JP3997868B2 - Internal combustion engine having supercharging scavenging means - Google Patents

Internal combustion engine having supercharging scavenging means Download PDF

Info

Publication number
JP3997868B2
JP3997868B2 JP2002270317A JP2002270317A JP3997868B2 JP 3997868 B2 JP3997868 B2 JP 3997868B2 JP 2002270317 A JP2002270317 A JP 2002270317A JP 2002270317 A JP2002270317 A JP 2002270317A JP 3997868 B2 JP3997868 B2 JP 3997868B2
Authority
JP
Japan
Prior art keywords
internal combustion
scavenging
combustion engine
supercharger
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002270317A
Other languages
Japanese (ja)
Other versions
JP2004108212A (en
Inventor
直也 高木
幸弘 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002270317A priority Critical patent/JP3997868B2/en
Publication of JP2004108212A publication Critical patent/JP2004108212A/en
Application granted granted Critical
Publication of JP3997868B2 publication Critical patent/JP3997868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関に係り、特に過給機を備え、過給機ロータが電動手段によっても駆動されるようになっている内燃機関の改良に係わる。
【0002】
【従来の技術】
【特許文献1】
特開平6−280723
内燃機関の排気によりタービンを駆動し、該タービンにより圧縮機インペラを駆動して内燃機関の吸気を圧縮することにより内燃機関の出力を静的排気量に比して増大させる過給の技術は古くから知られている。また機関の始動時に於ける如く機関排気によりタービンが発生する動力のみによっては吸気の十分な圧縮が得られないとき等に過給機ロータを電動機によっても駆動できるよう、過給機に電動手段を組み込むことも、例えば上記の特開平6−280723に記載されている如く知られている。
【0003】
【発明が解決しようとする課題】
ところで、現今の内燃機関、特にその大半を占める車両用内燃機関の殆どは、燃料を燃料噴射弁により供給する燃料噴射式のものである。燃料噴射式内燃機関が停止されると、その燃料噴射ポンプより燃料噴射弁に至る燃料加圧供給系内には暫時燃料圧が残留する。内燃機関の燃料噴射弁は、燃料噴射口を弁体により開閉することによって燃料の噴射と非噴射の作動を仕分けるものであるが、それは機関の運転中にその区別を明確に行う機能を有していればよいものである。即ち、燃料噴射弁が開閉の切り換えを行うのは、4サイクルエンジンが低速回転中であるときでも2秒程度の時間内に1回開けばよいものであり、燃料噴射弁が閉状態を保つ時間は高々2秒程度である。従って、燃料噴射弁にはその閉状態に於ける密封度がさして高いことが要求されておらず、また実際にそれは高くない。
【0004】
そのため内燃機関が停止されると、燃料加圧供給系内に残留する燃料圧により燃料噴射弁の噴射口からは吸気系内へ向けて燃料の漏出が生じ、漏出燃料は機関の余熱により加熱されて蒸発し、燃料蒸気となって吸気系内に充満する。かかる状態にて内燃機関が再始動されると、吸気の空燃比が濃くなりすぎることから機関の始動性が低下し、始動直後の運転性が劣化し、また排気エミッションが悪化する。
【0005】
本発明は、燃料噴射式内燃機関に於いて生ずる上記の問題に着目し、内燃機関が電動手段付き過給機を備えているとき、これを有効に利用して機関再始動性、再始動直後の運転性、および排気エミッションに関し内燃機関の性能を更に改善することを課題としている。
【0006】
【課題を解決するための手段】
上記の課題を解決するものとして、本発明は、過給機ロータが電動手段によっても駆動されるようになっている電動手段付き過給機を備えた内燃機関にして、機関が停止された後、吸気系内の燃料蒸気濃度が所定の第一のしきい値を越えてから或いは越えたと推定される所定時間をおいて前記過給機ロータを前記電動手段により駆動して吸気系を掃気する過給掃気手段を有することを特徴とする内燃機関を提供するものである。
【0007】
上記の如き内燃機関に於いて、過給掃気手段は機関停止中には開状態となる吸気絞り弁を含むか、過給機ロータを電動手段にて駆動する間吸気絞り弁を開く手段を含むか、或はまた、過給機ロータを電動手段にて駆動する間吸気絞り弁をバイパスする通路を形成するバイパス手段を含んでいてよい。
【0009】
また、上記の如き内燃機関に於いて、前記過給掃気手段は、過給機の電動駆動を開始した後、吸気系内の燃料蒸気濃度が所定の第二のしきい値以下に下がったとき過給機の電動駆動を停止するようになっていてよく、或いはまた、過給機の電動駆動を開始した後、吸気系内の燃料蒸気濃度が所定の第二のしきい値以下に下がったと推定される所定時間をおいて過給機の電動駆動を停止するようになっていてもよい。
【0010】
更にまた、内燃機関は可変タイミング式の吸気弁および排気弁と排気系に設けられたHC吸着浄化触媒とを有しており、過給掃気手段は電動手段を作動させるとき吸気弁および排気弁を開く制御を行うようになっていてよい。
【0011】
更にまた、内燃機関はクランクケース掃気弁を備えたクランクケース掃気系を有しており、過給掃気手段は電動手段を作動させるときクランクケース掃気弁を開く制御を行うようになっていてよい。
【0012】
更にまた、内燃機関は排気ガス再循環制御弁を備えた排気ガス再循環系と排気系に設けられたHC吸着浄化触媒とを有しており、過給掃気手段は電動手段を作動させるとき排気ガス再循環制御弁を開く制御を行うようになっていてよい。
【0013】
更にまた、内燃機関は吸気系に設けられた活性炭フィルタを有しており、過給掃気手段は電動手段を作動させるとき過給機ロータを逆転方向に駆動する制御を行うようになっていてよい。
【0014】
【発明の作用及び効果】
上記の如く内燃機関が電動手段付き過給機を備えているとき、更に機関が停止された後、過給機ロータを電動手段により駆動して吸気系を掃気する過給掃気手段を有していれば、機関が停止されたとき過給機を電動手段により適宜に作動させることにより燃料蒸気が吸気系内に充満することを防止することができる。現今の車両は通常マイクロコンピュータによる車輌運転制御装置を備えているので、上記の如き過給掃気手段は、車輌運転制御装置に追加の作動制御を行わせるソフト的な構成の追加により得られる。
【0015】
ただし、内燃機関の吸気系には通常吸気絞り弁が設けられているので、上記の如き過給掃気手段による吸気系の掃気を行うには、吸気絞り弁の部分にて空気が流通しなければならない。そのため上記の過給機による掃気が行われるためには、吸気絞り弁は機関の停止に伴って自然に開くか、またはそれに通風圧が作用すれば開く開状態となるよう構成されているか、過給機による掃気に当たって吸気絞り弁を開く制御が行われるか、或いは過給機が電動手段にて駆動される間吸気絞り弁をバイパスする通路を形成するバイパス手段を設ける等の前提が必要である。請求項1に記載の、機関が停止された後、過給機ロータを電動手段により駆動して吸気系を掃気する過給掃気手段とは、かかる前提を満たす何らかの対策を含むことを意味するものとする。
【0016】
内燃機関が停止されたとき燃料噴射弁の噴射口から吸気系内へ向けて燃料が漏出するのは時間の経過と共に徐々に進行する現象であり、また漏出した燃料が蒸発して燃料蒸気となるのにもそれなりの時間がかかる。一方、機関停止後の燃料噴射弁からの燃料漏洩により次回の機関始動性、始動直後の運転性或いは排気エミッションが実質的に悪い影響を受けるのは、吸気系にたまる燃料蒸気の量がある値以上に達したときであるので、それが問題となるのは、通常機関停止後数十分程度の時間が経過してからである。従って、機関停止の直後から過給機の電動駆動を開始したのでは、電力を無駄に消費することになる。
【0017】
この点に関し、過給掃気手段が、機関停止後、吸気系内の燃料蒸気濃度が所定の第一のしきい値を越えてから過給機の電動駆動を開始するよう、或いは、機関停止後、吸気系内の燃料蒸気濃度が所定の第一のしきい値を越えたと推定される所定時間をおいて過給機の電動駆動を開始するようになっていれば、無駄な電力の消費を避け、最小限度の電力消費にて機関再始動時の始動性、始動直後の運転性或は排気エミッションについて最大限の改善を達成することができる。
【0018】
また、機関再始動時に吸気系内に燃料蒸気が存在することにより始動性、始動直後の運転性或は排気エミッションが悪影響を受けるのは、燃料蒸気濃度がある程度以上高いときであるので、過給機の電動駆動が開始された後、吸気系内の燃料蒸気濃度が所定の第二のしきい値以下に下がったとき、或いは下がったと推定される所定時間をおいて過給機の電動駆動を停止するようになっていれば、電力消費を最小限に抑えて吸気系よりで燃料ガスを排出させる効果を達成することができる。
【0019】
多気筒内燃機関では、機関停止時に何れかの気筒にて吸気弁と排気弁とが同時に開いている状態が得られる確度は高いが、特に吸気弁および排気弁が可変タイミング式の弁であるときには、過給機による吸気系の掃気に当たって吸気弁および排気弁を開く制御を行うことにより、吸気系排気系の連通をより確実に達成することができる。
【0020】
また、特に内燃機関がクランクケース掃気弁を備えたクランクケース掃気系を有しているときには、過給掃気手段が電動手段を作動させるときクランクケース掃気弁を開く制御を行うようになっていれば、過給機の電動駆動による吸気系の掃気をより速やかにかつ効率よく行い、掃気された燃料蒸気をクランクケース内に収容することができる。またこうして収容された燃料蒸気は次に機関が運転されるとき、クランクケース掃気弁を適宜に制御することにより吸気中へ戻される。
【0021】
同様に、内燃機関が排気ガス再循環制御弁を備えた排気ガス再循環系と排気系に設けられたHC吸着浄化触媒とを有しており、過給掃気手段が電動手段を作動させるとき排気ガス再循環制御弁を開く制御を行うようになっていれば、過給機の電動駆動による吸気系の掃気をより速やかにかつ効率よく行い、掃気された燃料蒸気をHC吸着浄化触媒にて捕捉することができる。
【0022】
同様に、内燃機関が吸気系に設けられた活性炭フィルタを有しており、過給掃気手段が電動手段を作動させるとき過給機ロータを逆転方向に駆動するようになっていれば、過給機の電動駆動による吸気系の掃気をより速やかにかつ効率よく行い、掃気された燃料蒸気を活性炭フィルタにて捕捉することができる。またこうして捕捉された燃料蒸気は次に機関が運転されるとき有効に使用される。
【0023】
【発明の実施の形態】
添付の図1は本発明による過給掃気手段を有する内燃機関の一つの実施例を発明に関連する要部に於いてのみ解図的に示す概略図である。図に於いて10はシリンダ、12はピストン、14はピストンロッド、16はクランクシャフト、18はクランクケース、20は吸気ポート、22は排気ポートである。吸気ポート20は吸気弁24により開閉制御され、排気ポート22は排気弁26により開閉制御されるようになっている。吸気弁および排気弁は図示の実施例ではそれぞれ電磁駆動式の可変タイミングバルブとして構成されている。28は点火栓であり、30は燃料噴射弁である。
【0024】
32は過給機であり、排気ポート22より排出されてくる排気流により付勢されるタービンロータ34、一端にてこれを回転式に支持する軸36、その他端に担持されてタービンロータにより駆動される圧縮機インペラ38よりなる過給機ロータを備えている。そしてこの過給機ロータは電動手段40によっても駆動されるようになっている。圧縮機インペラ38は、タービンロータ34または電動手段40により駆動されると、エアフィルタ42を経て吸入された空気を加圧して吸気通路44へ送り込む。吸気通路44は吸気ポート20へ通じ、途中に吸気絞り弁46を備えている。図示の実施例では、吸気絞り弁は電磁作動式のものであり、機関の停止に伴ってその電源が切られると自動的に開状態になるよう構成されているか、または機関の停止に伴って図には示されていないがこの分野に於いては周知のマイクロコンピュータによる車輌運転制御装置の制御により開状態にもたらされるようになっていてよい。或はまた、図に併記的に示す如く、更に吸気通路44の一部に吸気絞り弁46をパイパスするパイパス通路48が設けられ、パイパス制御弁50によりその連通および遮断が制御されるようになっていてもよい。このパイパス通路は、過給機による吸気系の掃気が行われるとき、連通状態とされるものである。但し、以上に記載の吸気絞り弁が機関の停止に伴って自動的に開状態となる構造とされるか、機関の停止に伴って吸気絞り弁を開く制御が行なわれるか、吸気絞り弁に対しバイパス通路設けるかは、その内の少なくとも一つが用いられればよいものである。
【0025】
排気ポート22を出た排気は排気管52を経てタービンロータ34の周りに導かれ、タービンロータの回転を付勢した後、三元触媒コンバータ54およびHC吸着浄化触媒装置56を経て大気へ排出される。58は排気ガス再循環通路であり、60は排気ガス再循環制御弁である。図示の実施例に於いては更に吸気通路44より通路62がシリンダヘッド上部空間64へ向けて導かれており、途中にその開閉を制御するクランクケース掃気弁66が設けられている。シリンダヘッド上部空間64はクランクケースに通じている。68は特に機関停止中に吸気ポート20よりその上流側の吸気絞り弁46のあたりまでの吸気系中に於ける燃料蒸気の濃度を検出する燃料蒸気濃度センサである。
【0026】
内燃機関が停止されると、燃料噴射弁30からは時間の経過とともに概略図2のグラフに示すような漏洩量の変化を呈する燃料の漏洩が生ずる。漏洩量の大きさおよびその時間的経過は各燃料噴射弁によってかなり大きく異なるが、それがピーク値に達するのは一般に機関停止から数十分後である。かかる燃料の漏洩により吸気系内には概略図示の如き濃度経過をたどる燃料蒸気が発生する。尚、燃料蒸気濃度の経過を示す曲線のうち破線の部分は本発明による吸気系掃気が行われない場合である。
【0027】
上述の通り機関停止後の燃料噴射弁からの燃料漏洩により次回の機関始動性、始動直後の運転性或いは排気エミッションが実質的に悪い影響を受けるのは、吸気系にたまる燃料蒸気の量がある値以上に達したときである。従って、今その下限濃度がDv1であるとすると、燃料蒸気濃度センサ64により吸気系中の燃料蒸気濃度を検出し、過給機による吸気系掃気は燃料蒸気濃度がDv1まで上昇したところで開始されればよい。過給機による吸気系掃気が開始されると燃料蒸気濃度は図中実線にて示す如く低下する。吸気系に存在する燃料蒸気は、次回の機関始動時に無駄に消費されるわけではなく、またその分未燃のまま大気へ放出されるわけでもないので、過給機による吸気系の掃気は、燃料蒸気濃度がDv1より適当に低いDv2の如き値まで下がったところで中止されてよく、そうすることにより過給機の駆動に要する電力消費を最も効率の良い範囲に抑えることができる。
【0028】
上記の如き燃料蒸気濃度Dv1およびDv2による過給機の電動駆動の制御は、燃料噴射弁の特性、機関運転が停止される直前の機関の負荷状態、気候その他の条件に基づいて図には示されていないマイクロコンピュータを備えた車輌運転制御装置によりそれに対応すると推定される時間T1およびT2を計算することにより、そのような時間の経過に基づく制御に置き換えられてもよい。
【0029】
上記の燃料蒸気濃度Dv1およびDv2に基づく吸気系の掃気は図3のフローチャートに示す如き要領により行われてよい。即ち、この場合、上記の車輌運転制御装置による車輌運転制御の一環として吸気系掃気制御が開始されると、ステップを1にて機関が停止されたか否かがチェックされる。答がノーである間、制御はこのチェック状態に留まる。そして機関が停止され、答がイエスに転ずると、制御はステップ2へ進み、燃料蒸気濃度センサ64により検出される燃料蒸気濃度DvがDv1を越えたか否かが判断される。ここでも答がノーである間、制御はここに留まる。そして燃料噴射弁からの燃料の漏洩が進行し、またその蒸発が進行してDvがDv1を越えると、答がイエスに転ずることにより制御はステップ3へ進み、ここで過給機32を電動手段40により作動させる過給機電動駆動が開始される。こうして過給機の電動駆動による吸気系の掃気が開始されると、ステップ4に於いてこのフローチャートに於ける制御サイクル毎にDvがDv2以下に下がったか否かがチェックされる。答がノーである間、制御はここで留まり、過給機の電動駆動が続けられる。そして過給機による掃気によってやがてDvがDv2以下に下がると、答がイエスに転ずることにより制御はステップ5へ進み、過給機の電動駆動は終了とされる。
【0030】
図4は過給機による吸気系掃気の開始時期と終了時期を図2のT1およびT2により判断する場合の吸気系掃気制御の実施例を示す図3と同様のフローチャートである。この場合にも、制御が開始されると、ステップを101にて機関が停止されたか否かがチェックされる。答がノーである間、制御はこのチェック状態に留まる。そして機関が停止され、答がイエスに転ずると、制御はステップ102へ進み、燃料噴射弁の特性、機関停止直前の負荷状態、気候その他の条件に基づいて過給機の電動駆動を開始する時期T1とそれを終了する時期T2の計算が行われる。そして制御はステップ103へ進む。
【0031】
ステップ103に於いては機関停止後の経過時間TがT1を越えたか否かが判断される。答がノーである間、制御はここに留まる。機関停止からT1が経過し、答がイエスに転ずると、制御はステップ104へ進み、過給機を電動駆動することが開始される。こうして過給機の電動駆動が開始されると、ステップ105に於いてこのフローチャートに於ける制御サイクル毎にTがT2を越えたか否かがチェックされる。答がノーである間、制御はここで留まり、過給機の電動駆動が続けられる。そして機関停止から時間T2が経過し、答がイエスに転ずると制御はステップ106へ進み、過給機の電動駆動が終了とされる。
【0032】
図5は機関が停止されたとき、多気筒内燃機関であれば何れかの気筒に於いて吸気弁24と排気弁26とが共に開いた状態が生じていることを前提として、或いは吸気弁および排気弁が可変タイミング式の弁であるときには、タイミング制御により弁の開閉タイミングを臨時に修正することにより何れかの気筒に於いて吸気弁と排気弁とが共に開いた状態が作り出されるとして、図1に示した内燃機関に於いて、過給機の電動駆動により吸気系の掃気を行う場合の掃気の流れを示す概略図である。図中、掃気の流れは矢印にて示されている。この場合、掃気は吸気ポート20より排気ポート22へ流れ、排気通路52を通り、三元触媒コンバータ54およびHC吸着浄化触媒装置56にて捕捉される。
【0033】
図6は過給機が電動駆動されると同時にクランクケース制御弁66が開かれる場合の掃気の流れを示す同様の図である。同じく掃気の流れは矢印にて示されている。この場合、掃気は通路62を通ってシリンダ室上部空間64へ流れ、これより更にクランクケース18内に形成されたクランク室内へ流入し、そこに貯容される。
【0034】
図7は過給機が電動駆動されると同時に排気ガス再循環制御弁66が開かれる場合の掃気の流れを示す同様の図である。同じく掃気の流れは矢印にて示されている。この場合、掃気は排気ガス再循環通路58を通って排気通路52へ流れ、三元触媒コンバータ54およびHC吸着浄化触媒装置56にて捕捉される。
【0035】
図8は過給機ロータを逆転方向に電動駆動するよう過給機が電動駆動される場合を示す同様の図である。同じく掃気の流れは矢印にて示されている。この場合、吸気系内の燃料蒸気を含む空気は吸気系を逆方向に流れ、燃料蒸気は吸気通路に設けられた活性炭フィルタ42により捕捉される。尚、図には示されていないが、燃料タンクにて蒸発した燃料蒸気を捕捉して適宜吸気通路へ放出する活性炭キャニスタが設けられている場合には、かかる逆流掃気による燃料蒸気はそのようなキャニスタによって捕捉されてもよい。
【0036】
以上に於いては本発明をいくつかの実施例について詳細に説明したが、これらの実施例について本発明の範囲内にて種々の変更が可能であることは当業者にとって明らかであろう。
【図面の簡単な説明】
【図1】本発明による過給掃気手段を有する内燃機関の一つの実施例を発明に関連する要部に於いてのみ解図的に示す概略図。
【図2】内燃機関が停止されたときの燃料噴射弁からの燃料の漏洩と燃料蒸気発生の時間的経過を示すグラフ。
【図3】本発明の実施に於ける制御態様の一つの実施例を示すフローチャート。
【図4】本発明の実施に於ける制御態様の他の一つの実施例を示すフローチャート。
【図5】過給機の電動駆動により吸気弁と排気弁を経て吸気系の掃気を行なう場合の掃気の流れを示す内燃機関の概略図。
【図6】過給機が電動駆動されると共にクランクケース制御弁が開かれる場合の掃気の流れを示す内燃機関の概略図。
【図7】過給機が電動駆動されると共に排気ガス再循環制御弁が開かれる場合の掃気の流れを示す内燃機関の概略図。
【図8】過給機の逆転駆動により吸気系の掃気を行なう場合の掃気の流れを示す内燃機関の概略図。
【符号の説明】
10…シリンダ、12…ピストン、14…ピストンロッド、16…クランクシャフト、18…クランクケース、20…吸気ポート、22…排気ポート、24…吸気弁、26…排気弁、28…点火栓、30…燃料噴射弁、32…過給機、34…タービンロータ、36…軸、38…圧縮機インペラ、40…電動手段、42…エアフィルタ、44…吸気通路、46…吸気絞り弁、48…パイパス通路、50…パイパス制御弁、52…排気管、54…三元触媒コンバータ、56…HC吸着浄化触媒装置、58…排気ガス再循環通路、60…排気ガス再循環制御弁、62…通路、64…シリンダヘッド上部空間、66…クランクケース掃気弁、68…燃料蒸気濃度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an internal combustion engine, and more particularly, to an improvement of an internal combustion engine that includes a supercharger and in which a supercharger rotor is also driven by electric means.
[0002]
[Prior art]
[Patent Document 1]
JP-A-6-280723
The supercharging technology for increasing the output of the internal combustion engine relative to the static exhaust amount by driving the turbine by the exhaust of the internal combustion engine and compressing the intake air of the internal combustion engine by driving the compressor impeller by the turbine is old Known from. Further, when the engine is started, the supercharger is provided with electric means so that the supercharger rotor can be driven by the electric motor when sufficient compression of the intake air cannot be obtained only by the power generated by the turbine due to the engine exhaust. Incorporation is also known, for example, as described in JP-A-6-280723.
[0003]
[Problems to be solved by the invention]
By the way, most of the present internal combustion engines, particularly the vehicular internal combustion engines that occupy most of them, are of the fuel injection type in which fuel is supplied by a fuel injection valve. When the fuel injection type internal combustion engine is stopped, the fuel pressure remains for a while in the fuel pressurization supply system from the fuel injection pump to the fuel injection valve. The fuel injection valve of an internal combustion engine classifies the operation of fuel injection and non-injection by opening and closing the fuel injection port with a valve body, and it has the function of clearly distinguishing the operation during engine operation. It is good if it is. In other words, the fuel injection valve switches between opening and closing only when the four-cycle engine is rotating at a low speed, it only needs to be opened once within a period of about 2 seconds, and the fuel injection valve is kept closed. Is at most about 2 seconds. Therefore, the fuel injection valve is not required to have a high degree of sealing in its closed state, and in fact it is not high.
[0004]
Therefore, when the internal combustion engine is stopped, fuel leaks from the injection port of the fuel injection valve toward the intake system due to the fuel pressure remaining in the fuel pressurization supply system, and the leaked fuel is heated by the residual heat of the engine. It evaporates and fills the intake system as fuel vapor. When the internal combustion engine is restarted in such a state, the air-fuel ratio of the intake air becomes too high, so the startability of the engine is reduced, the drivability immediately after start-up is deteriorated, and the exhaust emission is deteriorated.
[0005]
The present invention pays attention to the above-mentioned problems that occur in a fuel injection type internal combustion engine. When the internal combustion engine has a supercharger with electric means, the engine can be restarted effectively and immediately after the restart. The problem is to further improve the performance of the internal combustion engine with respect to the operability of the engine and the exhaust emission.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides an internal combustion engine having a supercharger with electric means in which the supercharger rotor is also driven by electric means, and after the engine is stopped. The supercharger rotor is driven by the electric means to scavenge the intake system after a predetermined time estimated that the fuel vapor concentration in the intake system exceeds or exceeds a predetermined first threshold value. The present invention provides an internal combustion engine having supercharging scavenging means.
[0007]
In the internal combustion engine as described above, the supercharging scavenging means includes an intake throttle valve that is opened when the engine is stopped, or includes a means for opening the intake throttle valve while the supercharger rotor is driven by the electric means. Alternatively, it may include bypass means for forming a passage for bypassing the intake throttle valve while the supercharger rotor is driven by electric means.
[0009]
Further, in the internal combustion engine as described above, the supercharged scavenging means, when the fuel vapor concentration in the intake system falls below a predetermined second threshold value after starting the electric drive of the supercharger. The electric drive of the supercharger may be stopped, or, alternatively, after the electric drive of the supercharger is started, the fuel vapor concentration in the intake system falls below a predetermined second threshold value. the electric drive of Oite supercharger predetermined estimated time may be adapted to stop.
[0010]
Furthermore, the internal combustion engine has a variable timing intake valve and exhaust valve and an HC adsorption purification catalyst provided in the exhaust system, and the supercharging scavenging means operates the intake valve and exhaust valve when operating the electric means. The opening control may be performed.
[0011]
Furthermore, the internal combustion engine may have a crankcase scavenging system provided with a crankcase scavenging valve, and the supercharged scavenging means may perform control for opening the crankcase scavenging valve when operating the electric means.
[0012]
Furthermore, the internal combustion engine has an exhaust gas recirculation system provided with an exhaust gas recirculation control valve and an HC adsorption purification catalyst provided in the exhaust system, and the supercharged scavenging means exhausts when operating the electric means. Control to open the gas recirculation control valve may be performed.
[0013]
Furthermore, the internal combustion engine may have an activated carbon filter provided in the intake system, and the supercharged scavenging means may control to drive the supercharger rotor in the reverse direction when operating the electric means. .
[0014]
[Action and effect of the invention]
When the internal combustion engine is provided with a supercharger with electric means as described above, the supercharger scavenging means for scavenging the intake system by driving the supercharger rotor with the electric means after the engine is further stopped. Then, when the engine is stopped, it is possible to prevent the fuel vapor from filling the intake system by appropriately operating the supercharger by the electric means. Since a current vehicle is usually provided with a vehicle operation control device using a microcomputer, the supercharged scavenging means as described above can be obtained by adding a software configuration that causes the vehicle operation control device to perform additional operation control.
[0015]
However, since an intake throttle valve is usually provided in the intake system of the internal combustion engine, in order to perform scavenging of the intake system by the supercharged scavenging means as described above, air does not flow through the intake throttle valve portion. Don't be. Therefore, in order to perform scavenging by the supercharger, the intake throttle valve is configured to open naturally when the engine is stopped, or to be opened when the ventilation pressure acts on the intake throttle valve. It is necessary to perform control to open the intake throttle valve upon scavenging by the feeder, or to provide a bypass means for forming a passage that bypasses the intake throttle valve while the supercharger is driven by the electric means. . The supercharged scavenging means for scavenging the intake system by driving the supercharger rotor by electric means after the engine is stopped is meant to include some measure that satisfies this premise. And
[0016]
When the internal combustion engine is stopped, the fuel leaks from the injection port of the fuel injection valve into the intake system is a phenomenon that gradually progresses with time, and the leaked fuel evaporates into fuel vapor. But it takes some time. On the other hand, the next engine startability, drivability immediately after start-up or exhaust emission is substantially adversely affected by fuel leakage from the fuel injection valve after the engine is stopped. Since the time has been reached, it becomes a problem after a tens of minutes have elapsed since the normal engine stop. Therefore, if electric driving of the supercharger is started immediately after the engine is stopped, power is wasted.
[0017]
In this regard, after the engine is stopped, the supercharging scavenging means starts electric driving of the supercharger after the fuel vapor concentration in the intake system exceeds a predetermined first threshold value, or after the engine stops. If the fuel vapor concentration in the intake system is estimated to have exceeded the predetermined first threshold and the electric drive of the turbocharger is started after a predetermined time, unnecessary power consumption is reduced. The maximum improvement can be achieved with respect to startability at the time of engine restart, drivability immediately after start-up, or exhaust emission with minimum power consumption.
[0018]
In addition, the presence of fuel vapor in the intake system when the engine is restarted adversely affects startability, operability immediately after start-up, or exhaust emission when the fuel vapor concentration is higher than a certain level. When the fuel vapor concentration in the intake system falls below a predetermined second threshold after the start of the electric drive of the machine, or after a predetermined time estimated to have dropped, the electric drive of the turbocharger is If the engine is stopped, it is possible to achieve the effect of discharging the fuel gas from the intake system while minimizing the power consumption.
[0019]
In a multi-cylinder internal combustion engine, it is highly possible to obtain a state in which the intake valve and the exhaust valve are simultaneously open in any cylinder when the engine is stopped, but particularly when the intake valve and the exhaust valve are variable timing valves. By performing control to open the intake valve and the exhaust valve when scavenging the intake system by the supercharger, communication between the intake system and the exhaust system can be achieved more reliably.
[0020]
In particular, when the internal combustion engine has a crankcase scavenging system having a crankcase scavenging valve, if the supercharged scavenging means controls to open the crankcase scavenging valve when operating the electric means, In addition, scavenging of the intake system by electric drive of the supercharger can be performed more quickly and efficiently, and the scavenged fuel vapor can be accommodated in the crankcase. The fuel vapor thus stored is returned to intake air by appropriately controlling the crankcase scavenging valve when the engine is operated next time.
[0021]
Similarly, the internal combustion engine has an exhaust gas recirculation system having an exhaust gas recirculation control valve and an HC adsorption purification catalyst provided in the exhaust system, and the exhaust gas is exhausted when the supercharged scavenging means operates the electric means. If control is performed to open the gas recirculation control valve, scavenging of the intake system by electric drive of the turbocharger is performed more quickly and efficiently, and the scavenged fuel vapor is captured by the HC adsorption purification catalyst. can do.
[0022]
Similarly, if the internal combustion engine has an activated carbon filter provided in the intake system and the supercharged scavenging means drives the supercharger rotor in the reverse direction when operating the electric means, the supercharging The scavenging of the intake system by electric drive of the machine can be performed more quickly and efficiently, and the scavenged fuel vapor can be captured by the activated carbon filter. Also, the fuel vapor thus captured is effectively used the next time the engine is operated.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 of the accompanying drawings is a schematic view showing an embodiment of an internal combustion engine having a supercharged scavenging means according to the present invention only in an essential part related to the invention. In the figure, 10 is a cylinder, 12 is a piston, 14 is a piston rod, 16 is a crankshaft, 18 is a crankcase, 20 is an intake port, and 22 is an exhaust port. The intake port 20 is controlled to open and close by an intake valve 24, and the exhaust port 22 is controlled to open and close by an exhaust valve 26. In the illustrated embodiment, the intake valve and the exhaust valve are each configured as an electromagnetically driven variable timing valve. 28 is a spark plug and 30 is a fuel injection valve.
[0024]
A turbocharger 32 is a turbine rotor 34 that is energized by an exhaust flow discharged from the exhaust port 22, a shaft 36 that rotatably supports this at one end, and is supported by the other end and driven by the turbine rotor. A turbocharger rotor including a compressor impeller 38 is provided. The supercharger rotor is also driven by the electric means 40. When driven by the turbine rotor 34 or the electric means 40, the compressor impeller 38 pressurizes air sucked through the air filter 42 and feeds it into the intake passage 44. The intake passage 44 communicates with the intake port 20 and includes an intake throttle valve 46 in the middle. In the illustrated embodiment, the intake throttle valve is electromagnetically operated and is configured to automatically open when the power is turned off as the engine stops, or as the engine stops. Although not shown in the drawing, it may be brought into an open state by control of a vehicle operation control device by a well-known microcomputer in this field. Alternatively, as shown in the figure, a bypass passage 48 for bypassing the intake throttle valve 46 is provided in a part of the intake passage 44, and the communication and blocking thereof are controlled by the bypass control valve 50. It may be. The bypass passage is in a communicating state when the intake system is scavenged by the supercharger. However, the intake throttle valve described above is configured to be automatically opened when the engine is stopped, or the intake throttle valve is controlled to open when the engine is stopped. On the other hand, whether the bypass passage is provided is sufficient if at least one of them is used.
[0025]
Exhaust gas exiting the exhaust port 22 is guided around the turbine rotor 34 through the exhaust pipe 52, and after energizing the rotation of the turbine rotor, is exhausted to the atmosphere through the three-way catalytic converter 54 and the HC adsorption purification catalyst device 56. The 58 is an exhaust gas recirculation passage, and 60 is an exhaust gas recirculation control valve. In the illustrated embodiment, a passage 62 is further guided from the intake passage 44 toward the cylinder head upper space 64, and a crankcase scavenging valve 66 for controlling the opening and closing thereof is provided in the middle. The cylinder head upper space 64 communicates with the crankcase. 68 is a fuel vapor concentration sensor that detects the concentration of fuel vapor in the intake system from the intake port 20 to the vicinity of the intake throttle valve 46 upstream of the intake port 20 when the engine is stopped.
[0026]
When the internal combustion engine is stopped, the fuel injection valve 30 leaks fuel with a change in leakage amount as shown in the graph of FIG. Although the magnitude of the amount of leakage and its time course vary greatly depending on each fuel injection valve, it generally reaches a peak value several tens of minutes after the engine stops. Due to the leakage of the fuel, fuel vapor is generated in the intake system having a concentration course as shown schematically. Note that the broken line portion of the curve indicating the progress of the fuel vapor concentration is when the intake system scavenging according to the present invention is not performed.
[0027]
As described above, it is the amount of fuel vapor that accumulates in the intake system that causes the next engine startability, drivability immediately after start-up, or exhaust emission to be substantially adversely affected by fuel leakage from the fuel injection valve after the engine is stopped. When the value is reached. Therefore, if the lower limit concentration is now Dv1, the fuel vapor concentration in the intake system is detected by the fuel vapor concentration sensor 64, and the intake system scavenging by the supercharger is started when the fuel vapor concentration rises to Dv1. That's fine. When the intake system scavenging by the supercharger is started, the fuel vapor concentration decreases as shown by the solid line in the figure. The fuel vapor that exists in the intake system is not consumed unnecessarily at the next engine start-up, and because it is not released to the atmosphere as it is unburned, the intake system scavenging by the supercharger is The fuel vapor concentration may be stopped when the fuel vapor concentration drops to a value such as Dv2, which is appropriately lower than Dv1, and in this way, the power consumption required to drive the turbocharger can be suppressed to the most efficient range.
[0028]
The control of the electric drive of the turbocharger by the fuel vapor concentrations Dv1 and Dv2 as described above is shown in the figure based on the characteristics of the fuel injection valve, the load state of the engine immediately before the engine operation is stopped, the climate and other conditions. By calculating the times T1 and T2 that are estimated to correspond to the vehicle operation control device including a microcomputer that has not been provided, the control may be replaced with such a time-based control.
[0029]
The intake system scavenging based on the fuel vapor concentrations Dv1 and Dv2 may be performed in the manner shown in the flowchart of FIG. That is, in this case, when the intake system scavenging control is started as part of the vehicle operation control by the vehicle operation control device, it is checked in step 1 whether the engine is stopped. Control remains in this checked state while the answer is no. When the engine is stopped and the answer turns to yes, the control proceeds to step 2, and it is determined whether or not the fuel vapor concentration Dv detected by the fuel vapor concentration sensor 64 exceeds Dv1. Again, control remains here while the answer is no. When the fuel leakage from the fuel injection valve proceeds and the evaporation proceeds and Dv exceeds Dv1, the answer turns to yes, and the control proceeds to step 3, where the supercharger 32 is connected to the electric means. The supercharger electric drive operated by 40 is started. When the scavenging of the intake system by the electric drive of the supercharger is started in this way, it is checked in step 4 whether Dv is lowered to Dv2 or less for each control cycle in this flowchart. While the answer is no, control remains here and the electric drive of the turbocharger continues. Then, when Dv falls to Dv2 or less due to scavenging by the supercharger, the answer turns to yes, so that the control proceeds to step 5 and the electric drive of the supercharger is terminated.
[0030]
FIG. 4 is a flowchart similar to FIG. 3 showing an embodiment of the intake system scavenging control when the start timing and end timing of the intake system scavenging by the supercharger are determined by T1 and T2 of FIG. Also in this case, when the control is started, it is checked in step 101 whether the engine is stopped. Control remains in this checked state while the answer is no. When the engine is stopped and the answer is yes, the control proceeds to step 102, and the timing for starting the electric drive of the turbocharger based on the characteristics of the fuel injection valve, the load state immediately before the engine stops, the climate and other conditions. Calculation of T1 and time T2 when it ends is performed. Control then proceeds to step 103.
[0031]
In step 103, it is determined whether or not an elapsed time T after the engine has stopped exceeds T1. Control remains here while the answer is no. When T1 elapses from the engine stop and the answer turns to yes, the control proceeds to step 104, and the supercharger is started to be electrically driven. When the electric drive of the supercharger is started in this way, it is checked in step 105 whether T exceeds T2 for each control cycle in this flowchart. While the answer is no, control remains here and the electric drive of the turbocharger continues. Then, when the time T2 has elapsed since the engine stopped and the answer turns to yes, the control proceeds to step 106, and the electric drive of the supercharger is terminated.
[0032]
FIG. 5 shows that when the engine is stopped, if the multi-cylinder internal combustion engine is in a state where both the intake valve 24 and the exhaust valve 26 are open in any cylinder, or the intake valve and When the exhaust valve is a variable timing type valve, the opening / closing timing of the valve is temporarily corrected by timing control to create a state where both the intake valve and the exhaust valve are open in any cylinder. 2 is a schematic diagram illustrating a scavenging flow when the intake system is scavenged by electric driving of a supercharger in the internal combustion engine shown in FIG. In the figure, the scavenging flow is indicated by arrows. In this case, scavenged gas flows from the intake port 20 to the exhaust port 22, passes through the exhaust passage 52, and is captured by the three-way catalytic converter 54 and the HC adsorption purification catalyst device 56.
[0033]
FIG. 6 is a similar view showing the flow of scavenging when the crankcase control valve 66 is opened simultaneously with the supercharger being electrically driven. Similarly, the scavenging flow is indicated by arrows. In this case, the scavenging gas flows through the passage 62 to the cylinder chamber upper space 64 and further flows into the crank chamber formed in the crankcase 18 and is stored therein.
[0034]
FIG. 7 is a similar diagram showing the scavenging flow when the exhaust gas recirculation control valve 66 is opened simultaneously with the supercharger being electrically driven. Similarly, the scavenging flow is indicated by arrows. In this case, the scavenged gas flows through the exhaust gas recirculation passage 58 to the exhaust passage 52 and is captured by the three-way catalytic converter 54 and the HC adsorption purification catalyst device 56.
[0035]
FIG. 8 is a similar view showing a case where the supercharger is electrically driven so as to electrically drive the supercharger rotor in the reverse direction. Similarly, the scavenging flow is indicated by arrows. In this case, the air containing the fuel vapor in the intake system flows in the reverse direction in the intake system, and the fuel vapor is captured by the activated carbon filter 42 provided in the intake passage. Although not shown in the figure, in the case where an activated carbon canister that captures fuel vapor evaporated in the fuel tank and appropriately discharges it to the intake passage is provided, the fuel vapor by the backflow scavenging is such It may be captured by a canister.
[0036]
While the invention has been described in detail with reference to several embodiments, it will be apparent to those skilled in the art that various modifications can be made to these embodiments within the scope of the invention.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of an internal combustion engine having a supercharged scavenging means according to the present invention only in an essential part related to the invention.
FIG. 2 is a graph showing the time course of fuel leakage and fuel vapor generation from a fuel injection valve when the internal combustion engine is stopped.
FIG. 3 is a flowchart showing one embodiment of a control mode in the embodiment of the present invention.
FIG. 4 is a flowchart showing another embodiment of the control mode in the embodiment of the present invention.
FIG. 5 is a schematic view of an internal combustion engine showing a flow of scavenging when scavenging of an intake system is performed via an intake valve and an exhaust valve by electric drive of a supercharger.
FIG. 6 is a schematic view of the internal combustion engine showing the flow of scavenging when the supercharger is electrically driven and the crankcase control valve is opened.
FIG. 7 is a schematic view of the internal combustion engine showing the flow of scavenging when the supercharger is electrically driven and the exhaust gas recirculation control valve is opened.
FIG. 8 is a schematic view of the internal combustion engine showing a flow of scavenging when scavenging of the intake system is performed by reverse rotation driving of the supercharger.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Cylinder, 12 ... Piston, 14 ... Piston rod, 16 ... Crankshaft, 18 ... Crankcase, 20 ... Intake port, 22 ... Exhaust port, 24 ... Intake valve, 26 ... Exhaust valve, 28 ... Spark plug, 30 ... Fuel injection valve, 32 ... supercharger, 34 ... turbine rotor, 36 ... shaft, 38 ... compressor impeller, 40 ... electric means, 42 ... air filter, 44 ... intake passage, 46 ... intake throttle valve, 48 ... bypass passage , 50 ... Bypass control valve, 52 ... Exhaust pipe, 54 ... Three-way catalytic converter, 56 ... HC adsorption purification catalyst device, 58 ... Exhaust gas recirculation passage, 60 ... Exhaust gas recirculation control valve, 62 ... Passage, 64 ... Cylinder head upper space, 66 ... Crankcase scavenging valve, 68 ... Fuel vapor concentration sensor

Claims (11)

過給機ロータが電動手段によっても駆動されるようになっている電動手段付き過給機を備えた内燃機関にして、機関が停止された後、吸気系内の燃料蒸気濃度が所定の第一のしきい値を越えてから前記過給機ロータを前記電動手段により駆動して吸気系を掃気する過給掃気手段を有することを特徴とする内燃機関。  An internal combustion engine having a supercharger with electric means in which the supercharger rotor is also driven by electric means, and after the engine is stopped, the fuel vapor concentration in the intake system is a predetermined first An internal combustion engine comprising a supercharged scavenging means for scavenging the intake system by driving the supercharger rotor by the electric means after exceeding the threshold value. 過給機ロータが電動手段によっても駆動されるようになっている電動手段付き過給機を備えた内燃機関にして、機関が停止された後、吸気系内の燃料蒸気濃度が所定の第一のしきい値を越えたと推定される所定時間をおいて前記過給機ロータを前記電動手段により駆動して吸気系を掃気する過給掃気手段を有することを特徴とする内燃機関。  An internal combustion engine having a supercharger with electric means in which the supercharger rotor is also driven by electric means, and after the engine is stopped, the fuel vapor concentration in the intake system is a predetermined first An internal combustion engine comprising: a supercharged scavenging means for scavenging the intake system by driving the supercharger rotor by the electric means at a predetermined time estimated to exceed the threshold value. 前記過給掃気手段は前記過給機の電動駆動を開始した後吸気系内の燃料蒸気濃度が所定の第二のしきい値以下に下がったとき前記過給機の電動駆動を停止することを特徴とする請求項1または2に記載の内燃機関。  The supercharging scavenging means stops the electric driving of the supercharger when the fuel vapor concentration in the intake system falls below a predetermined second threshold value after starting the electric driving of the supercharger. The internal combustion engine according to claim 1 or 2, characterized by the above. 前記過給掃気手段は前記過給機の電動駆動を開始した後吸気系内の燃料蒸気濃度が所定の第二のしきい値以下に下がったと推定される所定時間をおいて前記過給機の電動駆動を停止することを特徴とする請求項1または2に記載の内燃機関。  The supercharged scavenging means has a predetermined time when it is estimated that the fuel vapor concentration in the intake system has dropped below a predetermined second threshold value after starting the electric drive of the supercharger. The internal combustion engine according to claim 1, wherein the electric drive is stopped. 前記過給掃気手段は機関停止中には開状態となる吸気絞り弁を含むことを特徴とする請求項1〜4のいずれかに記載の内燃機関。  The internal combustion engine according to any one of claims 1 to 4, wherein the supercharging and scavenging means includes an intake throttle valve that is open when the engine is stopped. 前記過給掃気手段は前記過給機ロータを前記電動手段にて駆動する間吸気絞り弁を開く手段を含むことを特徴とする請求項1〜4のいずれかに記載の内燃機関。  5. The internal combustion engine according to claim 1, wherein the supercharging scavenging means includes means for opening an intake throttle valve while the supercharger rotor is driven by the electric means. 前記過給掃気手段は前記過給機ロータを前記電動手段にて駆動する間吸気絞り弁をバイパスする通路を形成するバイパス手段を含むことを特徴とする請求項1〜4のいずれかに記載の内燃機関。  The said supercharging scavenging means contains the bypass means which forms the channel | path which bypasses an intake throttle valve while driving the said supercharger rotor with the said electrically-driven means, The Claim 1 characterized by the above-mentioned. Internal combustion engine. 内燃機関は可変タイミング式の吸気弁および排気弁と排気系に設けられたHC吸着浄化触媒とを有しており、前記過給掃気手段は前記電動手段を作動させるとき前記吸気弁および排気弁を開く制御を行うことを特徴とする請求項1〜4のいずれかに記載の内燃機関。  The internal combustion engine has a variable timing type intake valve and exhaust valve and an HC adsorption purification catalyst provided in the exhaust system, and the supercharged scavenging means turns the intake valve and exhaust valve on when operating the electric means. 5. The internal combustion engine according to claim 1, wherein opening control is performed. 内燃機関はクランクケース掃気弁を備えたクランクケース掃気系を有しており、前記過給掃気手段は前記電動手段を作動させるとき前記クランクケース掃気弁を開く制御を行って燃料蒸気をクランクケース内に収容することを特徴とする請求項1〜4のいずれかに記載の内燃機関。  The internal combustion engine has a crankcase scavenging system provided with a crankcase scavenging valve, and the supercharged scavenging means performs control to open the crankcase scavenging valve when operating the electric means, so that fuel vapor is sent into the crankcase. The internal combustion engine according to any one of claims 1 to 4, wherein the internal combustion engine is housed in an internal combustion engine. 過給機ロータが電動手段によっても駆動されるようになっている電動手段付き過給機と、排気ガス再循環制御弁が設けられた排気ガス再循環系と、触媒が設けられた排気系を備えた内燃機関にして、機関が停止された後、前記過給機ロータを前記電動手段により駆動して吸気系を掃気する過給掃気手段を有し、前記過給掃気手段は前記電動手段を作動させるとき前記排気ガス再循環制御弁を開く制御を行うことを特徴とする内燃機関。  A supercharger with electric means in which the supercharger rotor is also driven by electric means, an exhaust gas recirculation system provided with an exhaust gas recirculation control valve, and an exhaust system provided with a catalyst. The internal combustion engine is provided with a supercharging scavenging means for scavenging the intake system by driving the supercharger rotor by the electric means after the engine is stopped, and the supercharging scavenging means includes the electric means. An internal combustion engine that performs control to open the exhaust gas recirculation control valve when operated. 過給機ロータが電動手段によっても駆動されるようになっている電動手段付き過給機と、排気ガス再循環制御弁が設けられた排気ガス再循環系と、活性炭フィルタが設けられた吸気系とを備えた内燃機関にして、機関が停止された後、前記過給機ロータを前記電動手段により駆動して吸気系を掃気する過給掃気手段を有し、前記過給掃気手段は前記電動手段を作動させるとき前記過給機ロータを逆転方向に電動駆動する制御を行うことを特徴とする内燃機関。  A supercharger with electric means in which the supercharger rotor is also driven by electric means, an exhaust gas recirculation system provided with an exhaust gas recirculation control valve, and an intake system provided with an activated carbon filter The supercharger scavenging means for scavenging the intake system by driving the supercharger rotor by the electric means after the engine has been stopped is provided. An internal combustion engine characterized by performing control to electrically drive the supercharger rotor in the reverse direction when operating the means.
JP2002270317A 2002-09-17 2002-09-17 Internal combustion engine having supercharging scavenging means Expired - Fee Related JP3997868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002270317A JP3997868B2 (en) 2002-09-17 2002-09-17 Internal combustion engine having supercharging scavenging means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002270317A JP3997868B2 (en) 2002-09-17 2002-09-17 Internal combustion engine having supercharging scavenging means

Publications (2)

Publication Number Publication Date
JP2004108212A JP2004108212A (en) 2004-04-08
JP3997868B2 true JP3997868B2 (en) 2007-10-24

Family

ID=32267985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270317A Expired - Fee Related JP3997868B2 (en) 2002-09-17 2002-09-17 Internal combustion engine having supercharging scavenging means

Country Status (1)

Country Link
JP (1) JP3997868B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019203061A1 (en) * 2019-03-06 2020-09-10 Ford Global Technologies, Llc Method for regenerating a NOx storage catalytic converter of an exhaust gas aftertreatment device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5577183B2 (en) * 2010-08-05 2014-08-20 ヤンマー株式会社 Gas engine scavenging operation method
JP6650762B2 (en) * 2016-01-15 2020-02-19 三菱重工業株式会社 Internal combustion engine, control apparatus and method for internal combustion engine
JP6455581B1 (en) 2017-11-17 2019-01-23 マツダ株式会社 ENGINE CONTROL DEVICE AND ENGINE CONTROL METHOD

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019203061A1 (en) * 2019-03-06 2020-09-10 Ford Global Technologies, Llc Method for regenerating a NOx storage catalytic converter of an exhaust gas aftertreatment device
US11220941B2 (en) 2019-03-06 2022-01-11 Ford Global Technologies, Llc Methods and systems for an aftertreatment system

Also Published As

Publication number Publication date
JP2004108212A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
US8271183B2 (en) Approach for controlling a vehicle engine that includes an electric boosting device
RU2569401C2 (en) Discharge of fuel vapours from engine adsorber into intake manifold (versions)
US7451597B2 (en) Intake system of internal combustion engine
US7743752B2 (en) System and method for improving fuel vapor purging for an engine having a compressor
RU2576564C2 (en) Engine operation with turbo supercharging and engine system
US7040304B2 (en) Method for operating an internal combustion engine
RU2703879C2 (en) Method and system of throttle turbo generator operation control
JP6275181B2 (en) Electric wastegate valve controller
RU2719118C2 (en) Method (versions) and exhaust gas discharge system
JP3994855B2 (en) Control device for internal combustion engine
JP2007211710A (en) Controller for internal combustion engine
JP2005083222A (en) Control device for internal combustion engine
JP3997868B2 (en) Internal combustion engine having supercharging scavenging means
JP2008069667A (en) Starting method of two-cycle engine
JP5126422B1 (en) Operation control method for internal combustion engine
JP3860894B2 (en) Pilot injection control device for internal combustion engine
JP2019052579A (en) Exhaust emission control device for engine
JP6160816B2 (en) Engine control device
JP2008215257A (en) Starting device for internal combustion engine
KR19980035220A (en) Turbo rack protector
JP3903805B2 (en) Turbocharger
KR100201608B1 (en) Apparatus for protecting turbo-rag
JP3994867B2 (en) Control device for internal combustion engine
JP4000792B2 (en) Fuel injection control device for internal combustion engine
JP2019173578A (en) Engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees