弁ま
たは調整ダンパなどからなる流量調整手段23が設けら
れる。各流量調整手段23はそれぞれ独立した温度制御
部25で制御される。各温度制御部25は加熱部12の
温度を検出する温度検出器26と、その温度検出値が予
め設定された値になるように流量調整手段23を駆動制
御する温度制御器27により構成される。なお温度制御
器27はPID(比例・積分・微分)制御モードを有す
るものを使用することが望ましい。
First distillation column 10 and second distillation column 11
An exhaust gas supply path 21 is connected to each of the heating units 12, and a flow rate adjusting means 23 including a remotely operable adjustment valve or an adjustment damper is provided in the exhaust gas supply path 21. Each flow rate adjusting unit 23 is controlled by an independent temperature control unit 25. Each temperature control unit 25 includes a temperature detector 26 that detects the temperature of the heating unit 12, and a temperature controller 27 that drives and controls the flow rate adjusting unit 23 so that the detected temperature value becomes a preset value. . The temperature controller 27 preferably has a PID (proportional / integral / derivative) control mode.

【0021】排ガス供給路21にはバイパス路22が接
続され、そのバイパス路22に流量調整手段24が設け
られ、該流量調整手段24は圧力制御部28で制御され
る。圧力制御部28は排ガス供給路21の圧力を検出す
る圧力検出器29と、その圧力検出値が予め設定された
値になるように流量調整手段24を駆動制御する圧力制
御器30により構成される。なお圧力制御器30もPI
D制御モードを有するものを使用することが望ましい。
A bypass line 22 is connected to the exhaust gas supply line 21, and a flow rate adjusting unit 24 is provided in the bypass line 22. The flow rate adjusting unit 24 is controlled by a pressure control unit 28. The pressure control unit 28 includes a pressure detector 29 that detects the pressure of the exhaust gas supply passage 21, and a pressure controller 30 that drives and controls the flow rate adjusting means 24 so that the detected pressure value becomes a preset value. . The pressure controller 30 is also a PI
It is desirable to use one that has a D control mode.

【0022】次に上記熱分解装置を用いてプラスチック
を熱分解する方法について説明する。なお、以下の条件
等はプラスチックとしてポリスチレンを対象とした場合
であるが、他の熱分解可能なプラスチックについても、
これに準じて実施できることは言うまでもない。
Next, a method of thermally decomposing a plastic using the above-mentioned thermal decomposition apparatus will be described. The following conditions apply when polystyrene is used as the plastic, but for other thermally decomposable plastics,
Needless to say, it can be carried out according to this.

【0023】先ず、減圧手段15を運転して熱分解手段
5の反応菅6、第1の蒸留塔10および第2の蒸留塔1
1の各内部空気、およびそれらを接続する配管類の内部
を窒素などの不活性ガスで置換して酸素不存在状態にす
ると共に、それらの内部圧が例えば20Toor〜10
0Toorになるように減圧手段15に設けた圧力調整
弁などを調整する。それと共に、燃焼ガス発生手段18
を運転して熱分解手段5の加熱部7に燃焼ガスを供給
し、反応菅6の温度を例えば500℃〜800℃に昇温
する。
First, the pressure reducing means 15 is operated to operate the reaction tube 6, the first distillation column 10 and the second distillation column 1 of the thermal decomposition means 5.
Each of the internal air of No. 1 and the inside of the pipes connecting them are replaced with an inert gas such as nitrogen so as to be in an oxygen-free state, and their internal pressure is, for example, 20 Toor-10.
A pressure control valve or the like provided in the pressure reducing means 15 is adjusted so as to be 0Toor. At the same time, the combustion gas generating means 18
Is operated to supply combustion gas to the heating section 7 of the thermal decomposition means 5 and the temperature of the reaction tube 6 is raised to, for example, 500 ° C to 800 ° C.

【0024】さらに、加熱部7から排ガス供給路21に
排出する排ガスを第1の蒸留塔10および第2の蒸留塔
11の各加熱部12に供給し、それらを所定温度に昇温
する。なお各加熱部12の温度は温度制御部25で駆動
制御される流量調整手段23により70〜150℃程度
の範囲に調整される。
Further, the exhaust gas discharged from the heating section 7 to the exhaust gas supply passage 21 is supplied to each heating section 12 of the first distillation column 10 and the second distillation column 11 to raise them to a predetermined temperature. The temperature of each heating unit 12 is adjusted to a range of about 70 to 150 ° C. by the flow rate adjusting unit 23, which is driven and controlled by the temperature control unit 25.

【0025】排気ファン31を一定の吸引力で運転して
いるとき、流量調整手段23の調整により排ガス供給路
21の排ガス流量が変化する。排ガス流量が変化する
と、それに応じて熱分解手段5の加熱部7に供給される
燃焼ガス流量も変化するので好ましくない。すなわち熱
分解手段5で消費される熱エネルギーは、プラスチック
の熱分解に必要な熱量により一義的に決める必要があ
り、他の要因で変動することは好ましくない。
When the exhaust fan 31 is operated with a constant suction force, the flow rate adjusting means 23 adjusts the flow rate of the exhaust gas in the exhaust gas supply passage 21. If the flow rate of the exhaust gas changes, the flow rate of the combustion gas supplied to the heating unit 7 of the thermal decomposition means 5 also changes accordingly, which is not preferable. That is, the thermal energy consumed by the thermal decomposition means 5 must be uniquely determined by the amount of heat required for the thermal decomposition of the plastic, and it is not preferable that it fluctuates due to other factors.

【0026】そこで本発明の熱分解装置では、バイパス
路22の流量調整手段24を前記流量調整手段23と逆
比例して開度調整することにより、燃焼ガス流量を一定
に維持することができる。この逆比例制御は手動で行う
こともある程度可能であるが、自動的に行うことが望ま
しい。本実施の形態では排ガス供給路21の圧力を自動
制御することにより、燃焼ガス流量を所定値に維持する
ようにしている。即ち、排ガス供給路21の圧力を所定
値に自動制御することにより、それより上流側の圧力、
特に燃焼ガス発生手段18の炉内圧を安定化させること
ができる。
Therefore, in the thermal decomposition apparatus of the present invention, the flow rate adjusting means 24 of the bypass passage 22 is adjusted in inverse proportion to the flow rate adjusting means 23 so that the combustion gas flow rate can be maintained constant. Although it is possible to perform the inverse proportional control manually to some extent, it is desirable to perform it automatically. In the present embodiment, the combustion gas flow rate is maintained at a predetermined value by automatically controlling the pressure of the exhaust gas supply passage 21. That is, by automatically controlling the pressure of the exhaust gas supply passage 21 to a predetermined value, the pressure on the upstream side of that,
In particular, the internal pressure of the combustion gas generating means 18 can be stabilized.

【0027】燃焼ガス発生手段18の炉内圧が変動する
と、燃焼ガス発生手段18のバーナの燃焼も不安定にな
り、特に排ガス供給路21の流量調整手段23が全閉に
なったときに炉内圧もそれに応じて変動し、燃焼不安定
性はより大きくなる。なお本実施の形態で採用した燃焼
ガス発生手段18におけるバーナ19の最適燃焼雰囲気
は、炉内圧力が数十mm水頭の負圧領域である。
When the furnace pressure of the combustion gas generating means 18 fluctuates, the combustion of the burner of the combustion gas generating means 18 becomes unstable, and especially when the flow rate adjusting means 23 of the exhaust gas supply passage 21 is fully closed. Also fluctuates accordingly, and the combustion instability becomes larger. The optimum combustion atmosphere of the burner 19 in the combustion gas generating means 18 adopted in the present embodiment is a negative pressure region where the furnace pressure is several tens of mm of water head.

【0028】本実施の形態では排ガス供給路21の圧力
が予め設定された値になるように、圧力制御部28でバ
イパス路22に設けた流量調整手段24を調整してい
る。例えば排ガス供給路21の排ガス流量調整手段23
が閉じる方向に調整されると、排ガス供給路21の圧力
は予め設定された値より上昇する。すると圧力検出器2
9からの圧力上昇信号を受けた圧力制御器30は、その
圧力を予め設定された値に戻すように、流量調整手段2
4を開ける方向に調整する。逆に排ガス供給流量が増加
して排ガス供給路21の圧力が低下したときは、バイパ
ス路22のバイパス流量がそれに応じて減少するよう
に、流量調整手段24を閉じる方向に調整する。
In this embodiment, the pressure controller 28 adjusts the flow rate adjusting means 24 provided in the bypass passage 22 so that the pressure in the exhaust gas supply passage 21 becomes a preset value. For example, the exhaust gas flow rate adjusting means 23 of the exhaust gas supply passage 21
Is adjusted in the closing direction, the pressure in the exhaust gas supply passage 21 rises above a preset value. Then pressure detector 2
The pressure controller 30 that receives the pressure increase signal from the flow controller 9 returns the pressure to a preset value.
Adjust 4 to open. On the contrary, when the exhaust gas supply flow rate increases and the pressure of the exhaust gas supply path 21 decreases, the flow rate adjusting means 24 is adjusted in the closing direction so that the bypass flow rate of the bypass path 22 decreases accordingly.

【0029】次に、熱分解すべきプラスチックはホッパ
2から溶融部3に連続的に供給され、そこで200℃程
度に加熱されて溶融し、押出部4から配管aに吐出す
る。配管aに流入した溶融プラスチックは熱分解手段5
における反応管6の一方の端部に連続的に供給され、反
応管6を通過する間に加熱部7より加熱され熱分解す
る。
Next, the plastic to be pyrolyzed is continuously supplied from the hopper 2 to the melting section 3, where it is heated to about 200 ° C. to be melted and discharged from the extruding section 4 into the pipe a. The molten plastic flowing into the pipe a is pyrolyzed by the thermal decomposition means 5.
Is continuously supplied to one end of the reaction tube 6 and is heated by the heating unit 7 while passing through the reaction tube 6 to be thermally decomposed.

【0030】熱分解により生成して蒸発する生成物は、
配管bから排出して凝縮器8で冷却され凝縮する。例え
ばポリスチレンを500℃〜800℃、圧力50Too
rで熱分解した場合、蒸発する生成物の約70%程度が
スチレンモノマーとなり、他にスチレンダイマー、スチ
レントリマー、トルエン、その他の高沸点成分などが副
生物として生成する。
The product produced by thermal decomposition and evaporated is
It is discharged from the pipe b, cooled in the condenser 8 and condensed. For example, polystyrene is 500 ° C. to 800 ° C., pressure is 50 Too
When pyrolyzed by r, about 70% of the evaporated product becomes a styrene monomer, and in addition, styrene dimer, styrene trimer, toluene, and other high boiling point components are produced as by-products.

【0031】凝縮液は前記の圧力範囲に調整された第1
の蒸留塔10の中段に供給され、減圧蒸留によりトルエ
ンなどの低沸点成分とスチレンを含むそれより高沸点の
成分に分離される。蒸留温度はその下部に設けた加熱部
12の温度により制御することができ、通常50〜60
℃程度の範囲で運転する。低沸点成分は熱分解手段5に
供給するプラスチックの3〜5%程度であり、その大部
分は凝縮器13で凝縮されてポンプ32により第1の蒸
留塔10の塔頂に還流する。なお還流比は通常20〜5
0程度とする。
The condensate has a first pressure adjusted to the above pressure range.
Is supplied to the middle stage of the distillation column 10 and is separated by vacuum distillation into a low boiling point component such as toluene and a high boiling point component containing styrene. The distillation temperature can be controlled by the temperature of the heating section 12 provided therebelow, and is usually 50 to 60.
Operate in the range of about ℃. The low boiling point component is about 3 to 5% of the plastic supplied to the thermal decomposition means 5, and most of it is condensed in the condenser 13 and refluxed to the top of the first distillation column 10 by the pump 32. The reflux ratio is usually 20-5.
It is about 0.

【0032】第1の蒸留塔10の下部から蒸留操作によ
り分離された高沸点成分が排出する。排出時の高沸点成
分の温度はかなり高いので、図示しない冷却器などで適
宜冷却することが望ましい。高沸点成分は次に前記の圧
力範囲に調整された第2の蒸留塔11の中段に供給さ
れ、そこでさらに減圧蒸留される。第2の蒸留塔11の
温度もその下部に設けた加熱部12の温度により調整で
き、通常60〜70℃程度の範囲に設定する。
The high boiling point components separated by the distillation operation are discharged from the lower part of the first distillation column 10. Since the temperature of the high boiling point component at the time of discharge is considerably high, it is desirable to appropriately cool it with a cooler or the like not shown. The high boiling point component is then fed to the middle stage of the second distillation column 11 adjusted to the above pressure range, and further distilled under reduced pressure there. The temperature of the second distillation column 11 can also be adjusted by the temperature of the heating section 12 provided below it, and is usually set in the range of about 60 to 70 ° C.

【0033】第2の蒸留塔11では塔頂から留出する低
沸点成分であるスチレンモノマーは凝縮器14で冷却さ
れて凝縮し、その凝縮液は配管hからモノマー回収タン
ク16に回収され、一部がポンプ33により塔頂に還流
する。なお還流比は通常2〜3程度とする。
In the second distillation column 11, the styrene monomer, which is a low-boiling component distilled from the top of the column, is cooled and condensed in the condenser 14, and the condensate is recovered in the monomer recovery tank 16 through the pipe h. Part is refluxed by the pump 33 to the top of the column. The reflux ratio is usually about 2-3.

【0034】第2の蒸留塔11で分離されるスチレンダ
イマー、スチレントリマー、およびその他重質成分は、
供給された成分の20〜30%程度であり、それらは第
2の蒸留塔11の下部から配管jを経て重質成分回収タ
ンク17に回収される。重質成分回収タンクに貯留され
た重質成分はポンプ34により燃焼ガス発生手段18の
バーナ19に供給され、そこで燃料として燃焼される。
このような操作により純度99%のスチレンモノマーが
ポリマー供給量の70%程度回収される。
The styrene dimer, styrene trimer, and other heavy components separated in the second distillation column 11 are
It is about 20 to 30% of the supplied components, and they are recovered from the lower part of the second distillation column 11 through the pipe j to the heavy component recovery tank 17. The heavy component stored in the heavy component recovery tank is supplied to the burner 19 of the combustion gas generating means 18 by the pump 34, and is burned there as fuel.
By such an operation, styrene monomer having a purity of 99% is recovered by about 70% of the amount of the polymer supplied.

【0035】前記熱分解手段5の加熱部7に供給する燃
焼ガスの温度が800℃程度の場合、加熱部7から排出
する排ガスの温度は600度程度になり、かかる高温の
排ガスが排ガス供給路21を経て第1の蒸留塔10およ
び第2の蒸留塔11の加熱部12にそれぞれ供給され
る。
When the temperature of the combustion gas supplied to the heating part 7 of the thermal decomposition means 5 is about 800 ° C., the temperature of the exhaust gas discharged from the heating part 7 is about 600 ° C., and the high temperature exhaust gas is supplied to the exhaust gas supply path. It is supplied to the heating parts 12 of the first distillation column 10 and the second distillation column 11 via 21 respectively.

【0036】そして各加熱部12の温度は前記のように
温度調整部25で制御される流量調整手段23により調
整され、さらにその排ガス供給路21の圧力は圧力制御
部28で制御されるバイパス路22の流量調整手段24
で調整される。そして流量調整手段23と流量調整手段
24の協調的な調整操作により、熱分解手段5に消費さ
れる熱エネルギーと第1の蒸留塔10および第2の蒸留
塔11で構成される蒸留手段9に消費される熱エネルギ
ーの不一致が解消され、システム全体の熱バランスが安
定化する。また、燃焼ガス発生手段18におけるバーナ
19の燃焼不安定性も解消する。
The temperature of each heating section 12 is adjusted by the flow rate adjusting means 23 controlled by the temperature adjusting section 25 as described above, and the pressure of the exhaust gas supply path 21 is controlled by the pressure control section 28. 22 flow rate adjusting means 24
Is adjusted by. Then, by the coordinated adjusting operation of the flow rate adjusting means 23 and the flow rate adjusting means 24, the thermal energy consumed by the thermal decomposition means 5 and the distillation means 9 composed of the first distillation column 10 and the second distillation column 11 are obtained. Dissimilarity of consumed heat energy is eliminated and the heat balance of the entire system is stabilized. Further, the combustion instability of the burner 19 in the combustion gas generating means 18 is eliminated.

【0037】[0037]

【発明の効果】以上のように本発明に係る熱分解装置
は、熱分解手段の加熱部から排出する排ガスを排ガス供
給路により蒸留手段の加熱部に供給するように構成した
ので、熱エネルギーの回収率が向上する。さらに熱分解
手段の加熱部から蒸留手段の加熱部への排ガス供給路と
並列にバイパス路を設け、それら排ガス供給路とバイパ
ス路にそれぞれ流量調整手段を設けたので、それらの調
整により熱分解手段で消費される熱エネルギーと蒸留手
段で消費される熱エネルギーの不一致を解消することが
でき、システム全体の熱バランスが安定化する。
As described above, the thermal decomposition apparatus according to the present invention is constructed so that the exhaust gas discharged from the heating section of the thermal decomposition means is supplied to the heating section of the distillation means through the exhaust gas supply passage, so that the thermal energy Recovery rate is improved. Further, a bypass passage is provided in parallel with the exhaust gas supply passage from the heating portion of the thermal decomposition means to the heating portion of the distillation means, and flow rate adjusting means is provided in each of the exhaust gas supply passage and the bypass passage. It is possible to eliminate the discrepancy between the heat energy consumed by the and the heat energy consumed by the distillation means and stabilize the heat balance of the entire system.

【0038】上記熱分解装置において、蒸留手段の加熱
部の温度が予め設定された値になるように排ガス供給路
の流量調整手段を制御する温度制御部を設けることがで
きる。このようにすると、蒸留手段の温度を自動調整し
て蒸留操作の安定化を図ることができる。
In the above thermal decomposition apparatus, it is possible to provide a temperature control section for controlling the flow rate adjusting means of the exhaust gas supply path so that the temperature of the heating section of the distillation means becomes a preset value. By doing so, the temperature of the distillation means can be automatically adjusted to stabilize the distillation operation.

【0039】さらに、上記いずれかの熱分解装置におい
て、排ガス供給路の圧力が予め設定された値になるよう
にバイパス路の流量調整手段を制御する圧力制御部を設
けることができる。このようにすると、上記蒸留操作の
安定化の効果に加え、燃焼ガス発生手段におけるバーナ
の燃焼不安定性を解消することができる。
Further, in any one of the above thermal decomposition devices, it is possible to provide a pressure control section for controlling the flow rate adjusting means of the bypass passage so that the pressure of the exhaust gas supply passage becomes a preset value. By doing so, in addition to the effect of stabilizing the distillation operation, the combustion instability of the burner in the combustion gas generating means can be eliminated.

【0040】また、本発明に係るプラスチックの熱分解
方法は、熱分解手段の加熱部から排出される燃焼ガスの
排ガスを排ガス供給路で蒸留手段の加熱部に供給するよ
うにしているので、熱エネルギーの回収率が向上する。
さらに排ガス供給路にバイパス路を設け、前記蒸留手段
の加熱部の温度が予め設定された値になるように排ガス
供給路から加熱部に供給される排ガス流量を調整し、余
剰の排ガスをバイパス路に分岐するようにしたので、熱
分解手段で消費される熱エネルギーと蒸留手段で消費さ
れる熱エネルギーの不一致を解消することができ、シス
テム全体の熱バランスが安定化する。
Further, in the plastic thermal decomposition method according to the present invention, since the exhaust gas of the combustion gas discharged from the heating part of the thermal decomposition means is supplied to the heating part of the distillation means through the exhaust gas supply path, Energy recovery rate is improved.
Furthermore, a bypass passage is provided in the exhaust gas supply passage, and the flow rate of the exhaust gas supplied from the exhaust gas supply passage to the heating portion is adjusted so that the temperature of the heating portion of the distillation means becomes a preset value, and the surplus exhaust gas is bypassed. Since the heat energy consumed by the thermal decomposition means and the heat energy consumed by the distillation means can be resolved, the heat balance of the entire system is stabilized.

【0041】さらに上記熱分解方法において、排ガス供
給路の排ガス圧力が予め設定された値になるように、バ
イパス路へ分岐する排ガスの流量を調整することができ
る。このようにすると、上記安定化の効果に加え、燃焼
ガス発生手段におけるバーナの燃焼不安定性を解消する
ことができる。
Furthermore, in the above-mentioned thermal decomposition method, the flow rate of the exhaust gas branched to the bypass passage can be adjusted so that the exhaust gas pressure in the exhaust gas supply passage becomes a preset value. By doing so, in addition to the above-described stabilizing effect, the combustion instability of the burner in the combustion gas generating means can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る熱分解装置のプロセスフロー図。FIG. 1 is a process flow diagram of a thermal decomposition apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 供給手段 2 ホッパ 3 溶融部 4 押出部 5 熱分解手段 6 反応管 7 加熱部 8 凝縮器 9 蒸留手段 10 第1の蒸留塔 11 第2の蒸留塔 12 加熱部 13,14 凝縮器 15 減圧手段 16 モノマー回収タンク 17 重質成分回収タンク 18 燃焼ガス発生手段 19 バーナ 20 燃焼ガス供給路 21 排ガス供給路 22 バイパス路 23 流量調整手段 24 流量調整手段 25 温度制御部 26 温度検出器 27 温度制御器 28 圧力制御部 29 圧力検出器 30 圧力制御器 31 排気ファン 32〜34 ポンプ a〜k 配管 1 supply means 2 hoppers 3 fusion zone 4 Extruder 5 Pyrolysis means 6 reaction tubes 7 heating section 8 condenser 9 Distillation means 10 First distillation column 11 Second distillation column 12 heating part 13,14 condenser 15 Decompression means 16 Monomer recovery tank 17 Heavy component recovery tank 18 Combustion gas generation means 19 burners 20 Combustion gas supply path 21 Exhaust gas supply channel 22 Bypass 23 Flow rate adjusting means 24 Flow rate adjusting means 25 Temperature controller 26 Temperature detector 27 Temperature controller 28 Pressure control unit 29 Pressure detector 30 Pressure controller 31 Exhaust fan 32-34 pump ak piping

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 佳則 東京都大田区蒲田五丁目37番1号 東芝プ ラント建設株式会社内 Fターム(参考) 4D076 AA16 AA22 BB03 BB23 CB11 CD22 DA07 DA28 EA12Y EA16Y FA02 FA12 HA03 JA02 JA04 4F301 AA15 CA09 CA27 CA36 CA42 CA52 CA64 CA72 CA73 CA74 4H006 AA04 AA05 AB46 AC91 AD11 BC10 BC11    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshinori Koyama             5-37 Kamata, Ota-ku, Tokyo             Runt Construction Co., Ltd. F term (reference) 4D076 AA16 AA22 BB03 BB23 CB11                       CD22 DA07 DA28 EA12Y                       EA16Y FA02 FA12 HA03                       JA02 JA04                 4F301 AA15 CA09 CA27 CA36 CA42                       CA52 CA64 CA72 CA73 CA74                 4H006 AA04 AA05 AB46 AC91 AD11                       BC10 BC11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 プラスチックを熱分解する熱分解手段5
と、熱分解による生成物を蒸留する蒸留手段9と、熱分
解手段5の加熱部7に熱源としての燃焼ガスを供給する
燃焼ガス発生手段18を備え、前記熱分解手段5の加熱
部7から排出する排ガスを排ガス供給路21により蒸留
手段9の加熱部12に供給するようにした熱分解装置に
おいて、前記熱分解手段5の加熱部7から蒸留手段9の
加熱部12への排ガス供給路21と並列にバイパス路2
2を設け、それら排ガス供給路21とバイパス路22に
それぞれ流量調整手段23,24を設けたことを特徴と
するプラスチックの熱分解装置。
1. A thermal decomposition means 5 for thermally decomposing a plastic.
A distillation means 9 for distilling a product of the thermal decomposition; and a combustion gas generating means 18 for supplying a combustion gas as a heat source to the heating part 7 of the thermal decomposition means 5. In the thermal decomposition apparatus in which the exhaust gas to be discharged is supplied to the heating section 12 of the distillation means 9 through the exhaust gas supply path 21, the exhaust gas supply path 21 from the heating section 7 of the thermal decomposition means 5 to the heating section 12 of the distillation means 9 is provided. Bypass 2 in parallel with
2 is provided, and the exhaust gas supply passage 21 and the bypass passage 22 are provided with flow rate adjusting means 23 and 24, respectively.
【請求項2】 蒸留手段9の加熱部12の温度が予め設
定された値になるように排ガス供給路21の流量調整手
段23を制御する温度制御部25を設けたことを特徴と
する請求項1に記載のプラスチックの熱分解装置。
2. A temperature control section 25 for controlling the flow rate adjusting means 23 of the exhaust gas supply passage 21 is provided so that the temperature of the heating section 12 of the distillation means 9 becomes a preset value. 1. The thermal decomposition apparatus for plastic according to 1.
【請求項3】 排ガス供給路21の圧力が予め設定され
た値になるようにバイパス路22の流量調整手段24を
制御する圧力制御部28を設けたことを特徴とする請求
項1または請求項2に記載のプラスチックの熱分解装
置。
3. The pressure control unit 28 for controlling the flow rate adjusting means 24 of the bypass passage 22 is provided so that the pressure of the exhaust gas supply passage 21 becomes a preset value. 2. The thermal decomposition apparatus for plastic according to 2.
【請求項4】 燃焼ガスでプラスチックを加熱する加熱
部7を有する熱分解手段5でプラスチックを熱分解し、
その生成物を蒸留手段9で蒸留し、前記熱分解手段5の
加熱部7から排出される燃焼ガスの排ガスを排ガス供給
路21で蒸留手段9の加熱部12に供給するようにした
熱分解方法において、排ガス供給路21にバイパス路2
2を設け、前記蒸留手段9の加熱部12の温度が予め設
定された値になるように排ガス供給路21から蒸留手段
9の加熱部12に供給される排ガス流量を調整し、余剰
の排ガスをバイパス路22に分岐することを特徴とする
プラスチックの熱分解方法。
4. The plastic is thermally decomposed by a thermal decomposition means 5 having a heating part 7 for heating the plastic with combustion gas,
The pyrolysis method in which the product is distilled by the distillation means 9 and the exhaust gas of the combustion gas discharged from the heating part 7 of the thermal decomposition means 5 is supplied to the heating part 12 of the distillation means 9 through the exhaust gas supply path 21. At the exhaust gas supply path 21, the bypass path 2
2 is provided and the flow rate of the exhaust gas supplied from the exhaust gas supply passage 21 to the heating unit 12 of the distillation means 9 is adjusted so that the temperature of the heating part 12 of the distillation means 9 becomes a preset value, and excess exhaust gas is removed. A thermal decomposition method for plastics, characterized by branching to a bypass 22.
【請求項5】 排ガス供給路21の排ガス圧力が予め設
定された値になるように、バイパス路22へ分岐する排
ガス流量を調整することを特徴とする請求項4に記載の
プラスチックの熱分解方法。
5. The method of thermal decomposition of plastic according to claim 4, wherein the flow rate of the exhaust gas branched to the bypass passage 22 is adjusted so that the exhaust gas pressure of the exhaust gas supply passage 21 becomes a preset value. .
JP2001350261A 2001-11-15 2001-11-15 Pyrolysis apparatus and pyrolysis method for plastic Expired - Fee Related JP4003160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001350261A JP4003160B2 (en) 2001-11-15 2001-11-15 Pyrolysis apparatus and pyrolysis method for plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001350261A JP4003160B2 (en) 2001-11-15 2001-11-15 Pyrolysis apparatus and pyrolysis method for plastic

Publications (2)

Publication Number Publication Date
JP2003147120A true JP2003147120A (en) 2003-05-21
JP4003160B2 JP4003160B2 (en) 2007-11-07

Family

ID=19162797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001350261A Expired - Fee Related JP4003160B2 (en) 2001-11-15 2001-11-15 Pyrolysis apparatus and pyrolysis method for plastic

Country Status (1)

Country Link
JP (1) JP4003160B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102251376B1 (en) * 2020-10-16 2021-05-12 (주)리보테크 Apparatus for loading for the waste synthetic resin pyrolysis
WO2021182690A1 (en) * 2020-03-13 2021-09-16 (주)알앤이 Waste acrylic treatment device
WO2021194027A1 (en) * 2020-03-24 2021-09-30 (주)알앤이 Apparatus for recycling waste acryl

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021182690A1 (en) * 2020-03-13 2021-09-16 (주)알앤이 Waste acrylic treatment device
WO2021194027A1 (en) * 2020-03-24 2021-09-30 (주)알앤이 Apparatus for recycling waste acryl
KR20210119076A (en) * 2020-03-24 2021-10-05 (주)알앤이 waste acrylic recycling apparatus
KR102363342B1 (en) 2020-03-24 2022-02-16 주식회사 알앤이 waste acrylic recycling apparatus
KR102251376B1 (en) * 2020-10-16 2021-05-12 (주)리보테크 Apparatus for loading for the waste synthetic resin pyrolysis

Also Published As

Publication number Publication date
JP4003160B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JP2791985B2 (en) Waste heat treatment equipment and method of operating the equipment
JP2009536259A (en) Heat recycling system for use with gasifier
US7767869B2 (en) Apparatus and process for the production of vinyl chloride by thermal cracking of 1,2-dichloroethane
US6089169A (en) Conversion of waste products
Zhang et al. Heat-integrated pressure-swing distillation process for separation of the maximum-boiling azeotrope diethylamine and methanol
KR960703666A (en) Method and reburn apparatus for regulating highly variable flow
JP2009536258A (en) Gas reforming system using plasma torch heat
CN101479365A (en) A heat recycling system for use with a gasifier
JP2003147120A (en) Apparatus and method for thermal decomposition of plastic
JP2007187340A (en) Boiler main steam temperature control method for waste treatment facility
KR100789158B1 (en) A Method of Firebox Temperature Control for Achieving Carbon Monoxide Emission Compliance in Industrial Furnances with Minimal Energy Consumption
JP4161293B2 (en) Monomer recovery method and recovery device
US5538693A (en) Varying switching temperature set-point method for bed flow reversal for regenerative incinerator systems
US4117786A (en) Inlet air preheating for pyrolysis system
Ma et al. Economic optimization and dynamic control of pressure‐swing distillation for separating the ternary azeotrope of butanone/n‐heptane/isopropanol
JP4131428B2 (en) Thermal decomposition apparatus and thermal decomposition method
CN100381356C (en) Method for producing fullerene
JP2608376B2 (en) Plastic waste treatment equipment
KR102363342B1 (en) waste acrylic recycling apparatus
CZ20031920A3 (en) Regenerative heat-oxidizing apparatus and operating way thereof
US20030024801A1 (en) Distillation system with individual fractionation tray temperature control
JP4055114B2 (en) Pyrolysis equipment
WO2003031662A1 (en) Process and apparatus for the treatment of contaminated fumes
JP3235643B2 (en) Combustion control method and apparatus for sludge incinerator
JP2001040136A (en) Process for recovering styrene

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees