JP4002199B2 - Light wave distance meter - Google Patents

Light wave distance meter Download PDF

Info

Publication number
JP4002199B2
JP4002199B2 JP2003053701A JP2003053701A JP4002199B2 JP 4002199 B2 JP4002199 B2 JP 4002199B2 JP 2003053701 A JP2003053701 A JP 2003053701A JP 2003053701 A JP2003053701 A JP 2003053701A JP 4002199 B2 JP4002199 B2 JP 4002199B2
Authority
JP
Japan
Prior art keywords
light
intermediate frequency
signal
distance
ranging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003053701A
Other languages
Japanese (ja)
Other versions
JP2004264116A (en
Inventor
速見 木川
Original Assignee
株式会社ソキア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソキア filed Critical 株式会社ソキア
Priority to JP2003053701A priority Critical patent/JP4002199B2/en
Publication of JP2004264116A publication Critical patent/JP2004264116A/en
Application granted granted Critical
Publication of JP4002199B2 publication Critical patent/JP4002199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ターゲットに向けて測距光を出射し、ターゲットからの反射光を受光する位相差方式の光波距離計に関する。
【0002】
【従来の技術】
従来用いられていた光波距離計としては、下記特許文献1に開示されているものがあり、これを図4に示す。この光波距離計では、光源3から発した測距光Lは、プリズム12,ミラー4、対物レンズ5等の送光光学系を経て、測点上に置かれたターゲット6を照射する。ターゲット6で反射された測距光Lは、対物レンズ5、ミラー4等の受光光学系を経て、検出器(受光素子)7に入射し、検出器7に測距信号Mを発生させる。
【0003】
光源3は変調器2に接続されていて、光源3から発する測距光Lは、発振器1で発生させた基準信号Kによって変調されている。この基準信号Kと、検出器7で発生した測距信号Mは、ともに位相計9に入力され、両信号K、Mの位相差を求めると、この位相差と光の速さからターゲット6までの距離が求まる。
【0004】
この光波距離計では、前記距離計測中に光源3から発した測距光Lを、切換器8によって、プリズム10、11、12を経る内部光路を通って検出器7に至る参照光Rに切り換え、測距信号Mとの位相差を求め、前述の測距光Lを用いて求めた距離に関して、機械に固有の誤差等の補正が行われる。
【特許文献1】
特許第3236941号公報
【0005】
【発明が解決しようとする課題】
ところで、検出器7へ入射する測距光Lの光量が変化すると、位相計で検出される基準信号Kと測距信号Mとの位相差、すなわち測定距離が変化することが知られている。しかも、その光量の変化と位相差(測定距離)の変化の関係が機械ごとに異なるものである。このため、従来は、機械の組立終了後の調整時に、機械ごとに光量に応じた位相差の補正量を調べて、光量に応じて位相差が補正されるように機械毎に電気回路の定数を調節していた。
【0006】
しかしながら、電気回路の定数を調節することでは、機械によっては、検出器7へ入射する測距光Lの光量の全レベルにわたっては位相差を補正できない場合もある。このような場合には、測距中に陽炎等の大気の揺らぎにより、検出器7へ入射する測距光Lの光量が大きく変動した場合には、測距誤差が残るという問題があった。
【0007】
本発明は、前記問題に鑑みてなされたもので、位相差方式の光波距離計において、受光素子へ入射する測距光の光量の変動による測距誤差を、機械にかかわらず常に確実に補正できるようにすることを課題とする。
【0010】
【課題を解決するための手段】
上記の課題を解決するため、請求項1に係る発明の光波距離計では、基準信号を発生させる基準信号発振器と、基準信号で変調された測距光を出射する光源と、測距光を送光する送光光学系と、ターゲットで反射してきた測距光を受光する受光光学系と、受光した測距光を測距信号に変換する受光素子と、前記測距信号を周波数を下げた中間周波信号に変換する周波数変換器と、前記基準信号と同期して前記中間周波信号を多数周期にわたってサンプリングするA/D変換器と、前記A/D変換器でサンプリングされた中間周波信号の同位相毎に加算した合成データを正弦波にあてはめ、該正弦波の初期位相から距離を算出する演算手段と、前記受光素子へ入射する測距光の光量の全レベルにわたって、前記中間周波信号の振幅に応じた前記初期位相の補正量を示す補正情報を予め記憶した記憶手段を備え、前記演算手段は、距離測定時に前記中間周波信号の振幅の度数分布を記憶手段に記憶させ、前記度数分布と前記補正情報を用いて、前記補正量に前記中間周波信号の振幅の重みつけをした加重平均を算出し、該加重平均を用いて前記初期位相の補正を行うことを特徴とする。
【0011】
前記請求項1に係る発明の光波距離計によれば、受光素子へ入射する測距光の光量の全レベルにわたって、前記光量に応じた前記位相差又は前記初期位相の補正量を示す補正情報を予め記憶手段に記憶しており、距離測定時、前記中間周波信号の振幅の度数分布を記憶手段に記憶させ、前記度数分布と前記補正情報とを用いて初期位相を補正しているので、1回の測定における前記中間周波信号のサンプリング開始からサンプリング終了までの期間内で受光素子へ入射する光量が大きく変動しても測距誤差を常に確実に補正できる。
【0012】
【発明の実施の形態】
以下、本発明の好ましい実施の形態について、添付図面を参照して詳細に説明する。
【0013】
図1に本発明に係る光波距離計の一実施例を示す。この光波距離計では、レーザダイオ−ド等の光源20から送光された測距光Lは、図示しない送光光学系を経て、測点上に置かれたターゲット(プリズム等)22に向けて出射される。光源20は変調器24に接続されており、測距光Lは基準信号発振器26で発生された基準信号Kによって変調されている。
ターゲット22で反射された測距光Lは、図示しない受光光学系と、測距光Lの光量を調整する絞り27を経て、受光素子(フォトダイオード)28に導かれる。すると、受光素子28によって、測距光Lが測距信号Mに変換され、測距信号Mは、高周波増幅器30で増幅された後に、バンドパスフィルタ32でノイズを除去される。
【0014】
さらに、この測距信号Mは、混合器34と局部発振器36からなる周波数変換器37で、局部発振器36で発生させた局部発振信号Qと乗算され、両信号M、Qの周波数の和となる周波数と、両信号M、Qの周波数の差となる2つの周波数に変換される。ここで、両信号M、Qの周波数の差となる周波数のみをローパスフィルタ38で選り分けて中間周波信号(以下、単に中間周波と記載する。)Nに周波数を落とした後に、これを中間周波増幅器40で増幅するとともに波形成形をする。増幅された中間周波Nは、A/D変換器42でデジタル信号に変換され、CPU44(演算手段)に入力され、メモリ(記憶手段)46に記憶される。ここで、測距信号Mを中間周波Nに変換するのは、周波数の低い所定周波数とすることにより、増幅し易くして安定に高利得が得られること、中間周波N以外をカットして高いS/N比が得られること、1周期内に余裕を持ってできるだけ多数回サンプリングする時間を確保すること等のためである。
【0015】
距離測定を行う際には、CPU44から基準信号発振器26とA/D変換器42に同期信号Pを送ることにより、基準信号発振器26で基準信号Kを発生させるとともに、A/D変換器42で基準信号Kと同期の取れたサンプリングを行う。この距離測定中、絞り27の開度は固定される。
【0016】
図2に示したように、A/D変換器42のサンプリング周期は、中間周波Nの1周期分を常に一定の位相角でサンプリングするように、例えば、1周期をn(n≧3)等分するように決定される。このサンプリング周期で中間周波Nを数千以上の多数周期にわたって連続してサンプリングする。この際、A/D変換器42の入力レンジを越えたり、入力レンジに対して小さすぎる中間周波Nのサンプリングデータは破棄する。
【0017】
サンプリングデータをメモリ46に記憶するには、中間周波Nの1周期分のn個のデータに対する記憶領域をメモリ46内に用意し、図3に示したように、同位相のサンプリングデータを加算して記憶していく。こうして、同位相のサンプリングデータが加算された大きな振幅の1周期分の中間周波Nの合成データが作成される。この合成データは、最小二乗法により正弦波Sにあてはめられ、この正弦波Sの初期位相φを求める。基準信号Kと同期を取ってA/D変換器42はサンプリングしているから、初期位相φは基準信号Kと測距信号Mの位相差に等しくなり、この初期位相φからターゲット22までの距離が算出される。
【0018】
ところで、陽炎等の大気の揺らぎにより、測距中においても受光素子28に入射する測距光Lの光量は大きく変動するので、この測距光Lの変動による初期位相φの補正が必要になる。
【0019】
そこで、この光波距離計は、組立終了後の調整時に機械ごとに、同一のターゲットを視準したうえで、絞り27の開度を一定にし、受光素子28へ入射する測距光Lの光量を一定に保ちながら、A/D変換器42に入力された中間周波Nの振幅ai(受光素子28へ入射する測距光Lの光量又は測距信号Mの振幅に対応する値である。)のときに必要な初期位相φの補正量Δφi(ai)を調べて、メモリ46内に設けられている補正テーブル記憶領域に書き込んでいく。以下同様に、絞り27の開度を変化させ、受光素子28へ入射する測距光Lの光量の全レベルにわたって、中間周波Nの振幅aiのときに必要な初期位相φの補正量Δφi(ai)を補正テーブル記憶領域に書き込んでいく。こうして、絞り27の開度毎に受光素子28へ入射する測距光Lの光量の全レベルにわたって、A/D変換器42に入力された中間周波Nの振幅aiと、このときの初期位相φの補正量Δφi(ai)を記憶した補正テーブル(補正情報)がメモリ46に記憶される。
【0020】
もちろん、この補正テーブルの代わりに、A/D変換器42に入力された中間周波Nの振幅がaiであるときの初期位相φの補正量Δφi(ai)を求める補正式(補正情報)を記憶させてもよい。
【0021】
距離測定に際しては、図3に示したように、中間周波Nの多数周期を同位相毎に加算した合成データSを用いているため、初期位相φの補正量ΔΦは、中間周波Nのi番目の周期に係る振幅がaiであり、この振幅aiのときの補正量をΔφi(ai)とすると
ΔΦ=tan−1[Σ{ai・sin(Δφi(ai))}/Σ{ai・cos(Δφi(ai))}]
となる。ここで、Δφi(ai)は一般に小さいから、
ΔΦ=tan−1[Σ{ai・Δφi(ai)}/Σai]
=Σ{ai・Δφi(ai)}/Σai
と近似できる。結局、初期位相φの補正量ΔΦは、補正量Δφi(ai)を中間周波Nの振幅aiで重みづけした加重平均となる。真の初期位相は、測定された初期位相φから前述の補正量ΔΦを減算すればよい。
【0022】
この光波距離計で距離測定を行うには、距離測定に先だって、光波距離計を作動させ、予め中間周波Nの数周期分をサンプリングして、中間周波Nの最大レベルamaxと最小レベルaminを示すサンプリング位置を検出する。そして、A/D変換器42の入力レベルを複数の階級に区分した記憶領域をメモリ46内に用意する。それから改めて距離測定を開始し、中間周波Nの1周期分を検出するごとに、同位相のサンプリングデータを加算した中間周波Nの合成データT(図3参照)をメモリ46に記憶するとともに、先だって求めた最大レベルamaxと最小レベルaminを示すサンプリング位置の間のレベル差から、中間周波Nの振幅aiの階級を求め、その階級の度数に1を加算していき、振幅aiの度数分布もメモリ46に記憶する。サンプリング終了後に、中間周波Nの合成データTを正弦波Sにあてはめ、該正弦波Sの初期位相φを求めるとともに、振幅aiの度数分布を用いて、補正量Δφi(ai)を中間周波Nの振幅aiの重みつけをした加重平均Σ{ai・Δφi(ai)}/Σaiを算出する。そして、初期位相φから補正量ΔΦとして前記加重平均Σ {ai ・Δφ i(ai)} /Σ aiを減算して、ターゲット22までの距離を算出する。
【0023】
もちろん、本実施例の光波距離計も、測距光Lを絞り27aを含む機械の内部光路を通って受光素子28に至る参照光Rに切り換えることもできる。この参照光Rを用いて測距することにより、前述の測距光Lを用いて求めた距離の補正がなされることは、従来例と同じである。
【0024】
本実施例では、絞り27の開度毎に受光素子28へ入射する測距光Lの光量の全レベルにわたって、A/D変換器42に入力された中間周波Nの振幅aiと、このときの初期位相φの補正量Δφi(ai)を記憶した補正テーブル記憶領域がメモリ46に記憶されているので、どのような光波距離計をどのような環境で使用しても、受光素子28へ入射する測距光Lの光量変動による測距誤差を常に確実に補正できる
ところで、本発明は、前記実施例に限るものではなく、種々の変形が可能である。例えば、前記実施例では、測距信号Mを中間周波Nに変換しているが、基準信号Kの周波数が低い場合などは、バンドパスフィルタ32から取り出した測距信号Mを直接A/D変換器42でサンプリングし、このサンプリングされた測距信号Mを用いて、距離測定することも可能である。この場合は、周波数変換器37とローパスフィルタ38と中間周波増幅器40が不要になり回路が簡単になる。
【0025】
また、図4に示した従来の光波距離計に対しても、検出器7の出力を本発明のA/D変換器42に入力し、A/D変換器42で取り出したデータを本発明と同様にCPU44とメモリ46で処理すれば、位相計9から出力される位相差の補正量を算出することができる。
【0026】
【発明の効果】
以上の説明から明らかなように、請求項1に係る発明の光波距離計によれば、受光素子へ入射する測距光の光量の全レベルにわたって、前記光量に応じた位相差又は初期位相の補正量を示す補正情報を予め記憶手段に記憶しており、距離測定時、前記中間周波信号の振幅の度数分布を記憶手段に記憶させ、前記度数分布と前記補正情報とを用いて初期位相を補正しているので、1回の測定における前記中間周波信号のサンプリング開始からサンプリング終了までの期間内で受光素子へ入射する測距光の光量が大きく変動した際にも、測距誤差を常に確実に補正できる。よって、本発明の光波距離計であれば、陽炎等の大気の揺らぎが大きい環境で使用しても測距誤差をほとんどなくすことができる。
【0027】
【図面の簡単な説明】
【図1】本発明の一実施例に係る光波距離計のブロック図である。
【図2】中間周波信号をサンプリングした例を示す図である。
【図3】中間周波信号の同位相のサンプリングデータを加算した中間周波一周期分のデータを示す図である。
【図4】従来の光波距離計を説明する図である。
【符号の説明】
20 光源
22 ターゲット
24 変調器
26 基準信号発振器
28 受光素子
37 周波数変換器
42 A/D変換器
44 CPU(演算手段)
46 メモリ(記憶手段)
K 基準信号
L 測距光
M 測距信号
N 中間周波信号
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a phase difference type lightwave distance meter that emits distance measuring light toward a target and receives reflected light from the target.
[0002]
[Prior art]
Conventionally used light wave distance meters include those disclosed in Patent Document 1 below, which are shown in FIG. In this light wave distance meter, the distance measuring light L emitted from the light source 3 irradiates the target 6 placed on the measuring point through a light transmission optical system such as the prism 12, the mirror 4, and the objective lens 5. The distance measuring light L reflected by the target 6 is incident on a detector (light receiving element) 7 through a light receiving optical system such as the objective lens 5 and the mirror 4 and causes the detector 7 to generate a distance measuring signal M.
[0003]
The light source 3 is connected to the modulator 2, and the distance measuring light L emitted from the light source 3 is modulated by the reference signal K generated by the oscillator 1. The reference signal K and the distance measurement signal M generated by the detector 7 are both input to the phase meter 9, and when the phase difference between the signals K and M is obtained, the phase difference and the speed of light are used to obtain the target 6. The distance is obtained.
[0004]
In this optical wave distance meter, the distance measuring light L emitted from the light source 3 during the distance measurement is switched by the switch 8 to the reference light R that reaches the detector 7 through the internal optical path passing through the prisms 10, 11, and 12. Then, a phase difference from the distance measurement signal M is obtained, and an error inherent to the machine is corrected with respect to the distance obtained using the distance measurement light L described above.
[Patent Document 1]
Japanese Patent No. 3236941
[Problems to be solved by the invention]
By the way, it is known that when the light amount of the ranging light L incident on the detector 7 changes, the phase difference between the reference signal K detected by the phase meter and the ranging signal M, that is, the measurement distance changes. In addition, the relationship between the change in the amount of light and the change in the phase difference (measurement distance) is different for each machine. For this reason, conventionally, at the time of adjustment after the assembly of the machine, the correction amount of the phase difference corresponding to the light amount is checked for each machine, and the constant of the electric circuit for each machine so that the phase difference is corrected according to the light amount. Was adjusting.
[0006]
However, by adjusting the electric circuit constant, depending on the machine, the phase difference may not be corrected over the entire level of the distance measuring light L incident on the detector 7. In such a case, there has been a problem that a distance measurement error remains if the light amount of the distance measurement light L incident on the detector 7 fluctuates greatly due to fluctuations in the atmosphere such as a flame during distance measurement.
[0007]
The present invention has been made in view of the above problems, and in a phase-difference optical wave distance meter, it is always possible to reliably correct a ranging error due to a variation in the amount of distance measuring light incident on a light receiving element regardless of the machine. The challenge is to do so.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problem, in the optical distance meter of the invention according to claim 1 , a reference signal oscillator that generates a reference signal, a light source that emits distance measuring light modulated by the reference signal, and a distance measuring light are transmitted. A light-transmitting optical system, a light-receiving optical system that receives the distance-measuring light reflected by the target, a light-receiving element that converts the received distance-measuring light into a distance-measuring signal, and an intermediate frequency of the distance-measuring signal lowered A frequency converter for converting to a frequency signal; an A / D converter for sampling the intermediate frequency signal over a plurality of periods in synchronization with the reference signal; and an in- phase of the intermediate frequency signal sampled by the A / D converter The combined data added every time is applied to a sine wave, the calculation means for calculating the distance from the initial phase of the sine wave, and the amplitude of the intermediate frequency signal over the entire level of the amount of ranging light incident on the light receiving element. It said the response was Includes a pre-stored memory means correction information indicating the amount of correction of the period phase, said computing means, said at distance measuring the amplitude frequency distribution of the intermediate frequency signal is stored in the storage means, the correction information and the frequency distribution And calculating a weighted average obtained by weighting the amplitude of the intermediate frequency signal to the correction amount, and correcting the initial phase using the weighted average .
[0011]
According to inventions of the light wave distance meter according to claim 1, correction information across all levels of the light quantity of the measuring light incident on the light receiving element, which indicates a correction amount of the phase difference or the initial phase corresponding to the amount of light Is stored in advance in the storage means, and at the time of distance measurement, the frequency distribution of the amplitude of the intermediate frequency signal is stored in the storage means, and the initial phase is corrected using the frequency distribution and the correction information. Ranging errors can always be reliably corrected even if the amount of light incident on the light receiving element varies greatly within the period from the start of sampling of the intermediate frequency signal to the end of sampling in one measurement .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0013]
FIG. 1 shows an embodiment of a light wave distance meter according to the present invention. In this optical distance meter, distance measuring light L transmitted from a light source 20 such as a laser diode is emitted toward a target (prism or the like) 22 placed on a measurement point via a light transmission optical system (not shown). Is done. The light source 20 is connected to the modulator 24, and the distance measuring light L is modulated by the reference signal K generated by the reference signal oscillator 26.
The distance measuring light L reflected by the target 22 is guided to a light receiving element (photodiode) 28 through a light receiving optical system (not shown) and a diaphragm 27 for adjusting the amount of the distance measuring light L. Then, the ranging light L is converted into a ranging signal M by the light receiving element 28, and the ranging signal M is amplified by the high frequency amplifier 30 and then noise is removed by the band pass filter 32.
[0014]
Further, the ranging signal M is multiplied by a local oscillation signal Q generated by the local oscillator 36 by a frequency converter 37 including a mixer 34 and a local oscillator 36, and becomes the sum of the frequencies of both signals M and Q. It is converted into two frequencies which are the difference between the frequency and the frequency of both signals M and Q. Here, only the frequency that is the difference between the frequencies of the two signals M and Q is selected by the low-pass filter 38, and the intermediate frequency signal (hereinafter simply referred to as the intermediate frequency) is dropped to N, and then the intermediate frequency amplifier. Amplification at 40 and waveform shaping. The amplified intermediate frequency N is converted into a digital signal by the A / D converter 42, input to the CPU 44 (calculation means), and stored in the memory (storage means) 46. Here, the reason why the ranging signal M is converted to the intermediate frequency N is that it is easy to amplify and obtain a stable high gain by setting it to a predetermined low frequency, and is high by cutting other than the intermediate frequency N. This is because the S / N ratio can be obtained, for example, to ensure the time for sampling as many times as possible within a single period.
[0015]
When the distance is measured, the CPU 44 sends the synchronization signal P to the reference signal oscillator 26 and the A / D converter 42 to generate the reference signal K by the reference signal oscillator 26 and the A / D converter 42. Sampling synchronized with the reference signal K is performed. During this distance measurement, the opening of the diaphragm 27 is fixed.
[0016]
As shown in FIG. 2, the sampling period of the A / D converter 42 is, for example, one period of n (n ≧ 3) so that one period of the intermediate frequency N is always sampled at a constant phase angle. It is decided to divide. In this sampling period, the intermediate frequency N is sampled continuously over a large number of thousands or more. At this time, sampling data of the intermediate frequency N that exceeds the input range of the A / D converter 42 or is too small with respect to the input range is discarded.
[0017]
In order to store the sampling data in the memory 46, a storage area for n data for one cycle of the intermediate frequency N is prepared in the memory 46, and the sampling data of the same phase is added as shown in FIG. And remember. In this way, synthesized data of the intermediate frequency N for one period with a large amplitude obtained by adding the sampling data of the same phase is created. This synthesized data is applied to the sine wave S by the least square method, and the initial phase φ of the sine wave S is obtained. Since the A / D converter 42 is sampling in synchronization with the reference signal K, the initial phase φ is equal to the phase difference between the reference signal K and the distance measurement signal M, and the distance from the initial phase φ to the target 22. Is calculated.
[0018]
By the way, since the light amount of the distance measuring light L incident on the light receiving element 28 varies greatly even during distance measurement due to atmospheric fluctuations such as a hot flame, it is necessary to correct the initial phase φ due to the fluctuation of the distance measuring light L. .
[0019]
Therefore, this light wave distance meter collimates the same target for each machine at the time of adjustment after assembly is completed, makes the aperture of the diaphragm 27 constant, and sets the amount of the distance measuring light L incident on the light receiving element 28. While maintaining constant, the amplitude ai of the intermediate frequency N input to the A / D converter 42 (a value corresponding to the light amount of the ranging light L incident on the light receiving element 28 or the amplitude of the ranging signal M). The correction amount Δφi (ai) of the initial phase φ that is sometimes required is checked and written in a correction table storage area provided in the memory 46. Similarly, the amount of correction ΔΔi (ai) of the initial phase φ required for the amplitude ai of the intermediate frequency N over the entire level of the light amount of the distance measuring light L incident on the light receiving element 28 by changing the opening of the diaphragm 27. ) Is written in the correction table storage area. Thus, the amplitude ai of the intermediate frequency N input to the A / D converter 42 and the initial phase φ at this time over the entire level of the light amount of the ranging light L incident on the light receiving element 28 for each opening degree of the diaphragm 27. A correction table (correction information) storing the correction amount Δφi (ai) is stored in the memory 46.
[0020]
Of course, instead of this correction table, a correction formula (correction information) for obtaining the correction amount Δφi (ai) of the initial phase φ when the amplitude of the intermediate frequency N input to the A / D converter 42 is ai is stored. You may let them.
[0021]
In the distance measurement, as shown in FIG. 3, since the composite data S obtained by adding a large number of cycles of the intermediate frequency N for each phase is used, the correction amount ΔΦ of the initial phase φ is the i-th of the intermediate frequency N. If the amplitude of the period is ai, and the correction amount at this amplitude ai is Δφi (ai), ΔΦ = tan −1 [Σ {ai · sin (Δφi (ai))} / Σ {ai · cos ( Δφi (ai))}]
It becomes. Here, Δφi (ai) is generally small,
ΔΦ = tan −1 [Σ {ai · Δφi (ai)} / Σai]
= Σ {ai · Δφi (ai)} / Σai
Can be approximated. After all, the correction amount ΔΦ of the initial phase φ is a weighted average obtained by weighting the correction amount Δφi (ai) by the amplitude ai of the intermediate frequency N. The true initial phase may be obtained by subtracting the aforementioned correction amount ΔΦ from the measured initial phase φ.
[0022]
In order to perform distance measurement with this light wave distance meter, prior to the distance measurement, the light wave distance meter is operated, and several periods of the intermediate frequency N are sampled in advance to indicate the maximum level amax and the minimum level amin of the intermediate frequency N. Detect the sampling position. A storage area in which the input level of the A / D converter 42 is divided into a plurality of classes is prepared in the memory 46. Then starts anew distance measurement, each for detecting one cycle of the intermediate frequency N, stores synthesized data T of the intermediate frequency N obtained by adding the sampling data of the same phase (see FIG. 3) in the memory 46, The class of the amplitude ai of the intermediate frequency N is obtained from the level difference between the sampling positions indicating the maximum level amax and the minimum level amin obtained in advance, and 1 is added to the frequency of the class, and the frequency distribution of the amplitude ai is also obtained. Store in the memory 46. After the sampling is completed, the composite data T of the intermediate frequency N is applied to the sine wave S, the initial phase φ of the sine wave S is obtained, and the correction amount Δφi (ai) is calculated using the frequency distribution of the amplitude ai. A weighted average Σ {ai · Δφi (ai)} / Σai weighted with the amplitude ai is calculated. Then, the distance to the target 22 is calculated by subtracting the weighted average Σ {ai · Δφ i (ai)} / Σ ai as the correction amount ΔΦ from the initial phase φ.
[0023]
Of course, the light wave distance meter of this embodiment can also switch the distance measuring light L to the reference light R that reaches the light receiving element 28 through the internal optical path of the machine including the stop 27a. The distance obtained using the distance measuring light L is corrected by measuring the distance using the reference light R as in the conventional example.
[0024]
In the present embodiment, the amplitude ai of the intermediate frequency N input to the A / D converter 42 over the entire level of the light amount of the distance measuring light L incident on the light receiving element 28 for each opening of the diaphragm 27, and at this time Since the correction table storage area storing the correction amount Δφi (ai) of the initial phase φ is stored in the memory 46, the light is incident on the light receiving element 28 no matter what kind of light wave distance meter is used in any environment. The present invention is not limited to the above-described embodiment, and various modifications can be made where the ranging error due to the light amount fluctuation of the ranging light L can always be reliably corrected. For example, in the above embodiment, the ranging signal M is converted into the intermediate frequency N. However, when the frequency of the reference signal K is low, the ranging signal M taken out from the bandpass filter 32 is directly A / D converted. It is also possible to measure the distance using the sampled distance measuring signal M sampled by the device 42. In this case, the frequency converter 37, the low-pass filter 38, and the intermediate frequency amplifier 40 are not necessary, and the circuit is simplified.
[0025]
Also for the conventional optical distance meter shown in FIG. 4, the output of the detector 7 is input to the A / D converter 42 of the present invention, and the data extracted by the A / D converter 42 is the same as that of the present invention. Similarly, if processing is performed by the CPU 44 and the memory 46, the correction amount of the phase difference output from the phase meter 9 can be calculated.
[0026]
【The invention's effect】
As apparent from the above description, according to the inventions of the light wave distance meter according to claim 1, over the entire level of the light amount of the measuring light incident on the light receiving elements, the phase difference or the initial phase corresponding to the amount of light Correction information indicating the correction amount is stored in advance in the storage means, and at the time of distance measurement, the frequency distribution of the amplitude of the intermediate frequency signal is stored in the storage means, and the initial phase is determined using the frequency distribution and the correction information. Because it is corrected, even if the amount of ranging light incident on the light receiving element fluctuates greatly during the period from the start of sampling of the intermediate frequency signal to the end of sampling in one measurement , the ranging error is always assured. Can be corrected. Therefore, the light wave distance meter of the present invention can eliminate almost any distance measurement error even when used in an environment where atmospheric fluctuation is large, such as a hot flame.
[0027]
[Brief description of the drawings]
FIG. 1 is a block diagram of a lightwave distance meter according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating an example of sampling an intermediate frequency signal.
FIG. 3 is a diagram illustrating data for one period of an intermediate frequency obtained by adding sampling data having the same phase of an intermediate frequency signal.
FIG. 4 is a diagram for explaining a conventional lightwave distance meter.
[Explanation of symbols]
20 light source 22 target 24 modulator 26 reference signal oscillator 28 light receiving element 37 frequency converter 42 A / D converter 44 CPU (calculation means)
46 Memory (memory means)
K reference signal L ranging light M ranging signal N intermediate frequency signal

Claims (1)

基準信号を発生させる基準信号発振器と、基準信号で変調された測距光を出射する光源と、測距光を送光する送光光学系と、ターゲットで反射してきた測距光を受光する受光光学系と、受光した測距光を測距信号に変換する受光素子と、前記測距信号を周波数を下げた中間周波信号に変換する周波数変換器と、前記基準信号と同期して前記中間周波信号を多数周期にわたってサンプリングするA/D変換器と、前記A/D変換器でサンプリングされた中間周波信号の同位相毎に加算した合成データを正弦波にあてはめ、該正弦波の初期位相から距離を算出する演算手段と、前記受光素子へ入射する測距光の光量の全レベルにわたって、前記中間周波信号の振幅に応じた前記初期位相の補正量を示す補正情報を予め記憶した記憶手段を備え、
前記演算手段は、距離測定時に前記中間周波信号の振幅の度数分布を記憶手段に記憶させ、前記度数分布と前記補正情報を用いて、前記補正量に前記中間周波信号の振幅の重みつけをした加重平均を算出し、該加重平均を用いて前記初期位相の補正を行うことを特徴とする光波距離計。
A reference signal oscillator that generates a reference signal, a light source that emits a distance measuring light modulated by the reference signal, a light transmitting optical system that transmits the distance measuring light, and a light receiving that receives the distance measuring light reflected by the target An optical system; a light receiving element that converts received ranging light into a ranging signal; a frequency converter that converts the ranging signal into an intermediate frequency signal with a reduced frequency; and the intermediate frequency in synchronization with the reference signal. An A / D converter that samples a signal over a number of cycles and a synthesized data obtained by adding the same phase of the intermediate frequency signal sampled by the A / D converter are applied to a sine wave, and the distance from the initial phase of the sine wave And a storage means for preliminarily storing correction information indicating the correction amount of the initial phase according to the amplitude of the intermediate frequency signal over all levels of the light amount of the ranging light incident on the light receiving element. ,
The arithmetic means stores the frequency distribution of the amplitude of the intermediate frequency signal in the storage means at the time of distance measurement, and weights the amplitude of the intermediate frequency signal to the correction amount using the frequency distribution and the correction information. A light wave distance meter which calculates a weighted average and corrects the initial phase using the weighted average .
JP2003053701A 2003-02-28 2003-02-28 Light wave distance meter Expired - Lifetime JP4002199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003053701A JP4002199B2 (en) 2003-02-28 2003-02-28 Light wave distance meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053701A JP4002199B2 (en) 2003-02-28 2003-02-28 Light wave distance meter

Publications (2)

Publication Number Publication Date
JP2004264116A JP2004264116A (en) 2004-09-24
JP4002199B2 true JP4002199B2 (en) 2007-10-31

Family

ID=33118239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053701A Expired - Lifetime JP4002199B2 (en) 2003-02-28 2003-02-28 Light wave distance meter

Country Status (1)

Country Link
JP (1) JP4002199B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4707363B2 (en) * 2004-10-20 2011-06-22 株式会社 ソキア・トプコン Light wave distance meter
JP2006138702A (en) * 2004-11-11 2006-06-01 Sokkia Co Ltd Light wave range finder
JP4828167B2 (en) * 2005-06-16 2011-11-30 株式会社 ソキア・トプコン Distance measuring apparatus and method
JP4116053B2 (en) 2006-09-20 2008-07-09 北陽電機株式会社 Ranging device
JP5553970B2 (en) * 2008-05-15 2014-07-23 三菱電機株式会社 Radar equipment
JP5616025B2 (en) 2009-01-22 2014-10-29 株式会社トプコン Lightwave distance measuring method and lightwave distance measuring apparatus
WO2016159032A1 (en) * 2015-03-30 2016-10-06 株式会社ニコン Image-capturing element and image-capturing device

Also Published As

Publication number Publication date
JP2004264116A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
JP4828167B2 (en) Distance measuring apparatus and method
US7339655B2 (en) Electric optical distance wavelength meter
JP3839851B2 (en) Electronic distance measuring instrument
US8204707B2 (en) Time delay estimation
EP0790484B1 (en) Horizontal position error correction mechanism for electronic level
JPH0749207A (en) Absolute interference measuring method and laser interferometer suitable for method thereof
JP3911575B2 (en) Pulse-type optical rangefinder
JPH1123709A (en) Distance-measuring device
KR20050013184A (en) Device and method for distance measurement
JP4002199B2 (en) Light wave distance meter
JP2006329797A (en) Light wave range finder
JP2000206244A (en) Distance-measuring apparatus
US11486982B2 (en) Optical phase detector using electrical pulse that corresponds to a phase error between electrical pulses and optical pulses, and sensing system including the same
JP2009258006A (en) Light wave range finder
JP2006138702A (en) Light wave range finder
JP2007218728A (en) Range finder
JPH08105971A (en) Ranging method using multi-pulse and device therefor
JPH0682552A (en) Electrooptical distance measurement
JPH079114Y2 (en) Laser distance sensor
JPH06230130A (en) Electro-optical range finder
JP2022117173A (en) Light wave distance meter, and distance calculation method
KR950005035Y1 (en) Distance counting apparauts for auto focus camera
JP2004264112A (en) Electro-optical distance meter
JP3955039B2 (en) Ultrasonic distance sensor
JP3350113B2 (en) Incident light amount monitor circuit for laser length measuring machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4002199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term