JP3999072B2 - Paper sheet identification device - Google Patents

Paper sheet identification device Download PDF

Info

Publication number
JP3999072B2
JP3999072B2 JP2002248408A JP2002248408A JP3999072B2 JP 3999072 B2 JP3999072 B2 JP 3999072B2 JP 2002248408 A JP2002248408 A JP 2002248408A JP 2002248408 A JP2002248408 A JP 2002248408A JP 3999072 B2 JP3999072 B2 JP 3999072B2
Authority
JP
Japan
Prior art keywords
section
paper sheet
transport amount
paper
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002248408A
Other languages
Japanese (ja)
Other versions
JP2004086678A (en
Inventor
弘行 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2002248408A priority Critical patent/JP3999072B2/en
Publication of JP2004086678A publication Critical patent/JP2004086678A/en
Application granted granted Critical
Publication of JP3999072B2 publication Critical patent/JP3999072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inspection Of Paper Currency And Valuable Securities (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、紙葉類、例えば投入された紙幣の真偽を判定しこれを収納又は返却する紙葉類識別装置に関するものである。
【0002】
【従来の技術】
従来、この種の紙葉類識別装置として、自動販売機に搭載された紙幣識別装置が一般的に知られている。
【0003】
この紙幣識別装置は紙幣の真偽を判定する手法として、紙幣の長さ判定、紙幣の透過光量(検出電圧)判定などの各種の手法を備えており、これらを複合的に用いて紙幣の真偽を判定している。
【0004】
まず、紙幣の長さ判定手法について説明する。この判定手法は紙幣投入口から投入された紙幣をベルト搬送装置により取り込みこれに発光素子から光を照射する一方、紙幣を透過した光を受光素子にて受光し、この受光データに基づき投入紙幣の長さ寸法を実測している。また、紙幣処理装置には真貨に相当する長さ寸法(理想値)が予め格納されている。この実測値と理想値とを比較して、紙幣の真偽を判定している。
【0005】
続いて、透過光量判定手法について説明する。この判定手法は前記手法と同様に紙幣を透過した光を受光素子で受光し、この透過光量データ(検出電圧データ)を紙幣搬送に従って逐次格納する。また、紙幣処理装置には真貨投入時の透過光量データが予め格納されている。投入紙幣の実測透過光量データと真貨の透過光量データとを比較し、紙幣の真を判定している。
【0006】
【発明が解決しようとする課題】
ところで、ベルト搬送装置はベルトへの塵埃の付着やベルト摩耗等により紙幣とベルトの間でスリップを起こし、紙幣の搬送量が漸次低下する傾向がある。この結果、投入貨幣が真貨であっても前者の長さ判定手法ではその実測値が偽貨に相当する値となったり、後者の透過光量判定手法では実測透過光量データが真貨透過光量データから大きくずれ、偽貨と判定される事態が頻繁に起き、真貨受付率が著しく低下するという問題点を有していた。
【0007】
このような問題点を解決するため、例えば特開平10−255098号公報に記載されたものが提案されている。この公報に記載された紙幣識別装置では、前者の長さ判定手法で測定された実測値と理想値とのズレを比率計算する。透過光量判定手法では、このズレ比率に基づき実測透過光量データを補正する。その上で補正透過光量データと真貨透過光量データを比較(波形比較)して真偽を判定するようになっている。
【0008】
しかしながら、ズレ比率のもととなる値が紙幣投入から収納に至る全体の実測値となっているため、公報に記載された紙幣識別装置ではズレ比率が大きく、その分大きく補正する。この結果、偽貨も補正により真貨と判定されるおそれが生じ、偽貨排除性能を阻害するという問題点を有していた。
【0009】
本発明の目的は前記従来の課題に鑑み、紙葉類の長さ寸法を正確に測定でき、また、透過光量データを適切に補正して真正紙葉類の受付率が向上し、更には偽造紙葉類排除性能の低下を回避できる紙葉類識別装置を提供することにある。
【0010】
【課題を解決するための手段】
本発明は前記課題を解決するため、請求項1の発明は、紙葉類を搬送する搬送手段と、搬送手段で搬送された紙葉類を案内する紙葉類搬送路と、紙葉類搬送路を間にして一方に配置され紙葉類に光を照射する発光素子と、紙葉類搬送路を間にして他方に配置され紙葉類を通過した光を受光する受光素子と、紙葉類の真偽判定手法として受光素子の検知データに基づき紙葉類の長さ寸法を測定して紙葉類の真偽を判定する手法を有する判定手段とを備えたもので、紙葉類搬送路は発光素子の照射光が紙葉類の1箇所に照射される第1区間と、第1区間に続いて重なった紙葉類の2箇所に照射される第2区間と、第2区間に続いて紙葉類の1箇所に照射される第3区間とを有する紙葉類識別装置において、判定手段は、第2区間における紙葉類の実測搬送量と予め設定された第2区間の理想搬送量とを比較して紙葉類の長さを判定するとともに、第2区間における紙葉類の実測搬送量は、第1区間又は第3区間の実測搬送量と第1又は第3区間の理想搬送量との比較に基づき補正される構造となっている。
【0011】
紙葉類の長さ寸法の理想搬送量(真正の紙葉類がスリップすることなく搬送されたときの搬送量)は、第1区間の理想搬送量に第2区間の理想搬送量を加算した値であり、或いは、第3区間の理想搬送量に第2区間の理想搬送量を加算した値である。一方、投入紙葉類の長さ寸法は、第1区間の実測搬送量に第2区間の実測搬送量を加算した値であり、或いは、第3区間の実測搬送量に第2区間の実測搬送量を加算した値である。
【0012】
ここで、第1区間及び第3区間の理想搬送量と実測搬送量との差は紙葉類のスリップによる差であり、真正紙葉類と投入紙葉類の長さ寸法による差ではない。一方、第2区間の理想搬送量と実測搬送量との差は紙葉類のスリップによる差と長さ寸法の長短による差の両者による。即ち、紙葉類の長さ寸法が長いときは第2区間の搬送量が大きく、短いときは第2区間の搬送量が小さくなる。
【0013】
そこで、投入紙葉類と真正紙葉類の長さ寸法の差を判定するときは、スリップによる差を極力排除するため、投入紙葉類の第1区間又は第3区間の搬送量を真正紙葉類の理想搬送量に置き換え、第2区間の実測搬送量と理想搬送量との差に基づいて判定することとした。これにより、紙葉類の長さ判定手法に基づく紙葉類の真偽判定の精度が向上する。
【0015】
また、第2区間の実測搬送量が第1又は第3区間の実測搬送量と理想搬送量との比較、例えば実測搬送量と理想搬送量からスリップによるスベリ割合を計算し、このスベリ割合に基づき第2区間の実測搬送量を演算補正し、第2区間の補正実測搬送量を求める。これにより、スリップ影響の少ない第2区間の実測搬送量が得られる。
【0016】
請求項の発明は、請求項1に係る紙葉類識別装置において、判定手段は、第1区間又は第3区間の何れか一方における紙葉類の実測搬送量又は平均搬送量が予め設定された第1区間又は第3区間の設定許容搬送量より大きくなったときは搬送手段が劣化したと判定する。
【0017】
請求項の発明によれば、実測搬送量がその許容搬送量よりも大きくなったときは、紙葉類の真偽の判定が不適当な状態となっているため、例えば紙葉類の返却を指令することとなる。
【0018】
請求項の発明は、搬送手段の劣化判定を表示する表示手段を有するので、劣化判定を外部に報知することができる。
【0019】
請求項の発明は、紙葉類を搬送する搬送手段と、搬送手段で搬送された紙葉類を案内する紙葉類搬送路と、紙葉類搬送路を間にして一方に配置され紙葉類に光を照射する発光素子と、紙葉類搬送路を間にして他方に配置され紙葉類を通過した光を受光する受光素子と、紙葉類の真偽判定手法として受光素子の透過光量データに基づき紙葉類の真偽を判定する手法を有する判定手段とを備えたもので、紙葉類搬送路は発光素子の照射光が紙葉類の1枚に照射される第1区間と、第1区間に続いて重なった紙葉類の2枚に照射される第2区間と、第2区間に続いて紙葉類の1枚に照射される第3区間とを有する紙葉類識別装置において、判定手段は、紙葉類が第1区間から第2区間に搬送されたとき、又は、紙葉類が第2区間から第3区間に搬送されたときの少なくとも一方で、透過光量データを予め定められた理想搬送量に基づく透過光量データと対応するよう記憶部に格納する。
【0020】
紙葉類の搬送過程で逐次透過光量データが格納されるが、紙葉類の搬送が進むにつれて実測透過光量データと理想搬送量に基づく透過光量データのズレが大きくなる。
【0021】
請求項の発明によれば、紙葉類が第1区間から第2区間に入ったとき、或いは、第2区間から第3区間に入ったとき、又は、その両者で理想搬送量の透過光量データと対応するよう格納されるため、第2区間の前後で透過光量データの格納部位が適正位置に戻され、実測透過光量データの全体のズレが抑制される。
【0022】
【発明の実施の形態】
図1乃至図8は本発明に係る紙葉類識別装置、例えば紙幣識別装置の第1実施形態と第2実施形態を示すもので、まず、これらの実施形態の共通する構成を図1乃至図4を参照して説明する。ここで、図1は紙幣識別装置の内部構造を示す縦断面図、図2は図1のA−A線矢視方向の断面図、図3は紙幣の濃度パターン検出工程を示す説明図、図4は紙幣識別装置の制御系統を概略的に示すブロック図である。
【0023】
まず、図1及び図2を参照して紙幣識別装置の全体構造を説明する。この紙幣識別装置1は、上部に投入紙幣11の真偽を識別する識別部2を有し、識別部2の下部には真貨と判定された紙幣11を収納する収納部3とから構成されている。この識別部2は外部に開口した紙幣投入口21と、紙幣11を搬送するベルト搬送装置22と、紙幣11を収納部3へ導く紙幣搬送路23とを有している。この紙幣投入口21は水平に延在され、また、紙幣投入口21に続いて紙幣搬送路23が逆U字状に形成され、更に、ベルト搬送装置22は紙幣搬送路23に沿って配置されている。これにより、紙幣投入口21を通じて水平に挿入された紙幣11は、ベルト搬送装置22のモータ221の駆動によりベルト222が回転して矢印に示すように上下に搬送され、紙幣搬送路23を通るとき前後で重なるように搬送される。
【0024】
識別部2はこの搬送紙幣11の真偽を以下の機器により判定する。発光素子(例えばLED)241,251と受光素子(例えばPD)242,252とからなる光検出素子を2組有している。ここで、発光素子241,251は紙幣搬送路23の入口寄りに設置され、受光素子242,252は紙幣搬送路23の出口寄りに設置され、また、各素子241,242及び各素子251,252の間に光を誘導する光誘導路(例えば光ファイバ)243,253が設置されている。これにより、発光素子241,251から照射された光が投入紙幣11に対して交叉するよう通過し受光素子242,252で透過光量を検出するようになっている。更に、発光素子241,251と受光素子242,252との位置は図2に示すように搬送方向と直交する方向にずれており、これにより、2組の発光・受光素子241,242と発光・受光素子251,252により投入紙幣11の4つのラインを検出している。
【0025】
このように配置された発光・受光素子241,242,251,252の紙幣検出工程を図3を参照して説明する。即ち、紙幣投入口21に挿入された紙幣11は、ベルト搬送装置22の駆動により紙幣搬送路23に入り込み、発光素子241,251の照射光が紙幣11の先端に照射される(この照射部位を第1交叉部C1a,C2aという)。この1箇所照射状態が継続され(第1区間S1という)、その後、紙幣11の先端が受光素子242,252の位置に移動し、発光素子241,251の照射光が紙幣11の前後で2箇所に照射される(この照射部位を第2交叉部C1b,C2bという)。この2箇所照射状態が継続され(第2区間S2という)、その後、紙幣11の後端が第1交叉部C1a,C2aから外れ第2交叉部C1b,C2bのみに照射光が照射される状態が継続する(第3区間S3という)。
【0026】
このように第1区間S1から第3区間S3に亘って移動するとき、図3に示すように、第1区間S1では発光・受光素子241,242により紙幣11のラインL1aに亘って透過光量データが検出され、また、発光・受光素子251,252により紙幣11のラインL2aに亘って透過光量データが検出される。また、第2区間S2では発光・受光素子241,242により紙幣11のラインL1bに亘って透過光量データが検出され、また、発光・受光素子251,252により紙幣11のラインL2bに亘って透過光量データが検出される。更に、第3区間S3では発光・受光素子241,242により紙幣11のラインL1cに亘って透過光量データが検出され、また、発光・受光素子251,252により紙幣11のラインL2cに亘って透過光量データが検出される。
【0027】
このような識別部2を制御系ブロック図で示すと図4に示す如く構成されている。即ち、マイクロコンピュータ(マイコン4)の制御系を備え、紙幣投入検出センサ5、受光素子242,252、エンコーダ6から信号に基づき、マイコン4はモータ駆動回路221aを介してモータ221を駆動制御し、発光素子駆動回路241a,251aを介して発光素子241,252を駆動制御し、表示装置駆動回路7aを介して表示装置7(例えば警報ランプ)を駆動する。ここで、紙幣投入検出センサ5は紙幣投入口21に紙幣11が投入されたか否かを検知するもので、紙幣11が投入されたときモータ221を駆動する。また、受光素子242,252の検出データ(紙幣における照射光の透過光量データ)は増幅器242a,252aで増幅され、更にA/D変換器242b,252bでデジタル信号に変換してマイコン4に入力される。エンコーダ6はモータ221の回転角に対応してパルス信号を発生するもので、このパルス信号に同期してA/D変換器242b,252bが受光素子242,252の検出データをデジタル信号に変換してマイコン4に入力している。
【0028】
マイコン4はCPU41と基準値格納記憶部42と透過光量データ記憶部43とを有しており、基準値格納部記憶部42には、真貨を投入した際、第1区間S1、第2区間S2及び第3区間S3でエンコー6のパルス信号に同期して得られるであろう、基準透過光量データ(理想透過光量データ)が所定アドレスに記憶されている。一方、透過光量データ記憶部43は紙幣11の投入により実測された透過光量データが記憶されるもので、第1区間S1、第2区間S2及び第3区間S3でエンコー6のパルス信号に同期して得られた透過光量データが記憶される。CPU41は、紙幣11の長さを判定する長さ判定手段と、理想透過光量データと実測透過光量データを比較し投入紙幣11の真偽を判定する真偽判定手段を備えている。
【0029】
以上のように構成された紙幣識別装置1において、第1実施形態は長さ判定手段により紙幣11の長さを判定するものであり、これを図5を参照して説明する。
【0030】
図5のグラフにおいて、縦軸には受光素子242で検出された透過光量データ(受光素子252で検出された透過光量データでもよい)を電圧で表示し、横軸には時間を表示していている。ここで、実線で示す波形は第1区間S1、第2区間S2及び第3区間S3に亘る理想透過光量データを示し、破線で示す波形は第1区間S1、第2区間S2及び第3区間S3に亘る実測透過光量データを示している。また、この波形データはエンコーダ6のパルス信号に同期して得られたものである。また、エンコーダ6のパルス信号数をモータ221の紙幣搬送量(例えば1パルスあたり0.5mm)として置き換えることができるので、第1区間S1、第2区間S2及び第3区間S3のパルス数を計数することにより紙幣11の長さ寸法を測定することができる。
【0031】
図5のグラフにおいて、理想透過光量データと実測透過光量データを比較するとき、第1区間S1、第2区間S2、第3区間S3と進むにつれて、実測透過光量データが理想透過光量データから大きくズレていることが理解できる。このズレを紙幣搬送量の点から考察すれば、実測搬送量が理想搬送量から大きくズレていることが理解できる。この原因は、ベルト搬送装置22のベルト222と紙幣11との間でスリップを起こしていることによるものであり、このスリップによるズレ(長寸法の誤差)を極力小さくしなければ実質的には紙幣11の真偽判定ができない。
【0032】
紙幣11の長さ寸法の理想搬送量は、第1区間S1の理想搬送量に第2区間S2の理想搬送量を加算した値であり、或いは、第3区間S3の理想搬送量に第2区間S2の理想搬送量を加算した値である。一方、投入紙幣11の長さ寸法は、第1区間S1の実測搬送量に第2区間S2の実測搬送量を加算した値であり、或いは、第3区間S3の実測搬送量に第2区間S2の実測搬送量を加算した値である。
【0033】
ここで、第1区間S1及び第3区間S3の理想搬送量と実測搬送量との差は紙幣11のスリップによる差であり、真貨紙幣と投入紙幣11の長さ寸法による差ではない。一方、第2区間S2の理想搬送量と実測搬送量との差は紙幣11のスリップによる差と長さ寸法の長短による差の両者による。即ち、紙幣11の長さ寸法が長いときは第2区間S2の搬送量が大きく、短いときは第2区間の搬送量が小さくなる。
【0034】
そこで、投入紙幣11の長さ寸法を判定する際、紙幣11のスリップ誤差を極力小さくして投入紙幣11の実際の長さ寸法を把握するため、以下の計算式で投入紙幣11の長さ寸法を演算することとした。
【0035】
M=(Xn+Yn)×K
M;投入紙幣の長さ寸法、Xn;第2区間S2の実測パルス数、Yn;第3区間S3の理想パルス数、K;1パルスあたりの搬送量
これにより、投入紙幣11の寸法を演算するにあたり第3区間S3の理想搬送量を用いているので(第3区間S3の実測搬送量を用いていないので)、スリップ誤差が第2区間S2のみとなり、紙幣長さによる真偽判定が精度よく行うことができる。
【0036】
上記計算式では第3区間S3の理想パルス数を取り込んでいるが、これの代わりに第1区間S1の理想パルス数を計算式に取り込むようにしてもよい。なお、第1区間S1から第2区間S2に移行したか否か、或いは、第2区間S2から第3区間S3に移行したか否かは基準レベルZ1より判定すればよく、また、第1区間S1に入ったか否か、或いは、第3区間S3が終了したか否かは基準レベルZ2により判定すればよい。
【0037】
本実施形態の例2では、第3区間の実測パルス数と理想パルス数からスベリ割合を求め、このスベリ割合から第2区間S2の実測パルス数を補正したもので、この補正値を前述した例1の第2区間S2の実測パルス数に置き換えて演算している。即ち、
Xn1=Xn×(Yn1/Yn)
Xn;第2区間S2の実測パルス数、Xn1;第2区間S2の補正パルス数、Yn;第3区間S3の理想パルス数、Yn1;第3区間S3の実測パルス数
これにより、第2区間S2の実測パルス数がスベリ割合により補正され、これを上記計算式で求めたXn1を例1のXnに置き換える。即ち、
M=(Xn1+Yn)×K
M;投入紙幣の長さ寸法、K;1パルスあたりの搬送量
これにより、第2区間S2の実測パルス数がスベリ割合で補正された分、更に紙幣長さによる真偽判定精度が向上する。
【0038】
なお、スベリ割合を第3区間S3の実測パルス数及び理想パルス数に基づき計算したが、第1区間S1に基づいて計算するようにしてもよい。但し、第3区間S3の代わりに第1区間S1を計算式に取り込むときは、紙幣投入口21から紙幣11を投入する際の押し込み力が搬送量に影響を与えるおそれがあることを考慮しなければならない。
【0039】
以上のようにして投入紙幣11の長さ寸法を計算したときは、これが真貨の長さ寸法の許容範囲内にあるときは真貨として受け入れ、一方、許容範囲外となっているときは、モータ221を逆転し紙幣11を戻す。また、スベリ割合が大きいときは、表示装置駆動回路7aを介してベルト搬出装置22が劣化していることを表示装置7に表示する。
【0040】
図6乃至図8は紙幣識別装置の第2実施形態を示すものである。この実施形態に係る真偽判定は透過光量判定手法に基づくものであり、基準格納記憶部42に予め記憶されている真正紙幣に基づく波形データと透過光量記憶部43に格納された実測波形データとを比較し、投入紙幣11の真偽を判定している。本実施形態の特徴を図6及び図7のフローチャートと図8の透過光量データを比較したグラフを参照して説明する。
【0041】
即ち、紙幣11が投入されたときは、受光素子242で検出された透過光量データをエンコーダ6のパルス信号に同期してサンプリングしデジタルデータPx(透過光量に相当する電圧データ)として取得する(ST1)。ここで、データPxが240(第1実施形態に基準レベルZ2に相当)より低くなったとき第1区間S1に入ったと判定され、格納アドレスカウンタCOUで示されたアドレスポイント、即ち、透過光量記憶部43の所定の第1区間S1に対応するアドレスポイントAP1を選択する(ST2,ST3)。この第1区間S1ではデータPxが50(第1実施形態の基準レベルZ1に相当)より低くなるまでパルス信号に同期して格納アドレスカウンタCOUで示すアドレスに記憶していく(ST4〜ST7)。そして、次に検出されたデータPxは次のアドレスに格納され順次1個ずつ更新して記憶していく(ST8)。ここで、データPxが50より低くなったと判定したときは、第2区間S2に入ったと判定し、格納アドレスカウンタCOUで示されたアドレスポイント、即ち、透過光量記憶部43の第2区間S2に対応するアドレスポイントAP2を選択する(ST9)。
【0042】
なお、第1区間S1で記憶すべきアドレスが理想パルス数の最終アドレスよりも大きくなったときは、アドレスポイントAP2に上書きして記憶され、第2区間S2に移行した際、強制的にアドレスポイントAP2の初期アドレスに戻り順次上書き記憶される。一方、第1区間S1で記憶すべき最終データが理想パルス数の最終アドレスに満たないときは、後続するアドレスポイントAP1には初期状態のデータゼロの状態が保持される。
【0043】
この第2区間S2ではデータPxが50より高くなるまで、前記第1区間S1の場合と同様に、パルス信号に同期してアドレスを1個ずつ更新して記憶していく(ST10〜ST14)。ここで、データPxが50より高くなったと判定したときは、第3区間S3に入ったと判定し、格納アドレスカウンタCOUで示されたアドレスポイント、即ち、透過光量記憶部43の第3区間S3に対応するアドレスポイントAP3を選択する(ST15)。
【0044】
なお、第2区間S2で記憶すべきアドレスが理想パルス数の最終アドレスよりも大きくなったときは、前記第1区間S1と同様に、アドレスポイントAP3に上書きして記憶され、第3区間S3に移行した際、強制的にアドレスポイントAP3の初期アドレスに戻り順次上書き記憶される。一方、第2区間S2で記憶すべき最終データが理想パルス数の最終アドレスに満たないときは、後続するアドレスAP2には初期状態のデータゼロの状態が保持される。
【0045】
この第3区間S3ではデータPxが240より高くなるまで、これまた、パルス信号に同期してアドレスを1個ずつ更新して記憶していく(ST16〜ST20)。ここで、データPxが240より高くなったと判定したときは、紙幣11が第3区間S3から出たと判定しサンプリングを終了する。
【0046】
以上のように本実施形態に係る紙幣識別装置1は第1区間S1から第2区間S2に移行する際にアドレスポイントAP1をアドレスポイントAP2に変更し、また、第2区間S2から第3区間S3に移行する際にアドレスポイントAP2をアドレスポイントAP3に変更する。
【0047】
これにより、第2区間S2の初期実測データが常に第2区間S2の理想パルス数に対応する初期アドレスポイントAP2に記憶され、また、第3区間S3の初期実測データが第3区間S3の理想パルス数に対応する初期アドレスポイントAP3に記憶されるため、理想透過光量データ(実線で示す)と実測透過光量データ(破線で示す)を比較すると、図8に示すように、第1区間S1から第3区間S3に亘るスリップ誤差が極めて小さくなり、波形判定が正確に行われ、真偽判定の精度が向上する。
【0048】
なお、第1区間S1から第2区間S2へ移行する際、第2区間S2から第3区間S3に移行する際、それぞれアドレスポイントを強制変更しているが、一方のみを強制変更するときでも、真偽判定の精度が向上することは勿論である。
【0049】
【発明の効果】
以上説明したように、請求項1乃至請求項の発明によれば、判定手段は、第2区間における紙葉類の実測搬送量と予め設定された第2区間の理想搬送量とを比較して紙葉類の長さを判定するため、紙葉類の長さ判定精度が向上し、更には真正紙葉類の受付率が向上するという利点を有する。
【0050】
請求項の発明によれば、第2区間の前後で透過光量データの格納部位が適正位置に戻され、実測透過光量データの全体のズレが抑制されるため、紙葉類の真偽判定精度が向上し、更には真正紙葉類の受付率が向上するという利点を有する。
【図面の簡単な説明】
【図1】紙幣識別装置の内部構造を示す縦断面図
【図2】図1のA−A線矢視方向の断面図
【図3】紙幣の濃度パターン検出工程を示す説明図
【図4】紙幣識別装置の制御系統を概略的に示すブロック図
【図5】透過光量の変化を示すグラフ
【図6】第2実施形態に係る紙幣識別装置の制御フローチャートのその1
【図7】第2実施形態に係る紙幣識別装置の制御フローチャートのその2
【図8】第2実施形態に係る透過光量の変化を示すグラフ
【符号の説明】
1…紙幣識別装置、2…識別部、3…収納部、4…マイコン、7…表示装置、11…紙幣、21…紙幣投入口、22…ベルト搬送装置、23…紙幣搬送路、221…モータ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a paper sheet identification device that determines the authenticity of a paper sheet, for example, a bill inserted, and stores or returns it.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a bill identifying device mounted on a vending machine is generally known as this type of paper sheet identifying device.
[0003]
This bill recognition device has various methods such as bill length judgment and bill transmitted light amount (detection voltage) judgment as a method for judging the authenticity of a bill. Judgment is false.
[0004]
First, a bill length determination method will be described. In this determination method, a bill inserted from a bill insertion slot is taken in by a belt conveying device and irradiated with light from a light emitting element. On the other hand, light transmitted through the bill is received by a light receiving element. The length dimension is measured. In addition, a length dimension (ideal value) corresponding to a true coin is stored in advance in the banknote handling apparatus. The actual value is compared with the ideal value to determine the authenticity of the bill.
[0005]
Subsequently, a transmitted light amount determination method will be described. In this determination method, light transmitted through the banknote is received by the light receiving element, and the transmitted light amount data (detection voltage data) is sequentially stored in accordance with the banknote conveyance. The bill processing apparatus stores in advance transmitted light amount data when a true coin is inserted. It compares the transmitted light amount data of the measured transmitted light amount data and Ma貨of the inserted banknote, which determines a true false banknotes.
[0006]
[Problems to be solved by the invention]
By the way, the belt conveyance device tends to slip between the bill and the belt due to adhesion of dust to the belt, belt wear, or the like, and the conveyance amount of the bill tends to gradually decrease. As a result, even if the inserted money is a true coin, the measured value is equivalent to a fake coin in the former length determination method, or the measured transmitted light amount data is converted into the true coin transmitted light amount data in the latter transmitted light amount determination method. There was a problem that the situation of being judged as false coins frequently occurred and the acceptance rate of genuine coins was significantly reduced.
[0007]
In order to solve such problems, for example, what is described in JP-A-10-255098 has been proposed. In the banknote recognition apparatus described in this publication, a ratio between a difference between an actual measurement value and an ideal value measured by the former length determination method is calculated. In the transmitted light amount determination method, the measured transmitted light amount data is corrected based on the deviation ratio. After that, the corrected transmitted light amount data and the true coin transmitted light amount data are compared (waveform comparison) to determine the authenticity.
[0008]
However, since the value that becomes the basis of the deviation ratio is the entire actual measurement value from bill insertion to storage, the bill identification device described in the official gazette has a large deviation ratio and corrects it accordingly. As a result, there is a possibility that the false coins may be determined to be true coins by the correction, and there is a problem that the false coin elimination performance is hindered.
[0009]
In view of the above-mentioned conventional problems, the object of the present invention is to accurately measure the length of paper sheets, and to appropriately correct transmitted light amount data to improve the acceptance rate of genuine paper sheets. An object of the present invention is to provide a paper sheet identification device capable of avoiding a decrease in paper sheet rejection performance.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a transport unit that transports a paper sheet, a paper sheet transport path that guides the paper sheet transported by the transport unit, and a paper sheet transport. A light emitting element arranged on one side to irradiate light on the paper sheet, a light receiving element arranged on the other side of the paper sheet conveying path to receive light passing through the paper sheet, and a paper sheet This is equipped with a determination means that has a method for determining the authenticity of a paper sheet by measuring the length dimension of the paper sheet based on the detection data of the light receiving element. The road is divided into a first section in which light emitted from the light emitting element is irradiated to one place on the paper sheet, a second section in which two sheets of paper sheets that overlap with the first section are irradiated, and a second section. Subsequently, in the paper sheet identification apparatus having the third section irradiated to one place of the paper sheet, the determination unit is configured to determine whether the paper sheet is in the second section. With determining the length of the paper sheet by comparing the ideal conveying distance of the second section which is previously set and measured conveyance amount, the measured conveyance amount of the sheet in the second section, the first section or the third The correction is made based on a comparison between the actually measured transport amount of the section and the ideal transport amount of the first or third section.
[0011]
The ideal transport amount of the length of the paper sheet (the transport amount when the genuine paper sheet is transported without slipping) is obtained by adding the ideal transport amount of the second section to the ideal transport amount of the first section. Or the value obtained by adding the ideal transport amount in the second section to the ideal transport amount in the third section. On the other hand, the length dimension of the input paper sheet is a value obtained by adding the actual conveyance amount of the second section to the actual conveyance amount of the first section, or the actual conveyance amount of the second section to the actual conveyance amount of the third section. It is a value obtained by adding quantities.
[0012]
Here, the difference between the ideal transport amount and the actually measured transport amount in the first section and the third section is a difference due to the slip of the paper sheet, and is not a difference due to the length dimension of the genuine paper sheet and the input paper sheet. On the other hand, the difference between the ideal transport amount and the actually measured transport amount in the second section depends on both the difference due to the slip of the paper sheet and the difference due to the length of the length dimension. That is, when the length of the paper sheet is long, the transport amount of the second section is large, and when the length is short, the transport amount of the second section is small.
[0013]
Therefore, when determining the difference in length between the input paper sheet and the genuine paper sheet, the conveyance amount of the first section or the third section of the input paper sheet is set to the authentic paper in order to eliminate the difference due to slip as much as possible. Instead of the ideal transport amount of leaves, the determination was made based on the difference between the actual transport amount and the ideal transport amount in the second section. Thereby, the accuracy of the authenticity determination of the paper sheet based on the paper sheet length determination method is improved.
[0015]
In addition , the actual transport amount in the second section is compared with the actual transport amount in the first or third section and the ideal transport amount, for example, a slip ratio due to slip is calculated from the actual transport amount and the ideal transport amount, and based on this slip ratio. The corrected actually measured transport amount of the second section is calculated and corrected to obtain the corrected actually measured transport amount of the second section. As a result, the actually measured transport amount of the second section with little slip effect is obtained.
[0016]
A second aspect of the present invention, in the paper sheet recognition apparatus according to claim 1, determining means, the measured conveyance amount or the average transport amount of the paper sheet in either one of the first section or third section is set in advance When the transfer amount exceeds the set allowable transport amount in the first section or the third section, it is determined that the transport means has deteriorated.
[0017]
According to the invention of claim 2 , when the measured transport amount becomes larger than the permissible transport amount, since the authenticity determination of the paper sheet is in an inappropriate state, for example, the return of the paper sheet Will be commanded.
[0018]
Since the invention of claim 3 has the display means for displaying the deterioration determination of the conveying means, the deterioration determination can be notified to the outside.
[0019]
According to a fourth aspect of the present invention, there is provided a conveying means for conveying a paper sheet, a paper sheet conveying path for guiding the paper sheet conveyed by the conveying means, and a paper sheet disposed on one side with the paper sheet conveying path in between. A light-emitting element that irradiates light on a leaf, a light-receiving element that receives light that has passed through the paper sheet, and is disposed on the other side of the paper sheet conveyance path; And a determination unit having a method of determining the authenticity of the paper sheet based on the transmitted light amount data. The paper sheet conveyance path is a first in which the light emitted from the light emitting element is irradiated to one sheet of the paper sheet. A paper sheet having a section, a second section that is irradiated onto two sheets of paper sheets that overlap after the first section, and a third section that is irradiated onto one sheet of sheets following the second section In the class identification device, the determination means carries the paper sheet from the first section to the second section or carries the paper sheet from the second section to the third section. In at least one of when, and stores in the storage unit so as to correspond to transmission light data based on the ideal transport amount defined quantity of transmitted light data in advance.
[0020]
Although the transmitted light amount data is sequentially stored in the process of transporting the paper sheet, the difference between the actually transmitted light amount data and the transmitted light amount data based on the ideal transport amount increases as the transport of the paper sheet proceeds.
[0021]
According to the invention of claim 4 , when the paper sheet enters the second section from the first section, or enters the third section from the second section, or both, the transmitted light amount of the ideal transport amount Since the data is stored so as to correspond to the data, the transmitted light amount data storage part is returned to an appropriate position before and after the second section, and the overall deviation of the actually measured transmitted light amount data is suppressed.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 to FIG. 8 show a first embodiment and a second embodiment of a paper sheet recognition apparatus according to the present invention, for example, a bill recognition apparatus. First, a common configuration of these embodiments is shown in FIG. This will be described with reference to FIG. Here, FIG. 1 is a longitudinal sectional view showing the internal structure of the bill identifying device, FIG. 2 is a sectional view in the direction of arrows AA in FIG. 1, and FIG. 3 is an explanatory diagram showing a bill density pattern detecting step. 4 is a block diagram schematically showing a control system of the banknote recognition apparatus.
[0023]
First, the overall structure of the banknote recognition apparatus will be described with reference to FIGS. 1 and 2. This banknote identification device 1 has an identification unit 2 for identifying the authenticity of the inserted banknote 11 at the top, and a storage unit 3 for storing the banknote 11 determined to be a true coin at the bottom of the identification unit 2. ing. The identification unit 2 includes a bill insertion slot 21 that opens to the outside, a belt conveyance device 22 that conveys the bill 11, and a bill conveyance path 23 that guides the bill 11 to the storage unit 3. The banknote insertion slot 21 extends horizontally, and a banknote transport path 23 is formed in an inverted U-shape following the banknote slot 21, and a belt transport device 22 is disposed along the banknote transport path 23. ing. Thereby, the banknote 11 inserted horizontally through the banknote insertion slot 21 is conveyed up and down as indicated by the arrow by the driving of the motor 221 of the belt conveyance device 22 and passes through the banknote conveyance path 23. It is conveyed so as to overlap in the front and rear.
[0024]
The identification unit 2 determines the authenticity of the transported banknote 11 using the following devices. Two sets of light detection elements each including a light emitting element (for example, LED) 241 and 251 and a light receiving element (for example, PD) 242 and 252 are provided. Here, the light emitting elements 241 and 251 are installed near the entrance of the banknote transport path 23, and the light receiving elements 242 and 252 are installed near the exit of the banknote transport path 23, and the elements 241 and 242 and the elements 251 and 252 are installed. Optical guide paths (for example, optical fibers) 243 and 253 for guiding light are installed between the two. As a result, the light emitted from the light emitting elements 241 and 251 passes so as to cross the inserted bill 11 and the light receiving elements 242 and 252 detect the transmitted light amount. Further, the positions of the light emitting elements 241 and 251 and the light receiving elements 242 and 252 are shifted in the direction orthogonal to the transport direction as shown in FIG. Four lines of the inserted bill 11 are detected by the light receiving elements 251 and 252.
[0025]
The bill detection process of the light emitting / receiving elements 241, 242, 251, 252 arranged in this way will be described with reference to FIG. That is, the bill 11 inserted into the bill insertion slot 21 enters the bill conveyance path 23 by driving the belt conveyance device 22, and the irradiation light of the light emitting elements 241 and 251 is irradiated to the tip of the bill 11 (this irradiation portion is changed). First crossover portions C1a and C2a). This one-point irradiation state is continued (referred to as the first section S1), and then the tip of the bill 11 moves to the position of the light receiving elements 242, 252, and the irradiation light of the light emitting elements 241, 251 is two places before and after the bill 11. (This irradiation site is referred to as second crossing portions C1b and C2b). The two-point irradiation state is continued (referred to as the second section S2), and then the rear end of the banknote 11 is detached from the first crossing portions C1a and C2a , and only the second crossing portions C1b and C2b are irradiated with the irradiation light. The state continues (referred to as third section S3).
[0026]
In this way, when moving from the first section S1 to the third section S3, as shown in FIG. 3, in the first section S1, the transmitted light amount data is transmitted across the line L1a of the bill 11 by the light emitting / receiving elements 241 and 242. In addition, transmitted light amount data is detected across the line L2a of the banknote 11 by the light emitting / receiving elements 251 and 252. In the second section S2, transmitted light amount data is detected over the line L1b of the bill 11 by the light emitting / receiving elements 241, 242 and transmitted light amount over the line L2b of the bill 11 by the light emitting / receiving elements 251 and 252. Data is detected. Furthermore, in the third section S3, transmitted light amount data is detected over the line L1c of the bill 11 by the light emitting / receiving elements 241 and 242 and transmitted light amount over the line L2c of the bill 11 by the light emitting / receiving elements 251 and 252. Data is detected.
[0027]
Such an identification unit 2 is configured as shown in FIG. 4 in a control system block diagram. That is, a microcomputer (microcomputer 4) control system is provided, and the microcomputer 4 drives and controls the motor 221 via the motor drive circuit 221a based on signals from the bill insertion detection sensor 5, the light receiving elements 242, 252 and the encoder 6. The light emitting elements 241 and 252 are driven and controlled via the light emitting element driving circuits 241a and 251a, and the display device 7 (for example, an alarm lamp) is driven via the display device driving circuit 7a. Here, the bill insertion detection sensor 5 detects whether or not the bill 11 has been inserted into the bill insertion slot 21 and drives the motor 221 when the bill 11 is inserted. The detection data of the light receiving elements 242 and 252 (transmission light amount data of the irradiated light in the banknote) is amplified by the amplifiers 242a and 252a, further converted into digital signals by the A / D converters 242b and 252b, and input to the microcomputer 4. The The encoder 6 generates a pulse signal corresponding to the rotation angle of the motor 221, and the A / D converters 242b and 252b convert detection data of the light receiving elements 242 and 252 into digital signals in synchronization with the pulse signal. To the microcomputer 4.
[0028]
The microcomputer 4 has a CPU 41, a reference value storage unit 42, and a transmitted light amount data storage unit 43, and the reference value storage unit 42 has a first section S <b> 1 and a second section when a true coin is inserted. in S2 and the third segment S3 will be obtained in synchronization with the pulse signal of the encoder 6, the reference transmitted light amount data (ideal transmission light data) is stored at a predetermined address. On the other hand, transmission light data storage unit 43 in which the transmitted light amount data measured by the insertion of a bill 11 is stored, the first section S1, the synchronization with the pulse signal of the encoder 6 in the second section S2 and the third segment S3 The transmitted light amount data obtained in this way is stored. The CPU 41 includes length determination means for determining the length of the bill 11 and authenticity determination means for comparing the ideal transmitted light amount data and the actually measured transmitted light amount data to determine the authenticity of the inserted bill 11.
[0029]
In the banknote identification device 1 configured as described above, the first embodiment determines the length of the banknote 11 by the length determination means, and this will be described with reference to FIG.
[0030]
In the graph of FIG. 5, the transmitted light amount data detected by the light receiving element 242 (or the transmitted light amount data detected by the light receiving element 252) is displayed as a voltage on the vertical axis, and the time is displayed on the horizontal axis. Yes. Here, the waveform indicated by the solid line indicates ideal transmitted light amount data over the first interval S1, the second interval S2, and the third interval S3, and the waveform indicated by the broken line indicates the first interval S1, the second interval S2, and the third interval S3. Measured transmitted light amount data over The waveform data is obtained in synchronization with the pulse signal of the encoder 6. Further, since the number of pulse signals of the encoder 6 can be replaced with the bill conveyance amount of the motor 221 (for example, 0.5 mm per pulse), the number of pulses in the first section S1, the second section S2, and the third section S3 is counted. By doing so, the length dimension of the banknote 11 can be measured.
[0031]
In the graph of FIG. 5, when comparing the ideal transmitted light amount data with the actually measured transmitted light amount data, the measured transmitted light amount data greatly deviates from the ideal transmitted light amount data as it proceeds to the first section S1, the second section S2, and the third section S3. I can understand that. If this deviation is considered from the viewpoint of the bill conveyance amount, it can be understood that the actually measured conveyance amount greatly deviates from the ideal conveyance amount. The cause is that a slip is caused between the belt 222 of the belt conveying device 22 and the banknote 11, and a bill due to the slip (long dimension error) is substantially not reduced unless it is minimized. 11 true / false judgment is not possible.
[0032]
The ideal transport amount of the length dimension of the bill 11 is a value obtained by adding the ideal transport amount of the second section S2 to the ideal transport amount of the first section S1, or the second section to the ideal transport amount of the third section S3. It is a value obtained by adding the ideal transport amount of S2. On the other hand, the length dimension of the inserted bill 11 is a value obtained by adding the actual transport amount of the second section S2 to the actual transport amount of the first section S1, or the second section S2 to the actual transport amount of the third section S3. This is a value obtained by adding the actually measured transport amount.
[0033]
Here, the difference between the ideal transport amount and the actually measured transport amount in the first section S1 and the third section S3 is a difference due to the slip of the banknote 11 and is not a difference due to the length dimension of the true banknote and the inserted banknote 11. On the other hand, the difference between the ideal transport amount and the actually measured transport amount in the second section S2 is due to both the difference due to the slip of the banknote 11 and the difference due to the length of the length. That is, when the bill 11 has a long length, the transport amount of the second section S2 is large, and when the bill 11 is short, the transport amount of the second section is small.
[0034]
Therefore, when determining the length dimension of the inserted banknote 11, in order to grasp the actual length dimension of the inserted banknote 11 by reducing the slip error of the banknote 11 as much as possible, the length dimension of the inserted banknote 11 is calculated by the following formula. It was decided to calculate.
[0035]
M = (Xn + Yn) × K
M: length dimension of inserted banknote, Xn: number of actually measured pulses in second section S2, Yn: ideal number of pulses in third section S3, K: transport amount per pulse. Since the ideal transport amount of the third section S3 is used in this case (because the actually measured transport amount of the third section S3 is not used), the slip error is only the second section S2, and the authenticity determination based on the bill length is accurate. It can be carried out.
[0036]
In the above formula, the ideal number of pulses in the third section S3 is taken in, but instead, the ideal number of pulses in the first section S1 may be taken into the formula. Whether or not the transition from the first section S1 to the second section S2 or the transition from the second section S2 to the third section S3 may be made based on the reference level Z1, and the first section It may be determined based on the reference level Z2 whether or not S1 has been entered, or whether or not the third section S3 has ended.
[0037]
In Example 2 of the present embodiment, the slip ratio is obtained from the number of actually measured pulses in the third section and the ideal pulse number, and the number of actually measured pulses in the second section S2 is corrected from this slip ratio. The calculation is performed by replacing the actual number of pulses in one second section S2. That is,
Xn1 = Xn × (Yn1 / Yn)
Xn: the number of measured pulses in the second section S2, Xn1: the number of correction pulses in the second section S2, Yn: the number of ideal pulses in the third section S3, Yn1: the number of measured pulses in the third section S3. The actual number of pulses is corrected by the slip ratio, and Xn1 obtained by the above formula is replaced with Xn in Example 1. That is,
M = (Xn1 + Yn) × K
M: Length dimension of inserted banknote, K: Carry amount per pulse. Thereby, the accuracy of authenticity determination by the banknote length is further improved by the amount of the actual number of pulses in the second section S2 corrected by the slip ratio.
[0038]
Although the slip ratio is calculated based on the number of actually measured pulses and the ideal number of pulses in the third section S3, it may be calculated based on the first section S1. However, when taking the first section S1 into the calculation formula instead of the third section S3, it must be considered that the pushing force when the bill 11 is inserted from the bill insertion slot 21 may affect the transport amount. I must.
[0039]
When the length dimension of the inserted banknote 11 is calculated as described above, it is accepted as a true coin when it is within the allowable range of the true coin length dimension, while when it is out of the allowable range, The motor 221 is reversed to return the banknote 11. When the slip ratio is large, the display device 7 displays that the belt carry-out device 22 has deteriorated via the display device drive circuit 7a.
[0040]
6 to 8 show a second embodiment of the banknote recognition apparatus. The authenticity determination according to this embodiment is based on the transmitted light amount determination method, and includes waveform data based on genuine bills stored in advance in the reference storage unit 42 and actually measured waveform data stored in the transmitted light amount storage unit 43. The authenticity of the inserted banknote 11 is determined. The features of this embodiment will be described with reference to the flowcharts of FIGS. 6 and 7 and the graph comparing the transmitted light amount data of FIG.
[0041]
That is, when the bill 11 is inserted, the transmitted light amount data detected by the light receiving element 242 is sampled in synchronization with the pulse signal of the encoder 6 and acquired as digital data Px (voltage data corresponding to the transmitted light amount) (ST1). ). Here, when the data Px becomes lower than 240 (corresponding to the reference level Z2 in the first embodiment), it is determined that the first section S1 has been entered, and the address point indicated by the storage address counter COU, that is, the transmitted light amount storage. The address point AP1 corresponding to the predetermined first section S1 of the unit 43 is selected (ST2, ST3). In the first section S1, the data Px is stored in the address indicated by the storage address counter COU in synchronization with the pulse signal until it becomes lower than 50 (corresponding to the reference level Z1 of the first embodiment) (ST4 to ST7). Then, the next detected data Px is stored at the next address and sequentially updated and stored one by one (ST8). Here, when it is determined that the data Px is lower than 50, it is determined that the second section S2 is entered, and the address point indicated by the storage address counter COU, that is, the second section S2 of the transmitted light amount storage unit 43 is determined. Corresponding address point AP2 is selected (ST9).
[0042]
When the address to be stored in the first section S1 becomes larger than the final address of the ideal pulse number, the address point AP2 is overwritten and stored, and when moving to the second section S2, the address point is forcibly stored. It returns to the initial address of AP2 and is sequentially overwritten and stored. On the other hand, when the final data to be stored in the first section S1 is less than the final address of the ideal pulse number, the subsequent address point AP1 holds the initial data zero state.
[0043]
In the second section S2, the addresses are updated and stored one by one in synchronization with the pulse signal as in the case of the first section S1 until the data Px becomes higher than 50 (ST10 to ST14). Here, when it is determined that the data Px is higher than 50, it is determined that the third interval S3 has been entered, and the address point indicated by the storage address counter COU, that is, the third interval S3 of the transmitted light amount storage unit 43 is determined. The corresponding address point AP3 is selected (ST15).
[0044]
When the address to be stored in the second section S2 becomes larger than the final address of the ideal pulse number, the address point AP3 is overwritten and stored in the third section S3 as in the first section S1. When the transition is made, the data is forcibly returned to the initial address of the address point AP3 and sequentially overwritten and stored. On the other hand, when the final data to be stored in the second section S2 is less than the final address of the ideal pulse number, the subsequent address AP2 holds the initial data zero state.
[0045]
In the third section S3, the address is updated and stored one by one in synchronization with the pulse signal until the data Px becomes higher than 240 (ST16 to ST20). Here, when it determines with the data Px becoming higher than 240, it determines with the banknote 11 having come out of 3rd area S3, and complete | finishes sampling.
[0046]
As described above, the banknote recognition apparatus 1 according to the present embodiment changes the address point AP1 to the address point AP2 when moving from the first section S1 to the second section S2, and also changes from the second section S2 to the third section S3. The address point AP2 is changed to the address point AP3 at the time of shifting to.
[0047]
Thereby, the initial actually measured data of the second section S2 is always stored in the initial address point AP2 corresponding to the ideal number of pulses of the second section S2, and the initial actually measured data of the third section S3 is stored in the ideal pulse of the third section S3. Since it is stored in the initial address point AP3 corresponding to the number, when comparing the ideal transmitted light amount data (indicated by a solid line) and the actually measured transmitted light amount data (indicated by a broken line), as shown in FIG. The slip error over the three sections S3 becomes extremely small, the waveform determination is performed accurately, and the accuracy of the true / false determination is improved.
[0048]
In addition, when moving from the first section S1 to the second section S2, when moving from the second section S2 to the third section S3, the address points are forcibly changed, but even when only one is forcibly changed, Of course, the accuracy of authenticity determination is improved.
[0049]
【The invention's effect】
As described above, according to the first to third aspects of the present invention, the determination means compares the actual transport amount of the paper sheet in the second section with the preset ideal transport amount of the second section. Therefore, since the length of the paper sheet is determined, the accuracy of determining the length of the paper sheet is improved, and further, the acceptance rate of the genuine paper sheet is improved.
[0050]
According to the fourth aspect of the present invention, the stored part of the transmitted light amount data is returned to the proper position before and after the second section, and the overall deviation of the actually measured transmitted light amount data is suppressed. Has an advantage that the acceptance rate of genuine paper sheets is improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing the internal structure of a bill recognition device. FIG. 2 is a sectional view taken in the direction of arrows AA in FIG. 1. FIG. 3 is an explanatory view showing a bill density pattern detection process. FIG. 5 is a block diagram schematically showing a control system of the banknote recognition apparatus. FIG. 5 is a graph showing a change in transmitted light amount. FIG. 6 is a first part of a control flowchart of the banknote recognition apparatus according to the second embodiment.
FIG. 7 is a second part of a control flowchart of the banknote recognition apparatus according to the second embodiment.
FIG. 8 is a graph showing changes in the amount of transmitted light according to the second embodiment.
DESCRIPTION OF SYMBOLS 1 ... Banknote identification apparatus, 2 ... Identification part, 3 ... Storage part, 4 ... Microcomputer, 7 ... Display apparatus, 11 ... Banknote, 21 ... Banknote insertion port, 22 ... Belt conveyance apparatus, 23 ... Banknote conveyance path, 221 ... Motor .

Claims (4)

紙葉類を搬送する搬送手段と、該搬送手段で搬送された紙葉類を案内する紙葉類搬送路と、該紙葉類搬送路を間にして一方に配置され紙葉類に光を照射する発光素子と、該紙葉類搬送路を間にして他方に配置され紙葉類を通過した光を受光する受光素子と、紙葉類の真偽判定手法として受光素子の検知データに基づき紙葉類の長さ寸法を測定して紙葉類の真偽を判定する手法を有する判定手段とを備えたもので、前記紙葉類搬送路は該発光素子の照射光が紙葉類の1箇所に照射される第1区間と、該第1区間に続いて重なった紙葉類の2箇所に照射される第2区間と、第2区間に続いて紙葉類の1箇所に照射される第3区間とを有する紙葉類識別装置において、
前記判定手段は、第2区間における紙葉類の実測搬送量と予め設定された第2区間の理想搬送量とを比較して紙葉類の長さを判定するとともに、
第2区間における紙葉類の実測搬送量は、第1区間又は第3区間の実測搬送量と該第1又は第3区間の理想搬送量との比較に基づき補正される
ことを特徴とする紙葉類識別装置。
A conveying means for conveying the paper sheet, a paper sheet conveying path for guiding the paper sheet conveyed by the conveying means, and a paper sheet arranged on one side with the paper sheet conveying path interposed therebetween, and illuminating the paper sheet A light emitting element for irradiating, a light receiving element for receiving light passing through the paper sheet disposed on the other side of the paper sheet conveyance path, and based on detection data of the light receiving element as a paper sheet authenticity determination method And a determination means having a method for determining the authenticity of the paper sheet by measuring the length dimension of the paper sheet. A first section that is irradiated to one place, a second section that is irradiated to two places of paper sheets that overlap with the first section, and a single section of paper sheets that are irradiated to the second section. In the paper sheet identification device having the third section,
The determination means determines the length of the paper sheet by comparing the actual transport amount of the paper sheet in the second section with a preset ideal transport amount of the second section ,
The actual transport amount of paper sheets in the second section is corrected based on a comparison between the actual transport amount of the first section or the third section and the ideal transport amount of the first or third section. Leaf identification device.
前記判定手段は、第1区間又は第3区間の何れか一方における紙葉類の実測搬送量又は平均搬送量が予め設定された第1区間又は第3区間の設定許容搬送量より大きくなったときは前記搬送手段が劣化したと判定する
ことを特徴とする請求項1記載の紙葉類識別装置。
When the determination means has an actual transport amount or an average transport amount of paper sheets in either the first section or the third section larger than a preset allowable transport amount in the first section or the third section claim 1 Symbol placement of the paper sheet recognition apparatus and determines that the said conveying means is deteriorated.
前記搬送手段の劣化判定を表示する表示手段を有する
ことを特徴とする請求項記載の紙葉類識別装置。
3. The paper sheet identification apparatus according to claim 2, further comprising display means for displaying a deterioration determination of the transport means.
紙葉類を搬送する搬送手段と、該搬送手段で搬送された紙葉類を案内する紙葉類搬送路と、該紙葉類搬送路を間にして一方に配置され紙葉類に光を照射する発光素子と、該紙葉類搬送路を間にして他方に配置され紙葉類を通過した光を受光する受光素子と、紙葉類の真偽判定手法として受光素子の透過光量データに基づき紙葉類の真偽を判定する手法を有する判定手段とを備えたもので、前記紙葉類搬送路は該発光素子の照射光が紙葉類の1箇所に照射される第1区間と、該第1区間に続いて重なった紙葉類の2箇所に照射される第2区間と、第2区間に続いて紙葉類の1箇所に照射される第3区間とを有する紙葉類識別装置において、
前記判定手段は、紙葉類が第1区間から第2区間に搬送されたとき、又は、紙葉類が第2区間から第3区間に搬送されたときの少なくとも一方で、透過光量データを予め定められた理想搬送量に基づく透過光量データと対応するよう記憶部に格納する
ことを特徴とする紙葉類識別装置。
A conveying means for conveying the paper sheet, a paper sheet conveying path for guiding the paper sheet conveyed by the conveying means, and a paper sheet arranged on one side with the paper sheet conveying path interposed therebetween, and illuminating the paper sheet A light emitting element for irradiating, a light receiving element for receiving light passing through the paper sheet disposed on the other side of the paper sheet conveyance path, and a transmitted light amount data of the light receiving element as a method for determining the authenticity of the paper sheet And a determination means having a method for determining the authenticity of the paper sheet based on the first paper section, wherein the paper sheet transport path includes a first section in which the light emitted from the light emitting element is irradiated to one position of the paper sheet. A paper sheet having a second section that is irradiated to two places of the paper sheets that overlap each other following the first section, and a third section that is irradiated to one place of the paper sheets following the second section. In the identification device,
The determination means preliminarily transmits the transmitted light amount data when the paper sheet is transported from the first section to the second section or at least when the paper sheet is transported from the second section to the third section. A paper sheet identification device that stores data in a storage unit so as to correspond to transmitted light amount data based on a determined ideal transport amount.
JP2002248408A 2002-08-28 2002-08-28 Paper sheet identification device Expired - Fee Related JP3999072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002248408A JP3999072B2 (en) 2002-08-28 2002-08-28 Paper sheet identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002248408A JP3999072B2 (en) 2002-08-28 2002-08-28 Paper sheet identification device

Publications (2)

Publication Number Publication Date
JP2004086678A JP2004086678A (en) 2004-03-18
JP3999072B2 true JP3999072B2 (en) 2007-10-31

Family

ID=32055800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002248408A Expired - Fee Related JP3999072B2 (en) 2002-08-28 2002-08-28 Paper sheet identification device

Country Status (1)

Country Link
JP (1) JP3999072B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5202160B2 (en) * 2008-07-28 2013-06-05 株式会社ユニバーサルエンターテインメント Paper sheet processing equipment

Also Published As

Publication number Publication date
JP2004086678A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
US4973851A (en) Currency validator
US7590274B2 (en) Method and apparatus for currency discrimination
US5751840A (en) Method and apparatus for currency discrimination
US5467405A (en) Method and apparatus for currency discrimination and counting
US8854186B2 (en) Sheet-of-paper processing device
US8265336B2 (en) Paper identifying apparatus and paper identifying method
JP3999072B2 (en) Paper sheet identification device
US7424942B2 (en) Banknote handling apparatus
US5790245A (en) Paper examining method and apparatus
US20070108265A1 (en) Currency note identification and validation
JP4157320B2 (en) Coin identification device
JP2000348233A (en) Method and device for discriminating paper money
JP4965211B2 (en) Bill recognition device
KR101518035B1 (en) banknote identifying machine and method of identifying banknote
CN110992579A (en) Paper money detection system and detection method
CN111612965B (en) Method, apparatus and device for denomination recognition using security thread magnetic encoding
JP2000187747A (en) Coin processor
JPH0967036A (en) Separating roller adjusting device and adjusting method
EP1742183A2 (en) Banknote handling apparatus
JP2865113B2 (en) Coin sorting equipment
EP1510977A1 (en) A note skew detector
JP2004185447A (en) Paper money discrimination apparatus and paper processing apparatus
JPH0373091A (en) Coin discrimination counter
JP2000322620A (en) Device and method for identifying paper sheets
JPH03133861A (en) Method for controlling conveyance stop position of bank note and the like

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070808

R150 Certificate of patent or registration of utility model

Ref document number: 3999072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140817

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees