JP3998454B2 - Power semiconductor device - Google Patents

Power semiconductor device Download PDF

Info

Publication number
JP3998454B2
JP3998454B2 JP2001335530A JP2001335530A JP3998454B2 JP 3998454 B2 JP3998454 B2 JP 3998454B2 JP 2001335530 A JP2001335530 A JP 2001335530A JP 2001335530 A JP2001335530 A JP 2001335530A JP 3998454 B2 JP3998454 B2 JP 3998454B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
semiconductor device
conductivity type
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001335530A
Other languages
Japanese (ja)
Other versions
JP2003142698A (en
Inventor
渉 齋藤
一郎 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001335530A priority Critical patent/JP3998454B2/en
Publication of JP2003142698A publication Critical patent/JP2003142698A/en
Application granted granted Critical
Publication of JP3998454B2 publication Critical patent/JP3998454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1602Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電力用半導体装置に係り、特にショッキーバリアダイオード(SBD)の構造に関するもので、SBD、SBD搭載MOSパワートランジスタなどに使用されるものである。
【0002】
【従来の技術】
SBDのオン電圧は、ショットキー障壁高さと電子が走行するドリフト層(伝導層)の電圧降下で決まり、それを下げるには、ショットキー障壁高さの低い金属を用いるか、ドリフト層の抵抗を下げる必要がある。
【0003】
しかし、ショットキー障壁高さの低い金属を用いると、ダイオードの逆方向リーク電流が増加してしまう。また、ドリフト層の抵抗は、耐圧とトレードオフの関係があり、このトレードオフは材料により決まる。材料を変更せずにドリフト層の抵抗を下げるには、チップ面積を大きくする必要がある。
【0004】
【発明が解決しようとする課題】
上記したように従来のSBDは、オン電圧を低減しようとすると逆方向リーク電流の増加による逆方向特性の劣化や耐圧の劣化によるチップ面積の増大が伴ってしまうという問題があった。
【0005】
本発明は上記の問題点を解決すべくなされたもので、SBDの逆方向特性の劣化やチップ面積の増大を伴わずに、ドリフト層の抵抗を下げ、オン電圧を低減し得る電力用半導体装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の電力用半導体装置は、第1導電型の第1の半導体層と、前記第1の半導体層上に形成され、前記第1の半導体層よりも不純物濃度が低い第1導電型の第2の半導体層と、前記第2の半導体層の表面から前記第1の半導体層に達するように形成された第1導電型の第3の半導体層と、前記第2の半導体層の表面から所定の深さまで形成された溝の底部の周辺部に形成された第2導電型の第4の半導体層と、前記溝の内部に埋め込まれて前記第4の半導体層と電気的に接続され、前記第2の半導体層とショットキー接合を形成する第1の主電極と、前記第1の半導体層に電気的に接続された第2の主電極とを具備することを特徴とする。
【0007】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。なお、以下の実施形態では、第1導電型をn型、第2導電型をp型としている。また、図面中の同一部分には同一符号を付している。
【0008】
<第1の実施形態>
図1(a)は、本発明の第1の実施形態に係るSBDの一部を模式的に示す断面図である。ここでは、SBDを形成する多数のSBDセルのうちの1個分を取り出して示している。
【0009】
図1(b)は、同図(a)のSBDのレイアウトパターンの一部を示す平面図である。
【0010】
図1(a)、(b)に示すSBDにおいては、第1の半導体層であるn+基板1上に第2の半導体層として形成されたn−ドリフト層2の表面の一部からn+基板1まで達するようにn+層3が形成されている。
【0011】
また、上記n−ドリフト層2の表面の一部から所定の深さまで形成された溝(トレンチ)の底部にはガードリングの役目をするp層4が形成されており、溝の内部には、n−ドリフト層2に対してショットキー接合を形成するショットキー電極5が埋め込まれている。そして、n+基板表面にはオーミック電極6が形成されている。
【0012】
前記n−ドリフト層2は、例えば、約10μmの厚さで、1×1016cm-3の不純物濃度を有する。前記n+層3は、例えば、約1×1020cm-3の不純物濃度を有する多結晶シリコンで幅が1μmのストライプ状に形成されている。
【0013】
前記ガードリング用のp層4は、例えば接合深さが1μmで形成されており、ショットキー電極5は、例えば、深さが7.5μmで幅が1μmのストライプ状に形成されている。
【0014】
上記したようにn−ドリフト層2の表面部の溝内にn+基板1まで達するn+層3とn−ドリフト層2の中間まで達するショットキー電極5を形成し、n+基板1およびn+層3に電気的に接続されているオーミック電極6を基板表面に形成した横型構造のSBDを構成している。
【0015】
このような横型構造のSBDによれば、通常の縦型SBDと比べて逆方向特性は変化しない。しかも、チップ面積とは独立に溝の深さによりドリフト層に接合するショットキー電極の面積が決まり、溝を深くすることによりショットキー電極の面積を増やし、ドリフト層の抵抗を下げることが可能となり、低いオン電圧を実現することができる。
【0016】
因みに、上記実施形態のSBDによれば、例えば40V程度の耐圧を保持したまま、チップ面積を増加させずに、ドリフト層の抵抗を通常の縦型SBDの半分程度に下げることができる。
【0017】
<第2の実施形態>
第2の実施形態に係るSBDは、図1(a)、(b)を参照して前述した第1の実施形態に係るSBDと構造は同一である。
【0018】
図2は、本発明の第2の実施形態に係るSBDのトレンチの深さdとn−ドリフト層2のオン抵抗の関係の一例を示す特性図である。
【0019】
図2に示すように、トレンチの深さ(Schottky接合の深さ)dを深くしていくと、n−ドリフト層2の断面積が増えたことになり、n−ドリフト層2の抵抗は小さくなる。この場合、トレンチ深さdと、ショットキー電極5とn+層3との距離(n−ドリフト層2の長さ)aの比を1.1以上とすることにより、ドリフト層断面積を大きくでき、n−ドリフト層2のオン抵抗が通常の縦型SBDよりも低くなり、低オン電圧化に有効となる。
【0020】
<第3の実施形態>
図3は、本発明の第3の実施形態に係るSBDの一部を模式的に示す断面図である。
【0021】
このSBDは、図1(a)、(b)を参照して前述した第1の実施形態に係るSBDと基本構造は同一であるが、ガードリングp層4とn+基板1との距離がガードリングp層4とn+層3との距離よりも近い構造となっている点に特徴がある。
【0022】
このような構造によれば、高電圧印加時にはガードリングp層4とn+基板1との間の電界が高くなり、アバランシェ降伏が起きる。この降伏時に発生するホールと電子はそれぞれガードリングp層4とn+基板1に速やかに流れ込み、ショットキー接合には影響を及ぼさないので、アバランシェ耐量が確保される。
【0023】
<第4の実施形態>
図4(a)は、本発明の第4の実施形態に係るSBDにおけるショットキー電極およびガードリングp層とn+層3の1組を含む一部を取り出して模式的に示す斜視図である。
【0024】
図4(b)は、同図(a)中のA−A´線に沿う断面構造を模式的に示す断面図である。
【0025】
図4(c)は、同図(a)中のB−B´線に沿う断面構造を模式的に示す断面図である。
【0026】
図4(a)、(b)、(c)に示すSBDは、図1(a)、(b)を参照して前述した第1の実施形態に係るSBDと比べて、基本構造は同一であるが、ガードリングp層4が溝の内部の第1の対をなす相対する側壁部の周辺部まで延びるように形成されている点が異なる。
【0027】
したがって、ストライプ状に形成されているショットキー電極5は、溝の内部の第2の対をなす相対する側壁部でn−ドリフト層2とショットキー接合を形成している。
【0028】
このようにショットキー電極5の底面部および一対の側端面部を囲むようにガードリングp層4を形成することにより、ショットキー電極5の底面・側端面の角部にショットキー接合が形成されなくなるので、ショットキー電極5の端部の電界集中を避け、逆方向リーク電流の増大を抑制することが可能になる。
【0029】
<第5の実施形態>
図5(a)は、本発明の第5の実施形態に係るSBDにおけるショットキー電極およびガードリングp層の一部を取り出して模式的に示す斜視図である。
【0030】
図5(b)は、同図(a)中のA−A´線に沿う断面構造を模式的に示す断面図である。
【0031】
図5(a)、(b)に示すSBDは、図4(a)、(b)を参照して前述した第4の実施形態に係るSBDと比べて、溝がその長さ方向において間欠的に分断された島状に形成されており、それに対応して溝に埋め込まれているショットキー電極5およびその底面部および一対の側端面部を囲むガードリングp層4も島状に形成されている点が異なる。
【0032】
したがって、第4の実施形態のようにショットキー電極5をストライプ状に連続的に形成するよりも、ショットキー接合の面積が減少するので、逆方向リーク電流を減少することが可能になる。この際、第4の実施形態のようにショットキー電極5をストライプ状に連続的に形成するよりもショットキー電極5の面積が減少するので、広がり抵抗が増加し、ドリフト層の抵抗は微増するという犠牲が生じるが、前記した逆方向リーク電流の減少効果は十分に大きい。
【0033】
<第6の実施形態>
図6(a)は、本発明の第6の実施形態に係るSBDにおけるショットキー電極5およびガードリングp層4の一部を取り出して模式的に示す斜視図である。
【0034】
図6(b)は、同図(a)中のA−A´線に沿う断面構造を模式的に示す断面図である。
【0035】
図6(a)、(b)に示すSBDは、図5(a)、(b)を参照して前述した第4の実施形態に係るSBDと比べて、基本構造は同一であるが、ストライプ方向における島状のショットキー電極5高密度で配列されており、その配列方向において隣り合うガードリングp層4の一端部同士が連なるように形成されている点が異なる。
【0036】
したがって、リーク電流の抑制に関しては第5の実施形態と同様な効果が得られ、第5の実施形態と比べて、ショットキー電極5の面積が増加するので広がり抵抗を小さくすることができ、ドリフト層の抵抗の増加を抑制することが可能になる。
【0037】
<第7の実施形態>
図7は、本発明の第7の実施形態に係るSBDの一部を模式的に示す断面図である。
【0038】
このSBDは、図1(a)、(b)を参照して前述した第1の実施形態に係るSBDと基本構造は同一であるが、n−ドリフト層2とn+層3の各表面に形成された絶縁膜7上にもショットキー電極5が形成されている点に特徴がある。
【0039】
このようにショットキー電極5が絶縁膜7を介してn−ドリフト層2とn+層3の各表面上を覆うように形成されている構造によれば、絶縁膜7上のショットキー電極5がフィールドプレートの役目をするので、耐圧を十分に確保し、リーク電流を抑制することが可能になる。
【0040】
因みに、耐圧40Vの素子の場合、絶縁膜7として例えば厚さが100nmの酸化膜で形成することができる。
【0041】
<第8の実施形態>
図8は、本発明の第8の実施形態に係るSBDの一部を取り出して模式的に示す断面図である。
【0042】
このSBDは、図4を参照して前述した第4の実施形態に係るSBDと比べて、基本構造は同一であるが、ショットキー電極5およびその側端部のガードリングp層4を囲むように形成されているn−ドリフト層2の外周を取り囲むようにn+層3が形成されている点が異なる。
【0043】
このようにn+層3が素子の外周を取り囲む構造によれば、素子の終端部処理が不要となり、チップ面積を有効に使用することが可能になる。
【0044】
<第9の実施形態>
図9(a)乃至(g)は、第9の実施形態に係るSBDのプロセスフローの一部を模式的に示す断面図である。
【0045】
まず、n+基板1上にn−ドリフト層2が形成された元基板を形成し、全面にマスク材のパターン91を形成し、表面の一部からn+基板1まで達する溝92を選択的に形成し、この溝92内をn+にドーピングされた多結晶シリコン(n+層)3で埋め込む。
【0046】
次に、全面に例えば酸化膜7のパターンを形成し、n−ドリフト層2の中間深さまで達する溝93を選択的に形成し、上面からp型不純物のイオン注入を行う。この際、酸化膜7がイオン注入をブロックするマスクとなるので、溝93の底面周辺部のみに選択的にガードリングp層4が形成される。
【0047】
そして、ショットキー電極5を形成するための金属を全面に堆積するとともに溝93内に埋め込み、最後に裏面にカソード電極6を形成する。
【0048】
上記したように、前記n+層3を形成する際、溝92内の埋め込み材料に多結晶シリコンを用いることにより埋め込みが容易となる。これに対して、溝92を形成した後に上面からイオン注入を行い、拡散してもよいが、n−ドリフト層2に対してn+層3が占める割合が大きくなる。
【0049】
また、n+層3を形成する際、溝92を形成した後に斜め方向からイオン注入を行って溝92の内壁に沿ってn+層3を形成し、さらに溝92内を絶縁物もしくは金属で埋め込んでもよい。
【0050】
なお、前記溝を形成する際、ドライエッチングを用いてもアルカリ系エッチャントを用いたウェットエッチングでもよいが、ショットキー電極埋め込み用の溝93を形成する際にドライエッチングを用いると、溝93の内壁にエッチングのダメージにより欠陥が発生する。このままの状態でショットキー電極金属を蒸着してショットキー接合を形成すると、ショットキー接合面に含まれる欠陥に起因して逆方向リーク電流が増加してしまう。
【0051】
そこで、本発明において溝を形成する際にドライエッチングを用いる場合は、エッチングで発生した欠陥を含むエッチング表面をショットキー接合面とせず、エッチング表面の結晶欠陥を取り除くために、溝93内に蒸着されたショットキー電極金属を熱処理によりシリコン内に拡散させ、エッチング面でなくシリコン内側にショットキー接合面を形成する。これにより、欠陥の少ないショットキー接合を形成し、エッチングダメージによる逆方向リーク電流の増加を抑制することが可能になる。
【0052】
なお、金属のシリコン内部への拡散の度合いは金属の種類により決まるので、ショットキー電極金属としては、高温熱処理を加えることで金属蒸着面からシリコン内部への拡散が生じ、且つ、ショットキー接合を形成することが可能なCo、Ni、V、Pt等のいずれかを用いることが望ましい。
【0053】
<第10の実施形態>
図10は、本発明の第10の実施形態に係るSBDの一部を取り出して模式的に示す断面図である。
【0054】
このSBDは、例えば図1を参照して前述した第1の実施形態に係るSBDなどと比べて、ドリフト層にスーパージャンクション(超接合)構造と呼ばれるリサーフ構造を埋め込んだ構造を有する点が異なる。
【0055】
即ち、n−ドリフト層2上のショットキー電極5とn+層3の間との間で、n−ドリフト層2よりも高不純物濃度のn層8およびp層9が深さ方向において周期的に形成されている。
【0056】
このようにドリフト層部分にn−ドリフト層2よりも高濃度のn層8を有するスーパージャンクション構造によれば、ドリフト層の抵抗をさらに下げることができるので、図2を参照して前述したショットキー電極埋め込み用の溝の深さdとドリフト層の距離aの比を1.1以下としても、通常の縦型SBDよりもオン抵抗を小さくすることが可能になる。
【0057】
<第11の実施形態>
図11は、本発明の第11の実施形態に係るSBDの一部を取り出して模式的に示す断面図である。
【0058】
このSBDは、例えば図1を参照して前述した第1の実施形態に係るSBDなどと比べて、n−ドリフト層2の上部をn層10、下部をp−層11に変更した点が異なる。
【0059】
このような構造によれば、ガードリングp層4とn層10とのpn接合面よりもp−層11とn+基板1およびn層3とのフラットな接合面を大きくすることができるので、電界集中を避け、耐量を増加することが可能である。
【0060】
<第12の実施形態>
図12は、本発明の第12の実施形態に係るSBDの一部を取り出して模式的に示す断面図である。
【0061】
このSBDは、図11を参照して前述した第11の実施形態に係るSBDと比べて、n層10のうちでショットキー電極埋め込み用の溝の側壁部付近を不純物濃度が低いn−層12に変更した点が異なる。
【0062】
このような構造によれば、ショットキー接合面に含まれる欠陥に起因する逆方向リーク電流を一層抑制することが可能である。
【0063】
なお、図1を参照して前述した第1の実施形態に係るSBDについても、ショットキー電極埋め込み用の溝の側壁部付近を不純物濃度が低いn−層に変更しても、ショットキー接合面に含まれる欠陥に起因する逆方向リーク電流を抑制することが可能である。
【0064】
<第13の実施形態>
MOSFETをスイッチング電源やインバータなどに応用する際、MOSFETとSBDを同一半導体チップ上に形成する場合がある。
【0065】
この場合、例えば図13に示す平面図のように、半導体チップ13上に前記各実施形態で説明したようなSBDの領域131とMOSFETの領域132とを絶縁分離して配置することが可能である。
【0066】
<第14の実施形態>
MOSFETとSBDを同一半導体チップ上で上下方向に重ねて形成するとともに両者を接続して使用する場合には、例えば図14に示す断面図のように、n−ドリフト層2に溝を形成して電極5およびn+層3を埋め込み、n−ドリフト層2の下部をSBD領域、上部をMOSFET領域に割り当てる。
【0067】
n−ドリフト層2の表層部で溝内に埋め込まれた電極5とn+層3との間の領域内に選択的にMOSFETの例えばPウエル領域14を形成し、その表層部で電極5に隣接するようにMOSFETのドレインまたはソースとなるn+領域15を形成する。そして、このn+領域15とn−ドリフト層2との間のPウエル領域表層部(チャネル領域)上にゲート絶縁膜16を介してゲート電極17を形成する。したがって、電極5の下部をSBDのショットキー電極、上部をSBDとMOSFETとの接続配線として用いている。
【0068】
<第15の実施形態>
図15は、本発明の第15の実施形態に係るSBDの一部を取り出して模式的に示す断面図である。
【0069】
このSBDは、例えば図7を参照して前述したSBDと比べて、横型構造である点は同じであるが、基本構造が若干異なる。
【0070】
即ち、p基板18上にn−ドリフト層2が形成され、その表面の一部からp基板18まで達するように形成された溝にショットキー電極5が埋め込まれている。このショットキー電極5は、n−ドリフト層2に対してショットキー接合を形成し、p基板18に対して電気的に接続されており、このp基板18の裏面にはアノード電極19が形成されている。
【0071】
そして、前記n−ドリフト層2の表面の一部から中間の深さまで形成された溝にn+層3が埋め込まれており、n−ドリフト層2とn+層3の各表面に形成された絶縁膜20上にカソード電極6が形成されており、このカソード電極6は前記絶縁膜20に形成されたコンタクトホールを通じてn+層3に電気的に接続されている。
【0072】
このような構造によれば、ショットキー電極5とp基板18との平坦な部分にダイオードの接合面が形成されるので、電界集中が発生し難くなり、かつ、ショットキー接合に加わる電界を小さくすることができ、逆方向リーク電流を抑制することが可能になる。
【0073】
図16(a)は、図15のSBDのレイアウトパターンの一部を示す平面図である。
【0074】
図16(b)は、同図(a)中のA−A´線に沿う断面構造を模式的に示す断面図である。
【0075】
図16(a)、(b)に示すSBDは、n−ドリフト層2の外周を取り囲むようにショットキー電極5が形成されている。
【0076】
このようにショットキー電極5が素子の外周を取り囲む構造によれば、アノード電極19と同電位になるショットキー接合で素子の外周が囲まれるので、素子の終端部構造が不要となり、素子面積の有効利用を図ることが可能になる。
【0077】
なお、図2に示したSBDと同様に、ショットキー電極5の深さをショットキー電極5とn+層3との間の距離よりも大きくすることにより、高電圧印加時にアバランシェ降伏がn+層3とp基板18との間で生じ、ホールが速やかにp基板18に流れ込むようになり、アバランシェ耐量を確保することが可能になる。
【0078】
また、ショットキー電極5とn+層3との間にスーパージャンクション構造を設けることにより、オン抵抗をさらに低くすることが可能になる。
【0079】
<第16の実施形態>
図17は、本発明の第16の実施形態に係るSBDの一部を取り出して模式的に示す断面図である。
【0080】
このSBDは、例えば図7を参照して前述したSBDと比べて、横型構造である点は同じであるが、アノード電極19とカソード電極6の両方が基板上面に取り出されている点が異なる。
【0081】
即ち、n−層2の表面の一部からそれぞれ中間の深さまで形成された溝にショットキー電極5およびn+層3が埋め込まれており、n−層2とn+層3の各表面に形成された絶縁膜20上にアノード電極19とカソード電極6が形成されている。アノード電極19は絶縁膜20に形成されたコンタクトホールを通じてショットキー電極5に電気的に接続されており、カソード電極6は絶縁膜20に形成されたコンタクトホールを通じてn+層3に電気的に接続されている。
【0082】
このような構造によれば、基板裏面より電極を取り出す必要がなくなり、高濃度のn+基板上にn−層をエピタキシャル成長させた半導体ウエハを用いる必要がない。
【0083】
また、化合物半導体を用いてSBDを形成する場合は、半絶縁性基板上にn−層2を形成しても上記構造を実施することが可能である。
【0084】
なお、本発明は、前記各実施形態に限定されるものではなく、第1の導電型をp型、第2の導電型をn型としても実施可能である。また、ショットキー電極5やn+層3およびそれらが埋め込まれている溝の平面パターンは、ストライプ状に限らず、格子状や千鳥状に形成してもよい。
【0085】
また、半導体としては、シリコン(Si)を用いた場合を説明したが、例えばシリコンカーバイト(SiC)や窒化ガリウム(GaN)等の化合物半導体やダイアモンド(C)を用いることができる。
【0086】
【発明の効果】
上述したように本発明の電力用半導体装置によれば、SBDの逆方向特性の劣化やチップ面積の増大を伴わずに、ドリフト層の抵抗を下げ、オン電圧を低減することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係るSBDの一部を示す断面図および平面図。
【図2】本発明の第2の実施形態に係るSBDのショットキー電極の深さdとn−ドリフト層のオン抵抗の関係の一例を示す特性図。
【図3】本発明の第3の実施形態に係るSBDの一部を示す断面図。
【図4】本発明の第4の実施形態に係るSBDにおけるショットキー電極およびガードリングp層とn+層の1組を含む一部を示す斜視図および図中のA−A´線、B−B´線に沿う断面図。
【図5】本発明の第5の実施形態に係るSBDにおけるショットキー電極およびガードリングp層の一部を示す斜視図および図中のA−A´線に沿う断面図。
【図6】本発明の第6の実施形態に係るSBDにおけるショットキー電極およびガードリングp層の一部を示す斜視図および図中のA−A´線に沿う断面図。
【図7】本発明の第7の実施形態に係るSBDの一部を示す断面図。
【図8】本発明の第8の実施形態に係るSBDの一部を示す断面図。
【図9】本発明の第9の実施形態に係るSBDのプロセスフローの一部を示す断面図。
【図10】本発明の第10の実施形態に係るSBDの一部を示す断面図。
【図11】本発明の第11の実施形態に係るSBDの一部を示す断面図。
【図12】本発明の第12の実施形態に係るSBDの一部を示す断面図。
【図13】本発明の第13の実施形態に係るSBDとMOSFETが同一チップ上に形成されている半導体装置を概略的に示す平面図。
【図14】本発明の第13の実施形態に係るSBDとMOSFETが同一半導体チップ上で上下方向に重ねられて形成されるとともに両者が接続されている半導体装置の一部を概略的に示す断面図。
【図15】本発明の第15の実施形態に係るSBDの一部を示す断面図。
【図16】図15のSBDのレイアウトパターンの一部を示す平面図および図中のA−A´線に沿う断面図。
【図17】本発明の第16の実施形態に係るSBDの一部を断面図。
【符号の説明】
1…n+基板(第1の半導体層)、
2…n−ドリフト層(第2の半導体層)、
3…n+層(第3の半導体層)、
4…ガードリングp層(第4の半導体層)、
5…ショットキー電極(第1の主電極)
6…オーミック電極(第2の主電極)、
7…絶縁膜。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power semiconductor device, and more particularly to a structure of a Shocky Barrier Diode (SBD), which is used for an SBD, an SBD-mounted MOS power transistor, and the like.
[0002]
[Prior art]
The on-voltage of the SBD is determined by the Schottky barrier height and the voltage drop of the drift layer (conducting layer) where electrons travel. To lower it, use a metal with a low Schottky barrier height or change the resistance of the drift layer. Need to lower.
[0003]
However, using a metal with a low Schottky barrier height increases the reverse leakage current of the diode. Further, the resistance of the drift layer has a trade-off relationship with the withstand voltage, and this trade-off is determined by the material. In order to reduce the resistance of the drift layer without changing the material, it is necessary to increase the chip area.
[0004]
[Problems to be solved by the invention]
As described above, the conventional SBD has a problem that when the on-voltage is reduced, the reverse characteristic is deteriorated due to the increase of the reverse leakage current and the chip area is increased due to the breakdown voltage.
[0005]
The present invention has been made to solve the above problems, and a power semiconductor device capable of reducing the resistance of the drift layer and reducing the on-voltage without deteriorating the reverse characteristics of the SBD and increasing the chip area. The purpose is to provide.
[0006]
[Means for Solving the Problems]
A power semiconductor device according to the present invention includes a first conductivity type first semiconductor layer and a first conductivity type first semiconductor layer formed on the first semiconductor layer and having an impurity concentration lower than that of the first semiconductor layer. Two semiconductor layers, a third semiconductor layer of the first conductivity type formed so as to reach the first semiconductor layer from the surface of the second semiconductor layer, and a predetermined amount from the surface of the second semiconductor layer. A fourth semiconductor layer of the second conductivity type formed at the periphery of the bottom of the groove formed to a depth of, and embedded in the groove and electrically connected to the fourth semiconductor layer, A first main electrode that forms a Schottky junction with the second semiconductor layer, and a second main electrode electrically connected to the first semiconductor layer are provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following embodiments, the first conductivity type is n-type and the second conductivity type is p-type. Moreover, the same code | symbol is attached | subjected to the same part in drawing.
[0008]
<First Embodiment>
FIG. 1A is a cross-sectional view schematically showing a part of the SBD according to the first embodiment of the present invention. Here, one of a number of SBD cells forming the SBD is taken out.
[0009]
FIG. 1B is a plan view showing a part of the layout pattern of the SBD of FIG.
[0010]
In the SBD shown in FIGS. 1A and 1B, the n + substrate 1 is formed from a part of the surface of the n− drift layer 2 formed as the second semiconductor layer on the n + substrate 1 which is the first semiconductor layer. The n + layer 3 is formed so as to reach the maximum.
[0011]
A p layer 4 serving as a guard ring is formed at the bottom of a groove (trench) formed from a part of the surface of the n-drift layer 2 to a predetermined depth. Inside the groove, A Schottky electrode 5 forming a Schottky junction is embedded in the n − drift layer 2. An ohmic electrode 6 is formed on the surface of the n + substrate.
[0012]
The n − drift layer 2 has a thickness of about 10 μm and an impurity concentration of 1 × 10 16 cm −3 , for example. The n + layer 3 is formed of, for example, polycrystalline silicon having an impurity concentration of about 1 × 10 20 cm −3 in a stripe shape having a width of 1 μm.
[0013]
The guard ring p-layer 4 is formed with a junction depth of 1 μm, for example, and the Schottky electrode 5 is formed in a stripe shape with a depth of 7.5 μm and a width of 1 μm, for example.
[0014]
As described above, the n + layer 3 reaching the n + substrate 1 and the Schottky electrode 5 reaching the middle of the n− drift layer 2 are formed in the groove in the surface portion of the n− drift layer 2, and the n + substrate 1 and the n + layer 3 are formed on the n + substrate 1. An SBD having a lateral structure in which an ohmic electrode 6 that is electrically connected is formed on the substrate surface is formed.
[0015]
According to the SBD having such a horizontal structure, the reverse characteristics do not change as compared with a normal vertical SBD. In addition, the area of the Schottky electrode to be joined to the drift layer is determined by the depth of the groove independently of the chip area, and by increasing the depth of the groove, the area of the Schottky electrode can be increased and the resistance of the drift layer can be lowered. A low on-voltage can be realized.
[0016]
Incidentally, according to the SBD of the above embodiment, the resistance of the drift layer can be lowered to about half that of a normal vertical SBD without increasing the chip area while maintaining a breakdown voltage of, for example, about 40V.
[0017]
<Second Embodiment>
The SBD according to the second embodiment has the same structure as the SBD according to the first embodiment described above with reference to FIGS.
[0018]
FIG. 2 is a characteristic diagram showing an example of the relationship between the trench depth d of the SBD and the on-resistance of the n− drift layer 2 according to the second embodiment of the present invention.
[0019]
As shown in FIG. 2, when the trench depth (Schottky junction depth) d is increased, the cross-sectional area of the n-drift layer 2 increases, and the resistance of the n-drift layer 2 decreases. Become. In this case, the drift layer cross-sectional area can be increased by setting the ratio of the trench depth d and the distance (the length of the n− drift layer 2) a between the Schottky electrode 5 and the n + layer 3 to 1.1 or more. The on-resistance of the n − drift layer 2 is lower than that of a normal vertical SBD, which is effective for lowering the on-voltage.
[0020]
<Third Embodiment>
FIG. 3 is a cross-sectional view schematically showing a part of the SBD according to the third embodiment of the present invention.
[0021]
This SBD has the same basic structure as that of the SBD according to the first embodiment described above with reference to FIGS. 1A and 1B, but the distance between the guard ring p layer 4 and the n + substrate 1 is a guard. It is characterized in that the structure is closer than the distance between the ring p layer 4 and the n + layer 3.
[0022]
According to such a structure, when a high voltage is applied, the electric field between the guard ring p layer 4 and the n + substrate 1 becomes high, and avalanche breakdown occurs. The holes and electrons generated at the time of breakdown flow quickly into the guard ring p layer 4 and the n + substrate 1 respectively and do not affect the Schottky junction, so that avalanche resistance is ensured.
[0023]
<Fourth Embodiment>
FIG. 4A is a perspective view schematically showing a part including one set of a Schottky electrode, a guard ring p layer, and an n + layer 3 in an SBD according to the fourth embodiment of the present invention.
[0024]
FIG. 4B is a cross-sectional view schematically showing a cross-sectional structure along the line AA ′ in FIG.
[0025]
FIG. 4C is a cross-sectional view schematically showing a cross-sectional structure along the line BB ′ in FIG.
[0026]
The SBD shown in FIGS. 4A, 4B, and 4C has the same basic structure as the SBD according to the first embodiment described above with reference to FIGS. 1A and 1B. There is a difference in that the guard ring p layer 4 is formed so as to extend to the peripheral portions of the opposing side wall portions forming the first pair inside the groove.
[0027]
Accordingly, the Schottky electrode 5 formed in a stripe shape forms a Schottky junction with the n-drift layer 2 at the opposing side wall portions forming the second pair inside the trench.
[0028]
Thus, by forming the guard ring p layer 4 so as to surround the bottom surface portion of the Schottky electrode 5 and the pair of side end surface portions, a Schottky junction is formed at the corner portions of the bottom surface and the side end surfaces of the Schottky electrode 5. Therefore, it is possible to avoid the concentration of the electric field at the end of the Schottky electrode 5 and to suppress an increase in reverse leakage current.
[0029]
<Fifth Embodiment>
FIG. 5A is a perspective view schematically showing a part of the Schottky electrode and the guard ring p layer in the SBD according to the fifth embodiment of the present invention.
[0030]
FIG. 5B is a cross-sectional view schematically showing a cross-sectional structure along the line AA ′ in FIG.
[0031]
The SBD shown in FIGS. 5 (a) and 5 (b) is intermittent in the length direction compared to the SBD according to the fourth embodiment described above with reference to FIGS. 4 (a) and 4 (b). Correspondingly, the Schottky electrode 5 embedded in the groove and the guard ring p layer 4 surrounding the bottom surface portion and the pair of side end surface portions are also formed in the island shape. Is different.
[0032]
Accordingly, since the area of the Schottky junction is reduced as compared with the case where the Schottky electrodes 5 are continuously formed in a stripe shape as in the fourth embodiment, the reverse leakage current can be reduced. At this time, since the area of the Schottky electrode 5 is reduced as compared with the case where the Schottky electrode 5 is continuously formed in a stripe shape as in the fourth embodiment, the spreading resistance is increased and the resistance of the drift layer is slightly increased. However, the effect of reducing the reverse leakage current is sufficiently large.
[0033]
<Sixth Embodiment>
FIG. 6A is a perspective view schematically showing a part of the Schottky electrode 5 and the guard ring p layer 4 in the SBD according to the sixth embodiment of the present invention.
[0034]
FIG. 6B is a cross-sectional view schematically showing a cross-sectional structure along the line AA ′ in FIG.
[0035]
The SBD shown in FIGS. 6A and 6B has the same basic structure as the SBD according to the fourth embodiment described above with reference to FIGS. islands Schottky electrode 5 in the direction are arranged at a high density, that it is formed as one end portions of the guard ring p layer 4 adjacent in the arrangement direction thereof is contiguous differ.
[0036]
Accordingly, the same effect as that of the fifth embodiment can be obtained with respect to the suppression of the leakage current, and the area of the Schottky electrode 5 is increased as compared with the fifth embodiment, so that the spreading resistance can be reduced and the drift can be reduced. It becomes possible to suppress an increase in the resistance of the layer.
[0037]
<Seventh Embodiment>
FIG. 7 is a cross-sectional view schematically showing a part of the SBD according to the seventh embodiment of the present invention.
[0038]
This SBD has the same basic structure as the SBD according to the first embodiment described above with reference to FIGS. 1A and 1B, but is formed on each surface of the n− drift layer 2 and the n + layer 3. The Schottky electrode 5 is also formed on the insulating film 7 formed.
[0039]
Thus, according to the structure in which the Schottky electrode 5 is formed so as to cover the surfaces of the n− drift layer 2 and the n + layer 3 through the insulating film 7, the Schottky electrode 5 on the insulating film 7 is Since it functions as a field plate, it is possible to secure a sufficient breakdown voltage and suppress a leakage current.
[0040]
Incidentally, in the case of an element having a withstand voltage of 40 V, the insulating film 7 can be formed of, for example, an oxide film having a thickness of 100 nm.
[0041]
<Eighth Embodiment>
FIG. 8 is a cross-sectional view schematically showing a part of the SBD according to the eighth embodiment of the present invention.
[0042]
The SBD has the same basic structure as the SBD according to the fourth embodiment described above with reference to FIG. 4, but surrounds the Schottky electrode 5 and the guard ring p layer 4 at the side end thereof. The difference is that the n + layer 3 is formed so as to surround the outer periphery of the n− drift layer 2.
[0043]
As described above, according to the structure in which the n + layer 3 surrounds the outer periphery of the element, the termination process of the element is unnecessary, and the chip area can be used effectively.
[0044]
<Ninth Embodiment>
FIGS. 9A to 9G are cross-sectional views schematically showing a part of the process flow of the SBD according to the ninth embodiment.
[0045]
First, an original substrate on which an n− drift layer 2 is formed is formed on an n + substrate 1, a mask material pattern 91 is formed on the entire surface, and a groove 92 extending from a part of the surface to the n + substrate 1 is selectively formed. The trench 92 is filled with polycrystalline silicon (n + layer) 3 doped with n +.
[0046]
Next, for example, a pattern of the oxide film 7 is formed on the entire surface, a groove 93 reaching the intermediate depth of the n − drift layer 2 is selectively formed, and ion implantation of p-type impurities is performed from the upper surface. At this time, since the oxide film 7 serves as a mask for blocking ion implantation, the guard ring p layer 4 is selectively formed only at the peripheral portion of the bottom surface of the groove 93.
[0047]
Then, a metal for forming the Schottky electrode 5 is deposited on the entire surface and buried in the groove 93, and finally the cathode electrode 6 is formed on the back surface.
[0048]
As described above, when the n + layer 3 is formed, the filling is facilitated by using polycrystalline silicon as the filling material in the groove 92. On the other hand, ion implantation may be performed from the upper surface after the trench 92 is formed and diffused, but the ratio of the n + layer 3 to the n− drift layer 2 is increased.
[0049]
Further, when forming the n + layer 3, even if the groove 92 is formed, ion implantation is performed from an oblique direction to form the n + layer 3 along the inner wall of the groove 92, and the groove 92 is filled with an insulator or metal. Good.
[0050]
When forming the groove, dry etching or wet etching using an alkaline etchant may be used. However, when dry etching is used when forming the groove 93 for embedding the Schottky electrode, the inner wall of the groove 93 is formed. In addition, defects occur due to etching damage. If a Schottky electrode metal is deposited in this state to form a Schottky junction, reverse leakage current increases due to defects included in the Schottky junction surface.
[0051]
Therefore, when dry etching is used in forming the groove in the present invention, the etching surface including defects generated by etching is not used as a Schottky junction surface, and vapor deposition is performed in the groove 93 in order to remove crystal defects on the etching surface. The formed Schottky electrode metal is diffused into the silicon by heat treatment to form a Schottky junction surface inside the silicon instead of the etched surface. As a result, a Schottky junction with few defects can be formed, and an increase in reverse leakage current due to etching damage can be suppressed.
[0052]
Since the degree of diffusion of metal into the silicon is determined by the type of metal, as a Schottky electrode metal, diffusion from the metal deposition surface into the silicon occurs by applying a high temperature heat treatment, and a Schottky junction is formed. It is desirable to use any of Co, Ni, V, Pt, etc. that can be formed.
[0053]
<Tenth Embodiment>
FIG. 10 is a cross-sectional view schematically showing a part of the SBD according to the tenth embodiment of the present invention.
[0054]
This SBD is different from the SBD according to the first embodiment described above with reference to FIG. 1 in that the resurf structure called a super junction structure is embedded in the drift layer.
[0055]
That is, between the Schottky electrode 5 on the n − drift layer 2 and the n + layer 3, the n layer 8 and the p layer 9 having a higher impurity concentration than the n − drift layer 2 are periodically formed in the depth direction. Is formed.
[0056]
In this way, according to the super junction structure having the n layer 8 having a higher concentration than the n − drift layer 2 in the drift layer portion, the resistance of the drift layer can be further reduced, so that the shot described above with reference to FIG. Even if the ratio of the depth d of the groove for embedding the key electrode to the distance a of the drift layer is 1.1 or less, the on-resistance can be made smaller than that of a normal vertical SBD.
[0057]
<Eleventh embodiment>
FIG. 11 is a cross-sectional view schematically showing a part of the SBD according to the eleventh embodiment of the present invention.
[0058]
This SBD is different from the SBD according to the first embodiment described above with reference to FIG. 1 in that the upper part of the n-drift layer 2 is changed to the n layer 10 and the lower part is changed to the p-layer 11. .
[0059]
According to such a structure, the flat junction surface between the p− layer 11, the n + substrate 1 and the n layer 3 can be made larger than the pn junction surface between the guard ring p layer 4 and the n layer 10. It is possible to avoid electric field concentration and increase the withstand capability.
[0060]
<Twelfth Embodiment>
FIG. 12 is a cross-sectional view schematically showing a part of the SBD according to the twelfth embodiment of the present invention.
[0061]
Compared to the SBD according to the eleventh embodiment described above with reference to FIG. 11, this SBD has an n− layer 12 having a lower impurity concentration in the vicinity of the sidewall of the Schottky electrode embedding groove in the n layer 10. The point that changed to is different.
[0062]
According to such a structure, it is possible to further suppress reverse leakage current caused by defects included in the Schottky junction surface.
[0063]
In the SBD according to the first embodiment described above with reference to FIG. 1, even if the vicinity of the side wall of the groove for embedding the Schottky electrode is changed to an n− layer having a low impurity concentration, the Schottky junction surface It is possible to suppress the reverse leakage current due to the defects included in.
[0064]
<13th Embodiment>
When a MOSFET is applied to a switching power supply or an inverter, the MOSFET and the SBD may be formed on the same semiconductor chip.
[0065]
In this case, for example, as shown in the plan view of FIG. 13, the SBD region 131 and the MOSFET region 132 as described in the above embodiments can be disposed on the semiconductor chip 13 while being insulated and separated. .
[0066]
<Fourteenth embodiment>
When the MOSFET and the SBD are formed on the same semiconductor chip so as to be stacked in the vertical direction and are used by connecting both, a groove is formed in the n-drift layer 2 as shown in the cross-sectional view of FIG. The electrode 5 and the n + layer 3 are embedded, and the lower part of the n− drift layer 2 is assigned to the SBD region and the upper part is assigned to the MOSFET region.
[0067]
For example, a P well region 14 of a MOSFET is selectively formed in a region between the electrode 5 embedded in the groove in the surface layer portion of the n − drift layer 2 and the n + layer 3, and adjacent to the electrode 5 in the surface layer portion. Thus, the n + region 15 that becomes the drain or source of the MOSFET is formed. Then, a gate electrode 17 is formed on the P well region surface layer portion (channel region) between the n + region 15 and the n− drift layer 2 via the gate insulating film 16. Therefore, the lower part of the electrode 5 is used as a SBD Schottky electrode, and the upper part is used as a connection wiring between the SBD and the MOSFET.
[0068]
<Fifteenth embodiment>
FIG. 15 is a cross-sectional view schematically showing a part of the SBD according to the fifteenth embodiment of the present invention.
[0069]
The SBD is the same as the SBD described above with reference to FIG. 7, for example, but has a slightly different basic structure.
[0070]
That is, the n − drift layer 2 is formed on the p substrate 18, and the Schottky electrode 5 is embedded in a groove formed so as to reach the p substrate 18 from a part of the surface thereof. The Schottky electrode 5 forms a Schottky junction with the n − drift layer 2 and is electrically connected to the p substrate 18. An anode electrode 19 is formed on the back surface of the p substrate 18. ing.
[0071]
An n + layer 3 is embedded in a groove formed from a part of the surface of the n− drift layer 2 to an intermediate depth, and an insulating film formed on each surface of the n− drift layer 2 and the n + layer 3. A cathode electrode 6 is formed on 20, and this cathode electrode 6 is electrically connected to the n + layer 3 through a contact hole formed in the insulating film 20.
[0072]
According to such a structure, the junction surface of the diode is formed on the flat portion between the Schottky electrode 5 and the p substrate 18, so that electric field concentration hardly occurs and the electric field applied to the Schottky junction is reduced. And reverse leakage current can be suppressed.
[0073]
FIG. 16A is a plan view showing a part of the layout pattern of the SBD of FIG.
[0074]
FIG. 16B is a cross-sectional view schematically showing a cross-sectional structure along the line AA ′ in FIG.
[0075]
In the SBD shown in FIGS. 16A and 16B, the Schottky electrode 5 is formed so as to surround the outer periphery of the n − drift layer 2.
[0076]
Thus, according to the structure in which the Schottky electrode 5 surrounds the outer periphery of the element, the outer periphery of the element is surrounded by the Schottky junction having the same potential as the anode electrode 19, so that the structure of the terminal portion of the element becomes unnecessary, and the element area is reduced. Effective use can be achieved.
[0077]
Similar to the SBD shown in FIG. 2, the depth of the Schottky electrode 5 is made larger than the distance between the Schottky electrode 5 and the n + layer 3, so that the avalanche breakdown is reduced when the high voltage is applied. And the p-type substrate 18 are generated, and the holes immediately flow into the p-type substrate 18 so that the avalanche resistance can be ensured.
[0078]
Further, by providing a super junction structure between the Schottky electrode 5 and the n + layer 3, the on-resistance can be further reduced.
[0079]
<Sixteenth Embodiment>
FIG. 17 is a cross-sectional view schematically showing a part of the SBD according to the sixteenth embodiment of the present invention.
[0080]
This SBD is the same as the SBD described above with reference to FIG. 7, for example, but is different in that both the anode electrode 19 and the cathode electrode 6 are taken out to the upper surface of the substrate.
[0081]
That is, the Schottky electrode 5 and the n + layer 3 are buried in a groove formed from a part of the surface of the n− layer 2 to an intermediate depth, and formed on each surface of the n− layer 2 and the n + layer 3. An anode electrode 19 and a cathode electrode 6 are formed on the insulating film 20. The anode electrode 19 is electrically connected to the Schottky electrode 5 through a contact hole formed in the insulating film 20, and the cathode electrode 6 is electrically connected to the n + layer 3 through a contact hole formed in the insulating film 20. ing.
[0082]
According to such a structure, it is not necessary to take out an electrode from the back surface of the substrate, and it is not necessary to use a semiconductor wafer in which an n− layer is epitaxially grown on a high concentration n + substrate.
[0083]
Moreover, when forming SBD using a compound semiconductor, the said structure can be implemented even if it forms the n <-> layer 2 on a semi-insulating board | substrate.
[0084]
The present invention is not limited to the above-described embodiments, and can be implemented even when the first conductivity type is p-type and the second conductivity type is n-type. Further, the planar pattern of the Schottky electrode 5 and the n + layer 3 and the groove in which they are embedded is not limited to the stripe shape, and may be formed in a lattice shape or a staggered shape.
[0085]
Further, although the case where silicon (Si) is used as the semiconductor has been described, for example, a compound semiconductor such as silicon carbide (SiC) or gallium nitride (GaN) or diamond (C) can be used.
[0086]
【The invention's effect】
As described above, according to the power semiconductor device of the present invention, the resistance of the drift layer can be lowered and the on-voltage can be reduced without deteriorating the reverse characteristics of the SBD and increasing the chip area.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view and a plan view showing a part of an SBD according to a first embodiment of the present invention.
FIG. 2 is a characteristic diagram showing an example of a relationship between a depth d of a Schottky electrode of an SBD and an on-resistance of an n-drift layer according to a second embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a part of an SBD according to a third embodiment of the present invention.
FIG. 4 is a perspective view showing a part including one set of a Schottky electrode and a guard ring p layer and an n + layer in an SBD according to a fourth embodiment of the present invention, and a line AA ′, B− in FIG. Sectional drawing which follows a B 'line.
FIG. 5 is a perspective view showing a part of a Schottky electrode and a guard ring p layer in an SBD according to a fifth embodiment of the present invention, and a cross-sectional view taken along the line AA ′ in the drawing.
FIG. 6 is a perspective view showing a part of a Schottky electrode and a guard ring p layer in an SBD according to a sixth embodiment of the present invention, and a sectional view taken along the line AA ′ in the drawing.
FIG. 7 is a cross-sectional view showing a part of an SBD according to a seventh embodiment of the present invention.
FIG. 8 is a sectional view showing a part of an SBD according to an eighth embodiment of the present invention.
FIG. 9 is a cross-sectional view showing a part of a process flow of an SBD according to a ninth embodiment of the present invention.
FIG. 10 is a cross-sectional view showing a part of an SBD according to a tenth embodiment of the present invention.
FIG. 11 is a sectional view showing a part of an SBD according to an eleventh embodiment of the present invention.
FIG. 12 is a cross-sectional view showing a part of an SBD according to a twelfth embodiment of the present invention.
FIG. 13 is a plan view schematically showing a semiconductor device in which an SBD and a MOSFET according to a thirteenth embodiment of the present invention are formed on the same chip.
FIG. 14 is a cross-sectional view schematically showing a part of a semiconductor device in which an SBD and a MOSFET according to a thirteenth embodiment of the present invention are formed in the vertical direction on the same semiconductor chip and connected to each other Figure.
FIG. 15 is a sectional view showing a part of an SBD according to a fifteenth embodiment of the present invention.
16 is a plan view showing a part of the layout pattern of the SBD of FIG. 15 and a cross-sectional view taken along the line AA ′ in the drawing.
FIG. 17 is a cross-sectional view of a part of an SBD according to a sixteenth embodiment of the present invention.
[Explanation of symbols]
1 ... n + substrate (first semiconductor layer),
2 ... n-drift layer (second semiconductor layer),
3 ... n + layer (third semiconductor layer),
4 ... guard ring p layer (fourth semiconductor layer),
5 ... Schottky electrode (first main electrode)
6 ... Ohmic electrode (second main electrode),
7: Insulating film.

Claims (19)

第1導電型の第1の半導体層と、
前記第1の半導体層上に形成され、前記第1の半導体層よりも不純物濃度が低い第1導電型の第2の半導体層と、
前記第2の半導体層の表面から前記第1の半導体層に達するように形成された第1導電型の第3の半導体層と、
前記第2の半導体層の表面から所定の深さまで形成された溝の底部の周辺部に形成された第2導電型の第4の半導体層と、
前記溝の内部に埋め込まれて前記第4の半導体層と電気的に接続され、前記第2の半導体層とショットキー接合を形成する第1の主電極と、
前記第1の半導体層に電気的に接続された第2の主電極
とを具備することを特徴とする電力用半導体装置。
A first semiconductor layer of a first conductivity type;
A second semiconductor layer of a first conductivity type formed on the first semiconductor layer and having an impurity concentration lower than that of the first semiconductor layer;
A third semiconductor layer of a first conductivity type formed so as to reach the first semiconductor layer from the surface of the second semiconductor layer;
A second conductivity type fourth semiconductor layer formed at the periphery of the bottom of the groove formed from the surface of the second semiconductor layer to a predetermined depth;
A first main electrode embedded in the trench and electrically connected to the fourth semiconductor layer to form a Schottky junction with the second semiconductor layer;
A power semiconductor device comprising: a second main electrode electrically connected to the first semiconductor layer.
前記溝の深さと前記第1の主電極・第3の半導体層間の距離との比が1.1以上であることを特徴とする請求項1記載の電力用半導体装置。  2. The power semiconductor device according to claim 1, wherein a ratio of the depth of the groove to the distance between the first main electrode and the third semiconductor layer is 1.1 or more. 前記第4の半導体層と前記第1の半導体層との間の距離が、前記第1の主電極・第3の半導体層間の距離よりも短いことを特徴とする請求項1または2記載の電力用半導体装置。  3. The electric power according to claim 1, wherein a distance between the fourth semiconductor layer and the first semiconductor layer is shorter than a distance between the first main electrode and the third semiconductor layer. Semiconductor device. 前記第4の半導体層は、前記溝の内部の第1の対をなす相対する側壁部の周辺部まで延びるように形成されており、前記第1の主電極は、前記溝の内部の第2の対をなす相対する側壁部で前記第2の半導体層とショットキー接合を形成していることを特徴とする請求項1乃至3のいずれか1項に記載の電力用半導体装置。  The fourth semiconductor layer is formed so as to extend to the peripheral portions of the opposing side wall portions forming the first pair inside the groove, and the first main electrode is a second inside the groove. 4. The power semiconductor device according to claim 1, wherein a Schottky junction is formed with the second semiconductor layer at opposite side wall portions forming a pair of the first semiconductor layer and the second semiconductor layer. 5. 前記溝は、その長さ方向において間欠的に分断された島状に形成されていることを特徴とする請求項4記載の電力用半導体装置。  5. The power semiconductor device according to claim 4, wherein the groove is formed in an island shape intermittently divided in a length direction thereof. 前記第2の半導体層および前記第3の半導体層の各表面に形成された絶縁膜をさらに具備し、前記第1の主電極が前記絶縁膜の表面を覆っていることを特徴とする請求項1乃至5のいずれか1項に記載の電力用半導体装置。  The insulating film formed on each surface of the second semiconductor layer and the third semiconductor layer is further provided, and the first main electrode covers the surface of the insulating film. The power semiconductor device according to any one of 1 to 5. 前記第3の半導体層は、前記溝の内部の前記第1の主電極および第4の半導体層を囲むように形成されている前記第2の半導体層の外周を取り囲むように形成されていることを特徴とする請求項1乃至6のいずれか1項に記載の電力用半導体装置。  The third semiconductor layer is formed so as to surround an outer periphery of the second semiconductor layer formed so as to surround the first main electrode and the fourth semiconductor layer inside the groove. The power semiconductor device according to claim 1, wherein: 前記第3の半導体層は、多結晶半導体で形成されていることを特徴とする請求項1乃至7のいずれか1項に記載の電力用半導体装置。  The power semiconductor device according to claim 1, wherein the third semiconductor layer is formed of a polycrystalline semiconductor. 前記第1の主電極は、前記溝の内部に堆積された後に高温熱処理を加えられることにより前記半導体層へ拡散し、金属蒸着面よりも半導体層側でショットキー接合が形成される金属で形成されていることを特徴とする請求項1乃至8のいずれか1項に記載の電力用半導体装置。  The first main electrode is formed of a metal that is deposited in the groove and then diffused into the semiconductor layer by being subjected to a high-temperature heat treatment, so that a Schottky junction is formed on the semiconductor layer side of the metal deposition surface. The power semiconductor device according to claim 1, wherein the power semiconductor device is a power semiconductor device. 前記金属は、Co、Ni、Pt、Vのいずれかが用いられていることを特徴とする請求項9記載の電力用半導体装置。  10. The power semiconductor device according to claim 9, wherein any one of Co, Ni, Pt, and V is used as the metal. 前記第2の半導体層の内部で深さ方向において前記第2の半導体層における前記ショットキー電極と前記第3の半導体層との間の部分に周期的に埋め込まれた第1導電型の第5の半導体層および第2導電型の第6の半導体層を含むスーパージャンクション構造が設けられたことを特徴とする請求項1乃至10のいずれか1項に記載の電力用半導体装置。A first conductivity type fifth element periodically embedded in a portion of the second semiconductor layer between the Schottky electrode and the third semiconductor layer in the depth direction inside the second semiconductor layer. 11. The power semiconductor device according to claim 1, further comprising a super junction structure including a second semiconductor layer and a second conductivity type sixth semiconductor layer. 11. 前記第4の半導体層と前記第1の半導体層との間で前記第3の半導体層側に延在するように設けられた第2導電型の第7の半導体層をさらに具備することを特徴とする請求項1乃至10のいずれか1項に記載の電力用半導体装置。 And a second conductivity type seventh semiconductor layer provided to extend to the third semiconductor layer side between the fourth semiconductor layer and the first semiconductor layer. The power semiconductor device according to any one of claims 1 to 10. 前記第2の半導体層において前記溝の側壁部付近に隣接する部分の不純物濃度をそれ以外の部分の不純物濃度よりも低くしたことを特徴とする請求項12記載の電力用半導体装置。  13. The power semiconductor device according to claim 12, wherein an impurity concentration in a portion adjacent to the vicinity of the side wall portion of the groove in the second semiconductor layer is made lower than an impurity concentration in other portions. 同一半導体チップ上に、MOSFETの形成領域と請求項1乃至13のいずれか1項に記載の構造を有するSBDの形成領域が絶縁分離されて配置されていることを特徴とする電力用半導体装置。  A power semiconductor device, wherein a MOSFET formation region and an SBD formation region having the structure according to any one of claims 1 to 13 are disposed on the same semiconductor chip so as to be insulated and separated. 前記第2の半導体層の表面に前記第1の主電極に接するように形成された第2導電型の第8の半導体層と、
前記第8の半導体層の表面に前記第1の主電極に接するように形成された第1導電型の第9の半導体層と、
前記第9の半導体層と前記第2の半導体層との間の前記第8の半導体層の表層部上にゲート絶縁膜を介して形成されたMOSFETのゲート電極をさらに具備することを特徴とする請求項1乃至13のいずれか1項に記載の電力用半導体装置。
An eighth semiconductor layer of a second conductivity type formed on the surface of the second semiconductor layer so as to be in contact with the first main electrode;
A ninth semiconductor layer of a first conductivity type formed on the surface of the eighth semiconductor layer so as to be in contact with the first main electrode;
And a MOSFET gate electrode formed on a surface layer portion of the eighth semiconductor layer between the ninth semiconductor layer and the second semiconductor layer via a gate insulating film. The power semiconductor device according to claim 1.
第1導電型の第1の半導体層と、
前記第1の半導体層上に形成された第2導電型の第2の半導体層と、
前記第2の半導体層の表面から所定の深さまで形成され、前記第2の半導体層よりも不純物濃度が高い第2導電型の第3の半導体層と、
前記第2の半導体層の表面から前記第1の半導体層に達するように形成された溝の内部に埋め込まれて前記第1の半導体層と電気的に接続され、前記第2の半導体層とショットキー接合を形成するショットキー電極と、
前記第2の半導体層および前記第3の半導体層の各表面に形成された絶縁膜と、
前記第1の半導体層に電気的に接続された第1の主電極と、
前記絶縁膜に形成されたコンタクトホールを通じて前記第3の半導体層に電気的に接続された第2の主電極
とを具備することを特徴とする電力用半導体装置。
A first semiconductor layer of a first conductivity type;
A second conductivity type second semiconductor layer formed on the first semiconductor layer;
A third semiconductor layer of a second conductivity type formed from the surface of the second semiconductor layer to a predetermined depth and having a higher impurity concentration than the second semiconductor layer;
Embedded in a groove formed so as to reach the first semiconductor layer from the surface of the second semiconductor layer and electrically connected to the first semiconductor layer, and shot with the second semiconductor layer A Schottky electrode forming a key junction;
An insulating film formed on each surface of the second semiconductor layer and the third semiconductor layer;
A first main electrode electrically connected to the first semiconductor layer;
A power semiconductor device comprising: a second main electrode electrically connected to the third semiconductor layer through a contact hole formed in the insulating film.
前記ショットキー電極の深さは、当該ショットキー電極と前記第3の半導体層との間の距離よりも大きいことを特徴とする請求項16記載の電力用半導体装置。  17. The power semiconductor device according to claim 16, wherein a depth of the Schottky electrode is larger than a distance between the Schottky electrode and the third semiconductor layer. 前記第2の半導体層の内部で深さ方向において前記第2の半導体層における前記ショットキー電極と前記第3の半導体層との間の部分に周期的に埋め込まれた第1導電型の第4の半導体層および第2導電型の第5の半導体層を含むスーパージャンクション構造が設けられたことを特徴とする請求項16または17記載の電力用半導体装置。A first conductivity type fourth periodically embedded in a portion of the second semiconductor layer between the Schottky electrode and the third semiconductor layer in the depth direction inside the second semiconductor layer. 18. The power semiconductor device according to claim 16 , further comprising a super junction structure including the second semiconductor layer and the second conductivity type fifth semiconductor layer . 前記ショットキー電極は、前記第2の半導体層の外周を取り囲むように形成されていることを特徴とする請求項16乃至18のいずれか1項に記載の電力用半導体装置。  The power semiconductor device according to claim 16, wherein the Schottky electrode is formed so as to surround an outer periphery of the second semiconductor layer.
JP2001335530A 2001-10-31 2001-10-31 Power semiconductor device Expired - Fee Related JP3998454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001335530A JP3998454B2 (en) 2001-10-31 2001-10-31 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001335530A JP3998454B2 (en) 2001-10-31 2001-10-31 Power semiconductor device

Publications (2)

Publication Number Publication Date
JP2003142698A JP2003142698A (en) 2003-05-16
JP3998454B2 true JP3998454B2 (en) 2007-10-24

Family

ID=19150508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001335530A Expired - Fee Related JP3998454B2 (en) 2001-10-31 2001-10-31 Power semiconductor device

Country Status (1)

Country Link
JP (1) JP3998454B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253012B2 (en) * 2004-09-14 2007-08-07 Agere Systems, Inc. Guard ring for improved matching
US7696598B2 (en) * 2005-12-27 2010-04-13 Qspeed Semiconductor Inc. Ultrafast recovery diode
JP2009253122A (en) * 2008-04-09 2009-10-29 Nippon Telegr & Teleph Corp <Ntt> Rectifier element
US7893754B1 (en) 2009-10-02 2011-02-22 Power Integrations, Inc. Temperature independent reference circuit
US8634218B2 (en) 2009-10-06 2014-01-21 Power Integrations, Inc. Monolithic AC/DC converter for generating DC supply voltage
US8310845B2 (en) 2010-02-10 2012-11-13 Power Integrations, Inc. Power supply circuit with a control terminal for different functional modes of operation
DE102010043088A1 (en) * 2010-10-29 2012-05-03 Robert Bosch Gmbh Semiconductor arrangement with Schottky diode
JP2012204480A (en) * 2011-03-24 2012-10-22 Toshiba Corp Semiconductor device and manufacturing method of the same
JP2013069817A (en) * 2011-09-21 2013-04-18 Toshiba Corp Semiconductor device
JP6021246B2 (en) * 2012-05-09 2016-11-09 ローム株式会社 Semiconductor device and manufacturing method thereof
US9455621B2 (en) 2013-08-28 2016-09-27 Power Integrations, Inc. Controller IC with zero-crossing detector and capacitor discharge switching element
US9667154B2 (en) 2015-09-18 2017-05-30 Power Integrations, Inc. Demand-controlled, low standby power linear shunt regulator
US9602009B1 (en) 2015-12-08 2017-03-21 Power Integrations, Inc. Low voltage, closed loop controlled energy storage circuit
US9629218B1 (en) 2015-12-28 2017-04-18 Power Integrations, Inc. Thermal protection for LED bleeder in fault condition
JP7067698B2 (en) * 2017-11-24 2022-05-16 国立研究開発法人産業技術総合研究所 Semiconductor device
JP7029711B2 (en) * 2017-11-29 2022-03-04 国立研究開発法人産業技術総合研究所 Semiconductor device

Also Published As

Publication number Publication date
JP2003142698A (en) 2003-05-16

Similar Documents

Publication Publication Date Title
US7649223B2 (en) Semiconductor device having superjunction structure and method for manufacturing the same
US10217858B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP5449094B2 (en) Semiconductor device
US7489011B2 (en) Semiconductor device containing dielectrically isolated PN junction for enhanced breakdown characteristics
JP6320545B2 (en) Semiconductor device
US7808003B2 (en) Silicon carbide semiconductor device
US7781786B2 (en) Semiconductor device having a heterojunction diode and manufacturing method thereof
TWI544648B (en) Planar srfet using no additional masks and layout method
EP1699083B1 (en) Termination for SIC trench devices
JP3721172B2 (en) Semiconductor device
JP5586887B2 (en) Semiconductor device and manufacturing method thereof
JP4456013B2 (en) Semiconductor device
JP6532549B2 (en) Semiconductor device
JP7243094B2 (en) semiconductor equipment
JP3998454B2 (en) Power semiconductor device
US9825164B2 (en) Silicon carbide semiconductor device and manufacturing method for same
JP2019071313A (en) Semiconductor device
WO2003019623A2 (en) Trench dmos transistor with embedded trench schottky rectifier
JPH03289176A (en) Semiconductor device
JP5878331B2 (en) Semiconductor device and manufacturing method thereof
JP7006280B2 (en) Semiconductor device
CN216980573U (en) Semiconductor field effect transistor and electronic equipment
JP7155641B2 (en) semiconductor equipment
JP2019096794A (en) Semiconductor device
CN116741828A (en) Trench gate transistor assembly

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070807

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees