JP4000677B2 - Manufacturing method of resin material for molding - Google Patents

Manufacturing method of resin material for molding Download PDF

Info

Publication number
JP4000677B2
JP4000677B2 JP21665198A JP21665198A JP4000677B2 JP 4000677 B2 JP4000677 B2 JP 4000677B2 JP 21665198 A JP21665198 A JP 21665198A JP 21665198 A JP21665198 A JP 21665198A JP 4000677 B2 JP4000677 B2 JP 4000677B2
Authority
JP
Japan
Prior art keywords
water
raw material
extruder
resin material
material supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21665198A
Other languages
Japanese (ja)
Other versions
JP2000043036A (en
Inventor
孝司 菅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP21665198A priority Critical patent/JP4000677B2/en
Publication of JP2000043036A publication Critical patent/JP2000043036A/en
Application granted granted Critical
Publication of JP4000677B2 publication Critical patent/JP4000677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating

Description

【0001】
【産業上の利用分野】
本発明は、成形用ポリアミド樹脂材料の製造方法に関し、さらに詳しくは、成形用ポリアミド樹脂材料の酸化劣化による色調変化を低減する成形用樹脂材料の製造方法に関する
【0002】
【従来の技術】
熱可塑性ポリアミド樹脂(以下、単に「成形用樹脂」と呼ぶことがある)を射出成形或いは押出成形することにより所望の成形物を得る場合、その成形に使用される熱可塑性樹脂材料には、予め成形物に求められる特性に応じて他の熱可塑性樹脂および/または添加剤を添加混合した成形用樹脂材料を得るようにしている。
【0003】
一般に、上記成形用樹脂材料の製造には単軸押出機や多軸押出機が使用されており、かつその押出機に対する熱可塑性樹脂や添加剤などの原料供給口をスクリュウ軸方向に沿って2箇所以上に設け、これら原料供給口に順次原料を供給しながら溶融混練する所謂ダウン・ストリーム法が多く採用されている。
【0004】
このダウン・ストリーム法による成形用樹脂材料の製造では、熱可塑性樹脂や添加剤を各原料供給口から供給する際に、それら原料に空気が随伴して押出機内に入り込む。これらの空気の一部は原料供給口から押出機外へ逃げ、また他の一部は押出機内部を移送される過程でベント孔から放出されるが、全部は除去されずに溶融ポリマ中に練り込まれて押し出され、製品の成形用樹脂材料になる。しかし、このように溶融ポリマ中に練り込まれた空気は成形用樹脂材料の酸化劣化を招き、黄色などの色調変化を招くため品質低下の原因になる。
【0005】
従来、このような酸化劣化の防止対策として、原料の貯槽や供給装置を不活性ガスで置換することにより、原料中の酸素濃度を予め低減させるようにする方法がある。しかし、この方法は、原料供給装置と押出機との接続部においても常時気密性を維持して空気の出入りを遮断する必要があるため、設備が大掛りになるだけでなく、品種切り替えの際には、その都度気密性の解除をしなければならない面倒がある。したがって、同じ押出機で頻繁に品種切替えを行わなければならない多品種少量生産用には著しくコスト高を招くという問題があった。
【0006】
これに対して、特開平6−285848号公報は、押出機内を窒素置換する方法が提案されている。この方法は、押出機の第2番目以降の原料供給口近傍に窒素ガスの供給口を設け、この供給口から窒素ガスを押出機内に充満させるように供給するもので、押出機の軸方向長さ1m当たりのシリンダとスクリュウの間隙で形成される流路容積に対して、標準状態(0℃、1気圧)で1分間あたり10倍量以上の窒素ガスを供給するとされている。
【0007】
しかし、このように押出機流路容積の10倍以上もの大容量の窒素ガスを押出機に供給すると、押出機から原料供給口側へ大きな気体の流れが生ずるため、比重が小さい原料の場合には、上記気体の流れによって原料供給が阻害され、生産性を著しく低下させるという問題があった。
【0008】
【発明が解決しようとする課題】
本発明の目的は、上述した従来の問題を解消し、品種切り替え作業や原料供給操作に実質的に影響を与えることなく成形用樹脂材料の酸化劣化を防止可能にする成形用樹脂材料の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成する本発明の成形用樹脂材料の製造方法は、押出機の混練移送方向に沿って少なくとも2箇所に原料供給部を設け、これら原料供給部からポリアミドおよび添加剤を供給しながら溶融混練する成形用樹脂材料の製造方法において、前記混練移送方向の第2番目以降の原料供給部に水滴下ノズルを設け、該水滴下ノズルから水を滴下しながら原料の供給と溶融混練とを行うことを特徴とするものである。
【0011】
本発明において、水滴下ノズルから原料供給部に滴下した水は押出機の熱によって水蒸気化するため、この水蒸気が熱可塑性樹脂や添加剤に随伴して押出機内に入り込もうとする空気を遮断する。水は水蒸気化するとき容積を数十倍もの大きさに拡散し、しかも原材料の進行方向に垂直な面方向に広がりながら気化するので、比較的少量の水を滴下しただけで、高い空気の遮蔽効果を発揮することができる。
【0012】
このように極めて簡単な水滴下ノズルを付設した機構で、水を滴下するだけの単純操作により成形用樹脂材料の酸化劣化を防止するため、色調変化のない高品質の成形用樹脂材料を製造することができる。また、単に水を滴下する操作だけであるので、多品種少量生産における品種切替えにも支障にならず、また原料の供給にも影響することはない。
【0013】
【発明の実施の形態】
本発明において「成形用樹脂材料」とは、射出成形機や押出成形機などの成形機に原料として供給する熱可塑性樹脂材料をいい、熱可塑性樹脂と他の熱可塑性樹脂とを混合した組成物(以下、樹脂アロイ)、熱可塑性樹脂単独または樹脂アロイに添加剤を混合した組成物などからなり、一般にはペレット状の形状になっている。
【0014】
また「熱可塑性樹脂」とは、溶融押出機により溶融可塑化し、押出成形することができる樹脂をいい、例えば、ポリアミド、ポリエステル、ポリフェニレンオキサイド、ポリアセタール、ポリカーボネート、ポリプロピレン、ポリエチレン、アクリロニトリル/スチレン共重合体、アクリロニトリル/スチレン/ブタジエン共重合体などであるが、本発明では、特にポリアミドを用いる。
【0015】
また「添加剤」とは、補強剤、滑剤、核剤、可塑剤、難燃剤、加工安定剤、酸化防止剤、紫外線吸収剤、離型剤、着色剤、帯電防止剤、表面処理剤、架橋剤、カップリング剤など、熱可塑性樹脂に混合されることにより該熱可塑性樹脂を改質する素材をいい、無機系でも有機系でもよく、また固体でも液体でもよい。この添加剤のうち補強剤の代表的なものとしては、例えばガラス繊維、チタン酸カリウム繊維、炭素繊維、金属炭化物繊維などの繊維状充填剤、ガラスビーズ、ガラスフレーク、タルク、マイカ、ワラステナイトなどの無機充填剤などを挙げることができる。
【0016】
本発明において「押出機」とは、スクリュウが単軸の単軸押出機や2軸以上の多軸押出機のほか、ニーダー、バンバリータイプの連続式混練機なども含み、かつ原料供給部として原料の混練移送方向に沿って少なくとも2箇所有するものをいう。押出機に設けられる少なくとも2箇所の原料供給部のうち、混練移送方向の最初に設けられる供給部を第1番目の原料供給部といい、次いで第2番目、第3番目・・・と呼称する。
【0017】
一般に第1番目の原料供給部には、主原料である母材の熱可塑性樹脂が単独か、或いは熱可塑性樹脂と補強剤以外の添加剤を供給する。第2番目以降の原料供給部は、第1番目の原料供給口から供給した原料が溶融した後に原料が添加されるような位置に設置され、ここからは他の熱可塑性樹脂や、繊維状充填剤或いは無機充填剤などの補強剤が供給される。
【0018】
第2番目以降の原料供給部は、1個であっても複数であってもいずれでもよいが、一般的には1乃至2個設ければよい。第2番目以降の原料供給部は、押出機の混練移送方向に対して水平横向きに供給するサイドフィーダを設けるのが一般的である。勿論、押出機の垂直上方から原料を供給する方式であってもよい。
本発明において、供給原料に随伴する空気の遮断用に使用する「水」としては、この水が原料と直接接するため、好ましくはイオン交換水とするのがよく、更に好ましくは蒸留水がよい。
【0019】
水を滴下する場所は、第2番目以降の原料供給部に設けた水滴下ノズルであるが、その位置としては、押出機のシリンダに対する原料供給口と同じにするか、或いはそれよりも原料流動方向の下流側で、原料の充満率が100%に達する領域より上流側にある必要がある。例えば、前述のサイドフィーダを原料供給部として設ける場合、サイドフィーダ内部の原材料の充満率は一般的に100%未満なので、サイドフィーダの原材料供給口またはサイドフィーダのシリンダ部分に水滴下ノズルを設けて水を滴下するとよい。
【0020】
「水」の滴下量としては、押出機の軸方向の長さ1mあたりのシリンダとスクリュウとの間隙で形成される流路容積0.001m3 に対し、3グラム/分以上にすることが望ましい。この水は押出機の熱により水蒸気と化して拡散するため、熱可塑性樹脂や添加剤に随伴して押出機中に入り込もうとする空気を遮断するため、成形用樹脂材料の酸化劣化を防止する。
【0021】
上記のように1分間あたり3グラムの水が水蒸気になった場合、その容積は0℃、1気圧のいわゆる標準状態で0.0037m3 の大きさに膨張し、押出機の流路容積の3.7倍量に匹敵する。したがって、水の滴下量がこの量よりも少なくても酸化防止効果はあるが、これ以上にすることが望ましい。しかしながら、あまり多すぎても酸化防止効果はほぼ飽和状態になり、コスト面から無駄になるので、滴下量の上限としては、上記流路容積0.001m3 に対し6グラム/分までとすることが望ましい。
【0022】
以下、本発明を図に示す実施形態を参照して具体的に説明する。
図1および図2は、本発明の実施形態からなる2軸押出機である。
シリンダ1は10個のブロックシリンダ1aが直立に連結されて構成され、外周に配置したヒータにより加熱されるようになっている。シリンダ1の内部には左右一対のスクリュウ2,2が貫通し、この2本のスクリュウ2,2は軸端に連結した駆動モータ3により回転駆動され、熱可塑性樹脂材料を溶融混練しながら図の右側から左側へ移送し、左端に装着したノズル(図示せず)からガット状またはシート状に押し出す。ガットまたはシートは冷却固化後にカッター(図示せず)でペレット化され、成形用樹脂材料になる。
【0023】
上記シリンダ1には、その上流側に第1番目の原料供給部4が設けられ、中間位置に第2番目の原料供給部5が設けられ、さらに下流側にベント孔6が設けられている。第1番目の原料供給部4は、スクリュウ式定量供給装置41とホッパ42から構成され、この第1番目の原料供給部4からは、成形用樹脂材料の主原料である熱可塑性樹脂が単独か、或いは熱可塑性樹脂と補強剤以外の添加剤とが、シリンダ1に開口する原料供給口43を介して押出機内へ供給されるようになっている。
【0024】
また、第2番目の原料供給部5は、シリンダ52とスクリュウ53とホッパ54からなるサイドフィーダ51を備え、さらにサイドフィーダ51のホッパ54に、スクリュウ式定量供給装置55を連結して構成されている。スクリュウ式定量供給装置55にはホッパ56が設けられている。この第2番目の原料供給部5には、サイドフィーダ51のホッパ54上面に水滴下ノズル7が開口するように設けられ、ホッパ54内に水が定量ずつ滴下するようにしてある。
【0025】
第2番目の原料供給部5からは、他の熱可塑性樹脂および/または繊維状充填剤或いは無機充填剤などの補強剤が、シリンダ1に開口する原料供給口57を介して押出機内へ供給されるようになっており、これら原料に随伴して空気も押出機内に侵入しようとする。
しかしながら、本件装置では、上記のようにホッパ54の上面に設けた水滴下ノズル7から連続的に水が滴下され、その水が押出機の熱によって蒸気化すると共に、その蒸気が原料供給方向と直交する方向に大きく拡散するため、上記のように原料に随伴する空気の進行を遮断し、押出機内へは入り込まないようにする。したがって、押出機内において熱可塑性樹脂の酸化劣化が阻止され、高品質の成形用樹脂材料を製造することができる。
【0026】
【実施例】
実施例1〜4,比較例1
図1および図2に示す構成を有し、スクリュウ直径が69mm、スクリュウ長さが2275mmの噛合い型同方向回転2軸押出機を使用し、シリンダ設定温度280℃、スクリュウ回転数300rpmで溶融混練し、ベント孔から−0.93×105 Paの減圧度で水やモノマなどの揮発成分を脱気しながら、第1番目の原料供給部4から濃硫酸相対粘度2.95のナイロン66(東レ製)を350kg/hrの速さで定量供給し、第2番目の原料供給部5からチョップドストランドタイプのガラス繊維(日本電気硝子製)を150kg/hrの速さで定量供給して、押出機先端のダイスから熱可塑性樹脂組成物をストランド状に押し出すと共に、このストランド状物を冷却バスで水冷した後ペレタイズし、直径3mm、長さ3mmの円筒状のペレット(成形用樹脂材料)を得た。
【0027】
上記成形用樹脂材料の製造において、水滴下ノズル7からイオン交換水を滴下し、その滴下量を、押出機の軸方向長さ1m当たりのシリンダとスクリュウの間隙で形成される流路容積0.001m3 に対し、それぞれ1分間あたり1.5g、3.0g、4.5g、6.0g(実施例1〜4)および0g(比較例1)の5水準に異ならせた。
【0028】
得られた5種類のぺレットの色調評価とした黄色度を、スガ試験機(株)製カラーコンピュータを使用して測定した結果を表1に示す。
【0029】
【表1】

Figure 0004000677

【0030】
なお、表1中、「水蒸気量(換算容積)」は、滴下した水が全量水蒸気になった時、0℃、1気圧の標準状態においてその水蒸気の占める容積が、押出機の軸方向の長さ1mあたりのシリンダとスクリュウの間隙で形成される流路容積に対してどの程度になるかを倍数で示したものである。
【0031】
水滴下量が押出機の軸方向の長さ1mあたりのシリンダとスクリュウの間隙で形成される流路容積0.001m3 に対して1分間あたり1.5g以上になると、その黄色度は水を滴下しない比較例1に比べて小さくなった。そして、3.0g以上ではほぼ飽和状態となった。従って、水滴下量としては、押出機の軸方向の長さ1m当たりのシリンダとスクリュウの間隙で形成される流路容積0.001m3 に対して1分間あたり3g以上が望ましいことがわかる。
【0032】

【発明の効果】
上述したように本発明によれば、第2番目以降の原料供給部に水滴下ノズルを設け、この水滴下ノズルから滴下させた水を押出機の熱によって水蒸気化させ、この水蒸気により熱可塑性樹脂や添加剤に随伴して押出機内に入り込もうとする空気を遮断するため、成形用樹脂材料の酸化劣化を防止し、色調変化のない高品質の成形用樹脂材料を製造することができる。また、本発明では、単に水を滴下する操作だけであるので、多品種少量生産における品種切替えにも支障にならず、また原料の供給にも影響することはない。
【図面の簡単な説明】

【図1】 本発明の実施形態からなる2軸押出機の概略縦断面図である。
【図2】 図1のA−A矢視図である。
【符号の説明】
シリンダ
2 スクリュウ
3 駆動モータ
4 第1番目の原料供給部
41 スクリュウ式定量供給装置
42 ホッパ
5 第2番目の原料供給部
51 サイドフィーダ
52 シリンダ
53 スクリュウ
54 ホッパ
55 スクリュウ式定量供給装置
56 ホッパ
7 水滴下ノズル[0001]
[Industrial application fields]
The present invention relates to a method for producing a molding polyamide resin material, and more particularly to a method for producing a molding resin material that reduces a change in color tone due to oxidative deterioration of the molding polyamide resin material.
[0002]
[Prior art]
When a desired molded product is obtained by injection molding or extrusion molding of a thermoplastic polyamide resin (hereinafter sometimes simply referred to as “molding resin”) , the thermoplastic resin material used for the molding is pre- A molding resin material in which other thermoplastic resin and / or additive is added and mixed according to the characteristics required of the molded product is obtained.
[0003]
In general, a single-screw extruder or a multi-screw extruder is used for the production of the molding resin material, and a raw material supply port for thermoplastic resin, additives, and the like to the extruder is provided along the screw axis direction. A so-called down-stream method is often employed in which the material is melted and kneaded while sequentially supplying the raw materials to these raw material supply ports.
[0004]
In the production of the molding resin material by the downstream method, when the thermoplastic resin and the additive are supplied from the raw material supply ports, air is accompanied with the raw materials and enters the extruder. A part of these air escapes from the raw material supply port to the outside of the extruder, and the other part is released from the vent hole in the process of being transported inside the extruder, but all is not removed and enters the molten polymer. It is kneaded and extruded to become a resin material for molding products. However, the air kneaded into the molten polymer in this way causes oxidative deterioration of the molding resin material and causes a change in color tone such as yellow, which causes a deterioration in quality.
[0005]
Conventionally, as a countermeasure for preventing such oxidative deterioration, there is a method of previously reducing the oxygen concentration in the raw material by replacing the raw material storage tank or supply device with an inert gas. However, this method needs to maintain airtightness at the connection part between the raw material supply device and the extruder at all times to block air in and out. Has the hassle of having to release the airtightness each time. Therefore, there has been a problem that the cost is remarkably increased for multi-product small-quantity production in which product switching must be performed frequently with the same extruder.
[0006]
On the other hand, Japanese Patent Application Laid-Open No. 6-285848 proposes a method of replacing the inside of the extruder with nitrogen. In this method, a nitrogen gas supply port is provided in the vicinity of the second and subsequent raw material supply ports of the extruder, and the nitrogen gas is supplied from this supply port so as to fill the extruder. It is supposed that 10 times or more of nitrogen gas is supplied per minute in a standard state (0 ° C., 1 atm) with respect to the flow path volume formed by the gap between the cylinder and screw per meter.
[0007]
However, when a large volume of nitrogen gas that is 10 times the volume of the flow path of the extruder is supplied to the extruder in this way, a large gas flow is generated from the extruder to the raw material supply port side. However, there is a problem that the supply of raw materials is hindered by the gas flow and the productivity is remarkably lowered.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to solve the conventional problems described above and to provide a method for producing a molding resin material capable of preventing oxidative deterioration of the molding resin material without substantially affecting the product switching operation and the raw material supply operation. Is to provide.
[0009]
[Means for Solving the Problems]
The method for producing a molding resin material of the present invention that achieves the above object is provided with raw material supply parts at least at two locations along the kneading and transporting direction of the extruder, and melted while supplying polyamide and additives from these raw material supply parts In the method for producing a molding resin material to be kneaded, a water dropping nozzle is provided in the second and subsequent raw material supply sections in the kneading and transporting direction, and the raw material is supplied and melted and kneaded while dropping water from the water dropping nozzle. It is characterized by this.
[0011]
In the present invention, water dripped from the water dripping nozzle to the raw material supply section is vaporized by the heat of the extruder, so that the water vapor blocks the air that enters the extruder along with the thermoplastic resin and additives. When water vaporizes, the volume of water diffuses to several tens of times, and vaporizes while spreading in the plane direction perpendicular to the direction of travel of the raw materials, so high air shielding can be achieved simply by dropping a relatively small amount of water. The effect can be demonstrated.
[0012]
In this way, with a mechanism equipped with a very simple water dripping nozzle, a high quality molding resin material without color tone change is manufactured in order to prevent oxidative deterioration of the molding resin material by a simple operation of just dripping water. be able to. In addition, since the operation is simply dropping water, it does not hinder the product switching in the multi-product small-quantity production and does not affect the supply of raw materials.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the “resin material for molding” refers to a thermoplastic resin material supplied as a raw material to a molding machine such as an injection molding machine or an extrusion molding machine, and is a composition in which a thermoplastic resin and another thermoplastic resin are mixed. (Hereinafter referred to as a resin alloy), a thermoplastic resin alone or a composition in which an additive is mixed with a resin alloy, etc., and is generally in the form of a pellet.
[0014]
The term “thermoplastic resin” refers to a resin that can be melt-plasticized by a melt extruder and can be extruded, for example, polyamide, polyester, polyphenylene oxide, polyacetal, polycarbonate, polypropylene, polyethylene, acrylonitrile / styrene copolymer. , Acrylonitrile / styrene / butadiene copolymer, etc., but in the present invention, polyamide is particularly used.
[0015]
“Additives” include reinforcing agents, lubricants, nucleating agents, plasticizers, flame retardants, processing stabilizers, antioxidants, ultraviolet absorbers, mold release agents, colorants, antistatic agents, surface treatment agents, crosslinking agents. A material that modifies the thermoplastic resin by mixing with the thermoplastic resin, such as an agent or a coupling agent, may be inorganic or organic, and may be solid or liquid. Among these additives, representative examples of reinforcing agents include fibrous fillers such as glass fiber, potassium titanate fiber, carbon fiber, and metal carbide fiber, glass beads, glass flakes, talc, mica, wollastonite, and the like. And inorganic fillers.
[0016]
In the present invention, the “extruder” includes a single-screw extruder having a single screw and a multi-screw extruder having two or more screws, a kneader, a Banbury type continuous kneader, and the like, and a raw material supply section. And having at least two locations along the kneading and transporting direction. Of the at least two raw material supply units provided in the extruder, the first supply unit provided in the kneading transfer direction is referred to as the first raw material supply unit, and then referred to as the second, third, and so on. .
[0017]
Generally, the first raw material supply unit is supplied with an additive other than the thermoplastic resin and the reinforcing agent, either alone or as a base material thermoplastic resin. The second and subsequent raw material supply sections are installed at positions where the raw material is added after the raw material supplied from the first raw material supply port is melted. From here, other thermoplastic resins and fibrous fillers are added. A reinforcing agent such as an agent or an inorganic filler is supplied.
[0018]
Although the number of the second and subsequent raw material supply units may be one or plural, generally one or two may be provided. Generally, the second and subsequent raw material supply units are provided with side feeders that are supplied horizontally and horizontally with respect to the kneading and transporting direction of the extruder. Of course, the raw material may be supplied from vertically above the extruder.
In the present invention, the “water” used for blocking the air accompanying the feedstock is preferably ion-exchanged water, more preferably distilled water, since this water is in direct contact with the feedstock.
[0019]
The place where water is dropped is the water dropping nozzle provided in the second and subsequent raw material supply units, but the position is the same as the raw material supply port for the cylinder of the extruder or the raw material flow is more than that. On the downstream side in the direction, it is necessary to be upstream from the region where the filling rate of the raw material reaches 100%. For example, when the above-mentioned side feeder is provided as a raw material supply unit, since the filling rate of the raw material inside the side feeder is generally less than 100%, a water dropping nozzle is provided at the side feeder raw material supply port or the side feeder cylinder portion. Water should be dripped.
[0020]
The dripping amount of “water” is preferably 3 g / min or more with respect to a flow path volume of 0.001 m 3 formed by a gap between a cylinder and a screw per 1 m in the axial direction of the extruder. . Since this water turns into water vapor by the heat of the extruder and diffuses, it blocks the air that tends to enter the extruder accompanying the thermoplastic resin and additives, thereby preventing oxidative deterioration of the molding resin material.
[0021]
When 3 grams of water per minute becomes water vapor as described above, the volume expands to a size of 0.0037 m 3 in a so-called standard state of 0 ° C. and 1 atm. Equivalent to 7 times the amount. Therefore, even if the dripping amount of water is less than this amount, there is an antioxidant effect, but it is desirable to make it more. However, if the amount is too much, the antioxidant effect is almost saturated and is wasted in terms of cost. Therefore, the upper limit of the dripping amount should be up to 6 grams / minute with respect to the flow path volume of 0.001 m 3. Is desirable.
[0022]
Hereinafter, the present invention will be specifically described with reference to embodiments shown in the drawings.
1 and 2 show a twin-screw extruder according to an embodiment of the present invention.
The cylinder 1 is constructed by connecting up to 10 block cylinders 1a upright, and is heated by a heater arranged on the outer periphery. A pair of left and right screws 2, 2 pass through the inside of the cylinder 1, and the two screws 2, 2 are rotated by a drive motor 3 connected to the shaft end to melt and knead the thermoplastic resin material as shown in the figure. It is transferred from the right side to the left side and pushed out in a gut shape or a sheet shape from a nozzle (not shown) attached to the left end. The gut or sheet is pelletized by a cutter (not shown) after being cooled and solidified, and becomes a resin material for molding.
[0023]
The cylinder 1 is provided with a first raw material supply unit 4 on the upstream side, a second raw material supply unit 5 at an intermediate position, and a vent hole 6 on the downstream side. The first raw material supply unit 4 includes a screw-type fixed supply device 41 and a hopper 42, and the first raw material supply unit 4 includes only a thermoplastic resin as a main raw material of the molding resin material. Alternatively, the thermoplastic resin and additives other than the reinforcing agent are supplied into the extruder through the raw material supply port 43 opened in the cylinder 1.
[0024]
The second raw material supply unit 5 includes a side feeder 51 including a cylinder 52, a screw 53, and a hopper 54, and a screw type quantitative supply device 55 is connected to the hopper 54 of the side feeder 51. Yes. The screw type quantitative supply device 55 is provided with a hopper 56. In the second raw material supply unit 5, a water dropping nozzle 7 is provided on the upper surface of the hopper 54 of the side feeder 51 so that water is dropped into the hopper 54 in a fixed amount.
[0025]
From the second raw material supply section 5, another thermoplastic resin and / or a reinforcing agent such as a fibrous filler or an inorganic filler is supplied into the extruder through a raw material supply port 57 opened in the cylinder 1. The air tends to enter the extruder along with these raw materials.
However, in the present apparatus, water is continuously dripped from the water dripping nozzle 7 provided on the upper surface of the hopper 54 as described above, and the water is vaporized by the heat of the extruder, and the vapor is in the raw material supply direction. Since it diffuses greatly in the orthogonal direction, the progression of the air accompanying the raw material is blocked as described above so as not to enter the extruder. Therefore, oxidative degradation of the thermoplastic resin is prevented in the extruder, and a high-quality molding resin material can be produced.
[0026]
【Example】
Examples 1-4, Comparative Example 1
1 and FIG. 2, using a meshing type co-rotating twin screw extruder with a screw diameter of 69 mm and a screw length of 2275 mm, melt kneading at a cylinder set temperature of 280 ° C. and a screw rotation speed of 300 rpm Nylon 66 (relative viscosity of concentrated sulfuric acid 2.95) from the first raw material supply unit 4 while degassing volatile components such as water and monomers at a reduced pressure of −0.93 × 10 5 Pa from the vent hole. Toray) is supplied at a rate of 350 kg / hr, chopped strand type glass fiber (manufactured by Nippon Denki Glass) is supplied at a rate of 150 kg / hr from the second raw material supply unit 5 and extruded. The thermoplastic resin composition is extruded in the form of a strand from the die at the end of the machine, and this strand is cooled with water in a cooling bath and then pelletized to form a cylindrical shape having a diameter of 3 mm and a length of 3 mm. Pellet (molding resin material) was obtained.
[0027]
In the production of the molding resin material, ion-exchanged water is dropped from the water dropping nozzle 7, and the dropping amount is determined by the flow volume 0. 0 formed by the gap between the cylinder and the screw per 1 m in the axial length of the extruder. For 001 m 3 , it was varied in 5 levels of 1.5 g, 3.0 g, 4.5 g, 6.0 g (Examples 1 to 4) and 0 g (Comparative Example 1) per minute, respectively.
[0028]
Table 1 shows the results of measuring the yellowness as a color tone evaluation of the obtained five types of pellets using a color computer manufactured by Suga Test Instruments Co., Ltd.
[0029]
[Table 1]
Figure 0004000677

[0030]
In Table 1, “amount of water vapor (equivalent volume)” means that when the dripped water becomes all water vapor, the volume occupied by the water vapor in the standard state of 0 ° C. and 1 atm is the axial length of the extruder. This is a multiple of how much the volume of the flow path formed by the gap between the cylinder and screw per meter is.
[0031]
If the amount of water dripping is 1.5 g or more per minute for a flow path volume of 0.001 m 3 formed by the gap between the cylinder and the screw per meter in the axial length of the extruder, the yellowness It was smaller than Comparative Example 1 where no dripping was performed. And it became almost saturated at 3.0 g or more. Therefore, it can be seen that the amount of water dripping is preferably 3 g or more per minute with respect to a flow path volume of 0.001 m 3 formed by the gap between the cylinder and the screw per 1 m in the axial length of the extruder.
[0032]

【The invention's effect】
As described above, according to the present invention, a water dropping nozzle is provided in the second and subsequent raw material supply sections, and water dropped from the water dropping nozzle is vaporized by the heat of the extruder, and the thermoplastic resin is produced by the water vapor. In addition, the air that tends to enter the extruder along with the additives is blocked, so that it is possible to prevent the oxidative deterioration of the molding resin material and to produce a high-quality molding resin material without color change. Further, in the present invention, since it is only an operation of dripping water, it does not hinder the product switching in the multi-product / small-volume production, and does not affect the supply of raw materials.
[Brief description of the drawings]

[Figure 1] It is a schematic longitudinal cross-sectional view of the twin-screw extruder which consists of embodiment of this invention.
[Figure 2] It is an AA arrow line view of FIG.
[Explanation of symbols]
1 Cylinder 2 Screw 3 Drive motor 4 First raw material supply unit 41 Screw type quantitative supply device 42 Hopper 5 Second raw material supply unit 51 Side feeder 52 Cylinder 53 Screw 54 Hopper 55 Screw type quantitative supply device 56 Hopper 7 Water dripping nozzle

Claims (5)

押出機の混練移送方向に沿って少なくとも2箇所に原料供給部を設け、これら原料供給部からポリアミドおよび添加剤を供給しながら溶融混練する成形用樹脂材料の製造方法において、前記混練移送方向の第2番目以降の原料供給部に水滴下ノズルを設け、該水滴下ノズルから水を滴下しながら原料の供給と溶融混練とを行う成形用樹脂材料の製造方法。In a method for producing a molding resin material in which a raw material supply unit is provided in at least two locations along the kneading transfer direction of an extruder and melted and kneaded while supplying polyamide and additives from these raw material supply units, A method for producing a molding resin material, wherein a water dropping nozzle is provided in the second and subsequent raw material supply sections, and the supply of raw materials and melt kneading are performed while dropping water from the water dropping nozzle. 添加剤が、補強剤である請求項1記載の成形用樹脂材料の製造方法。The method for producing a molding resin material according to claim 1, wherein the additive is a reinforcing agent. 前記混練移送方向の第2番目以降の原料供給部から補強剤を供給する請求項2記載の成形用樹脂材料の製造方法。The manufacturing method of the resin material for shaping | molding of Claim 2 which supplies a reinforcing agent from the 2nd or subsequent raw material supply part of the said kneading | mixing transfer direction. 前記水滴下ノズルから滴下する水がイオン交換水または蒸留水である請求項1から3のいずれかに記載の成形用樹脂材料の製造方法。The method for producing a molding resin material according to any one of claims 1 to 3, wherein water dropped from the water dropping nozzle is ion-exchanged water or distilled water. 前記水の滴下量を、前記押出機の長さ1m当たりのシリンダとスクリュウとの隙間で形成される流路容積0.001m3 に対して3グラム/分以上にする請求項1から4のいずれかに記載の成形用樹脂材料の製造方法。5. The method according to claim 1, wherein a dripping amount of the water is set to 3 g / min or more with respect to a flow path volume of 0.001 m 3 formed by a gap between a cylinder per 1 m of the extruder and a screw. A method for producing the molding resin material according to claim 1.
JP21665198A 1998-07-31 1998-07-31 Manufacturing method of resin material for molding Expired - Fee Related JP4000677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21665198A JP4000677B2 (en) 1998-07-31 1998-07-31 Manufacturing method of resin material for molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21665198A JP4000677B2 (en) 1998-07-31 1998-07-31 Manufacturing method of resin material for molding

Publications (2)

Publication Number Publication Date
JP2000043036A JP2000043036A (en) 2000-02-15
JP4000677B2 true JP4000677B2 (en) 2007-10-31

Family

ID=16691799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21665198A Expired - Fee Related JP4000677B2 (en) 1998-07-31 1998-07-31 Manufacturing method of resin material for molding

Country Status (1)

Country Link
JP (1) JP4000677B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4890374B2 (en) * 2007-07-19 2012-03-07 株式会社日本製鋼所 Raw material supply control method and apparatus for extruder
KR101144376B1 (en) 2007-12-20 2012-05-10 주식회사 엘지화학 Method of preparing high dielectric composite composition
CN103909640B (en) * 2014-04-22 2016-02-03 成都彩星科技实业有限公司 There is the extrusion device that anti-coating lump drops in cylinder
CN103934945B (en) * 2014-04-22 2016-06-29 成都彩星科技实业有限公司 Pressing mechanism that is reliable convenient and that can quickly cool down
JP6492270B2 (en) * 2016-03-31 2019-04-03 株式会社Tbm Manufacturing method of injection molding raw material and manufacturing method of resin molding
JP2019104107A (en) * 2016-04-15 2019-06-27 住友化学株式会社 Method for producing resin composition and twin screw kneading extruder

Also Published As

Publication number Publication date
JP2000043036A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
US20070194478A1 (en) Method for producing resin composition pellet with lengh of fibrous filler controlled
EP1864775A1 (en) Method of producing carbon microfiber-containing resin composition
EP3037233B1 (en) Twin screw extruder for manufacturing a fiber-reinforced resin composition, and related process
EP3006177B1 (en) Vented twin-screw kneading extrusion method
JP4000677B2 (en) Manufacturing method of resin material for molding
JP2008036942A (en) Manufacturing process of thermoplastic resin composition pellet
CN113727823B (en) Process for producing pellets
JP3686002B2 (en) Kneading and mixing extrusion equipment using supercritical fluid
JPH09239726A (en) Tandem type kneading apparatus and kneading of thermoplastic resin and/or rubber using the same
JPH06206216A (en) Production of thermoplastic resin composition
JP6652215B1 (en) Pellet manufacturing method
JPS5839659B2 (en) Thermoplastic extrusion method
WO2024070499A1 (en) Production method for glass fiber-reinforced polyamide resin composition
JP4329273B2 (en) Method for producing thermoplastic resin pellets
JP7426451B1 (en) Method for producing glass fiber reinforced polyamide resin composition
JP7426450B1 (en) Method for producing glass fiber reinforced polyamide resin composition
JPH06285848A (en) Manufacture of thermoplastic resin composition
JP7267386B1 (en) Molded foam manufacturing equipment and screw for foam molded product manufacturing equipment
JPH03126519A (en) Series two-stage extruding machine
JPH05338008A (en) Extrusion molding method of hard kneading material and molding equipment thereof
JP2010228408A (en) Extruder for kneading thermoplastic resin and method for manufacturing thermoplastic resin composition
JP2748491B2 (en) Manufacturing method of injection molded products
WO2023058647A1 (en) Production method for thermoplastic resin composition
JPH054269A (en) Production equipment of crosslinked foamed polyolefin-based resin sheet
JP5554614B2 (en) Method for degassing thermoplastic resin composition, method for producing extruded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees