JP4002328B2 - Method for curing water glass for grout - Google Patents

Method for curing water glass for grout Download PDF

Info

Publication number
JP4002328B2
JP4002328B2 JP30370497A JP30370497A JP4002328B2 JP 4002328 B2 JP4002328 B2 JP 4002328B2 JP 30370497 A JP30370497 A JP 30370497A JP 30370497 A JP30370497 A JP 30370497A JP 4002328 B2 JP4002328 B2 JP 4002328B2
Authority
JP
Japan
Prior art keywords
acid
water glass
aluminum
iron
grout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30370497A
Other languages
Japanese (ja)
Other versions
JPH11116956A (en
Inventor
丞平 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Kasei Co Ltd
Original Assignee
Taki Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Kasei Co Ltd filed Critical Taki Kasei Co Ltd
Priority to JP30370497A priority Critical patent/JP4002328B2/en
Publication of JPH11116956A publication Critical patent/JPH11116956A/en
Application granted granted Critical
Publication of JP4002328B2 publication Critical patent/JP4002328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0004Compounds chosen for the nature of their cations
    • C04B2103/0013Iron group metal compounds
    • C04B2103/0014Fe
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0004Compounds chosen for the nature of their cations
    • C04B2103/0021Compounds of elements having a valency of 3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明はグラウト用水ガラスの硬化方法に関し、特に硬化剤の地盤浸透時間、即ちゲル化までの時間が充分に確保され、且つ高いゲル強度の要求される軟弱地盤のグラウトに於いて、硬化剤として塩基性オキシカルボン酸アルミニウム塩又は塩基性オキシカルボン酸鉄塩を使用することを特徴とするグラウト用水ガラスの硬化方法に関する。
【0002】
【従来の技術】
従来、水ガラス用硬化剤としてはギ酸、酢酸、プロピオン酸等の有機カルボン酸:ベンゼンスルホン酸、トルエンスルホン酸などの有機スルホン酸:ギ酸メチル、酢酸メチル、酢酸エチルなどのエステル類:ホルムアルデヒド、アセトアルデヒド、グリオキサールなどのアルデヒド類等の有機酸化合物、あるいは塩酸、硫酸、硝酸、ほう酸、塩素酸、メタリン酸、ピロリン酸、ポリリン酸、次亜リン酸、亜リン酸、過リン酸、次亜リン酸カリウム、亜リン酸カリウムなどの無機酸類又はその塩:硫酸水素カリウム、炭酸水素ナトリウムなどの水素酸塩等の無機化合物が検討されてきたし、またこれらの一部が現在使用されている。これらの硬化剤の中で、エステル類、アルデヒド類は、硬化機構が水ガラスのアルカリで硬化剤が加水分解され、このときに生成する有機酸によって水ガラスがゲル化して硬化する機構であるために、他の硬化剤と比較してゆっくり硬化する特徴があり緩硬性硬化剤として用いられる場合が多い。しかしゲル強度があまり強くない。また、有機カルボン酸、有機スルホン酸の場合、ゲル化時間が早く充分な作業時間、即ち、可使時間を確保することが困難であり、加えてゲル強度もあまり強くない。
【0003】
ところで、特公昭61−16745号公報には、塩基性乳酸アルミニウムの硬化剤として水ガラスを使用する旨が記載されているが、この方法によるときはゲル強度が弱きに過ぎ軟弱地盤の強化剤として使用することはできない。
一方、無機化合物系の硬化剤は、一般に急激に水ガラスがゲル化して硬化するために急結用硬化剤として用いられる場合が多い。
【0004】
【発明が解決しようする課題】
かかる現状に鑑み、本発明は硬化剤の地盤浸透時間、即ちゲル化までの時間が充分確保され、且つ高いゲル強度が得られるグラウト用水ガラスの硬化方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
即ち、本発明は水ガラスのSiO2に対して塩基性オキシカルボン酸アルミニウム塩又は塩基性オキシカルボン酸鉄塩(以下、塩基性オキシカルボン酸アルミニウム又は鉄塩という)をカルボン酸としてCOOH/SiO2(モル比)=0.05〜0.3の範囲で使用することを特徴とするグラウト用水ガラスの硬化方法に関する。
【0006】
更に、本発明は上記各塩のオキシカルボン酸が乳酸またはグリコール酸であるグラウト用水ガラスの硬化方法に関する。
【0007】
【発明の実施の形態】
先ず、本発明に用いる塩基性オキシカルボン酸アルミニウム塩の製造方法について述べる。塩基性オキシカルボン酸アルミニウム塩は、塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、塩基性塩化アルミニウム等の水可溶性アルミニウム塩とアルカリ金属あるいはアンモニウムの水酸化物、炭酸塩、重炭酸塩とを反応させて、沈殿するアルミナ水和物をオキシカルボン酸に溶解させることにより容易に製造することができる。また、塩基性オキシカルボン酸鉄塩も同様に、塩化鉄、硫酸鉄、硝酸鉄、塩基性塩化鉄等の水可溶性鉄塩とアルカリ金属あるいはアンモニウムの水酸化物、炭酸塩、重炭酸塩を反応させて、沈殿する水酸化鉄の水和物をオキシカルボン酸に溶解させることにより容易に製造することができる。
【0008】
ところで、通常のオキシカルボン酸アルミニウム又は鉄の正塩を用いた場合、硬化剤としての実用濃度(Al23又はFe23換算で3%以上)での水溶解時のPHは4以下であり、水ガラスと混合すると瞬時から数分程度で水ガラスがゲル化する。これに対し本発明に用いる塩基性オキシカルボン酸アルミニウム又は鉄塩は、塩基性塩であることから前述のPHは4〜6程度となり、水ガラスと接触後のゲル化時間を充分確保することができる。
【0009】
即ち、本発明に用いる塩基性オキシカルボン酸アルミニウム又は鉄塩は、例えば、これを水ガラスと混合すると準安定期間を経た後に、水ガラスのアルカリで加水分解されオキシカルボン酸と水酸化アルミニウム、又はオキシカルボン酸と水酸化鉄になる。本発明に於いてはこの準安定期間のためにゲル化までの時間が充分確保されるものと推定される。この準安定期間中の反応分子構造は明らかではないが、本発明に於いて高いゲル化強度が得られる理由は、加水分解で生成したオキシカルボン酸が水ガラスをゲル化させるのに加えて、生成する水酸化アルミニウムあるいは水酸化鉄は周囲の水を取り込んで、それぞれ水酸化アルミニウムゲル、水酸化鉄ゲルとなり、同量のオキシカルボン酸のみで水ガラスをゲル化させた場合に比べて、水酸化アルミニウムゲル又は水酸化鉄ゲルの強度が加わるためと推定される。
【0010】
即ち、従来の硬化剤、例えば、エステル類やアルデヒド類などの有機化合物系硬化剤と比べた場合、これらが加水分解されて生成する有機酸と同じ化学当量で比較して、本発明に使用するオキシカルボン酸を含有する塩基性オキシカルボン酸アルミニウム又は鉄塩からなるグラウト用水ガラス硬化剤ははるかに高いゲル強度を有する。本発明のグラウト用水ガラスの硬化方法はグラウト剤の通常の使用方法を踏襲すれば良い。
【0011】
尚、本発明で言う塩基度とは{(一定量の化合物中のアルミニウム又は鉄の化学当量)−(一定量の化合物の有機酸の化学当量)}÷(一定量の化合物中のアルミニウム又は鉄の化学当量)×100で定義されるものである。例えば、アルミニウム27gと乳酸135gが含まれる塩基性乳酸アルミニウム塩の場合、塩基度は50%となる。
【0012】
本発明に使用する硬化剤の使用割合について云えば、 水ガラスのSiO2に対して塩基性オキシカルボン酸アルミニウム塩又は鉄塩をカルボン酸としてCOOH/SiO2(モル比)=0.05〜0.3の範囲で使用する。0.05より少ないと硬化剤の地盤浸透時間、即ちゲル化までの時間があまりにも長く、またゲル化強度も弱いため軟弱地盤の硬化剤としては不適であり、また、0.3を上回ると硬化剤の地盤浸透時間が短かきに過ぎ、また極部的地盤強化となる。
【0013】
本発明に用いる塩基性オキシカルボン酸アルミニウム又は鉄塩は、これを溶液の状態で使用することが最も好ましいが、水ガラスと混合使用するような場合にあっては、溶液を噴霧乾燥、通風乾燥、真空乾燥、凍結乾燥等の任意の手段により乾燥し、粉末の状態で使用しても良い。
【0014】
そして、本発明に用いる塩基性オキシカルボン酸アルミニウム塩又は鉄塩は、概ね塩基度が25%以上、80%以下が好ましい。25%以下では軟弱地盤への硬化剤の浸透時間、即ちゲル化までの時間が充分に確保されず、強度も弱い。一方、80%以上は製造に長時間を要し経済的でない。
【0015】
本発明で使用できるオキシカルボン酸には、乳酸、グリコール酸、リンゴ酸、酒石酸、クエン酸などが挙げられるがこれらに限定されるものではない。
【0016】
また、これらのオキシカルボン酸の中では、乳酸、グリコール酸のみが容易に塩基度を50%以上とすることができ、硬化時間の調整が極めて容易であることからこの二つの酸が特に好ましい。
【0017】
また、本発明の塩基性オキシカルボン酸アルミニウム塩又は鉄塩は、他の緩硬性硬化剤であるトリアセチン、グリオキサール、エチレンカーボネート、エチレングリコールジアセテートなどと併用して使用することもできる。
以下に実施例を記し本発明を詳記する。
【0018】
【実施例】
表1及び表2に実施例を、表3及び表4に比較例を示した。
表に示したA液、B液をそれぞれ作製し両者を混合した後のゲル化時間及び混合液約3重量部を豊浦標準砂10重量部に注入した場合のサンドゲルの一軸圧縮強度を測定した。
【0019】
水ガラスは3号水ガラスを使用し、水はイオン交換水を使用した。ゲル化時間は、A液とB液を混合後、混合溶液を90度傾けてもゲルが流出あるいは変形しなくなるまでの時間をゲル化時間とした。サンドゲルの一軸圧縮強度の測定はA液とB液を混合後、豊浦標準砂10重量部に対して混合液約3重量部の割合で注入し、25℃で24時間放置した後の一軸圧縮強度(Kg/cm2)を測定した。実施例の結果を下記表1、2に示す。また、配合量は重量部で示した。
【0020】
【表1】

Figure 0004002328
【0021】
【表2】
Figure 0004002328
Figure 0004002328
【0022】
次に比較例を表3、4に示した。試験方法は表1、2と同様とした。
【表3】
Figure 0004002328
Figure 0004002328
【0023】
【表4】
Figure 0004002328
Figure 0004002328
注1)トリアセチン、グリオキサールは加水分解後に生成する有機酸でのモル比
注2)A、B液混合時に瞬結し、豊浦標準砂に注入できず測定不可
【0024】
上記表1、2、3、4から明らかなように、本発明によるグラウト用水ガラスの硬化方法によれば、軟弱地盤等に於ける充分な硬化剤の浸透時間即ち、ゲル化までの時間確保と高いゲル強度が得られることが判る。
【0025】
【発明の効果】
本発明は水ガラスのSiO2に対して塩基性オキシカルボン酸アルミニウム塩又は鉄塩をカルボン酸としてCOOH/SiO2(モル比)=0.05〜0.3の範囲で使用することを特徴とするグラウト用水ガラスの硬化方法であって、軟弱地盤等において硬化剤の地盤浸透時間、即ちゲル化までの時間が充分確保され、且つ高いゲル強度が得られる極めて実用性に優れたグラウト用水ガラスの硬化方法である。しかも、本発明で硬化剤として用いる塩基性オキシカルボン酸アルミニウム塩又は鉄塩は製造上、安全、容易且つ安価である。
【0026】
更に、オキシカルボン酸が乳酸またはグリコール酸である場合、塩基性オキシカルボン酸アルミニウム又は鉄塩は、特に高塩基度のものを容易に製造することができ、ゲル化までの時間が長くゲル強度の高いものとなる。[0001]
[Industrial application fields]
The present invention relates to a method for curing water glass for grouting, and in particular, as a curing agent in grout of soft ground where sufficient time for penetration of the curing agent, that is, time until gelation, is required and high gel strength is required. The present invention relates to a method for curing a water glass for grout, characterized by using a basic aluminum oxycarboxylate salt or a basic iron oxycarboxylate salt.
[0002]
[Prior art]
Conventionally, as curing agents for water glass, organic carboxylic acids such as formic acid, acetic acid and propionic acid: organic sulfonic acids such as benzene sulfonic acid and toluene sulfonic acid: esters such as methyl formate, methyl acetate and ethyl acetate: formaldehyde, acetaldehyde , Organic acid compounds such as aldehydes such as glyoxal, or hydrochloric acid, sulfuric acid, nitric acid, boric acid, chloric acid, metaphosphoric acid, pyrophosphoric acid, polyphosphoric acid, hypophosphorous acid, phosphorous acid, superphosphoric acid, hypophosphorous acid Inorganic acids such as potassium and potassium phosphite or salts thereof: Inorganic compounds such as potassium hydrogensulfate and hydrogenates such as sodium hydrogencarbonate have been studied, and some of them are currently used. Among these curing agents, esters and aldehydes are mechanisms in which the curing mechanism is hydrolyzed by the alkali of water glass and the water glass gels and cures with the organic acid generated at this time. In comparison with other curing agents, it has a characteristic that it cures slowly and is often used as a slow-hardening curing agent. However, the gel strength is not so strong. Moreover, in the case of organic carboxylic acid and organic sulfonic acid, it is difficult to ensure sufficient working time, that is, pot life, because the gelation time is fast, and the gel strength is not so strong.
[0003]
By the way, Japanese Patent Publication No. 61-16745 discloses that water glass is used as a hardener for basic aluminum lactate. However, when this method is used, the gel strength is too weak to be used as a strengthening agent for soft ground. Cannot be used.
On the other hand, an inorganic compound-based curing agent is often used as a curing agent for rapid setting because water glass is generally gelled and cured.
[0004]
[Problems to be solved by the invention]
In view of the current situation, an object of the present invention is to provide a method for curing water glass for grout, in which a sufficient time for the curing agent to penetrate into the ground, that is, a time until gelling is secured, and a high gel strength is obtained.
[0005]
[Means for Solving the Problems]
That is, the present invention uses COOH / SiO 2 with a basic oxycarboxylic acid aluminum salt or a basic oxycarboxylic acid iron salt (hereinafter referred to as basic aluminum oxycarboxylate or iron salt) as a carboxylic acid with respect to SiO 2 of water glass. (Molar ratio) = 0.05-0.3 It is related with the hardening method of the water glass for grout characterized by the above-mentioned.
[0006]
Furthermore, this invention relates to the hardening method of the water glass for grout whose oxycarboxylic acid of said each salt is lactic acid or glycolic acid.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
First, a method for producing a basic aluminum oxycarboxylate used in the present invention will be described. Basic aluminum oxycarboxylate is obtained by reacting a water-soluble aluminum salt such as aluminum chloride, aluminum sulfate, aluminum nitrate, basic aluminum chloride and the like with an alkali metal or ammonium hydroxide, carbonate, bicarbonate, It can be easily produced by dissolving precipitated alumina hydrate in oxycarboxylic acid. Similarly, basic iron oxycarboxylic acid iron salts react with water-soluble iron salts such as iron chloride, iron sulfate, iron nitrate, and basic iron chloride with alkali metal or ammonium hydroxides, carbonates, and bicarbonates. Thus, it can be easily produced by dissolving the precipitated iron hydroxide hydrate in oxycarboxylic acid.
[0008]
By the way, when normal salt of aluminum oxycarboxylate or iron is used, PH at the time of water dissolution at a practical concentration (3% or more in terms of Al 2 O 3 or Fe 2 O 3 ) as a curing agent is 4 or less. When mixed with water glass, the water glass gels within a few minutes from the moment. On the other hand, since the basic aluminum oxycarboxylate or iron salt used in the present invention is a basic salt, the aforementioned PH is about 4 to 6, and sufficient gelation time after contact with water glass can be secured. it can.
[0009]
That is, the basic aluminum oxycarboxylate or iron salt used in the present invention is, for example, mixed with water glass and then subjected to a metastable period and then hydrolyzed with an alkali of water glass, or oxycarboxylic acid and aluminum hydroxide, or Becomes oxycarboxylic acid and iron hydroxide. In the present invention, it is presumed that the time until gelation is sufficiently secured due to this metastable period. The reaction molecular structure during this metastable period is not clear, but the reason why high gelation strength is obtained in the present invention is that, in addition to the oxycarboxylic acid produced by hydrolysis gelling water glass, The produced aluminum hydroxide or iron hydroxide takes in the surrounding water to become aluminum hydroxide gel and iron hydroxide gel, respectively. Compared to the case where water glass is gelled with only the same amount of oxycarboxylic acid, It is estimated that the strength of aluminum oxide gel or iron hydroxide gel is added.
[0010]
That is, when compared with conventional curing agents, for example, organic compound curing agents such as esters and aldehydes, they are used in the present invention in comparison with the same chemical equivalent as the organic acid produced by hydrolysis. Grout water glass hardeners consisting of basic aluminum oxycarboxylate or iron salts containing oxycarboxylic acids have a much higher gel strength. The method for curing the water glass for grout of the present invention may follow the usual method of using the grout agent.
[0011]
The basicity in the present invention is {(chemical equivalent of aluminum or iron in a certain amount of compound) − (chemical equivalent of organic acid in a certain amount of compound)} ÷ (aluminum or iron in a certain amount of compound). Of the chemical equivalent) × 100. For example, in the case of a basic aluminum lactate salt containing 27 g of aluminum and 135 g of lactic acid, the basicity is 50%.
[0012]
Speaking of the use ratio of the curing agent used in the present invention, COOH / SiO 2 (molar ratio) = 0.05 to 0 with a basic oxycarboxylic acid aluminum salt or iron salt as carboxylic acid with respect to SiO 2 of water glass. Use within the range of .3. If it is less than 0.05, the time for penetration of the curing agent into the ground, that is, the time until gelation is too long, and the gelation strength is weak, so it is not suitable as a curing agent for soft ground, and if it exceeds 0.3, The ground penetration time of the hardener is only short, and the ground is strengthened at the extreme.
[0013]
The basic aluminum oxycarboxylate or iron salt used in the present invention is most preferably used in the form of a solution. However, when mixed with water glass, the solution is spray-dried or ventilated. The powder may be dried by any means such as vacuum drying or freeze drying and used in a powder state.
[0014]
The basic aluminum oxycarboxylic acid aluminum salt or iron salt used in the present invention preferably has a basicity of generally 25% or more and 80% or less. If it is 25% or less, the penetration time of the curing agent into the soft ground, that is, the time until gelation is not sufficiently secured, and the strength is also weak. On the other hand, 80% or more requires a long time for production and is not economical.
[0015]
Examples of the oxycarboxylic acid that can be used in the present invention include, but are not limited to, lactic acid, glycolic acid, malic acid, tartaric acid, and citric acid.
[0016]
Of these oxycarboxylic acids, only lactic acid and glycolic acid can easily have a basicity of 50% or more, and the adjustment of the curing time is extremely easy, so these two acids are particularly preferred.
[0017]
Further, the basic aluminum oxycarboxylic acid salt or iron salt of the present invention can be used in combination with other slow hardening agents such as triacetin, glyoxal, ethylene carbonate, ethylene glycol diacetate and the like.
Hereinafter, the present invention will be described in detail with reference to examples.
[0018]
【Example】
Tables 1 and 2 show examples, and Tables 3 and 4 show comparative examples.
The liquid A and the liquid B shown in the table were prepared and the gelation time after mixing them and the uniaxial compressive strength of the sand gel when about 3 parts by weight of the mixed liquid were injected into 10 parts by weight of Toyoura standard sand were measured.
[0019]
No. 3 water glass was used as the water glass, and ion-exchanged water was used as the water. The gelation time was defined as the time required for the gel not to flow out or deform even after the liquid A and the liquid B were mixed and the mixed solution was tilted 90 degrees. Uniaxial compressive strength of sand gel is measured by mixing liquid A and liquid B, then injecting about 3 parts by weight of the mixed liquid to 10 parts by weight of Toyoura standard sand and leaving it at 25 ° C for 24 hours. (Kg / cm 2 ) was measured. The results of the examples are shown in Tables 1 and 2 below. Moreover, the compounding quantity was shown by the weight part.
[0020]
[Table 1]
Figure 0004002328
[0021]
[Table 2]
Figure 0004002328
Figure 0004002328
[0022]
Next, comparative examples are shown in Tables 3 and 4. The test method was the same as in Tables 1 and 2.
[Table 3]
Figure 0004002328
Figure 0004002328
[0023]
[Table 4]
Figure 0004002328
Figure 0004002328
Note 1) Molar ratio of triacetin and glyoxal with organic acid generated after hydrolysis Note 2) Instantaneous setting when mixing liquids A and B, and cannot be injected into Toyoura standard sand.
As is apparent from Tables 1, 2, 3, and 4 above, according to the method for curing a grout water glass according to the present invention, a sufficient penetration time of a curing agent in soft ground or the like, that is, securing time to gelation and It can be seen that high gel strength can be obtained.
[0025]
【The invention's effect】
The present invention is characterized in that a basic oxycarboxylic acid aluminum salt or iron salt is used as carboxylic acid with respect to SiO 2 of water glass in a range of COOH / SiO 2 (molar ratio) = 0.05 to 0.3. A method for curing water glass for grouting, which is a grounding time for the curing agent in a soft ground or the like, that is, sufficient time for gelation is ensured, and high gel strength is obtained. It is a curing method. Moreover, the basic aluminum oxycarboxylic acid aluminum salt or iron salt used as a curing agent in the present invention is safe, easy and inexpensive in production.
[0026]
Further, when the oxycarboxylic acid is lactic acid or glycolic acid, the basic aluminum oxycarboxylate or iron salt can be easily produced particularly with a high basicity, and it takes a long time to gelation and a gel strength. It will be expensive.

Claims (2)

水ガラスのSiO2に対して塩基性オキシカルボン酸アルミニウム塩又は塩基性オキシカルボン酸鉄塩をカルボン酸としてCOOH/SiO2(モル比)=0.05〜0.3の範囲で使用することを特徴とするグラウト用水ガラスの硬化方法。The use of basic oxycarboxylic acid aluminum salt or basic oxycarboxylic acid iron salt as carboxylic acid with respect to SiO 2 of water glass in the range of COOH / SiO 2 (molar ratio) = 0.05 to 0.3. A characteristic method of curing water glass for grout. オキシカルボン酸が乳酸またはグリコール酸である請求項1記載のグラウト用水ガラスの硬化方法。The method for curing water glass for grout according to claim 1, wherein the oxycarboxylic acid is lactic acid or glycolic acid.
JP30370497A 1997-10-17 1997-10-17 Method for curing water glass for grout Expired - Fee Related JP4002328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30370497A JP4002328B2 (en) 1997-10-17 1997-10-17 Method for curing water glass for grout

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30370497A JP4002328B2 (en) 1997-10-17 1997-10-17 Method for curing water glass for grout

Publications (2)

Publication Number Publication Date
JPH11116956A JPH11116956A (en) 1999-04-27
JP4002328B2 true JP4002328B2 (en) 2007-10-31

Family

ID=17924253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30370497A Expired - Fee Related JP4002328B2 (en) 1997-10-17 1997-10-17 Method for curing water glass for grout

Country Status (1)

Country Link
JP (1) JP4002328B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2738635C2 (en) * 2016-06-09 2020-12-15 Басф Се Hydration mixture for mortar compositions and cement compositions
CN109928721A (en) * 2019-02-28 2019-06-25 罗志胜 A kind of pug of high intensity health type Nixing pottery and the preparation process of vessel
CN116063060A (en) * 2023-01-31 2023-05-05 中国水利水电科学研究院 Ester-added solidified water glass slurry and preparation method thereof

Also Published As

Publication number Publication date
JPH11116956A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
JP5079950B2 (en) Setting and curing accelerator without alkali
TWI328569B (en) Admixture
EP1597214B2 (en) Accelerator admixture
US8221543B2 (en) Solidification and hardening accelerator for hydraulic binders and process for its preparation
JP2011001266A (en) Water-based coagulating and hardening accelerator for hydraulic binder and method for the production thereof
JP4002328B2 (en) Method for curing water glass for grout
AU2015260996B2 (en) Stabilized solidification and setting accelerator for hydraulic binders
JP2000017259A (en) Ground solidification agent
JP3130495B2 (en) Hardener composition for mold molding
JP2523112B2 (en) Injection material
JPS62279048A (en) Composition for self-curing binder for casting
JP5189282B2 (en) Ground injection agent and ground injection method using the same
JP3283171B2 (en) Chemical liquid for ground injection
CN111960824B (en) Ceramic microsphere and preparation method thereof
JP3823368B2 (en) Method for producing water reducing agent aqueous solution
JP2809408B2 (en) Hot spray concrete and hot spray concrete method
JP4510869B2 (en) Anti-caking agent for steel slag
JP5189283B2 (en) Ground injection agent and ground injection method using the same
GB2307475A (en) Aluminium accelerator for cement
AU2003237674B2 (en) Accelerator admixture
JPS6312513B2 (en)
JP5039231B2 (en) Ground improvement material and method for producing ground improvement material
JP2000109835A (en) Chemical liquid to be injected in soil
JP5305586B2 (en) Ground injection agent and ground injection method using the same
JPH0210108B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040227

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20061214

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070123

Free format text: JAPANESE INTERMEDIATE CODE: A131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070814

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070817

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees