JP3997672B2 - Injectable liquid composition for stabilization of ground and artificial structures, etc., and stability-enhanced waterstop method using the same - Google Patents

Injectable liquid composition for stabilization of ground and artificial structures, etc., and stability-enhanced waterstop method using the same Download PDF

Info

Publication number
JP3997672B2
JP3997672B2 JP33588799A JP33588799A JP3997672B2 JP 3997672 B2 JP3997672 B2 JP 3997672B2 JP 33588799 A JP33588799 A JP 33588799A JP 33588799 A JP33588799 A JP 33588799A JP 3997672 B2 JP3997672 B2 JP 3997672B2
Authority
JP
Japan
Prior art keywords
component
ground
mdi
injection
liquid composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33588799A
Other languages
Japanese (ja)
Other versions
JP2001152155A (en
Inventor
一幸 田中
光宏 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Polyurethane Industry Co Ltd
Original Assignee
Nippon Polyurethane Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Polyurethane Industry Co Ltd filed Critical Nippon Polyurethane Industry Co Ltd
Priority to JP33588799A priority Critical patent/JP3997672B2/en
Publication of JP2001152155A publication Critical patent/JP2001152155A/en
Application granted granted Critical
Publication of JP3997672B2 publication Critical patent/JP3997672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、地盤や人工構造物等の安定化用注入薬液組成物及びそれ用いた安定強化止水工法に関する。更に詳しくは、破砕帯を有する岩盤や不安定軟弱地盤の固結安定化ないし封止、漏水、湧水のある岩盤ないし地盤の止水や空隙充填、更にコンクリート等の人工構造物のクラック、空隙、既設トンネル等の安定強化、封止及び止水工法並びにそれに用いる安全性の高い安定化用注入薬液組成物に関する。
【0002】
【従来の技術】
従来、不安定岩盤や地盤の安定強化、人工構造物のクラックや空隙の充填法の1つとして無機ないし有機系グラウトの注入が行なわれ、ある程度の効果をあげている。
【0003】
しかしながら、これらの方法を詳細にチェックすると、必ずしも満足しうる結果が得られていない。例えば、一般に多用されているセメントミルクは懸濁液であるため、岩盤や人工構造物等のクラックや砂礫等の地盤層への浸透性が悪く、しかも固結速度や強度発現が遅いため、短時間に固結して強度が発現することが要求されるトンネルや地下地盤掘削時の不安定地盤を早期に安定強化させる目的が達成しえない。更に、湧水や漏水のみられる場合には、なおさら注入セメントミルクが希釈、流失してしまう。また代表的な無機系グラウトである水ガラス系2液システムグラウトについても固結体強度が0.29〜0.98MPa程度と低く、更に固結体が水と接触すると経時変化が起こり、Na2OやSiO2等の主成分が溶脱し、アルカリ汚染や大幅な強度低下にいたるという問題がある。
【0004】
一方、尿素系等の有機系グラウトについても固結強度不足や、硫酸、ホルマリン等の硬化成分や助剤成分の溶出が発生するという問題がある。また、特公昭63−63687号公報、特公昭63−63688号公報、特開昭63−7413号公報、特開昭63−7490号公報、特開昭63−7491号公報、特開昭63−8477号公報、特開昭63−35913号公報等には、ポリオールとポリイソシアネートを主成分とする速硬性硬質発泡ウレタンシステム注入による岩盤の固結工法が記載されている。
【0005】
また、特開昭61−9482号公報及び特開昭55−160079号公報には、ポリイソシアネートと水ガラス(珪酸ソーダ水溶液)とを用い、水ガラス側にポリイソシアネートの三量化触媒として特定の芳香族三級アミンであるマンニッヒ塩基を配合してなる注入薬液組成物が記載されている。
【0006】
なお、特開平7−179855号公報では、ポリイソシアネートと水ガラス(珪酸ソーダ水溶液)とを用い、水ガラス側に、分子量120以上で水酸基を1個又は2個有する三級アミン系触媒を用いた注入薬液組成物が記載されている。また、特開平7−207654号公報では、ポリイソシアネートと水ガラスとを用い、水ガラス側に、分子量が120以上で窒素原子数が2以上である水溶性脂肪族三級アミンを用いた注入薬液組成物が記載されている。
【0007】
【発明が解決しようとする課題】
本発明は、前記従来技術に着目してなされたもので、特定成分よりなる注入薬液組成物を注入し、従来形成することが困難であった発泡状の無機−有機複合固結体を形成することにより、固結強度が大きく、安定強化効果、耐久性、注入作業性及び経済性に優れた岩盤ないし地盤及び人工構造物の安定強化ないしは止水を可能ならしめることを目的とするものである。
【0008】
【課題を解決するための手段】
すなわち、本発明は、以下の(1)〜(3)に示されるものである。
(1)(A)アルカリ珪酸塩水溶液、ジフェニルメタンジイソシアネート(B1)及びジフェニルメタンジイソシアネート系多核縮合体(B2)からなるポリイソシアネートとポリ(オキシプロピレン)ポリオールを反応させて得られるイソシアネート基末端プレポリマーを含有する(B)有機ポリイソシアネート組成物、及び(C)N,N−ジエチルエタノールアミンである脂肪族三級アミン系触媒、からなる地盤や人工構造物の安定化用注入薬液組成物。
【0010】
(2)岩盤ないし地盤に所定間隔で複数個の孔を穿設し、前記孔内に中空の注入ボルトを挿入し、ボルトの開口部より前記(1)の安定化用注入薬液組成物を、岩盤ないし地盤に注入し、固結ないし封止させることを特徴とする、岩盤ないし地盤の安定強化止水工法。
【0011】
(3)人工構造物に注入パイプを挿入し、該注入パイプを介して前記(1)の安定化用注入薬液組成物を、人工構造物及び/又はその背面に注入し、固結ないし封止させることを特徴とする、人工構造物の安定強化止水工法。
【0012】
【0013】
(3)岩盤ないし地盤に所定間隔で複数個の孔を穿設し、前記孔内に中空の注入ボルトを挿入し、ボルトの開口部より前記(1)又は(2)の安定化用注入薬液組成物を、岩盤ないし地盤に注入し、固結ないし封止させることを特徴とする、岩盤ないし地盤の安定強化止水工法。
【0014】
(4)人工構造物に注入パイプを挿入し、該注入パイプを介して前記(1)又は(2)の安定化用注入薬液組成物を、人工構造物及び/又はその背面に注入し、固結ないし封止させることを特徴とする、人工構造物の安定強化止水工法。
【0015】
【発明の実施の形態】
本発明の地盤や人工構造物等の安定化用注入薬液組成物(以下、注入薬液組成物という)は、前記したように、(A)アルカリ珪酸塩水溶液(以下、(A)成分という)、(B)有機ポリイソシアネート組成物(以下、(B)成分という)、及び(C)分子量が120未満の脂肪族系三級アミン系触媒(以下、(C)成分という)、及び必要に応じて後述する(D)ポリオール(以下、(D)成分という)からなるものである。
【0016】
本発明の注入薬液組成物の固結反応は、極めて複雑であるため明確ではないが、おそらく(A)成分と(B)成分とを混合したときに、(A)成分中に形成されるシラノール基と(B)成分中のイソシアネート基とが反応して無水珪酸−ウレタン複合体が形成され、同時に(B)成分が水と反応して炭酸ガスを発生しながら尿素結合による多量体や無水珪酸−尿素架橋複合体を形成し、副生した炭酸ガスの一部は(A)成分中に溶解し、(A)成分中のアルカリ珪酸塩をゲル化して無水珪酸ゲルを形成することに基づくものと推定される。更に、(D)成分が存在する場合には、(D)成分中の水酸基と(B)成分とが反応してウレタン樹脂が形成されることにも基づくものと推定される。
【0017】
また、(B)成分と水との反応によって発生する炭酸ガス並びに(A)成分と(B)成分との反応時又は(A)成分及び(B)成分、(D)成分との反応時に発生する反応熱によって蒸発する水蒸気により、前記無水珪酸−ウレタン複合体は発泡状の固結体を形成し、その体積を増大させる。このとき、発泡が生じるが、かかる発泡時の発泡圧により、前記無水珪酸−ウレタン複合体が土砂、岩石、レンガ、石炭、人工構造物等の間隙に入り込みやすくなる。
【0018】
以下、本発明の注入薬液組成物の構成成分について述べる。
【0019】
本発明に用いられる(A)成分であるアルカリ珪酸塩水溶液は、前記したように、主としてそのシラノール基と後述する(B)成分のイソシアネート基との反応によって無水珪酸−ウレタン複合体を形成させる成分である。
【0020】
前記(A)成分としては、例えば珪酸カリウムや式:Na2O・xSiO2で表わされる珪酸ソーダ等の水溶液を主成分とするものが挙げられ、このような珪酸ソーダは、例えばNa2OとSiO2とのモル比が2:1〜1:4のものが挙げられる。
【0021】
また、前記(A)成分の固形分濃度は、通常10〜70質量%であることが好ましく、特に20〜50質量%となるように調整することが好ましい。具体的には、1号珪酸ソーダS2、2号珪酸ソーダN5、2号珪酸ソーダQ3、2号珪酸ソーダT8(いずれも東曹産業株式会社製)等が挙げられる。
【0022】
前記(B)成分に用いられるものとしては、例えば、ジフェニルメタンジイソシアネート(以下、MDIという)、MDIとMDI系多核縮合体との混合物(以下、ポリメリックMDIという)、液状MDI(カルボジイミド変性MDI)、トリレンジイソシアネート、キシリレンジイソシアネート、トリメチレンキシリレンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、ナフタレンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、水素添加キシリレンジイソシアネート等のポリイソシアネートの単独又は2種以上の混合物や、前記ポリイソシアネートに触媒を加え、二量体又は三量体としたもの等が挙げられる。
【0023】
また前記のほかにも、例えばメタノール、エタノール、プロパノール、ブタノール、オクタノール、ラウリルアルコール等のモノオール;エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブチレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール等のジオールやグリセリン、トリメチロールプロパン、ペンタエリスリトール等のポリオール:そのほかモノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジグリセリン、ソルビトール、蔗糖等の単独又は混合物にエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド等のアルキレンオキサイドを単独又は併用し、公知の方法で付加重合して得られるモノオール又はポリオールと、前記ポリイソシアネートとを、例えばNCO基とOH基との当量比(NCO基/OH基)が1.5〜500、好ましくは2.0〜400の範囲となるように公知の方法で反応させて得られるイソシアネート基含有ウレタンプレポリマーも、前記(B)成分として好適に用いることができる。
【0024】
これらの(B)成分のなかでも固結強度、安全衛生面及び経済性の点からイソシアネート基含有ウレタンプレポリマー等が好ましく、いわゆる取扱い環境温度下での揮発性が極めて小さく、液状でしかも固結強度、経済性、低温安定性、環境への負荷等を考慮すると、ポリメリックMDIとポリ(オキシプロピレン)ポリオールを反応させて得られるイソシアネート基末端プレポリマーを含有するものが好ましい。これは、ポリ(オキシエチレン)ポリオールを用いると、(B)成分が親水性となり、薬液を岩盤ないし地盤への注入時に、薬液が地下水層へしみ出る可能性があるが、ポリ(オキシプロピレン)ポリオールは疎水性のため、薬液が地下水層へしみ出る可能性は小さいためである。
【0025】
このときのポリメリックMDIの組成は、質量比でMDI/MDI系多核縮合体=30/70〜70/30が好ましい。MDIが少なすぎる場合は、薬液の粘度が高くなりやすい。また、MDIが多すぎる場合は、薬液の低温貯蔵時において、MDIの結晶化により析出物が出やすい。
【0026】
更に、ポリメリックMDI中のMDIには、2,2′−MDI、2,4′−MDI、4,4′−MDIの三種類の異性体がある。本発明においては、MDIの異性体の質量構成比は、(2,2′−MDI+2,4′−MDI)/4,4′−MDI=10/90〜50/50が好ましい。4,4′−MDIが多すぎる場合は、薬液の低温貯蔵安定性が低下しやすい。また、(A)アルカリ珪酸塩水溶液や(D)ポリオールとの相溶性が低下しやすくなり、また、4,4′−MDIは、2,2′−MDIや2,4′−MDIより反応性が大きいため、混合後の増粘が激しくなり、混合装置(ポンプ)の圧力を高くしないと相溶性が不良となり好ましくない。一方、4,4′−MDIが少なすぎる場合は、4,4′−MDIよりも、2,2′−MDIや2,4′−MDIのほうが分子構造的に柔軟なため、強度が発現しにくい。
【0027】
また、このポリ(オキシプロピレン)ポリオールは、数平均分子量が76〜10,000のが好ましく、76〜5,000が特に好ましい。分子量が大きすぎる場合は、薬液の粘度が大きくなり、作業性が低下しやすくなる。また、このポリ(オキシプロピレン)ポリオールは、オキシアルキレン基中におけるオキシプロピレン基含有量が50質量%以上、好ましくは60質量%以上であれば、他のオキシアルキレン基を有していても問題はない。また、ポリ(オキシプロピレン)ポリオールの実質平均官能基数は2以上が好ましく、特に2〜4が特に好ましい。なお「実質的平均官能基数」とは、開始剤に用いられるポリオールの平均官能基数のことである。
【0028】
本発明に用いられる(B)有機ポリイソシアネート組成物の粘度は、25℃で500mPa・s以下が好ましく、更に好ましくは50〜450mPa・sである。粘度が大きすぎると、作業性が低下しやすいだけではなく、薬液注入の際にポンプ圧を高くしなければならず、ラインの破損を招きやすい。
【0029】
前記(B)成分の配合量は、(A)成分中の例えばNa2OとSiO2とのモル比等によって異なるので一概には決定することができないが、通常(A)成分と(B)成分との配合割合((A)成分/(B)成分)が質量比で10/100〜100/10が好ましく、特に20/100〜100/20となるように調整することが好ましい。かかる配合割合が前記下限値よりも小さい場合には、注入薬液組成物コストが高価なものとなり不経済となるうえ、比例式注入ポンプでの配合比のコントロールが極めて困難となる傾向があり、また前記上限値よりも大きい場合には、注入薬液組成物の固化が不充分で未硬化状となり、たとえ硬化しても硬度が低く、脆くて実用に供しえなくなる傾向がある。
【0030】
前記(B)成分は、(A)成分との反応性や固結性に優れている。更に岩盤や地盤への浸透性を向上させるため、トルエンやキシレン、1,1,1−トリクロロエタン、塩化メチレン、トリクロロフルオロメタン等の有機溶剤が希釈剤として用いてもよいが、これらの有機溶剤は揮発性であり、固結後放出されて環境を損うことがあるため、できるだけ使用しないほうが好ましい。
【0031】
また、(B)成分の希釈剤として、(B)成分と混合してもイソシアネート基とは反応せず、(B)成分の貯蔵安定性や減粘に優れ、一方、(A)成分と混合接触した場合には、ただちに反応して硬化する反応性希釈剤を用いることができるが、やはり、少量は放出されて環境を損なうことがあるため、できるだけ使用しないほうが好ましい。
【0032】
前記反応性希釈剤は、(B)成分を希釈して注入時の粘度を低下させる働きを有するとともに、(A)成分と接触することによってアルカリ加水分解を受け、(A)成分及び/又は(B)成分と反応して該(A)成分と(B)成分との硬化反応に積極的に関与し、より強い無水珪酸−ウレタン複合体や無水珪酸−尿素架橋複合体、網状の無水珪酸ゲルを主体とする無機−有機複合固結体を形成することになる。
【0033】
前記反応性希釈剤の代表例としては、例えば低分子量二塩基酸のジエステル類、一価又は多価アルコール類の酢酸エステル類、アルキレンカーボネート類、エーテル類、環状エステル類、酸無水物、(メタ)アクリル酸エステル等が挙げられる。
【0034】
低分子量二塩基酸のジエステル類としては、例えばグルタール酸、コハク酸、アジピン酸、マロン酸、シュウ酸、ピメリン酸等のジメチルエステル、ジエチルエステル等のジアルキルエステル等が挙げられる。
【0035】
一価又は多価アルコール類の酢酸エステル類としては、例えばメチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、プロピレングリコールメチルエーテル、エチルカルビトール、ブチルカルビトール等のグリコールエーテル類のアセテート;3−メトキシブチルアルコール、3−メチル−3−メトキシブチルアルコール等のアルコキシアルキルアルコール類のアセテート;エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール類のジアセテート等が挙げられる。
【0036】
アルキレンカーボネート類としては、例えばプロピレンカーボネート、各種希釈剤に溶解した液状エチレンカーボネート等が挙げられる。
【0037】
エーテル類としては、例えばテトラヒドロフラン、ジオキサン、脱水ヒマシ油等の環状エーテル等が挙げられる。
【0038】
環状エステル類としては、例えばγ−ブチルラクトン等のラクトン類;ε−カプロラクタム等のラクタム類等が挙げられる。
【0039】
酸無水物としては、例えば無水プロピオン酸、無水酪酸、無水マレイン酸等が挙げられる。
【0040】
(メタ)アクリル酸エステルとしては、例えば(メタ)アクリル酸のメチル、エチル、ブチル等のアルキルエステル、(メタ)アクリル酸とエチレングリコール、ジエチレングリコール、重量平均分子量が100〜1000のポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、重量平均分子量が100〜1000のポリプロピレングリコール、重量平均分子量が100〜5000のエチレンオキサイドやプロピレンオキサイド共重合ジオール又はトリオール等のアルコール類との(メタ)アクリル酸エステル等が挙げられる。
【0041】
反応性希釈剤を使用する場合、この配合量は質量比で、(B)成分/反応性希釈剤=100/5〜100/100の範囲で使用することが一般的である。
【0042】
本発明に用いられる(C)成分である分子量が120未満の脂肪族系三級アミン系触媒は、前記(A)成分、(B)成分及び必要に応じて用いられる(D)成分の反応硬化を促進するための触媒としても作用するものであり、該(C)成分は、(A)成分との相溶性が良好で、皮膚や衣服に付着しても水洗によって容易に除去され、触媒活性も高いものである。
【0044】
なお、前記(C)成分である触媒の分子量がN,N,N´−トリメチルアミノエチルエタノールアミンやN,N,N′,N′−テトラメチルヒドロキシプロピレンジアミン等のように120以上である場合には、触媒活性が不十分であるため、(B)成分は親水性であることが必要となる。本発明では、そのようなことはなく、例えば疎水性ポリオールを用いたイソシアネート基末端プレポリマーを(B)成分として用いても、充分な性能が得られる。
【0045】
本発明においては、かかる(C)成分は、N,N−ジエチルエタノールアミンである。
【0046】
更に(A)成分と、(C)成分の配合量は質量比で、前記(A)成分/(C)成分=100/0.1〜100/20が好ましく、特に100/0.5〜100/15であることが好ましい。かかる(C)成分の配合量が前記下限値未満である場合には、硬化しにくく固結反応が不充分で、目的とした性能の固結体が得られにくくなる傾向があり、また前記上限値を越える場合には、硬化反応が速すぎて前記(A)成分、(B)成分及び後述する必要に応じて用いられる(D)成分が均一に混合されにくくなる傾向がある。
【0047】
また、本発明の注入薬液組成物には、前記(A)成分、(B)成分、及び(C)成分の他に、(D)成分であるポリオール成分を配合することができる。
【0048】
本発明に用いられる(D)成分であるポリオール成分としては、例えば前記(B)成分であるイソシアネート基含有ウレタンプレポリマーに用いられるポリオール等が挙げられ、これらは単独で又は2種以上を混合して用いることができる。また、これらのポリオールの数平均分子量は62〜20,000であることが好ましく、特に76〜10,000が好ましい。更に、薬液の環境への負荷や経済性、低温安定性、薬液注入時の作業性等を考慮すると、疎水性のポリ(オキシプロピレン)ポリオールが好ましい。なお、ポリ(オキシプロピレン)ポリオールの実質平均官能基数は2以上が好ましく、特に2〜4が特に好ましい。
【0049】
前記(D)成分の配合量は、用いる(B)成分の種類等によって異なるので一概には決定することができないが、通常(B)成分と(D)成分との配合割合が、(B)成分中のNCO基と(D)成分中のOH基とのモル比(NCO基/OH基)が0.5〜500が好ましく、特に1〜450となるように調整することが好ましい。かかるNCO基とOH基のモル比が前記下限値未満である場合には、注入薬液組成物から得られる固結体が柔かすぎて実用に供しにくくなる傾向があり、また前記上限値を越える場合には、固結体が脆くなる傾向がある。
【0050】
また、上記と同様に(A)アルカリ珪酸塩水溶液と(B)有機ポリイソシアネート組成物の二相関の分散や反応性を調整する目的で、界面活性剤を用いると好ましくなる。界面活性剤としては、エチレンオキシド、プロピレンオキシド等のアルキレンオキシドを含有するポリグリコールエーテルと、少なくとも1個の活性水素を含有する有機化合物とを縮合することによって得られる。この少なくとも1個の活性水素を含有する有機化合物としては、アルコール、フェノール、チオール、1級又は2級アミンや、1個以上のアルキル置換基を有するフェノール系化合物のポリアルキレンオキシド誘導体を挙げることができる。界面活性剤は、あらかじめ(A)アルカリ珪酸塩水溶液及び/又は(B)ポリイソシアネート組成物に添加することができるが、(A)アルカリ珪酸塩水溶液にあらかじめ混合した場合、攪拌した際に泡立ち、正確に計量できなくなるので、(B)ポリイソシアネート化合物のみに混合してから使用するのが好ましい。
【0051】
また、シリコーン系界面活性剤を挙げることができ、これには活性水素基を含有するものと含有しないものとがある。好ましいのは、活性水素基を含有しないタイプである。例えば、各種のシロキサンポリアルキレンオキシドブロック共重合体が挙げられる。具体的には、ユニオンカーバイド製のL−5340、テー・ゴールドシュミット製のB−8451、B−8407等を挙げることができる。なお、界面活性剤の添加量は、(A)ポリイソシアネート化合物に対して0.05〜5質量%が好ましい。
【0052】
更に本発明の注入薬液組成物には、必要に応じて、セメント、高炉スラグ、石こう、炭酸カルシウム、粘土、水酸化アルミニウム、三酸化アンチモン、生石灰、消石灰、ベントナイト等の無機充填剤や、希釈剤、レベリング剤、難燃剤、シリコーン系整泡剤、老化防止剤、耐熱性付与剤、抗酸化剤、触媒等を適宜配合量を調整して配合することができる。
【0053】
本発明の注入薬液組成物を調整する際の前記(A)成分、(B)成分、及び(C)成分、並びに必要に応じて用いられる(D)成分の混合順序には特に限定がないが、通常、(A)成分、(C)成分及び(D)成分の混合物(A液)と、(B)成分(B液)との二成分系として用いることができる。
【0054】
本発明における特殊な注入薬液である(A)成分、(B)成分、及び(C)成分、並びに必要に応じて(D)成分からなる注入薬液組成物は、空隙やクラックの多い軟質ないし不安定な地盤、岩盤、破砕帯層、更にはクラックや空隙を有する人工構造物等に注入され、固結ないし封止されるが、このように注入して固結ないし封止する方法については特に限定がなく、公知の方法を採用しうる。その一例をあげれば、例えば(A)成分、(B)成分、及び(C)成分、並びに(D)成分の注入量、圧力、配合比等をコントロールしうる比例配合式ポンプを用い、(A)成分、(C)成分、及び必要に応じて(D)成分の混合物(A液)と、(B)成分(B液)とを別々のタンクに入れ、岩盤等の所定箇所(例えば0.5〜3m程度の間隔で穿設された複数個数の孔)に、あらかじめ固定されたスタチックミキサーや逆止弁等を内装した有孔のロックボルトや注入ロッドを通し、この中に前記タンク内の各成分を注入圧0.05〜5MPa(ゲージ圧)で注入し、スタチックミキサーを通して所定量の前記A液とB液とを均一に混合させ、所定の不安定岩盤ないし地盤箇所に注入浸透、硬化させて固結ないし封止し、安定化する方法等がある。
【0055】
なお、本発明において、封止とは、空洞や空隙に注入薬液組成物を充填し、間隙を埋めることをいう。
【0056】
また、例えばトンネル切羽先端の天盤部に注入する場合には、注入に先立ち、例えば約1mの所定の間隔で例えば直径42mmのビットでジャンボ機を用いて削孔し、深さ2m、削孔角度10〜25°の注入孔を設け、この注入孔にスタチックミキサーを内挿した長さ3mの中空炭素鋼管製注入ボルトを挿入し、注入薬液組成物を前記した方法で注入することが好ましい。注入作業は、注入圧が急激な上昇した時点で終了する。一般に、注入孔1個あたり薬液量は30〜200kgであることが好ましい。
【0057】
また、人工構造物のクラック等の安定強化止水は、例えば該クラック面に対して20〜50cm間隔で直径10mm、深さ5〜10cmにドリルで削孔し、孔内の削りくずや粉塵を圧縮空気で吹きとばし、削孔上に脱脂綿を約5mm厚にのせ、その上から直径約10mm、長さ20〜30mmの注入パイプを打ち込み、注入薬液組成物のリークのない状態にセットする。また、クラックや漏水等の発生箇所に対して約30cmピッチでU字又はV字カットし、注入パイプを急結セメントで固定する。次にスタチックミキサー等を内装したY字管又はT字管を通し、(A)成分、(C)成分、及び必要に応じて(D)成分の混合物(A液)と、(B)成分(B液)とを比例配合式ポンプ又は手押し式ポンプ等を用いて所定の配合比で注入圧0.05〜2MPa(ゲージ圧)、好ましくは0.05〜0.2MPa(ゲージ圧)で所定量注入する。
【0058】
本発明の安定強化止水工法では、粘性が低い注入薬液組成物が用いられるため、不安定地盤、クラック及び破砕帯等への浸透性がよく、広範囲にわたって不安定岩盤や地盤、更には人工構造物等の安定化や止水を図ることができる。また、形成された硬化固結物は、高強度で耐久性を有し、岩盤等への付着、密着性に優れ、かつ難燃性を呈し、しかも経済的なものであるので、実用上極めて有利である。
【0059】
【実施例】
次に本発明の地盤や人工構造物等の安定化用注入薬液組成物及びそれを用いた安定強化止水工法を製造例及び実施例に基づいて更に詳細に説明するが、本発明はかかる製造例及び実施例のみに限定されるものではない。
【0060】
[A液の調製]
攪拌機のついた、容量:150kgの混合機を用い、表1に示す量を仕込んで、均一にしてA1〜A4を調製した。各原料の仕込み量を表1に示す。
【0061】
[A液合成用原料]
1号珪酸ソーダS2:珪酸塩水溶液(東曹産業株式会社製)
DEEA :N,N−ジエチルエタノールアミン(分子量=117)
TMHPDA :N,N,N′,N′−テトラメチルヒドロキシプロピレン ジアミン(分子量=146)
PPG200 :ポリ(オキシプロピレン)ポリオール
数平均分子量=200
平均官能基数=2
オキシプロピレン基含有量=100%
DPG :ジプロピレングリコール
【0062】
【表1】

Figure 0003997672
【0063】
[B液の合成]
攪拌機、温度計、冷却器及び窒素ガス導入管のついた、容量:150kgの反応器を用いて、ポリイソシアネートB1〜B9を合成した。
原料イソシアネートと原料ポリオールを表2に示す量を仕込んだ後、80℃まで昇温して3時間反応させて、ポリイソシアネートを得た。原料の種類、使用量、分析値を表2に示す。また、これらのイソシアネートの低温安定性を下記の条件にて測定した。その結果も表2に示す。
【0064】
[B液合成用原料]
MDI1 :ジフェニルメタンジイソシアネート
NCO含量=33.6%
2,2′−MDI+2,4′−MDI=27.0%
MDI2 :ジフェニルメタンジイソシアネート
NCO含量=33.6%
2,2′−MDI+2,4′−MDI=0.1%
MDI3 :ジフェニルメタンジイソシアネート
NCO含量=33.6%
2,2′−MDI+2,4′−MDI=50.0%
MDI4 :ジフェニルメタンジイソシアネート
NCO含量=33.6%
2,2′−MDI+2,4′−MDI=19.0%
PMDI1 :ポリメリックMDI
NCO含量=30.3%
MDI中の2,2′−MDI+2,4′−MDI=11.0%
MDI含有量=37.0%
PMDI2 :ポリメリックMDI
NCO含量=31.0%
MDI中の2,2′−MDI+2,4′−MDI=1.0%
MDI含有量=40.0%
PPG4000:ポリ(オキシプロピレン)ポリオール
数平均分子量=4,000
平均官能基数=2
オキシプロピレン基含有量=100%
PPG1000:ポリ(オキシプロピレン)ポリオール
数平均分子量=1,000
平均官能基数=2
オキシプロピレン基含有量=100%
PPG200 :ポリ(オキシプロピレン)ポリオール
数平均分子量=200
平均官能基数=2
オキシプロピレン基含有量=100%
PEG2000:ポリ(オキシエチレン)ポリオール
数平均分子量=2,000
官能基数=2
オキシエチレン基含有量=100%
B−8407 :テー・ゴールドシュミット製シリコーン系界面活性剤
低温安定性試験
得られたポリイソシアネートを−10℃の条件下で1カ月間放置し、その外観をチェックし、結晶が発生している場合は保温、加熱溶解が必要であると考え、「不良」と判定し、結晶の発生していない場合を「良好」と判定した。
【0065】
【表2】
Figure 0003997672
【0066】
[実施例1〜9、比較例1〜3]
表3、4に示す組み合わせで、容量300mlのポリカップにA液とB液を各100gづつ秤量し、600rpm/10秒間(20℃)の条件で混合攪拌した。そして、以下の方法にて発泡体の発泡の外観及び発泡体の発泡倍率、物性試験並びに耐水性を測定した。その結果を表3、4に示す。
【0067】
【表3】
Figure 0003997672
【0068】
【表4】
Figure 0003997672
【0069】
表3、4の各種データを比較すれば、比較例のタイプによっては実施例と比較して遜色のないデータもあるが、総じて比較例は配合液の反応性のバランスが悪いため、物性や作業性が悪くなっている。
【0070】
[発泡体の試験方法]
(1)発泡体の外観
前述のようにポリイソシアネート組成物と珪酸塩水溶液とを配合して得られた発泡体をナイフで切断し、その内部の状況を観察した。断面が不均一状態であるものを「不良」と判定し、均一状態であるものを「良好」と判定した。
(2)発泡倍率
発泡倍率=発泡後の発泡体の容積(ml)/発泡前の配合液の容積(ml)
(3)一軸圧縮強度
JSF T511(土壌工学会基準の土の一軸圧縮試験方法)に準じて、20℃について行った。
(4)耐水性
A液とB液とをそれぞれ50gずつ配合し、その直後の流動状態の液体をあらかじめ300mlの水を入れたポリカップに素早く入れて、水中での発泡状態を観察する。その際に、ポリカップの水が白濁したものを「不良」と判定し、透明であるものを「良好」と判定した。
【0071】
実施例10
破砕帯を有するトンネル切羽先端の天盤部にトンネルアーチの中心から左右に60°、合計120°の扇状範囲内で、ジャンボ機で直径42mmビットにより1m間隔で削孔角度15°(トンネル掘削方向に対しての角度)で10個削孔し、得られた孔内に炭素鋼製(JIS G 3445、STKM 17C)の注入ボルト(外形27.2mm、内系15mm、長さ3m、静止ミキサー及び逆止弁内装)を挿入し、口元部分約30cmを2液硬質発泡ウレタン樹脂を含浸させたメリヤス製ウエスを鉄棒で押し込みシールした。
【0072】
A液として表1におけるA3を20kg薬液タンクAへ、B液として表2におけるB1を20kg薬液タンクBへそれぞれ入れ、A液、B液各々につき約1〜2分間ポンプ循環を行なった。
【0073】
次にA液及びB液の各吐出ホース先端をT字型ユニットに接続後、前記地山に固定した、各注入孔のボルトにジョイントし、注入圧0.1〜4MPa(ゲージ圧)、注入スピード5〜12kg/分で1孔あたり約50〜180kgをスムーズに注入することができた。
【0074】
薬液を注入してから約120分間後に、掘進により地山の改良状態を調査したところ、固結範囲は半径50cmの半球状であり、固結安定化していた。
【0075】
注入固結部分をサンプラーで直径5cm×10cmの円柱形状にサンプリングし、一軸圧縮強度を測定すると24MPaであった。なお、未改良部は破砕帯のためサンプリングが不可能であった。この結果、本発明の注入薬液組成物は、その有効性が充分に証明され、固結安定化層が形成されることが判明した。
【0076】
実施例11
不安定なトンネル切羽先端の天盤部(大きな空隙を有する花崗岩破砕帯)の空隙充填及び安定化を図るために、表1における製造例1の薬液注入による安定化を行なった。施工方法は以下のようにして行なった。
【0077】
すなわち、トンネル切羽先端の天盤部にトンネルアーチの中心から左右に60°、合計120°の扇状範囲内で、ジャンボ機で直径42mmビットにより80cm間隔で深さ3mの注入孔を10個削孔した。削孔角度は20°であった。得られた孔内に実施例1と同様の炭素鋼製(JIS G 3455、STKM 17C)の注入ボルトを挿入し、口元部を実施例1と同様にしてシールした。なお、各注入孔のボルトは、掘削方向に対して左60°の位置のものから右60°の位置のものへ向かってNo.1〜5とした。
【0078】
A液として表1におけるA2を40kg薬液タンクAへ、B液として表2におけるB1を40kg薬液タンクBへそれぞれ入れ、A液、B液各々につき約1〜2分間ポンプ循環を行なった。
【0079】
次にA液及びB液の各吐出ホース先端をT字型ユニットに接続後、前記地山に固定した、各注入孔のボルト(No.1〜5)にジョイントし、No.1、3、5、2、4の順で注入圧0.1〜1MPa(ゲージ圧)、注入スピード5〜12kg/分で1孔あたり約120kg、No.1〜5で合計600kg注入した。
【0080】
注入薬液組成物を注入してから約90分間経過後に地山の安定化状況を確認するために注入孔周辺を掘進し調査したところ、No.1〜5の左側天盤部は、固結範囲が半径約40cmで半球状に固結しており、かつ大きな空隙部も高密度でよくシールされていた。また、掘削時にも天盤部からの崩落はなく、よく安定化されていた。
【0081】
本発明の注入薬液組成物は注入ボルトより大きな空隙を有する花崗岩破砕帯部に注入することにより空隙を完全にシールしかつ破砕帯部にもよく浸透固結し、岩盤の安定化を図ることができ、トンネル掘削工事において非常に有益であることが立証された。
【0082】
実施例12
鉄筋コンクリート3階建ビルの屋上スラブの立上がりコーナー部にクラックが発生し、降雨時に階下に漏水していた。この漏水部に表1におけるA2と表2におけるB1からなる注入薬液組成物を注入し、止水工事を行なった。
【0083】
まずクラックに沿って直径10mmのドリルを用いて約30cmピッチで深さ約5cmの孔を35個削孔し、孔内の削りくずや粉塵を圧縮空気で吹き飛ばしたのちに削孔上に脱脂綿を約5mm厚にのせ、その上から外径約10mmの注入パイプを木製ハンマーで打ち込んだ。
【0084】
次にA2を10kg手押ポンプ付薬液タンクAへ、B1を15kg手押ポンプ付薬液タンクBへ入れた。
【0085】
タンクA及びタンクBの吐出ホースの先端を静止ミキサーを内装したY字管に継ぎ、各注入パイプにワンタッチジョイント形式でセットし、成分Aと成分Bとの配合割合(質量比)約1/1.5で手押ポンプを上下に作動させて1孔あたり約1kg注入した。約1.5時間で35個全部の注入作業が完了した。
【0086】
注入後、注入パイプを取り除き、コルク栓を打ち込み、モルタルを塗布して仕上げた。約2週間後に激しい降雨があったが、以前のような漏水はまったく発生せず、クラックシール及び止水に大変有効なことが立証された。
【0087】
【発明の効果】
本発明の地盤や人工構造物等の安定化用注入薬液組成物及びそれを用いた安定強化止水工法は、以下に述べる効果を奏する。
【0088】
(A)成分であるアルカリ珪酸塩水溶液及び(B)成分である有機ポリイソシアネート組成物によって、更に必要に応じて用いられる(D)成分であるポリオール成分を用いた場合には、かかる(D)成分によって確実な尿素−無水珪酸複合体、ウレタン−無水珪酸複合体及び網状の無水珪酸ゲル体を主体とする発泡状の複合固結体が形成される。したがって、固結硬化性能が高く確実に岩盤ないし地盤の安定強化を達成することができ、かつ漏洩部では確実な止水効果が奏される。
【0089】
(A)成分、(B)成分、及び(C)成分、並びに(D)成分ともに粘性が低く、更に(A)成分と、及び(C)成分との相溶性が良好であり、確実に発泡固結するため浸透性に優れている。
【0090】
確実に発泡硬化し、固結体強度が大きいため、空隙が大きい又はクラックが多い、強度が要求される不安定岩盤、地盤、構造物等の充填、安定強化に有効である。
【0091】
(C)成分が水に溶解しやすいことから、注入薬液組成物が取扱い者の皮膚や衣服に付着した場合でも、簡単に水洗して除去することができ、安全性が極めて高い。また(A)成分は、疎水性であるので、地下水層にしみ出る可能性は小さい。
【0092】
このように本発明の工法は優れた特徴を有しており、一般山岳トンネルはもちろんのこと、大断面トンネル掘削工事や大深度地下土木工事等において要求される、より確実かつ高強度で、経済的であり、安全性に優れた不安定岩盤ないし地盤の安定強化、封止及び止水を達成するのに極めて有効な工法である。[0001]
[Industrial application fields]
TECHNICAL FIELD The present invention relates to an infusion chemical composition for stabilizing ground and artificial structures and the like, and a stability-enhanced waterstop method using the composition. In more detail, consolidation stabilization or sealing of rocks with fractured zones and unstable soft ground, leakage, rocks with spring water or water stoppage and filling of ground, and cracks and gaps in artificial structures such as concrete Further, the present invention relates to a method for stabilizing and strengthening existing tunnels, sealing and water stopping methods, and a highly safe injectable liquid composition for stabilization used therefor.
[0002]
[Prior art]
Conventionally, injection of inorganic or organic grout has been performed as one of the methods for filling stable rocks and ground, as well as for filling cracks and voids in artificial structures, and has achieved some effects.
[0003]
However, when these methods are checked in detail, satisfactory results are not always obtained. For example, commonly used cement milk is a suspension, so it has poor permeability to ground layers such as rocks and artificial structures such as cracks and gravel, and also has a slow setting speed and strength, so it is short. The purpose of stabilizing and strengthening the unstable ground at the time of tunnel and underground ground excavation required to be solidified with time and to develop strength cannot be achieved. Furthermore, when only spring water or water leakage occurs, the injected cement milk is diluted and washed away. The typical solid sintered strength for water glass-based two-liquid system grout is inorganic grout low as 0.29~0.98MPa, occur aging further solidifying body is in contact with water, Na 2 There is a problem that main components such as O and SiO 2 are leached, resulting in alkali contamination and a significant decrease in strength.
[0004]
On the other hand, urea-based organic grouts have problems such as insufficient consolidation strength and elution of curing components and auxiliary components such as sulfuric acid and formalin. Also, JP-B 63-63687, JP-B 63-63688, JP-A 63-7413, JP-A 63-7490, JP-A 63-7491, JP-A 63- Japanese Patent No. 8477, Japanese Patent Laid-Open No. 63-35913, etc. describe a method for caking a rock mass by injection of a fast-curing rigid foamed urethane system mainly composed of a polyol and a polyisocyanate.
[0005]
Japanese Patent Application Laid-Open Nos. 61-9482 and 55-160079 use a polyisocyanate and water glass (sodium silicate aqueous solution), and a specific aroma as a polyisocyanate trimerization catalyst on the water glass side. An injectable liquid composition comprising a Mannich base, which is a group III tertiary amine, is described.
[0006]
In JP-A-7-179855, polyisocyanate and water glass (sodium silicate aqueous solution) were used, and a tertiary amine catalyst having a molecular weight of 120 or more and having one or two hydroxyl groups was used on the water glass side. An infusate solution composition is described. Japanese Patent Application Laid-Open No. 7-207654 discloses an injectable drug solution using polyisocyanate and water glass, and using a water-soluble aliphatic tertiary amine having a molecular weight of 120 or more and a nitrogen atom number of 2 or more on the water glass side. A composition is described.
[0007]
[Problems to be solved by the invention]
The present invention has been made by paying attention to the above-mentioned prior art, and injects an injectable medicinal solution composition comprising a specific component to form a foamed inorganic-organic composite consolidated body that has been difficult to form conventionally. The purpose of this is to make it possible to stably strengthen or stop water in rocks or grounds and man-made structures with high consolidation strength, excellent stability strengthening effect, durability, injection workability and economy. .
[0008]
[Means for Solving the Problems]
That is, this invention is shown by the following (1)- (3) .
(1) (A) Contains an isocyanate group-terminated prepolymer obtained by reacting a polyisocyanate composed of an aqueous alkali silicate solution, diphenylmethane diisocyanate (B1) and a diphenylmethane diisocyanate polynuclear condensate (B2) and a poly (oxypropylene) polyol. (B) An organic polyisocyanate composition and (C) an aliphatic tertiary amine catalyst which is N, N-diethylethanolamine, and an injectable liquid composition for stabilizing ground and artificial structures.
[0010]
(2) A plurality of holes are drilled at predetermined intervals in the bedrock or ground, a hollow injection bolt is inserted into the hole, and the stabilizing injectable liquid composition of (1) is inserted from the opening of the bolt. A stable and robust water stop method for rock or ground, which is injected into the rock or ground and consolidated or sealed.
[0011]
(3) An injection pipe is inserted into the artificial structure, and the stabilizing injection chemical composition of (1) is injected through the injection pipe into the artificial structure and / or the back surface thereof, and consolidated or sealed. A stable and strengthened waterproofing method for artificial structures, characterized in that
[0012]
[0013]
(3) A plurality of holes are drilled at a predetermined interval in the rock or ground, a hollow injection bolt is inserted into the hole, and the stabilizing injection chemical solution according to (1) or (2) above from the opening of the bolt. A stability-enhanced water-stopping method for rock or ground, wherein the composition is poured into the rock or ground and consolidated or sealed.
[0014]
(4) An injection pipe is inserted into the artificial structure, and the stabilizing injection chemical composition of (1) or (2) is injected into the artificial structure and / or the back surface thereof through the injection pipe, A stable and strengthened waterproofing method for artificial structures, characterized by tying or sealing.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the injectable liquid composition for stabilization of the ground or the artificial structure of the present invention (hereinafter referred to as injectable liquid composition) is (A) an aqueous alkali silicate solution (hereinafter referred to as (A) component), (B) an organic polyisocyanate composition (hereinafter referred to as component (B)), (C) an aliphatic tertiary amine catalyst having a molecular weight of less than 120 (hereinafter referred to as component (C)), and as required. It consists of (D) polyol (hereinafter referred to as “component (D)”) described later.
[0016]
The caking reaction of the injectable liquid composition of the present invention is not clear because it is extremely complicated, but it is probably silanol formed in the component (A) when the component (A) and the component (B) are mixed. Group and the isocyanate group in the component (B) react to form an anhydrous silicic acid-urethane complex, and at the same time, the component (B) reacts with water to generate carbon dioxide gas while producing a multimer or urea silicic acid by a urea bond. -Forming a urea cross-linked complex, part of the carbon dioxide produced as a by-product is dissolved in the component (A), and gels the alkali silicate in the component (A) to form an anhydrous silicate gel It is estimated to be. Furthermore, when (D) component exists, it is estimated that it is based on the hydroxyl group in (D) component reacting with (B) component, and forming a urethane resin.
[0017]
In addition, carbon dioxide gas generated by the reaction between the component (B) and water and generated during the reaction between the component (A) and the component (B) or the reaction between the component (A), the component (B), and the component (D). The anhydrous silicic acid-urethane composite forms a foam-like solidified body by the water vapor evaporated by the reaction heat to increase its volume. At this time, foaming occurs, but the silicic acid-urethane composite easily enters a gap between earth and sand, rocks, bricks, coal, artificial structures and the like due to the foaming pressure at the time of foaming.
[0018]
Hereinafter, the components of the injectable drug solution composition of the present invention will be described.
[0019]
As described above, the alkali silicate aqueous solution that is the component (A) used in the present invention is a component that mainly forms a silicic acid-urethane composite by a reaction between its silanol group and an isocyanate group of the component (B) described later. It is.
[0020]
Examples of the component (A) include those containing an aqueous solution such as potassium silicate or an aqueous solution of sodium silicate represented by the formula: Na 2 O · xSiO 2 , for example, such sodium silicate as Na 2 O and molar ratio of SiO 2 is 2: 1 to 1: include the 4.
[0021]
In addition, the solid content concentration of the component (A) is usually preferably 10 to 70% by mass, and particularly preferably 20 to 50% by mass. Specifically, No. 1 sodium silicate S2, No. 2 sodium silicate N5, No. 2 sodium silicate Q3, No. 2 sodium silicate T8 (both manufactured by Toso Sangyo Co., Ltd.) and the like can be mentioned.
[0022]
Examples of the component (B) include diphenylmethane diisocyanate (hereinafter referred to as MDI), a mixture of MDI and an MDI-based multinuclear condensate (hereinafter referred to as polymeric MDI), liquid MDI (carbodiimide-modified MDI), Polyisocyanates such as diisocyanate, xylylene diisocyanate, trimethylene xylylene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, naphthalene diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, or a mixture of two or more of the above polyisocyanates The catalyst is added to make a dimer or trimer.
[0023]
In addition to the above, monools such as methanol, ethanol, propanol, butanol, octanol, lauryl alcohol; ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, 1,3-butanediol Diols such as 1,4-butanediol and 1,6-hexanediol, and polyols such as glycerin, trimethylolpropane and pentaerythritol: other monoethanolamine, diethanolamine, triethanolamine, diglycerin, sorbitol, sucrose alone Alternatively, an alkylene oxide such as ethylene oxide, propylene oxide, butylene oxide, styrene oxide or the like may be used alone or in combination with the mixture. Monool or polyol obtained by addition polymerization by the above method and the polyisocyanate, for example, the equivalent ratio of NCO group to OH group (NCO group / OH group) is 1.5 to 500, preferably 2.0 to An isocyanate group-containing urethane prepolymer obtained by reacting by a known method so as to be in the range of 400 can also be suitably used as the component (B).
[0024]
Among these components (B), an isocyanate group-containing urethane prepolymer is preferable from the viewpoints of consolidation strength, safety and health, and economy, and is extremely volatile under the so-called handling environment temperature, and is liquid and solidified. In consideration of strength, economy, low temperature stability, environmental load, and the like, those containing an isocyanate group-terminated prepolymer obtained by reacting polymeric MDI and poly (oxypropylene) polyol are preferred. When poly (oxyethylene) polyol is used, the component (B) becomes hydrophilic, and when the chemical solution is injected into the rock or ground, the chemical solution may ooze out to the groundwater layer, but poly (oxypropylene) This is because the polyol is hydrophobic, so that the chemical liquid is unlikely to ooze into the groundwater layer.
[0025]
The composition of the polymeric MDI at this time is preferably MDI / MDI multinuclear condensate = 30/70 to 70/30 by mass ratio. When there is too little MDI, the viscosity of a chemical | medical solution tends to become high. In addition, when there is too much MDI, precipitates are likely to appear due to crystallization of MDI when the chemical solution is stored at a low temperature.
[0026]
Furthermore, MDI in polymeric MDI has three types of isomers: 2,2′-MDI, 2,4′-MDI, and 4,4′-MDI. In the present invention, the mass composition ratio of isomers of MDI is preferably (2,2′-MDI + 2,4′-MDI) / 4,4′-MDI = 10/90 to 50/50. When there is too much 4,4'-MDI, the low temperature storage stability of a chemical | medical solution tends to fall. In addition, compatibility with (A) alkali silicate aqueous solution and (D) polyol tends to decrease, and 4,4'-MDI is more reactive than 2,2'-MDI and 2,4'-MDI. Therefore, if the pressure of the mixing device (pump) is not increased, the compatibility becomes unfavorable. On the other hand, when the amount of 4,4′-MDI is too small, 2,2′-MDI and 2,4′-MDI are more flexible in molecular structure than 4,4′-MDI, so that strength is developed. Hateful.
[0027]
The poly (oxypropylene) polyol has a number average molecular weight of preferably 76 to 10,000, and particularly preferably 76 to 5,000. When the molecular weight is too large, the viscosity of the chemical solution is increased, and the workability is easily lowered. In addition, this poly (oxypropylene) polyol may have other oxyalkylene groups as long as the oxypropylene group content in the oxyalkylene groups is 50% by mass or more, preferably 60% by mass or more. Absent. In addition, the number of substantial average functional groups of the poly (oxypropylene) polyol is preferably 2 or more, particularly preferably 2 to 4. The “substantially average number of functional groups” is the average number of functional groups of the polyol used for the initiator.
[0028]
The viscosity of the organic polyisocyanate composition (B) used in the present invention is preferably 500 mPa · s or less at 25 ° C., more preferably 50 to 450 mPa · s. If the viscosity is too large, not only the workability is likely to deteriorate, but also the pump pressure must be increased during the injection of the chemical solution, and the line is likely to be damaged.
[0029]
The compounding amount of the component (B) varies depending on, for example, the molar ratio of Na 2 O and SiO 2 in the component (A) and cannot be determined unconditionally, but usually the component (A) and the component (B) The blending ratio with the component (component (A) / component (B)) is preferably 10/100 to 100/10 in mass ratio, and particularly preferably adjusted to 20/100 to 100/20. When such a blending ratio is smaller than the lower limit, the cost of the infusate solution composition becomes expensive and uneconomical, and it tends to be extremely difficult to control the blending ratio with the proportional infusion pump. When it is larger than the above upper limit, the injectable liquid composition is not sufficiently solidified and becomes uncured, and even when cured, the hardness tends to be low and brittle, so that it tends to be unusable.
[0030]
The component (B) is excellent in reactivity and solidification with the component (A). Furthermore, in order to improve the permeability to the rock and ground, organic solvents such as toluene, xylene, 1,1,1-trichloroethane, methylene chloride, trichlorofluoromethane may be used as a diluent. Since it is volatile and may be released after consolidation and damage the environment, it is preferable not to use it as much as possible.
[0031]
In addition, as a diluent for component (B), it does not react with isocyanate groups even when mixed with component (B), and is excellent in storage stability and viscosity reduction of component (B), while mixed with component (A). A reactive diluent that reacts and cures immediately upon contact can be used, but again it is preferred not to use it as much as possible because small amounts can be released and harm the environment.
[0032]
The reactive diluent has a function of diluting the component (B) to reduce the viscosity at the time of injection, and is subjected to alkaline hydrolysis by contact with the component (A), and the component (A) and / or ( B) It reacts with the component and actively participates in the curing reaction between the component (A) and the component (B), stronger silicic acid-urethane complex, silicic acid-urea crosslinked complex, and reticulated silicic acid gel. Thus, an inorganic-organic composite consolidated body mainly composed of the above is formed.
[0033]
Representative examples of the reactive diluent include, for example, low molecular weight dibasic acid diesters, mono- or polyhydric alcohol acetates, alkylene carbonates, ethers, cyclic esters, acid anhydrides, ) Acrylic acid ester and the like.
[0034]
Examples of low molecular weight dibasic acid diesters include dimethyl esters such as glutaric acid, succinic acid, adipic acid, malonic acid, oxalic acid, and pimelic acid, and dialkyl esters such as diethyl ester.
[0035]
Examples of acetic esters of monohydric or polyhydric alcohols include acetates of glycol ethers such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, propylene glycol methyl ether, ethyl carbitol, butyl carbitol; 3-methoxybutyl alcohol, 3 Examples include acetates of alkoxyalkyl alcohols such as methyl-3-methoxybutyl alcohol; diacetates of glycols such as ethylene glycol, diethylene glycol, and triethylene glycol.
[0036]
Examples of the alkylene carbonates include propylene carbonate and liquid ethylene carbonate dissolved in various diluents.
[0037]
Examples of ethers include cyclic ethers such as tetrahydrofuran, dioxane, and dehydrated castor oil.
[0038]
Examples of the cyclic esters include lactones such as γ-butyllactone; lactams such as ε-caprolactam, and the like.
[0039]
Examples of the acid anhydride include propionic anhydride, butyric anhydride, maleic anhydride and the like.
[0040]
Examples of (meth) acrylic acid esters include alkyl esters of (meth) acrylic acid such as methyl, ethyl and butyl, (meth) acrylic acid and ethylene glycol, diethylene glycol, polyethylene glycol having a weight average molecular weight of 100 to 1000, and propylene glycol. , Dipropylene glycol, polypropylene glycol having a weight average molecular weight of 100 to 1000, (meth) acrylic acid ester with alcohols such as ethylene oxide, propylene oxide copolymerized diol or triol having a weight average molecular weight of 100 to 5000, and the like. .
[0041]
When using a reactive diluent, this compounding quantity is mass ratio, and it is common to use it in the range of (B) component / reactive diluent = 100/5-100/100.
[0042]
The aliphatic tertiary amine catalyst having a molecular weight of less than 120, which is the component (C) used in the present invention, is the reaction curing of the component (A), the component (B) and the component (D) used as necessary. The component (C) has good compatibility with the component (A) and is easily removed by washing with water even if it adheres to the skin or clothes. Is also expensive.
[0044]
When the molecular weight of the component (C) catalyst is 120 or more, such as N, N, N′-trimethylaminoethylethanolamine or N, N, N ′, N′-tetramethylhydroxypropylenediamine. Since the catalytic activity is insufficient, the component (B) needs to be hydrophilic. In the present invention, this is not the case. For example, even if an isocyanate group-terminated prepolymer using a hydrophobic polyol is used as the component (B), sufficient performance can be obtained.
[0045]
In the present invention, the component (C) is N, N-diethylethanolamine.
[0046]
Furthermore, the compounding quantity of (A) component and (C) component is a mass ratio, and the said (A) component / (C) component = 100 / 0.1-100 / 20 is preferable, Especially 100 / 0.5-100 / 15 is preferable. When the blending amount of the component (C) is less than the lower limit value, it is difficult to cure and the caking reaction is insufficient, and it is difficult to obtain a consolidated product having the intended performance. When the value is exceeded, the curing reaction is too fast, and the component (A), the component (B), and the component (D) used as necessary, which will be described later, tend not to be uniformly mixed.
[0047]
In addition, in the injectable liquid composition of the present invention, in addition to the component (A), the component (B), and the component (C), a polyol component that is the component (D) can be blended.
[0048]
Examples of the polyol component that is the component (D) used in the present invention include polyols used in the isocyanate group-containing urethane prepolymer that is the component (B). These may be used alone or in combination of two or more. Can be used. The number average molecular weight of these polyols is preferably 62 to 20,000, and particularly preferably 76 to 10,000. Furthermore, considering the environmental load of the chemical solution, economic efficiency, low temperature stability, workability at the time of chemical solution injection, etc., hydrophobic poly (oxypropylene) polyol is preferable. In addition, 2 or more are preferable and, as for the real average functional group number of poly (oxypropylene) polyol, 2-4 are especially preferable.
[0049]
The blending amount of the component (D) varies depending on the type of the component (B) to be used and cannot be determined unconditionally. However, the blending ratio of the component (B) and the component (D) is usually (B). The molar ratio of the NCO group in the component to the OH group in the component (D) (NCO group / OH group) is preferably 0.5 to 500, and particularly preferably adjusted to 1 to 450. When the molar ratio of the NCO group and OH group is less than the lower limit, the solidified body obtained from the injectable solution composition tends to be too soft to be practically used, and exceeds the upper limit. In some cases, the consolidated body tends to become brittle.
[0050]
Further, in the same manner as described above, it is preferable to use a surfactant for the purpose of adjusting the two-correlation dispersion and reactivity of the (A) alkali silicate aqueous solution and the (B) organic polyisocyanate composition. The surfactant can be obtained by condensing a polyglycol ether containing an alkylene oxide such as ethylene oxide or propylene oxide and an organic compound containing at least one active hydrogen. Examples of the organic compound containing at least one active hydrogen include alcohols, phenols, thiols, primary or secondary amines, and polyalkylene oxide derivatives of phenolic compounds having one or more alkyl substituents. it can. The surfactant can be added in advance to the (A) alkali silicate aqueous solution and / or (B) the polyisocyanate composition, but when mixed in advance with the (A) alkali silicate aqueous solution, foaming occurs when stirring, Since it cannot be measured accurately, it is preferable to use the mixture after mixing only with the (B) polyisocyanate compound.
[0051]
Moreover, a silicone type surfactant can be mentioned, and this includes those containing an active hydrogen group and those containing no active hydrogen group. Preferred is a type that does not contain an active hydrogen group. Examples include various siloxane polyalkylene oxide block copolymers. Specific examples include L-5340 made by Union Carbide, B-8451 made by T. Goldschmidt, B-8407, and the like. In addition, 0.05-5 mass% of the addition amount of surfactant is preferable with respect to (A) polyisocyanate compound.
[0052]
Furthermore, in the injectable liquid composition of the present invention, if necessary, an inorganic filler such as cement, blast furnace slag, gypsum, calcium carbonate, clay, aluminum hydroxide, antimony trioxide, quicklime, slaked lime, bentonite, or a diluent. A leveling agent, a flame retardant, a silicone-based foam stabilizer, an anti-aging agent, a heat resistance imparting agent, an antioxidant, a catalyst, and the like can be blended while appropriately adjusting the blending amount.
[0053]
The mixing order of the component (A), the component (B), the component (C), and the component (D) used as necessary when adjusting the injectable liquid composition of the present invention is not particularly limited. Usually, it can be used as a two-component system of (A) component, (C) component and (D) component mixture (A liquid) and (B) component (B liquid).
[0054]
The injectable liquid composition comprising the (A) component, the (B) component, the (C) component, and, if necessary, the (D) component, which is a special injectable drug solution in the present invention, is soft or insoluble with many voids and cracks. It is injected into a stable ground, bedrock, shatter zone, or artificial structure with cracks or voids, and is consolidated or sealed. There is no limitation, and a known method can be adopted. As an example, for example, a proportional blending pump that can control the injection amount, pressure, blending ratio, etc. of the (A) component, the (B) component, and the (C) component, and the (D) component (A ) Component, (C) component, and if necessary, a mixture (component A) of component (D) and component (B) (component B) are placed in separate tanks, and are placed in predetermined locations (for example, 0. 0). A plurality of holes drilled at intervals of about 5 to 3 m) are passed through perforated lock bolts and injection rods equipped with static mixers and check valves fixed in advance. Are injected at an injection pressure of 0.05 to 5 MPa (gauge pressure), and a predetermined amount of the liquid A and liquid B are uniformly mixed through a static mixer, and injected into a predetermined unstable rock or ground. , Hardening, consolidating or sealing, stabilizing methods, etc. That.
[0055]
In the present invention, the term “sealing” refers to filling a cavity or void with an injectable drug solution composition to fill the gap.
[0056]
For example, when injecting into the top of the tunnel face, drilling is performed using a jumbo machine with a bit of, for example, 42 mm in diameter at a predetermined interval of, for example, about 1 m, depth of 2 m, and drilling angle It is preferable to provide a 10 to 25 ° injection hole, insert a 3 m long hollow carbon steel pipe injection bolt with a static mixer inserted into the injection hole, and inject the injection chemical composition by the method described above. The injection operation ends when the injection pressure rises rapidly. In general, the amount of the chemical solution per injection hole is preferably 30 to 200 kg.
[0057]
In addition, stable strengthened waterstops such as cracks in artificial structures are formed by drilling with a drill to a diameter of 10 mm and a depth of 5 to 10 cm at intervals of 20 to 50 cm with respect to the crack surface, for example, to remove shavings and dust in the holes. Blow off with compressed air, place absorbent cotton on the drill hole to a thickness of about 5 mm, and inject an injection pipe with a diameter of about 10 mm and a length of 20 to 30 mm from above to set it in a state where there is no leakage of the injected drug solution composition. Moreover, U-shaped or V-shaped cutting is performed at a pitch of about 30 cm with respect to the occurrence site of cracks, water leakage, etc., and the injection pipe is fixed with quick setting cement. Next, a Y-shaped tube or a T-shaped tube equipped with a static mixer, etc. is passed through, and a mixture (component A) of component (A), component (C), and component (D) as necessary, and component (B). (Liquid B) at a predetermined compounding ratio using a proportional compounding pump or a hand pump, etc. at an injection pressure of 0.05 to 2 MPa (gauge pressure), preferably 0.05 to 0.2 MPa (gauge pressure). Inject a fixed amount.
[0058]
In the stability-enhanced waterstop method of the present invention, an injectable liquid composition having a low viscosity is used, so that it has good permeability to unstable ground, cracks, crushing zones, etc. Stabilize things and stop water. In addition, the hardened and formed product formed has high strength and durability, is excellent in adhesion to and adherence to bedrock and the like, exhibits flame retardancy, and is economical. It is advantageous.
[0059]
【Example】
Next, the injectable liquid composition for stabilization of the ground, artificial structure, etc. of the present invention and the stable reinforced waterstop method using the same will be described in more detail based on production examples and examples. It is not limited to examples and examples only.
[0060]
[Preparation of solution A]
Using a mixer having a capacity of 150 kg with a stirrer, the amounts shown in Table 1 were charged to prepare A1 to A4 uniformly. Table 1 shows the amount of each raw material charged.
[0061]
[A liquid synthesis raw material]
No. 1 sodium silicate S2: silicate aqueous solution (manufactured by Toso Sangyo Co., Ltd.)
DEEA: N, N-diethylethanolamine (molecular weight = 117)
TMHPDA: N, N, N ′, N′-tetramethylhydroxypropylene diamine (molecular weight = 146)
PPG200: Poly (oxypropylene) polyol
Number average molecular weight = 200
Average number of functional groups = 2
Oxypropylene group content = 100%
DPG: Dipropylene glycol [0062]
[Table 1]
Figure 0003997672
[0063]
[Synthesis of Liquid B]
Polyisocyanates B1 to B9 were synthesized using a reactor having a capacity of 150 kg equipped with a stirrer, a thermometer, a cooler, and a nitrogen gas introduction tube.
After charging the amount of raw material isocyanate and raw material polyol shown in Table 2, the temperature was raised to 80 ° C. and reacted for 3 hours to obtain polyisocyanate. Table 2 shows the types of raw materials, amounts used, and analysis values. Further, the low temperature stability of these isocyanates was measured under the following conditions. The results are also shown in Table 2.
[0064]
[B liquid synthesis raw material]
MDI1: diphenylmethane diisocyanate
NCO content = 33.6%
2,2'-MDI + 2,4'-MDI = 27.0%
MDI2: Diphenylmethane diisocyanate
NCO content = 33.6%
2,2'-MDI + 2,4'-MDI = 0.1%
MDI3: Diphenylmethane diisocyanate
NCO content = 33.6%
2,2'-MDI + 2,4'-MDI = 50.0%
MDI4: Diphenylmethane diisocyanate
NCO content = 33.6%
2,2'-MDI + 2,4'-MDI = 19.0%
PMDI1: Polymeric MDI
NCO content = 30.3%
2,2'-MDI + 2,4'-MDI in MDI = 11.0%
MDI content = 37.0%
PMDI2: Polymeric MDI
NCO content = 31.0%
2,2'-MDI + 2,4'-MDI in MDI = 1.0%
MDI content = 40.0%
PPG4000: Poly (oxypropylene) polyol
Number average molecular weight = 4,000
Average number of functional groups = 2
Oxypropylene group content = 100%
PPG1000: Poly (oxypropylene) polyol
Number average molecular weight = 1,000
Average number of functional groups = 2
Oxypropylene group content = 100%
PPG200: Poly (oxypropylene) polyol
Number average molecular weight = 200
Average number of functional groups = 2
Oxypropylene group content = 100%
PEG2000: Poly (oxyethylene) polyol
Number average molecular weight = 2,000
Number of functional groups = 2
Oxyethylene group content = 100%
B-8407: Tee Goldschmitt silicone surfactant low-temperature stability test When the obtained polyisocyanate is allowed to stand for 1 month at -10 ° C, its appearance is checked, and crystals are generated Was considered to be “bad” and considered to be “good” when no crystals were generated.
[0065]
[Table 2]
Figure 0003997672
[0066]
[Examples 1-9, Comparative Examples 1-3]
In the combinations shown in Tables 3 and 4, 100 g each of liquid A and liquid B was weighed into a 300 ml capacity polycup, and mixed and stirred under conditions of 600 rpm / 10 seconds (20 ° C.). And the foaming external appearance of the foam, the expansion ratio of the foam, the physical property test, and the water resistance were measured by the following methods. The results are shown in Tables 3 and 4.
[0067]
[Table 3]
Figure 0003997672
[0068]
[Table 4]
Figure 0003997672
[0069]
Comparing the various data in Tables 3 and 4, depending on the type of the comparative example, some data is inferior to that of the example. However, the comparative example generally has a poor balance of the reactivity of the mixed solution, so the physical properties and work Sex is getting worse.
[0070]
[Method for testing foam]
(1) Appearance of foam The foam obtained by blending the polyisocyanate composition and the silicate aqueous solution as described above was cut with a knife, and the internal state was observed. Those having a non-uniform cross section were judged as “bad”, and those having a uniform cross section were judged as “good”.
(2) Foaming ratio Foaming ratio = volume of foam after foaming (ml) / volume of compounded liquid before foaming (ml)
(3) Uniaxial compressive strength It carried out about 20 degreeC according to JSF T511 (The soil uniaxial compressive testing method of the soil engineering society standard).
(4) Water resistance Each of 50 g of A liquid and B liquid is blended, and the liquid in a fluid state immediately after that is quickly put into a polycup containing 300 ml of water in advance, and the foamed state in water is observed. At that time, the water in the polycup that was clouded was judged as “bad”, and the water that was transparent was judged as “good”.
[0071]
Example 10
Within the fan-shaped range of 60 ° to the left and right from the center of the tunnel arch at the top of the tunnel face with the crush zone, within a fan-shaped range of 120 ° in total. 10 holes are drilled at an angle with respect to each other. Carbon steel (JIS G 3445, STKM 17C) injection bolts (outer diameter 27.2 mm, inner system 15 mm, length 3 m, stationary mixer and reverse) A stop valve interior) was inserted, and a knitted waste cloth impregnated with a two-component hard foamed urethane resin in the mouth portion of about 30 cm was pressed and sealed with an iron bar.
[0072]
A3 in Table 1 as A liquid was put into a 20 kg chemical liquid tank A and B1 in Table 2 was put into 20 kg chemical liquid tank B as B liquid, and pump circulation was carried out for about 1-2 minutes for each of A liquid and B liquid.
[0073]
Next, after connecting the tip of each discharge hose of liquid A and liquid B to the T-shaped unit, it is jointed to the bolt of each injection hole fixed to the ground, and the injection pressure is 0.1 to 4 MPa (gauge pressure). About 50 to 180 kg per hole could be smoothly injected at a speed of 5 to 12 kg / min.
[0074]
About 120 minutes after injecting the chemical solution, the improved state of the natural ground was investigated by excavation. As a result, the consolidation range was a hemisphere with a radius of 50 cm, and consolidation was stabilized.
[0075]
The injected solidified portion was sampled into a cylindrical shape having a diameter of 5 cm × 10 cm with a sampler, and the uniaxial compressive strength was measured to be 24 MPa. In addition, sampling was impossible because the unmodified part was a crush zone. As a result, it has been found that the effectiveness of the injectable liquid composition of the present invention is sufficiently proved and a consolidated and stabilized layer is formed.
[0076]
Example 11
In order to fill and stabilize the space at the top of the unstable tunnel face (the granite crush zone with a large space), stabilization was performed by injecting chemicals in Production Example 1 in Table 1. The construction method was performed as follows.
[0077]
That is, 10 injection holes of 3 m depth were drilled at intervals of 80 cm with a diameter of 42 mm with a jumbo machine within a fan-shaped range of 60 ° to the left and right from the center of the tunnel arch at the top of the tunnel face tip. . The drilling angle was 20 °. An injection bolt made of carbon steel (JIS G 3455, STKM 17C) similar to that in Example 1 was inserted into the obtained hole, and the mouth portion was sealed in the same manner as in Example 1. In addition, the bolts of the respective injection holes are No. from the one at the left 60 ° to the right 60 ° with respect to the excavation direction. 1-5.
[0078]
As A liquid, A2 in Table 1 was put into 40 kg chemical liquid tank A, and as B liquid, B1 in Table 2 was put into 40 kg chemical liquid tank B, and pump circulation was performed for about 1-2 minutes for each of A liquid and B liquid.
[0079]
Next, the tip of each discharge hose of liquid A and liquid B was connected to the T-shaped unit, and then jointed to the bolts (No. 1 to 5) of each injection hole fixed to the natural ground. No. 1, 3, 5, 2, 4 in the order of injection pressure 0.1-1 MPa (gauge pressure), injection speed 5-12 kg / min. A total of 600 kg was injected at 1-5.
[0080]
After about 90 minutes after injecting the injection chemical composition, the area around the injection hole was dug to investigate the stabilization of the natural ground. The left top board of Nos. 1 to 5 had a consolidation range of about 40 cm in radius and was hemispherically consolidated, and a large gap was well sealed with high density. Moreover, there was no collapse from the top part during excavation and it was well stabilized.
[0081]
By injecting into the granite crush zone having a gap larger than the injection bolt, the injection chemical composition of the present invention completely seals the gap and permeates and solidifies well in the crush zone, thereby stabilizing the rock mass. And proved to be very useful in tunnel excavation work.
[0082]
Example 12
A crack occurred in the rising corner of the roof slab of a three-story reinforced concrete building, and water leaked downstairs when it rained. An injecting chemical composition composed of A2 in Table 1 and B1 in Table 2 was injected into this water leakage portion, and water stop work was performed.
[0083]
First, use a drill with a diameter of 10 mm along the cracks to drill 35 holes with a depth of about 5 cm at a pitch of about 30 cm, blow off the shavings and dust in the holes with compressed air, and then apply absorbent cotton onto the holes. An injection pipe having an outer diameter of about 10 mm was driven from above with a wooden hammer.
[0084]
Next, A2 was put into a chemical tank A with a 10 kg hand pump, and B1 was put into a chemical tank B with a 15 kg hand pump.
[0085]
The tip of the discharge hose of tank A and tank B is connected to a Y-shaped pipe with a stationary mixer, and is set to each injection pipe in a one-touch joint format. The mixing ratio (mass ratio) of component A and component B is about 1/1. .5, the hand pump was operated up and down to inject about 1 kg per hole. All 35 injections were completed in about 1.5 hours.
[0086]
After the injection, the injection pipe was removed, a cork stopper was driven in, and mortar was applied to finish. After about 2 weeks, there was heavy rainfall, but no water leakage occurred as before, which proved to be very effective for crack sealing and water stopping.
[0087]
【The invention's effect】
The injectable liquid composition for stabilization of the ground or artificial structure according to the present invention and the stability-enhanced waterstop method using the same have the following effects.
[0088]
When the polyol component which is (D) component further used as needed with the alkali polysilicate aqueous solution which is (A) component and the organic polyisocyanate composition which is (B) component, this (D) Depending on the components, a foamed composite solid body mainly composed of a urea-silicic anhydride complex, a urethane-silicic anhydride complex, and a net-like anhydrous silicic acid gel body is formed. Accordingly, the consolidation hardening performance is high, and the rock or ground can be stably strengthened, and a reliable water stop effect can be achieved at the leakage portion.
[0089]
(A) component, (B) component, (C) component, and (D) component are low in viscosity, and the compatibility between (A) component and (C) component is good, and foaming is ensured. Excellent permeability due to consolidation.
[0090]
Since it is surely foam-cured and has a high consolidated strength, it is effective for filling and stabilizing strengthening of unstable rocks, grounds, structures, etc. that require large strength, with large voids or many cracks.
[0091]
Since the component (C) is easily dissolved in water, even if the injectable liquid composition adheres to the skin or clothes of the handler, it can be easily washed and removed, and the safety is extremely high. Moreover, since (A) component is hydrophobic, possibility that it will ooze into a groundwater layer is small.
[0092]
As described above, the construction method of the present invention has excellent features, and is more reliable, high-strength, economical, required not only for general mountain tunnels, but also for large-section tunnel excavation work and deep underground civil engineering work. It is a very effective method for achieving stable strengthening, sealing and water stoppage of unstable rocks or grounds with excellent safety.

Claims (3)

(A)アルカリ珪酸塩水溶液、ジフェニルメタンジイソシアネート(B1)及びジフェニルメタンジイソシアネート系多核縮合体(B2)からなるポリイソシアネートとポリ(オキシプロピレン)ポリオールを反応させて得られるイソシアネート基末端プレポリマーを含有する(B)有機ポリイソシアネート組成物、及び(C)N,N−ジエチルエタノールアミンである脂肪族三級アミン系触媒、からなる地盤や人工構造物の安定化用注入薬液組成物。(A) An isocyanate group-terminated prepolymer obtained by reacting a polyisocyanate composed of an aqueous alkali silicate solution, diphenylmethane diisocyanate (B1) and a diphenylmethane diisocyanate polynuclear condensate (B2) and a poly (oxypropylene) polyol (B An injectable liquid composition for stabilizing a ground or an artificial structure, comprising: an organic polyisocyanate composition; and (C) an aliphatic tertiary amine catalyst that is N, N-diethylethanolamine . 岩盤ないし地盤に所定間隔で複数個の孔を穿設し、前記孔内に中空の注入ボルトを挿入し、ボルトの開口部より請求項1に記載の安定化用注入薬液組成物を、岩盤ないし地盤に注入し、固結ないし封止させることを特徴とする、岩盤ないし地盤の安定強化止水工法。A plurality of holes are drilled at a predetermined interval in the rock or ground, a hollow injection bolt is inserted into the hole, and the stabilizing injectable liquid composition according to claim 1 is added to the rock or thorough through the opening of the bolt. A stable and robust water stop method for rock or ground, which is injected into the ground and consolidated or sealed. 人工構造物に注入パイプを挿入し、該注入パイプを介して請求項1に記載の安定化用注入薬液組成物を、人工構造物及び/又はその背面に注入し、固結ないし封止させることを特徴とする、人工構造物の安定強化止水工法。An injection pipe is inserted into the artificial structure, and the stabilizing injectable liquid composition according to claim 1 is injected into the artificial structure and / or the back surface thereof through the injection pipe to be consolidated or sealed. A stable and strengthened waterproofing method for artificial structures.
JP33588799A 1999-11-26 1999-11-26 Injectable liquid composition for stabilization of ground and artificial structures, etc., and stability-enhanced waterstop method using the same Expired - Fee Related JP3997672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33588799A JP3997672B2 (en) 1999-11-26 1999-11-26 Injectable liquid composition for stabilization of ground and artificial structures, etc., and stability-enhanced waterstop method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33588799A JP3997672B2 (en) 1999-11-26 1999-11-26 Injectable liquid composition for stabilization of ground and artificial structures, etc., and stability-enhanced waterstop method using the same

Publications (2)

Publication Number Publication Date
JP2001152155A JP2001152155A (en) 2001-06-05
JP3997672B2 true JP3997672B2 (en) 2007-10-24

Family

ID=18293494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33588799A Expired - Fee Related JP3997672B2 (en) 1999-11-26 1999-11-26 Injectable liquid composition for stabilization of ground and artificial structures, etc., and stability-enhanced waterstop method using the same

Country Status (1)

Country Link
JP (1) JP3997672B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233054A (en) * 2005-02-25 2006-09-07 Nippon Polyurethane Ind Co Ltd Impregnating agent composition for consolidation of rock bed or ground, and soil stabilizing and enhancing water sealing construction method using the same
EP2376421A4 (en) * 2008-12-18 2012-12-12 Invista Tech Sarl Cyclohexane oxidation process byproduct derivatives and methods for using the same
CN101519585B (en) * 2009-03-31 2011-05-04 荆州市弘利化工科技有限公司 Shearing cross-linking sensitive plugging agent and preparation method thereof
JP2011046907A (en) * 2009-08-29 2011-03-10 Nippon Polyurethane Ind Co Ltd Flexible polyurethane foam and method for manufacturing the same
JP6055264B2 (en) * 2012-10-12 2016-12-27 日油技研工業株式会社 Water-stopping pharmaceutical composition and water-stopping method
JP6926831B2 (en) * 2017-08-30 2021-08-25 東ソー株式会社 Injectable chemical composition for bedrock consolidation
CN109836552A (en) * 2019-02-26 2019-06-04 山西潞安晋安矿业工程有限责任公司 A kind of organo-mineral complexing sealing material and preparation method thereof

Also Published As

Publication number Publication date
JP2001152155A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
KR100216686B1 (en) Injection-type chemical composition for stabilization and reinforcement process using the same
JP2591540B2 (en) Injectable chemical composition for stabilization for tunnel excavation and water stabilization method using the same
JP3997672B2 (en) Injectable liquid composition for stabilization of ground and artificial structures, etc., and stability-enhanced waterstop method using the same
JPH0726263A (en) Grout composition for stabilization of soil or the like and work of stabilization, strengthening and water stop of soil therewith
JPH0772271B2 (en) Injectable liquid chemical composition for stabilizing soil, etc. and stable strengthening method using the same
JP4392647B2 (en) Injection chemical composition for void filling, and void filling method using the same
JP6055264B2 (en) Water-stopping pharmaceutical composition and water-stopping method
JP3952487B2 (en) Injectable liquid composition for stabilization of ground and artificial structures, etc., and stability-enhanced waterstop method using the same
JP3944878B2 (en) Chiyama consolidation chemical solution composition
JP3498656B2 (en) Injectable chemical composition for stabilization of ground and artificial structures, etc.
JPH04309616A (en) Filling chemical composition for stabilizing soil quality and method for sealing water to stabilize for reinforcement using the same
JP4092838B2 (en) Injection chemical composition for stabilization of bedrock, ground, etc. and stable strengthened water stop method using the same
JP2002047490A (en) Grout composition for stabilizing and strengthening bedrock, ground, artificial structure, or the like, and stabilizing, strengthening and water-stopping method using the same
JP2002226856A (en) Injection agent liquid composition for filling space, and space-filling construction method using same
JPH04102615A (en) Rock mass consolidation stabilizing works
JP2896083B2 (en) Injectable chemical composition for ground stabilization and method of water stabilization using the same
JP2002194354A (en) Injection chemical solution composition for filling in hole, and method for filling space with the same
JPH05320644A (en) Grout composition for stabilization of ground, artificial structure or the like and work for stabilization, strengthening or water stop therewith
JP2744757B2 (en) Injectable chemical composition for stabilizing ground and artificial structures, etc.
JP2004075754A (en) Grouting agent composition for stabilizing and strengthening base rock, ground, artificial structure, etc., and stabilizing and strengthening water cutoff method using the same
JP2816075B2 (en) Injectable chemical composition for stabilization for tunnel excavation and water stabilization method using the same
JPH07242873A (en) Injection chemical composition for stabilizing soil and stabilizing consolidation process using the same
JP2000345158A (en) Grouting chemical composition for consolidating rock bed or ground, and water stop method of construction for stabilizing and reinforcing using the same
JPH083555A (en) Injection chemical composition for stabilizing the ground and artificial structure and stabilized and reinforced water-stopping engineering method using the same
JPH05320647A (en) Self-extinguishing grout composition for stabilization of soil or the like and work for stabilization, strengthening and water stop therewith

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees