JP4001914B2 - 可変セグメントで可変データ解像度によりデータを処理するための方法 - Google Patents

可変セグメントで可変データ解像度によりデータを処理するための方法 Download PDF

Info

Publication number
JP4001914B2
JP4001914B2 JP50428497A JP50428497A JP4001914B2 JP 4001914 B2 JP4001914 B2 JP 4001914B2 JP 50428497 A JP50428497 A JP 50428497A JP 50428497 A JP50428497 A JP 50428497A JP 4001914 B2 JP4001914 B2 JP 4001914B2
Authority
JP
Japan
Prior art keywords
data
resolution
layer
output
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP50428497A
Other languages
English (en)
Other versions
JPH11508738A (ja
Inventor
チアン,ティハオ
ソェン,ホゥエイファン
ツデプスキー,ジョエル,ウォルター
Original Assignee
トムソン マルチメディア ソシエテ アノニム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トムソン マルチメディア ソシエテ アノニム filed Critical トムソン マルチメディア ソシエテ アノニム
Publication of JPH11508738A publication Critical patent/JPH11508738A/ja
Application granted granted Critical
Publication of JP4001914B2 publication Critical patent/JP4001914B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/20Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video object coding
    • H04N19/23Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video object coding with coding of regions that are present throughout a whole video segment, e.g. sprites, background or mosaic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/37Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability with arrangements for assigning different transmission priorities to video input data or to video coded data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Description

本発明はデジタル画像信号処理の分野に関し、さらに詳しくは階層化ビデオ・データを処理するためのシステムに関する。
デジタル・ビデオの符号化および復号化フォーマット開発の目的は、異なったビデオ送受信システムを対応させる標準を提供することであった。更なる目的は、異なる世代および種類のビデオ符号化および復号化機器の間の相互運用性と上位互換性(backward compatibility)を促進することであった。このような相互運用性と互換性を促進するためには、異なる種類のビデオ画像スキャン(たとえばインタレース走査方式/順次走査方式)、フレーム・レート、ピクチャ解像度、フレーム・サイズ、クロミナンス符号化、送信バンド幅に対応できる符号化/復号化方式を定義することが望ましい。
相互運用性を実現するために用いられる方式の1つとしては、符号化および送信用に順序付けたビットストリームのセットとして構成されたデータ階層(レイヤ)の1つまたは2つ以上のレベルに、ビデオ・データを分割することが挙げられる。ビットストリームは、ベース・レイヤ、即ちもっとも簡単な(たとえば最低解像度の)ビデオ表現を表わすデータ・ストリームから、ビデオ・ピクチャのインクリメンタルな改善を表わす連続的拡張レイヤまでに及ぶ。ビデオ・データは、受信器内のデコーダにより順序付けたビットストリームから再構成される。この方式では、所望するビデオ・ピクチャの画質を達成するようにデコーダの複雑さを調節できる。デコーダは、拡張レイヤ全部であるビットストリームの全部を完全に復号化するもっとも高度な構成から、ベース・レイヤだけを復号化するもっとも簡単なものまでに及ぶ。
このようなデータ階層を用い、広く受け入れられている標準がMPEG(Moving Pictures Expert Group)画像符号化標準(ISO/IEC13818−2、1994年5月10日)で、以下これを「MPEG標準」と称する。MPEG標準は、ベースおよび拡張レイヤのデータをどのように取り出せるか、またはデコーダによりレイヤからビデオ・データをどのように再構成するかを詳細に記述している。ここでは、各種レイヤ間で合理的にデータを分割するためと、この目的に供するシステムを動的に設定するための、エンコーダおよびデコーダ・アーキテクチャを含むシステムを提供することが望ましいことが分かっている。
本発明の原理によれば、動的に設定可能なビデオ信号処理システムは可変数のデータ・セグメントと可変データ解像度を用いてデータを分割し符号化する。
本発明による開示の方法は、可変数のデータ・セグメントにデータを分割するものである。本方法は、データ・レートの関数として、第1および第2の歪み率を第1および第2のデータ・セグメント数に分割されたデータについて予測することに係る。第1および第2の歪み率を互いに比較し、より低い歪み率値を示すデータ・セグメント数にデータを分割する。
本発明の特徴によれば、入力データが符号化されるデータ解像度を決定する方法も開示される。本方法は、データ・レートの関数として、第1および第2の歪み率を第1および第2のデータ解像度により符号化したデータについて予測することに係る。第1および第2の歪み率を互いに比較して、より低い歪み率値を示す解像度でデータを符号化する。
【図面の簡単な説明】
図面において、
図1は本発明による動的に設定可能な代表的なビデオ信号符号化および復号化アーキテクチャを示す。
図2は異なる符号化方式の領域を表わすビット・レートに対してプロットしたピーク信号対雑音比(PSNR)の代表的なグラフを示す。
図3は本発明による図1のアーキテクチャを決定するために使用される制御関数のフローチャートである。
図4はMPEG互換符号化/復号化システムのコンテキスト(context)での図1の符号化および復号化システムを示す。
図5はA型符号化および復号化領域で本発明によるエンコーダおよびデコーダのアーキテクチャを示す。
図6はB型符号化および復号化領域で本発明によるエンコーダおよびデコーダのアーキテクチャを示す。
図7はC型符号化および復号化領域で本発明によるエンコーダおよびデコーダのアーキテクチャを示す。
図8は本発明による領域A復号化のための更なるアーキテクチャ構成による図1の変形を示す。
図9は本発明による領域C復号化のための更なるアーキテクチャ構成による図1の変形を示す。
図10は本発明による入力データの領域タイプを識別するための方法のフローチャートを示す。
MPEG標準では、階層化配列(orderd)ビットストリーム・レイヤの処理を「スケーラビリティ」として表わしている。MPEGのスケーラビリティの1つのかたちで「空間スケーラビリティ」と呼ばれるものは、異なるレイヤにあるデータが異なるフレームサイズ、フレーム・レート、クロミナンス符号化を持つことができる。MPEGスケーラビリティの別のかたちは「時間スケーラビリティ」と呼ばれ、異なるレイヤにあるデータが異なるフレーム・レートを持つことができるが、同一のフレームサイズおよびクロミナンス符号化を必要とする。さらに、「時間スケーラビリティ」では拡張レイヤが動きに依存する予測で形成されたデータを含むが、一方の「空間スケーラビリティ」では含まない。このような種類のスケーラビリティ、および「SNRスケーラビリティ(SNRは信号対雑音比を表わす)」と呼ばれる別の種類のスケーラビリティがMPEG標準の第3章にさらに定義されている。
本発明の実施例は、2レイヤ階層(ベース・レイヤと1つの拡張レイヤ)でMPEGの「空間」および「時間」スケーラビリティを使用する。拡張レイヤのデータは異なるフレームサイズに対応するが、単一のフレーム・レートと単一のクロミナンス符号化フォーマットには対応しない。2種類の代表的なフレームサイズは、たとえば米国のグランド・アライアンスHDTV仕様で提案されている、HDTV(高品位テレビ)とSDTV(標準品位テレビ)信号のフォーマットに対応する。HDTVのフレームサイズは、1080ラインでライン当たり1920サンプル(したがって、画像当たり1080×1920画素)となり、SDTVのフレームサイズは720ラインでライン当たり1280サンプル(したがって、画像当たり720×1280画素)となる。HDTVおよびSDTV信号は、どちらも30Hzのインタレース・フレーム・レートと同じクロミナンス符号化フォーマットを使用する。
開示のシステムはMPEG互換で、2レイヤの、HDTVおよびSDTV空間、時間スケーラブル用途のコンテキストで説明するが、これは単なる例示である。開示のシステムは2レイヤよりも多くのビデオ・データ・レイヤおよび他のビデオ・データ解像度(720および1080ラインの解像度以外)へ当業者により簡単に拡張し得るものである。さらに、本発明の原理は他のスケーラビリティのかたち、たとえばSNRスケーラビリティに応用でき、固定最適化エンコーダおよびデコーダ・アーキテクチャを決定するためにも使用できる。本発明の原理は、所望の通信バンド幅でエンコーダ装置およびデコーダ装置を最適化するために、TV符号化(HDTVまたはSDTV)、超低ビット・レート符号化(たとえばビデオ会議)、デジタル地上放送波において特に用途を有している。
図1は本発明による動的に設定可能なビデオ信号符号化/復号化アーキテクチャを示す。概要として、入力ビデオ・データ・ストリームは圧縮(コンプレス)されており、ベース(SDTV)データ・レイヤと拡張(HDTV)データ・レイヤの間にエンコーダ100によって割り当てられている。割り当ては、本発明の原理にしたがってバンド幅およびアーキテクチャ・コントロール・ユニット120の制御により行なわれる。シングルまたはデュアル・ビットストリームのかたちでエンコーダ100から得られた圧縮データは、フォーマッタ110により識別ヘッダを含むデータ・パケットへ構成される。ユニット110からのフォーマットされたデータ出力は、データ・チャンネル上への送信後、トランスポート・プロセッサ115により受信される。送受信処理については、図4に図示した符号化および復号化システムに関連して後で説明する。
トランスポート・プロセッサ115(図1)は、フォーマットされた圧縮ビットストリーム・データをレイヤ形式にしたがって分離、即ちヘッダ情報の分析に基づいてベースまたは拡張レイヤ・データに分離する。トランスポート・プロセッサ115からのデータ出力は、デコーダ105によってデコンプレス(decompress)される。デコーダ105のアーキテクチャは、本発明の原理にしたがってバンド幅およびアーキテクチャ・コントロール・ユニット145の制御により決定される。シングルまたはデュアルのデコンプレスしたビットストリームのかたちでデコーダ105から得られたデコンプレスしたデータ出力は、NTSCフォーマット信号として符号化するためと、後で表示するために適したものである。
図1の動的に設定可能なアーキテクチャを詳細に考えると、入力ビデオ・データ・ストリームはエンコーダ100により圧縮され、ベースSDTVデータ・レイヤと拡張HDTVレイヤの間に割り当てられている。バンド幅およびアーキテクチャ・コントロール・ユニット120は、ユニット125および135各々からのHDTVとSDTV出力レイヤの間にデータを適切に割り当てられるようにエンコーダ100のアーキテクチャを設定する。適切なデータ・アロケーションは、バンド幅、システム出力データ・レート制限、入力ビデオ・データのデータ・レートおよびピクチャ解像度(画像当たりの画素数)、各レイヤで要求されるピクチャ画質および解像度(画像当たりの画素数)を含む多数のシステム・ファクタに依存する。前述のシステムにおいて、エンコーダ100とデコーダ105双方の入出力間の画像解像度は、さらに詳細には後で説明するように、画像当たりの画素数を変更することにより変化する。
データ・アロケーションならびに符号化方式は、エンコーダ100の出力における指定された歪みでのビデオ入力シーケンスを表わすのに必要とされる単位時間当たりの最小ビット数を求めることにより導き出される。これがエンコーダ100についてのレート歪み関数(Rate Distortion Function)である。レート歪み関数は、入力シーケンスが平均μと標準偏差σのガウス分布ソース信号であると仮定して評価される。さらに、T.M.カバーおよびJ.A.トーマス著、1991年J.ワイリー・アンド・サンズ発行の「情報理論の要素」(“Elements of Information Theory”by T.M. Cover and J. A. Thomas, published by J. Wiley & Sons, 1991)13.3.2節に示されている理論にしたがって、このようなガウス入力シーケンスのレート歪み関数Rに平方誤差基準を適用すると、
Figure 0004001914
したがって、歪みレート関数Dは、
D=σ2-2R
で与えられ、ピーク信号対雑音比(PSNR)として表わした場合には、
Figure 0004001914
となる。
図2は歪みピーク信号対雑音比DPSNRをデシベルで表わしたグラフ表現で、2レイヤ空間符号化システムでの拡張レイヤのビット・レート(ビット/秒)に対してプロットしてある。カーブは、ベース・レイヤ歪み関数、拡張レイヤ歪み関数、720ラインのピクチャの1080ライン補間(interpolation)で代表的なアップサンプリングしたベース・レイヤでの歪み関数についてプロットしてある。ベース・レイヤとアップサンプリングしたベース・レイヤのカーブは、拡張レイヤのビット・レートが増加するとベース・レイヤのビット・レートが減少するため、負の傾きを有している。2レイヤ・システムでの複合歪みのカーブが、図2の太い黒線で表わしてある。この複合歪みカーブは、サンプリングしていないベース・レイヤを使用する2レイヤ・システムで得られる最小歪みに対する線形近似である。
符号化および復号化の方式が、図2に図示してある2レイヤ・システムの結果から導かれる。さらに詳しくは、異なる符号化および復号化アプローチを採用することによる利点が得られるような、3つの領域A、B、Cが識別される。領域の境界は、システムのバンド幅、システム出力データレート制限、入力ビデオ・データのデータ・レートとピクチャ解像度、各レイヤで要求されるピクチャ画質と解像度によって変化し得る。領域は次のように識別される。
領域A
領域Aでは、2レイヤ符号化または単一の高解像度レイヤ符号化のどちらかを用いて要求される画質を達成するには不十分な割り当て可能バンド幅しかない。この領域で、復号化したサンプリングしていないベース・レイヤのビデオ画質は、ベース・レイヤと拡張レイヤからの合成データから導かれる復号化したピクチャのビデオ画質に等しいかこれを超える。この領域は拡張レイヤ・カーブ上の点Xが上端に接しており、ゼロ・ビット・レート拡張レイヤの点Yでサンプリングしていないベース・レイヤ・カーブの画質に等しいピクチャ画質(DDSNR値)を得られる。
領域Aでは、画像当たり画素数が減少している減少空間解像度で単一レイヤ(ベース・レイヤ)の符号化および圧縮に利用可能なシステム・バンド幅全部を割り当てる際に利点がある。この方式は各種の方法で実施できる。たとえば1つの方法として、入力データ・ストリームをダウンサンプリングして送信用に単一のベース・レイヤ(SDTV)を提供し、さらに対応する受信したベース・レイヤを復号化して、受信時に復号化SDTV出力を提供する。もっと解像度の高い復号化HDTV出力は、復号化SDTV出力をアップサンプリング(オーバサンプリング)することにより復号化SDTV出力に加えて受信器で作成できる。この方法の利点は、2レイヤまたは単一の高解像度レイヤのどちらかを符号化するために使用する場合より低解像度の単一レイヤ・ビットストリームを符号化するように割り当てられた場合に乏しいバンド幅が一層有効に使用されることによっている。これは、後者のアプローチがたとえば必要とされる追加のエラー保護およびデータ管理コードに付随する大きな符号化時オーバヘッドを受けることが多いためである。領域Aタイプの状況は、たとえば全解像度符号化をサポートするには利用できる全システム・バンド幅が不十分な場合に発生することがある。領域A符号化方式の利点は、たとえば符号化しようとする入力データ・ストリームが顕著な非平衡移動(non-translational motion)を含む場合など、他の状況でも発生することがある。さらに領域A空間ダウンサンプリングおよびアップサンプリングは、バンド幅が制限されたシステムで動き補償予測符号化により提供し得る以上に良好なピクチャ画質を提供できる。これは、このような動き補償に関連したオーバヘッドのためである。領域Aの動作については、図5との関連でさらに詳細に説明する。
領域B
領域Bでは、2レイヤ符号化方式を用いて要求された出力ピクチャ画質に適合するのに十分なシステム・バンド幅がある。この領域では、利用できるシステム・バンド幅がレイヤ間に割り当てられるので、復号化された高解像度および低解像度両方の出力の画質要件に適合する。この領域は領域Aと領域Cの間にある。
領域Bでは、システム・バンド幅が高解像度および低解像度信号出力レイヤ間でピクチャ画質要件にしたがって割り当てられる。2つの出力レイヤは様々な方法で送信用に符号化できる。たとえば1つの方法は、高解像度入力データ・ストリームをダウンサンプリングし符号化して送信用低解像度(SDTV)レイヤを提供し、また受信時にこの低解像度レイヤを復号化して低解像度SDTV信号を提供する。送信すべき高解像度(HDTV)拡張レイヤは、符号化したSDTVレイヤのアップサンプリングしたバージョンと符号化HDTVレイヤの直前のフレームの組み合せから導出する。復号化HDTV出力は、復号化SDTV出力のアップサンプリングしたバージョンと受信した符号化HDTVレイヤの組み合せから導出できる。この動作については、図6との関連でさらに詳細に説明する。
領域C
領域Cでは、2レイヤを符号化するかまたは単一の(低解像度)レイヤを符号化するかのどちらかにシステム・バンド幅を割り当てることでは、要求されるピクチャ画質を実現できない。この領域では、所定のシステム・バンド幅の制約が与えられると、単一の高解像度レイヤを符号化することにより、高品位出力ビデオ信号を実現できる。この領域は、ベース・レイヤ単独で最小値として要求されるピクチャ画質のレベルを提供する拡張レイヤ・カーブ上の点V(図2のDPSNR値Wに等しい)で隔てられている。
領域Cでは、画像当たり全画素数で全空間解像度における単一レイヤ(拡張レイヤ)の符号化および圧縮に全システム・バンド幅を割り当てる際に利点がある。この方式は各種の方法で実施できる。たとえば1つの方法として、送信用に単一の高解像度拡張(HDTV)レイヤとして全空間解像度で入力データ・ストリームを符号化し、これに対応する受信拡張レイヤを復号化して高解像度HDTV出力を提供する。受信器では、受信した高解像度信号から、後述するように圧縮またはデコンプレス・ドメインでダウンサンプリングすることにより、低解像度(SDTV)出力を取り出すことができる。この領域Cの方法の利点は、要求される出力ピクチャ画質レベルが与えられると、送信用に2レイヤを符号化するために使用する場合よりも単一の高解像度レイヤを符号化するように割り当てられた場合に利用可能なバンド幅が一層効率的に使用されるためである。これは、2レイヤ符号化では追加のエラー保護およびデータ管理オーバヘッド情報を必要とするためである。この領域Cの動作については、図7との関連でさらに詳細に説明する。
図2の2レイヤ・システムに識別される3つの領域(A、B、C)は、全ての2レイヤ・システムに全て揃っていなくとも良い。たとえば、システム・バンド幅、システムのデータ・レート制限、各レイヤで要求されるピクチャ画質および解像度によっては、1つまたは2つの領域だけが識別されることがある。逆に、2つよりも多くのレイヤを備えるシステムでは、本発明の原理にしたがって3つよりも多くの領域が識別されることがある。しかし、システム内で識別可能なデータ領域の個数と無関係に、識別可能な領域の限られた個数だけで設定可能な符号化および復号化アーキテクチャを用い、充分な復号化ピクチャ画質を実現できる。
図1の動的に設定できるアーキテクチャにおいて、領域A、B、Cに関連して異なる符号化および復号方式を実施する。エンコーダ100では、HDTVとSDTV出力レイヤ間でデータを割り当てるために適当な方式およびアーキテクチャが、コントロール・ユニット120によって決定される。コントロール・ユニット120は、たとえばマイクロプロセッサを含み、図3のフローチャートに図示した処理を用いてエンコーダ100のアーキテクチャを設定する。コントロール・ユニット120は初めに、図3のステップ310の開始に続くステップ315において入力データの領域タイプを識別する。領域タイプは、すでに説明した原理にしたがって、利用可能なシステム・バンド幅、入力データ・ストリームのデータ・レート、およびデコンプレスされた出力レイヤの要求されるピクチャ画質を含むファクタに基づいて決定する。これらのファクタはあらかじめプログラムしてコントロール・ユニット120内のメモリの保持されるデータで示されるか、またはコントロール・ユニット120への入力からファクタを決定できる。たとえば、データ・レートは入力データ・ストリームから直接検出できる。また、外部ソース入力はたとえばオペレータの選択で起動し、たとえばコンピュータ・インタフェース経由でコントロール・ユニット120へ入力できる。1つの実施においてコントロール・ユニット120は、たとえば、システム・バンド幅とデコンプレスした各出力レイヤの要求されるピクチャ画質を表わすあらかじめプログラムされている値に基づいて、領域A、B、Cの間の境界を設定する入力データ・レート閾値を導き出すことができる。次に、コントロール・ユニット120は、特定の閾値に達する入力データ・ストリムのデータ・レートに基づいて適当な領域A、B、またはCの符号化方式を採用する。これとは別に、入力データ・レート閾値は、コントロール・ユニット120内部にそれ自体をあらかじめプログラムしておくこともできる。
入力データの領域タイプは図10の流れ図に示してある方法を用いて図3のステップ315で識別される。ステップ510の開始に続く図10のステップ515において、単一の階層化レイヤと1080ライン画像解像度が符号化領域におけるデータの符号化のために最初に選択される。1080ライン解像度での送信用に単一レイヤとして符号化される場合の入力データで予測される歪み率が、ステップ525で計算される。ステップ530では、ステップ515とステップ525を繰り返して720ライン解像度での単一レイヤ符号化実施のための歪み率を計算するように指示する。またステップ530では、ステップ515とステップ525をさらに繰り返して、720および1080ライン解像度の両方での2レイヤ符号化実施のための歪み率を計算するように指示する。得られた歪み率を比較して、符号化に使用される画像解像度と階層化レイヤ数をステップ540で決定する。選択処理はステップ550で終了する。レイヤの個数と画像解像度はステップ540で選択されて、最少歪み率を提供する。このレイヤと解像度の選択処理は、ステップ315(図3)の符号化領域識別機能を実施するものである。データを送信用に準備する必要があり、画像処理に制限されない各種の用途でも、符号化した入力データを分割する本方法を利用できることに注意すべきである。たとえば、電話通信、マイクロ波および光ファイバ通信を含む衛星または地上波通信で本発明の処理を使用できる。さらに、本発明の処理は他の種類のデータと、符号化データの階層化レイヤだけでなく他の種類のデータ・セグメントやデータ・パケットへのデータの分割を包含することができる。本発明の処理は、好適実施例に関連して説明した2レイヤおよび2データ解像度に限らず、異なる個数のデータ・セグメントおよびデータ解像度を包含することもできる。
領域Aが選択された場合、ステップ320(図3)では、ステップ325を実行してエンコーダ100をタイプAアーキテクチャに設定するように指示する。さらに、フォーマッタ110がデータの領域タイプと適当な復号化アーキテクチャを表わすようにコントロール・ユニット120から提供された情報を用いて送信ビットストリームを符号化する。デコーダ105は、符号化されたアーキテクチャ情報に応じて送信された領域Aタイプデータを復号化するように、互換性のある設定がなされる。データが領域Cタイプの場合、ステップ330では、ステップ335を実行するように指示する。ステップ335では、エンコーダ100を領域Cのアーキテクチャに合わせて設定するように指示し、領域Aについて説明した方法でデータと復号化アーキテクチャを表わすように送信ビットストリームを更新する。データが領域Cタイプでない場合、ステップ330ではステップ340を実行するように指示する。ステップ340では、エンコーダ100を領域タイプBアーキテクチャに設定するように指示し、領域Aについて説明した方法でデータおよび復号化アーキテクチャを表わすように送信ビットストリームを更新する。
コントロール・ユニット120は、エンコーダ100の構成要素の各々に提供される設定信号(Configuration signal)C1を介してエンコーダ100を設定する。コントロール・ユニット120は、個々の入力データ・パケットについてエンコーダ100の設定を更新する。ここで、各データ・パケットは符号語のシーケンスから構成されており、ピクチャのグループ、たとえばMPEG標準に準拠するグループ・オブ・ピクチャ(Goupe of Picture)などを表わす。しかし、コントロール・ユニット120は特定のシステムに適するように、別のデータ・パケット長でエンコーダ100の設定を更新することもできる。たとえば、設定は電源投入時に、各ピクチャで、各ピクチャ・ストリーム(たとえばプログラム)について、各画素ブロック(たとえばマクロブロック)について、または可変時間間隔で実行できる。
領域A動作モードでは、コントロール・ユニット120が、設定信号によりHDTVコンプレッサ125と2:3アップサンプラ130の両方をディスエーブルにする。得られたエンコーダ100の設定では、エンコーダ100のユニット135からフォーマッタ110へ送信用に単一のSDTV出力レイヤが提供される。この設定については、図5との関連で図示して説明する。図1について続けると、SDTVレイヤ出力を作成するため、3:2ダウンサンプラ140が2/3の倍率で1080ライン解像度入力データ・ストリームの空間解像度を減少させて、720ライン出力を提供する。これは、たとえば単純に3つ目のラインを全て破棄するか、望ましくは補間および平均化処理を実行してもとの3ラインに対して2本の補間ラインを提供することを含め、各種の周知の方法により実現できる。3:2ダウンサンプラ140からの720ライン出力はSDTVコンプレッサ135で圧縮されて、フォーマッタ110へSDTVレイヤ圧縮データを提供する。ユニット135によって実行される圧縮には、エンコーダ135内部に記憶してある先行のSDTVレイヤ・フレームを用いる時間予測処理を使用する。このような時間予測とディスクリート・コサイン変換(DCT)の関連する圧縮処理は公知であり、たとえば米国放送協会(NAB)科学技術局1994年第48回年次総会予稿集で発表されているグランド・アライアンスHDTVシステム仕様、1994年4月14日、第3章(Grand Alliance HDTV System Specification of April 14, 1994, published by the National Association of Broadcasters(NAB)Office of Science and Technology in their 1994 Proceedings of the 48th annual conference)に記載されている。
得られたSDTVビットストリームは、フォーマッタ110で識別ヘッダとアーキテクチャ情報を含むデータ・パケットに形成される。アーキテクチャ情報はコントロール・ユニット120により提供され、フォーマッタ110によって、MPEG画像符号化システム標準(ISO/IEC13818−1、1994年6月10日)2.6.6節および2.6.7節に説明されている「階層化記述子(Hierarchy Descriptor)」を用いて送信ビットストリームへ符号化される。アーキテクチャ情報をこの後でデコーダ105が用いて、適当な復号化モード(たとえば領域A、B、またはCモード)にデコーダ105を互換設定する。デコーダ105の設定は、エンコーダ100と同様に、各送信データ・パケットについて更新される。データ・パケットは、本好適実施例ではグループ・オブ・ピクチャ(a groupe of pictures)を含む。
MPEG「階層化記述子(Hierarchy Descriptor)」を用いるのがエンコーダ100とデコーダ105が互換設定されるように補償する好適な方法であるが、他の方法も可能である。たとえばアーキテクチャ記述子は、MPEG標準の6.2.2.2.2節に定義されている「ユーザ・データ」フィールドにMPEGシンタックスで符号化できる。これとは別に、デコーダ105は、符号化されている受信データ・ストリームのビット・レートから、MPEG標準の6.2.2.1節でシーケンス・ヘッダのビット・レート・フィールドから決定される適当な復号化モードを推定できる。デコーダは、復号化出力のバンド幅およびビデオ画質要件が記述されあらかじめプログラムしてあるデータと併せてこのビット・レート情報を用い、本発明の上記で説明した原理にしたがい適当な復号化モードを推定する。復号化モードは、たとえば受信ビット・レートがあらかじめプログラムされている閾値に達した時点で変更することができる。
ユニット110からのフォーマットされ圧縮されたデータ・ストリーム出力は、トランスポート・プロセッサ115へ入力される前に送信チャンネル上に伝送される。図4は図1の要素ならびに送受信要素410〜435を含むシステム全体を示す。これらの送信および受信要素は公知であり、たとえば参考文献のリー、メッサーシュミット共著「デジタル通信(Digital Communication)」(クルーワー・アカデミック出版、米国マサチューセッツ州ボストン、1988年)に記述されている。送信エンコーダ410は、ユニット110(図1および図4)からのフォーマットされた出力を送信用に符号化する。エンコーダ410は代表的にはフォーマットされたデータを順次、スクランブル、エラー符号化、インタリーブして変調器415での変調前に送信のためにデータを調整する。変調器415はキャリア周波数をエンコーダ410の出力で特定の変調フォーマットにより、たとえば直交振幅変調(QAM)により変調する。変調器415から得られた変調キャリア出力が周波数シフトされて、たとえばローカル・エリア放送用送信器などであるアップコンバータおよび送信器420から送信される。単一チャンネルの送信システムとして説明しているが、たとえばチャンネルを各ビットストリーム・レイヤに割り当てているような複数チャンネル送信システムでビットストリーム情報を送信することも等しく可能であることに注意すべきである。
送信信号は、受信器でアンテナと入力プロセッサ425により受信され処理される。ユニット425は、代表的には、高周波(RF)チューナと、受信した入力信号を他の処理に適したもっと低い周波数帯にダウンコンバートするための中間周波数(IF)ミキサーと増幅段を含む。ユニット425からの出力はユニット430で復調され、キャリア周波数をトラッキングして送信データならびに付随するタイミング・データ(たとえばクロック周波数)を復元する。送信デコーダ435は、エンコーダ410で行なった演算の逆を実行する。デコーダ435は次に、ユニット430で取り出したタイミング・データを用いて、ユニット430からの復調データ出力をデインタリーブ、復号化、スクランブル解除する。これらの機能に関連する追加情報は、たとえば前述のリーとメッサーシュミットによる文献に見ることができる。
トランスポート・プロセッサ115(図1および図4)は、ユニット435からの圧縮データ出力から同期およびエラー表示情報を抽出する。この情報は、プロセッサ115からの圧縮ビデオデータ出力のデコーダ105によって行なわれる後続のデコンプレスで使用する。プロセッサ115は、ユニット435からの圧縮データ内のMPEG階層化記述子フィールドから復号化アーキテクチャ情報も抽出する。このアーキテクチャ情報は、デコーダ・バンド幅およびアーキテクチャ・コントロール・ユニット145(図1)へ提供される。ユニット145はこの情報を用い、デコーダ105を適当な復号化モード(たとえば領域A、B、またはCモード)に互換設定する。コントロール・ユニット145は、デコーダ105の各構成要素に提供される第2の設定信号C2によりデコーダ105を設定する。
領域Aモードでは、図1のコントロール・ユニット145が第2の設定信号によりHDTVデコンプレッサ150と適応ユニット165の両方をディスエーブルにする。得られたデコーダ105の設定では、プロセッサ115からのSDTVレイヤ圧縮ビデオ出力がSDTVデコンブレッサ160でデコンプレスされて、デコンプレスした720ライン解像度SDTV出力シーケンスを提供する。デコンプレス処理は公知であり、前述のMPEG標準に定義されている。さらに、アップサンプラ155が3/2倍で720ライン解像度SDTV出力をオーバサンプリングし、1080ライン解像度HDTVデコンプレス出力を提供する。これは、もとの2ラインに対して補間3ラインを提供するたとえば補間および平均化を含む、各種の周知の方法で実現できる。アップサンプラ160からの1080ライン解像度のデコンプレス出力は、HDTVデコンプレス出力シーケンスとして、第2の設定信号に応答してマルチプレクサ180経由で選択される。デコーダ105から得られたデコンプレスしたHDTVおよびSDTVデータ出力は、たとえば図4のユニット440でNTSCフォーマット信号として符号化するためや、後続の表示のために適当である。
図5は領域Aタイプ符号化および復号化に設定した図1のエンコーダおよびデコーダ装置を示す。図示した要素の機能はすでに説明した通りである。図1のエンコーダ100に図示してあるアップサンプラ130とHDTVコンプレッサ125は、前述のように領域Aモードでディスエーブルとされるので、これらの要素は図5には現れない。同様に、図1のデコーダ105に図示してあるHDTVデコンプレッサ150と適応ユニット165は、これも前述したように領域Aモードでディスエーブルとされるので、これらの要素は図5には現れない。
図1の入力データが領域Bタイプの場合、コントロール・ユニット120は領域Bアーキテクチャに併せてエンコーダ100を設定する。これは、領域Aについて前述したのと同様の方法で設定信号を用いて行なう。しかし、領域Bでは、領域Aで単一低解像度出力が圧縮されたのと対照的に、エンコーダ100は送信用高解像度および低解像度出力レイヤを両方とも圧縮する。この設定については、図6との関連で図示して説明する。図1について続けると、コントロール・ユニット120は、低解像度SDTV出力に加えて高解像度HDTV出力レイヤとして拡張データを圧縮するようにエンコーダ100を設定することで、高解像度および低解像度出力レイヤ間にシステム・バンド幅を割り当てる。このHDTVレイヤはピクチャ・リファイン・データを提供し、720ライン解像度SDTVレイヤから1080ライン解像度ピクチャ出力をデコーダ105で作成できるようにする。
領域BのSDTVレイヤ出力は、領域Aで説明したのと同じ方法で作成する。ダウンサンプラ140からの720ライン出力はSDTVコンプレッサ135で圧縮され、フォーマッタ110へSDTVレイヤ圧縮データを提供する。しかし、領域Bでは、送信用の高解像度HDTV拡張レイヤがHDTVコンプレッサ125により取り出される。コンプレッサ125は、アップサンプラ/デコンプレッサ130で作成したSDTVレイヤのアップサンプリングしデコンプレスされたバージョンと、コンプレッサ125内部に記憶されているHDTVレイヤの直前のフレームとを組み合せて圧縮することによって、HDTV出力を取り出す。コンプレッサ125で実行する時間予測が関係するこのような組み合せおよび圧縮処理は公知であり、たとえばMPEG標準の空間スケーラビリティの章(7.7節)に記載されている。エンコーダ100から得られたHDTVおよびSDTV圧縮出力はフォーマッタ110へ提供される。
エンコーダ100からのHDTVおよびSDTVビットストリームは、識別ヘッダおよびアーキテクチャ情報を含むデータ・パケットへと、「階層化記述子」フィールド内でフォーマッタ110により形成される。領域Aで説明したように、ユニット110からのフォーマット・データはトランスポート・プロセッサ115へ伝送され、ここでデコーダ105(この場合には領域Bについて)を設定するためデコンプレッサコントロール・ユニット145へアーキテクチャ情報を提供する。
受信器では、領域Bモードにおいて、コントロール・ユニット145が第2の設定信号を用いて適応ユニット165をディスエーブルにする。デコーダ105の得られた設定では、プロセッサ115からの圧縮SDTV出力がユニット160でデコンプレスされて、領域Aの場合と同様に720ライン解像度SDTV出力を提供する。HDTVデコンプレッサ150は、アップサンプラ155で作成したこの復号化SDTV出力のアップサンプリングしたバージョンとHDTVデコンプレッサ150内部に記憶している直前のHDTVレイヤのフレームを組み合せてデコンプレスすることにより、デコンプレスした1080ライン解像度HDTV出力を取り出す。アップサンプリングしたデータと記憶してあるデータを組み合せてHDTVデコンプレッサ150で実行するようなデコンプレス出力を形成する処理は公知であり、たとえばMPEG標準の空間スケーラビリティの章(7.7節)に記載されている。デコンプレッサ150からの1080ラインの高解像度のデコンプレス出力は、HDTVデコンプレス出力として、マルチプレクサ180経由で第2の設定信号に応答して選択される。デコーダ105から得られたデコンプレスしたHDTVおよびSDTVデータ出力は、すでに説明したようにさらに処理するためとそれに続けて表示するために好適なものである。
図6は領域Bタイプの符号化〜復号化のために設定された図1のエンコーダおよびデコーダ装置を示す。図示してある要素の機能はすでに説明した通りである。図1のデコーダ105に図示してある適応ユニット165は、これもすでに説明したように領域Bモードでディスエーブルとされることから、図6には現れない。
図1の入力データが領域Cタイプの場合、コントロール・ユニット120は領域Cアーキテクチャに併せてエンコーダ100を設定する。これは、領域Aについてすでに説明したのと同様の方法で設定信号を用いて行なう。しかし、領域Cでは、領域Aのような低解像度出力または領域Bのような2つの出力を符号化するのではなく、高解像度出力だけを符号化する。コントロール・ユニット120は、必要なら高解像度出力を符号化するように全システム・バンド幅を割り当て、全空間(1080ライン)HDTV解像度で拡張レイヤを符号化するように設定信号によりエンコーダ・ユニット100を設定する。
領域Cモードでは、コントロール・ユニット120は設定信号により、ダウンサンプラ140、SDTVコンプレッサ135、およびアップサンプラ130をディスエーブルにする。このようにして得られたエンコーダ100の設定では、フォーマッタ110へ1080ライン解像度HDTV出力を提供するのに必要とされるように、全システム・バンド幅を用いてHDTVコンプレッサ125で入力シーケンスを圧縮する。この設定については、図7との関連で図示して説明する。図1について続けると、HDTVコンプレッサ125は、コンプレッサ125内部に記憶されているHDTVレイヤの直前のフレームを用いてHDTV出力を取り出す。領域Cにおいてコンプレッサ125により実行される圧縮処理は、領域Aならびに領域Bについて説明したのと同様であり、これも公知となっている。
ユニット100からのHDTVビットストリームは、識別ヘッダおよびアーキテクチャ情報を含むデータ・パケットへと、「階層化記述子」フィールド内でフォーマッタ110により形成される。領域Aで説明したように、ユニット110からのフォーマットされたデータはトランスポート・プロセッサ115へ伝送され、ここで、デコーダ105を設定するため(この場合には領域Cについて)デコーダ・コントロール・ユニット145へアーキテクチャ情報を提供する。
受信器において、領域Cモードでは、コントロール・ユニット145が第2の設定信号を用いてアップサンプラ155をディスエーブルにする。このようにして得られるデコーダ105の設定では、プロセッサ115からの圧縮HDTV出力がユニット150でデコンプレスされて、1080ライン高解像度HDTV出力を提供する。この、デコンプレッサ150からの1080ラインのデコンプレスした出力は、第2の設定信号に応答してマルチプレクサ180経由で、デコーダ105の復号化HDTV出力として選択される。さらに、プロセッサ115からの圧縮HDTV出力は適応ユニット165でSDTVデコンプレッサ160の入力要件に合致させるのに適している。これは、圧縮(周波数)ドメインで、プロセッサ115からの圧縮HDTV出力の空間解像度を実効720ライン解像度へ減少することにより行なわれる。これはたとえば、プロセッサ115からの圧縮HDTV出力のビデオ情報を表わすディスクリート・コサイン変換(DCT)係数のうちで、高い周波数の係数を破棄することにより行なえる。この処理は公知であり、たとえば、S.チャンらによる「MC−DCT圧縮ビデオの操作と複合」、IEEE通信選択分野ジャーナル(JSAC)1995年1月(“Manipulation and Compositing of MC-DCT Compressed Video”by S. Chang et al, published in the I.E.E.E. Journal of Selected Area in Communications(JSAC), January 1995)に記載されている。適応ユニット165からの空間的に減少させた圧縮出力は、ユニット160でデコンプレスされて720ライン解像度SDTV出力を提供する。ユニット160および150で実行するデコンプレス処理は領域Aについて説明した処理と同様で、これもまた公知である。デコーダ105から得られた復号化HDTVおよびSDTVデータ出力は、すでに説明したようにさらに処理するためとその後で表示するために適したものである。
図7は領域Cタイプ符号化および復号化に設定した図1のエンコーダおよびデコーダ装置を示す。図示した要素の機能はすでに説明した通りである。図1のエンコーダ100に図示してあるダウンサンプラ140、SDTVコンプレッサ135およびアップサンプラ130は、すでに説明したように領域Cモードではディスエーブルとされるので、図7ではこれらの要素が現れない。同様に、図1のデコーダ105に図示してあるアップサンプラ155は領域Cモードでディスエーブルとされるので、この要素は図7に図示していない。
図8は図1の変形であり、領域A復号化のための追加アーキテクチャ設定を示す。図8のエンコーダ100、フォーマッタ110およびトランスポート・プロセッサ115は、図1で説明した通りである。さらに、図8のデコーダ109の機能は、領域A復号化において1080ライン解像度HDTVデコンプレス出力が別の方法で提供されることを除けば、図1のデコーダ105の機能と同一である。
領域Aモードでは、図8のデコーダ・コントロール・ユニット149はアップサンプラ155と適応ユニット165の双方を第2の設定信号によりディスエーブルにする。デコーダ109のこうして得られた設定では、プロセッサ115からのSDTVレイヤ圧縮ビデオ出力がSDTVデコンプレッサ160でデコンプレスされて、デコーダ109のSDTV出力を提供する。これは、図1で説明したのと同じ方法で実行される。しかし、デコーダ109からのHDTVデコンプレス出力は、図1のデコーダ105で時間ドメインのサンプリングを行なっているのと対照的に、周波数ドメインでSDTVレイヤをアップサンプリングすることによって作成する。図8のプロセッサ115からの圧縮出力は、適応ユニット168(図1には現れない)によって圧縮(周波数)ドメインでアップサンプリングされる。これは、たとえばプロセッサ115からの圧縮SDTV出力においてビデオ情報を表わす高次ディスクリート・コサイン変換(DCT)周波数係数を「ゼロ・パディング(zero padding)」することによって行なえる。実際に、選択した高次DCT係数はゼロ値を割り当てられる。この処理の裏付けとなる理論は公知であり、たとえば、S.チャンらによる「MC−DCT圧縮ビデオの操作と合成」、IEEE通信選択分野ジャーナル(JSAC)1995年1月(“Manipulation and Compositing of MC-DCT Compressed Video”by S. Chang et al, published in the I.E.E.E. Journal of Selected Area in Communications(JSAC), January 1995)に記載されている。適応ユニット168から得られたアップサンプリングした出力がHDTVデコンプレッサ152によってデコンプレスされ、デコーダ109からHDTV出力を提供する。デコーダ109から得られたデコンプレスしたHDTVおよびSDTVデータ出力は、図1に関連して説明したように処理とそれに続く表示に適している。
図9は図1の変形であり、領域C復号化のための追加アーキテクチャ設定を示す。図9のエンコーダ100、フォーマッタ110およびトランスポート・プロセッサ115で行なわれる機能は、図1で説明した通りである。さらに、図9のデコーダ107の機能は、領域C復号化において、720ライン解像度SDTVデコンプレス出力が別の方法で提供されることを除けば、図1のデコーダ105の機能と同一である。
領域Cモードでは、第2の設定信号により、図9のコントロール・ユニット147がアップサンプラ155とSDTVデコンプレッサ162の両方をディスエーブルにする。デコーダ107のこうして得られた設定では、プロセッサ115からのHDTVレイヤ圧縮ビデオ出力がHDTVデコンプレッサ150によりデコンプレスされ、デコーダ107のHDTV出力を提供する。これは、図1で説明したのと同じ方法で行なわれる。しかし、デコーダ107からのSDTVデコンプレス出力は、図1のデコーダ105で実行される周波数ドメインのサンプリングとは対照的に、時間ドメインにおいてHDTVレイヤをダウンサンプリングすることにより作成する。図9のマルチプレクサ180からのデコンプレスしたHDTV出力は2/3倍でダウンサンプラ170(図1には現れない)によりダウンサンプリングされ、720ライン出力を提供する。これは、図1のエンコーダ100のダウンサンプラ140に関連して説明したように、各種の公知の方法で実行できる。ダウンサンプラ170からの720ライン解像度のデコンプレス出力は、第2の設定信号に応答してマルチプレクサ175(図1には現れない)経由でデコーダ107の復号化SDTV出力として選択される。デコーダ107から得られたデコンプレスしたHDTVおよびSDTVデータ出力は、図1との関連で説明したように、処理とそれに続く表示に適したものである。
図1から図9に関連して説明したエンコーダおよびデコーダのアーキテクチャは排他的なものではない。同じ目的を実現し得る他のアーキテクチャが個々の領域(A、B、C)について工夫し得る。さらに、各種アーキテクチャの要素の機能は、その全体でまたは部分で、マイクロプロセッサのプログラム命令内部で実現できるものである。

Claims (11)

  1. データを分割するための方法であって、
    (a)第1のレイヤ数に分割された該データについての第1の歪み率を予測するステップであって、空間ドメインにおいて該データのデータ・レートの関数として実行されるステップ、
    (b)第2のレイヤ数に分割された該データについての第2の歪み率を予測するステップであって、空間ドメインにおいて該データのデータ・レートの関数として実行されるステップ、
    (c)前記第1の歪み率と前記第2の歪み率を相互に比較するステップ、
    (d)該比較に基づいて、前記第1のレイヤ数と前記第2のレイヤ数のどちらがより低い歪み率の値を示すかを判定するステップ、および、
    (e)該判定されたレイヤ数に前記データを分割するステップであって、空間ドメインにおいて実行されるステップ
    を含むことを特徴とする方法。
  2. 前記ステップ(a)は前記第1のレイヤ数に分割された前記データを予測構成するステップを含み、
    前記ステップ(b)は前記第2のレイヤ数に分割された前記データを予測構成するステップを含むことを特徴とする請求項1に記載の方法。
  3. さらに、(f)分割した前記データを圧縮するステップを含むことを特徴とする請求項2に記載の方法。
  4. 前記ステップ(a)は、
    (a1)前記第1のレイヤ数に分割された前記データを階層化配列レイヤに予測形成するステップ、および、
    (a2)該ステップ(a1)で予測形成された前記データについての前記第1の歪み率を、該データのデータ・レートの関数として計算するステップを含み、並びに、
    前記ステップ(b)は、
    (b1)前記第2のレイヤ数に分割された前記データを階層化配列レイヤに予測形成するステップ、および、
    (b2)該ステップ(b1)で予測形成された前記データについて前記第2の歪み率を、該データのデータ・レートの関数として計算するステップを含む、
    ことを特徴とする請求項1に記載の方法。
  5. 前記データは画像データであることを特徴とする請求項4に記載の方法。
  6. 前記ステップ(b1)および(b2)において、圧縮データの1つまたは2つ以上の階層化レイヤへ前記画像データを予測形成することを特徴とする請求項5に記載の方法。
  7. 前記ステップ(b1)および(b2)において、圧縮データのデコンプレスされた階層化レイヤについて歪み率を予測計算することを特徴とする請求項5に記載の方法。
  8. 入力データを符号化する方法であって、
    (a)第1の空間データ解像度を有する該入力データについての第1の歪み率を予測するステップであって、空間ドメインにおいて該入力データのデータ・レートの関数として実行されるステップ、
    (b)第2の空間データ解像度を有する該入力データについての第2の歪み率を予測するステップであって、空間ドメインにおいて該入力データのデータ・レートの関数として実行されるステップ、
    (c)前記第1の歪み率と前記第2の歪み率を相互に比較するステップ、
    (d)該比較に基づいて、前記第1の空間データ解像度と前記第2の空間データ解像度のどちらがより低い歪み率を示すかを判定するステップ、および、
    (e)該判定された空間データ解像度で前記入力データを符号化するステップを含むことを特徴とする方法。
  9. 前記ステップ(a)は、
    前記第1の空間データ解像度を選択するステップ、
    前記入力データを、前記第1のデータ解像度を有するデータに予測変換するステップ、および、
    前記第1の空間データ解像度を有する該データについての前記第1の歪み率を、前記入力データのデータ・レートの関数として計算するステップを含み、並びに、
    前記予測ステップ(b)は、
    前記第2の空間データ解像度を選択するステップ、
    前記入力データを、前記第2のデータ解像度を有するデータに予測変換するステップ、および、
    前記第2の空間データ解像度を有する該データについての前記第2の歪み率を、前記入力データのデータ・レートの関数として計算するステップを含む、
    ことを特徴とする請求項8に記載の方法。
  10. 前記入力データは画像データであることを特徴とする請求項9に記載の方法。
  11. 前記符号化するステップにおいて、前記判定された空間データ解像度で前記画像データを圧縮することを特徴とする請求項10に記載の方法。
JP50428497A 1995-06-29 1996-06-04 可変セグメントで可変データ解像度によりデータを処理するための方法 Expired - Fee Related JP4001914B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US67595P 1995-06-29 1995-06-29
US08/572,844 1995-12-14
US60/000,675 1995-12-14
US08/572,844 US5828788A (en) 1995-06-29 1995-12-14 System for processing data in variable segments and with variable data resolution
PCT/IB1996/000722 WO1997001935A1 (en) 1995-06-29 1996-06-04 Method for partioning and encoding data

Publications (2)

Publication Number Publication Date
JPH11508738A JPH11508738A (ja) 1999-07-27
JP4001914B2 true JP4001914B2 (ja) 2007-10-31

Family

ID=26667973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50428497A Expired - Fee Related JP4001914B2 (ja) 1995-06-29 1996-06-04 可変セグメントで可変データ解像度によりデータを処理するための方法

Country Status (9)

Country Link
US (1) US5828788A (ja)
EP (1) EP0835590B1 (ja)
JP (1) JP4001914B2 (ja)
KR (1) KR100471583B1 (ja)
CN (1) CN1144468C (ja)
AU (1) AU6315396A (ja)
DE (1) DE69605117T2 (ja)
HK (1) HK1015590A1 (ja)
WO (1) WO1997001935A1 (ja)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8381126B2 (en) 1992-12-14 2013-02-19 Monkeymedia, Inc. Computer user interface with non-salience deemphasis
US20080158261A1 (en) 1992-12-14 2008-07-03 Eric Justin Gould Computer user interface for audio and/or video auto-summarization
US5623588A (en) 1992-12-14 1997-04-22 New York University Computer user interface with non-salience deemphasis
US6957350B1 (en) 1996-01-30 2005-10-18 Dolby Laboratories Licensing Corporation Encrypted and watermarked temporal and resolution layering in advanced television
JP3210862B2 (ja) 1996-06-27 2001-09-25 シャープ株式会社 画像符号化装置及び画像復号装置
DE69835388T2 (de) * 1997-03-17 2007-07-19 Sony Corp. Bildkodiergerät und Bilddekodiergerät
JPH10257502A (ja) * 1997-03-17 1998-09-25 Matsushita Electric Ind Co Ltd 階層画像符号化方法、階層画像多重化方法、階層画像復号方法及び装置
ES2323358T3 (es) 1997-04-01 2009-07-14 Sony Corporation Codificador de imagenes, metodo de codificacion de imagenes, descodificador de imagenes, metodo de descodificacion de imagenes, y medio de distribucion.
JPH10304334A (ja) * 1997-04-25 1998-11-13 Canon Inc 通信方法、通信装置、送信装置、受信装置、通信システム、及び記憶媒体
US6175944B1 (en) * 1997-07-15 2001-01-16 Lucent Technologies Inc. Methods and apparatus for packetizing data for transmission through an erasure broadcast channel
JP3564961B2 (ja) 1997-08-21 2004-09-15 株式会社日立製作所 ディジタル放送受信装置
US6275616B1 (en) * 1997-09-12 2001-08-14 Samsung Electronics Co., Ltd. Method and apparatus for converting a high definition image to a relatively lower definition image using wavelet transforms
JP3376878B2 (ja) * 1997-09-19 2003-02-10 ミノルタ株式会社 デジタル複写機
US6061400A (en) * 1997-11-20 2000-05-09 Hitachi America Ltd. Methods and apparatus for detecting scene conditions likely to cause prediction errors in reduced resolution video decoders and for using the detected information
US6170075B1 (en) 1997-12-18 2001-01-02 3Com Corporation Data and real-time media communication over a lossy network
US6243846B1 (en) * 1997-12-12 2001-06-05 3Com Corporation Forward error correction system for packet based data and real time media, using cross-wise parity calculation
EP1040611B1 (en) 1997-12-12 2002-06-05 3Com Corporation A forward error correction system for packet based real-time media
US5870412A (en) * 1997-12-12 1999-02-09 3Com Corporation Forward error correction system for packet based real time media
US6145109A (en) * 1997-12-12 2000-11-07 3Com Corporation Forward error correction system for packet based real time media
US6650783B2 (en) * 1998-01-14 2003-11-18 Canon Kabushiki Kaisha Image processing apparatus and method for processing images with different scalabilites
JPH11252550A (ja) * 1998-03-02 1999-09-17 Sony Corp デイジタル信号符号化装置、デイジタル信号復号化装置、デイジタル信号伝送装置及び方法
US6292512B1 (en) * 1998-07-06 2001-09-18 U.S. Philips Corporation Scalable video coding system
CN100348044C (zh) * 1999-03-31 2007-11-07 松下电器产业株式会社 不同帧速率多流混合视频流的无缝译码装置
US10051298B2 (en) 1999-04-23 2018-08-14 Monkeymedia, Inc. Wireless seamless expansion and video advertising player
US6393158B1 (en) 1999-04-23 2002-05-21 Monkeymedia, Inc. Method and storage device for expanding and contracting continuous play media seamlessly
US6621980B1 (en) 1999-04-23 2003-09-16 Monkeymedia, Inc. Method and apparatus for seamless expansion of media
US7095782B1 (en) * 2000-03-01 2006-08-22 Koninklijke Philips Electronics N.V. Method and apparatus for streaming scalable video
US6507347B1 (en) * 2000-03-24 2003-01-14 Lighthouse Technologies Ltd. Selected data compression for digital pictorial information
US6810446B1 (en) * 2000-03-31 2004-10-26 Sony Corporation System and method for navigating and deleting descriptors
CA2406459C (en) * 2000-04-07 2006-06-06 Demografx Enhanced temporal and resolution layering in advanced television
US6493387B1 (en) * 2000-04-10 2002-12-10 Samsung Electronics Co., Ltd. Moving picture coding/decoding method and apparatus having spatially scalable architecture and signal-to-noise ratio scalable architecture together
US7237032B2 (en) * 2001-02-16 2007-06-26 Microsoft Corporation Progressive streaming media rendering
US7266150B2 (en) 2001-07-11 2007-09-04 Dolby Laboratories, Inc. Interpolation of video compression frames
JP3620521B2 (ja) * 2001-09-14 2005-02-16 日本電気株式会社 画像処理装置、画像伝送装置、画像受信装置及び画像処理方法
US7421127B2 (en) * 2001-10-26 2008-09-02 Koninklijke Philips Electronics N.V. Spatial scalable compression scheme using spatial sharpness enhancement techniques
US20030156649A1 (en) * 2002-01-28 2003-08-21 Abrams Thomas Algie Video and/or audio processing
US7319720B2 (en) * 2002-01-28 2008-01-15 Microsoft Corporation Stereoscopic video
US10277656B2 (en) * 2002-01-29 2019-04-30 FiveOpenBooks, LLC Method and system for delivering media data
US7283589B2 (en) * 2003-03-10 2007-10-16 Microsoft Corporation Packetization of FGS/PFGS video bitstreams
US7584475B1 (en) * 2003-11-20 2009-09-01 Nvidia Corporation Managing a video encoder to facilitate loading and executing another program
JP4185011B2 (ja) * 2004-03-30 2008-11-19 株式会社東芝 画像処理装置、画像処理方法および画像処理プログラム
DE102005016827A1 (de) * 2005-04-12 2006-10-19 Siemens Ag Adaptive Interpolation bei der Bild- oder Videokodierung
US8385427B2 (en) * 2005-04-15 2013-02-26 Apple Inc. Reduced resolution video decode
KR100746005B1 (ko) * 2005-10-17 2007-08-06 삼성전자주식회사 다중 목적의 비디오 스트림을 처리하는 장치 및 방법
US7957309B1 (en) * 2007-04-16 2011-06-07 Hewlett-Packard Development Company, L.P. Utilizing multiple distortion measures
KR100937030B1 (ko) * 2007-05-31 2010-01-15 한국전자통신연구원 디지털 방송 신호의 전송 방법, 전송 장치, 수신 방법 및수신 장치
US8892594B1 (en) * 2010-06-28 2014-11-18 Open Invention Network, Llc System and method for search with the aid of images associated with product categories
EP2429192A1 (en) * 2010-08-17 2012-03-14 Streamworks International S.A. Video signal processing
CN110990603B (zh) * 2012-08-21 2024-02-27 Emc 公司 用于分段图像数据的格式识别的方法和系统
US9489387B2 (en) * 2014-01-15 2016-11-08 Avigilon Corporation Storage management of data streamed from a video source device
EP3212417B1 (en) 2014-10-30 2019-12-18 Hewlett-Packard Development Company, L.P. Fluid ejection device
CN113366842A (zh) * 2018-07-18 2021-09-07 皮克索洛特公司 基于内容层的视频压缩的系统和方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038389A (en) * 1987-06-25 1991-08-06 Nec Corporation Encoding of a picture signal in consideration of contrast in each picture and decoding corresponding to the encoding
US5235420A (en) * 1991-03-22 1993-08-10 Bell Communications Research, Inc. Multilayer universal video coder
US5144425A (en) * 1991-08-26 1992-09-01 General Electric Company Apparatus for hierarchically dividing video signals
US5253058A (en) * 1992-04-01 1993-10-12 Bell Communications Research, Inc. Efficient coding scheme for multilevel video transmission
DE4240226C2 (de) * 1992-11-30 1996-12-12 Deutsche Forsch Luft Raumfahrt Verfahren zum digitalen Übertragen von hierarchischen HDTV-, EDTV- und SDTV-Fernsehsignalen
CA2126467A1 (en) * 1993-07-13 1995-01-14 Barin Geoffry Haskell Scalable encoding and decoding of high-resolution progressive video
CA2127151A1 (en) * 1993-09-21 1995-03-22 Atul Puri Spatially scalable video encoding and decoding
US5446806A (en) * 1993-11-15 1995-08-29 National Semiconductor Corporation Quadtree-structured Walsh transform video/image coding

Also Published As

Publication number Publication date
CN1189954A (zh) 1998-08-05
US5828788A (en) 1998-10-27
CN1144468C (zh) 2004-03-31
AU6315396A (en) 1997-01-30
EP0835590B1 (en) 1999-11-10
DE69605117T2 (de) 2000-05-25
JPH11508738A (ja) 1999-07-27
KR100471583B1 (ko) 2005-07-12
WO1997001935A1 (en) 1997-01-16
EP0835590A1 (en) 1998-04-15
DE69605117D1 (de) 1999-12-16
HK1015590A1 (en) 1999-10-15
MX9800246A (es) 1998-07-31
KR19990028545A (ko) 1999-04-15

Similar Documents

Publication Publication Date Title
JP4001914B2 (ja) 可変セグメントで可変データ解像度によりデータを処理するための方法
JP4330040B2 (ja) 階層化圧縮ビデオ・データを符号化し復号化するためのシステム
US5825424A (en) MPEG system which decompresses and recompresses image data before storing image data in a memory and in accordance with a resolution of a display device
US5818530A (en) MPEG compatible decoder including a dual stage data reduction network
EP0782345B1 (en) Memory management for a video decoder
KR101307050B1 (ko) 비트 심도 스케일러빌리티를 위하여 인핸스먼트 계층 레시듀얼 예측을 이용하여 비디오 데이터를 인코딩 및/또는 디코딩하기 위한 방법 및 장치
US20070160126A1 (en) System and method for improved scalability support in mpeg-2 systems
US9571838B2 (en) Image processing apparatus and image processing method
EP0644695A2 (en) Spatially scalable video encoding and decoding
EP0671102B1 (en) Picture-in-picture tv with insertion of a mean only frame into a full size frame
Paik DigiCipher-all digital, channel compatible, HDTV broadcast system
JP2542025B2 (ja) 埋設コ―ドとしての送信を可能にする放送品質のテレビジョン信号を符号化する装置とその符号化信号を復号化する装置を含むシステム
Challapali et al. The grand alliance system for US HDTV
US20150043638A1 (en) Image processing apparatus and image processing method
HU228608B1 (en) Method for processing video signals, method for processing interlaced scan video signal or telecined film format signal and method for processing non-telecined progressive scan video signal
US20160005155A1 (en) Image processing device and image processing method
US6040875A (en) Method to compensate for a fade in a digital video input sequence
MXPA98000246A (en) Method for dividing and coding da
JP4193252B2 (ja) 信号処理装置及び方法、信号復号装置、並びに信号符号化装置
US7542617B1 (en) Methods and apparatus for minimizing requantization error
TW309690B (ja)
Challapali et al. Video compression for digital television applications
KR20050032102A (ko) 복호화 디바이스와 방법 및 디지털 방송 수신 장치
KR100647202B1 (ko) 저잡음 엔코딩 및 디코딩 방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees