JP3995816B2 - Radar equipment - Google Patents

Radar equipment Download PDF

Info

Publication number
JP3995816B2
JP3995816B2 JP37213898A JP37213898A JP3995816B2 JP 3995816 B2 JP3995816 B2 JP 3995816B2 JP 37213898 A JP37213898 A JP 37213898A JP 37213898 A JP37213898 A JP 37213898A JP 3995816 B2 JP3995816 B2 JP 3995816B2
Authority
JP
Japan
Prior art keywords
received signal
antenna
directions
radar apparatus
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37213898A
Other languages
Japanese (ja)
Other versions
JP2000193744A (en
Inventor
淳 芦原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP37213898A priority Critical patent/JP3995816B2/en
Publication of JP2000193744A publication Critical patent/JP2000193744A/en
Application granted granted Critical
Publication of JP3995816B2 publication Critical patent/JP3995816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、車両の衝突防止システムなどに利用されるレーダ装置に関するものである。
【0002】
【従来の技術】
車両の衝突防止システムなどの構成要素として、先行車両や対向車両などの物体との距離を検出する車載用レーダ装置が開発されてきている。最近では、物体との距離だけでなく、自車両から見た物体が存在する方向をも検出可能な電子走査型や機械走査型のレーダ装置が開発されつつある。
【0003】
電子走査型のレーダ装置は、互いに異なる方向にビームを放射してその反射波を受信するアンテナ装置を、少しずつ向きをずらして複数隣接させて配列しておき、各アンテナ装置について時間をずらして順次ビームの送受信を行わせることにより、どのアンテナ装置、すなわちどの方向で反射波が発生したかを検知するように構成されている。1個の送受信アンテナ装置の向きを機械的に偏向させる機械式走査によっても、反射波を生じさせた物体の方向が検出できる。
【0004】
本出願人の特許第 2567332号などには、各方向の反射波について受信レベルの重み付け平均化処理を行うことにより、反射波を生じさせた物体の方向を精度良く検出する方法が開示されている。また、この種のレーダ装置では、雑音による誤検出を防止するために、反射波の受信レベルに関して所定の閾値を設定し、この所定値を越えるレベルの受信信号のみを反射波と見做し、この閾値以下のレベルの受信信号を雑音として廃棄している。
【0005】
【発明が解決しようとする課題】
車載用レーダ装置としては、その小型化が重要な課題となるが、特に、レーダ装置全体の相当の部分を占めるアンテナの小型化が重要な技術的課題となる。しかしながら、アンテナ装置が小型化するにつれて、メインローブに対するサイドローブの利得の比率が増大するという問題が生じる。このサイドローブの利得の比率は、少ないアンテナ個数で高い方向分解能を実現するために、一つのアンテナから放射したビームの反射波を隣接の他のアンテナで受信する場合などに特に大きくなる。
【0006】
このように、サイドローブの利得の比率が増大すると、アンテナの正面からはずれたサイドローブのみで検出された反射波が閾値を越えてしまい、あたかもメインローブで検出された、すなわち、アンテナの正面に存在する物体であるかのように認識され、方向の検出精度が低下するという問題がある。従って、本発明の主要な目的は、サイドローブの影響を軽減することにより物体の方向の検出精度の向上を図ったレーダ装置を提供することにある。
【0007】
本発明のレーダ装置は、上記アンテナのアンテナ利得特性を保持するアンテナ利得特性保持手段と、ビームが放射・受信される各方向のうち、最大レベルの受信信号が得られた方向又はこの最大レベルの受信信号を含む大きなレベルの受信信号が得られた二つ若しくは三つの方向について各レベルで重み付け平均して得られた方向を暫定的に物体の方向と見做し、上記最大レベルと保持中の各方向のアンテナ利得特性とに基づき、各方向の受信信号に含まれる物体の方向と見做した方向の受信信号成分を算定し、この算定した成分を各方向で得られた受信信号から減算して除去する不要成分除去手段とを備えたことにより、サイドローブなどの悪影響を除去するように構成されている。
【000
【発明の実施の形態】
本発明の好適な実施の形態によれば、上記アンテナ利得性は、送信アンテナと受信アンテナとの組合せ状況に応じて複数種類保持される。本発明の他の好適な実施の形態によれば、上記不要成分が除去された受信信号による方向の重み付け平均値を算定し、この算定値を最終的な物体の方向として検出する方向検出手段を備えている。
【0009】
本発明の更に他の好適な実施の形態によれば、レーダ装置は車両に搭載されており複数の方向へのビームの放射は、異なる方向を向いて配列された複数のアンテナから時分割的に行われる。本発明の更に他の好適な実施の形態によれば、複数の方向に放射されるビームはFM信号のビームである。
【0010】
【実施例】
図2は、本発明の一実施例の車載用レーダ装置の概略の構成を示す機能ブロック図であり、A1〜A5は図示の便宜上送受共用のアンテナによって例示されるアンテナ、TR1〜TR5は送受信回路、PSはプロセッサである。
【0011】
5個のアンテナA1,A2・・・A5は、方向が配列順に少しずつずれた状態で車両の前方に設置されており、各アンテナから放射されるビームB1,B2・・・B5が隣接するものどうしが互いに部分的に重なり合うように配列されている。プロセッサPSの制御のもとに、送受信回路TR1〜TR5の一つで発生された送信信号がアンテナA1〜A5の対応のものから送信ビームとして放射される。先行車両や、対向車両や、路肩のガードレールなどの車両の前方の物体で生じた反射波が送信ビームを放射したアンテナA1〜A5の一つに受信され、対応の送受信回路に供給される。
【0012】
プロセッサPSは、上記時分割的に送受信が行われる5個の送受信系統(以下「送受信チャンネル#1〜#5」と称する)の送受信のタイミングを制御すると共に、各送受信チャンネルの送受信回路TR1〜TR5で得られた反射波に関する情報を受取って処理する。例えば、このレーダ装置がFM信号を送信してその反射波を受信するFMレーダ装置であるとすれば、プロセッサPSは、各送受信チャンネルの送受信回路TR1〜TR5から、受信反射波に関する情報として、送信信号と反射波との混合によって発生されたビート信号の周波数とその振幅(レベル)とを受け取る。このビート信号の周波数は物体までの距離を示し、ビート信号のレベルは反射波の受信レベルを示す。
【0013】
図2では、図示の煩雑化を避けるうえで、各放射ビームB1〜B5のいずれについてもサイドローブの影響が省略されている。しかしながら、実際の車載用小型アンテナでは、図1の(A)にアンテナ利得として例示するように、各アンテナA1〜A5の利得特性には、メインローブの両側にかなり大きなレベルのサイドローブが出現する。なお、5個の送受信チャンネル#1〜#5のアンテナA1〜A5の設置角度は、ての例では、図中にθ1,θ2・・・θ5として示すように、等角度間隔が保たれている。
【0014】
図1の例で、先行車両などの物体が(A)に塗り潰しの三角印で例示する位置(方向,角度)に存在するものとすれば、この物体で生じた反射波の受信レベルは、下段の(B)に例示するようなものとなる。すなわち、最左端のアンテナA1には、反射波が受信されず、その右側に配置された4個のアンテナA2,A3,A4,A5には、それぞれ受信レベルL2,L3,L4,L5で例示するような大きさの反射波が受信される。なお、(B)中の各受信レベルは、物体の横幅が放射ビームの広がりの幅に比べて十分に小さいとした場合の値、すなわち、(A)中の各利得特性曲線と物体位置との交点の高さによって例示されている。
【0015】
従来の閾値レーダ装置では、雑音レベルなどを考慮して予め設定されている反射波検出用閾値αよりも大きなレベルを有するために反射波と見做された全ての受信信号を使用して、次式に従って、角度の重み付け平均値Θが計算され、これが物体の受信位置とされていた。
Θ=( L2θ2+L3θ3+L4θ4+L5θ5) /(L2+L3+L4+L5) この結果、重み付け平均値Θは、図1の(B)に白抜きの三角印で例示するように、角度θ3とθ4の中間程度の値となり、図1の(A)中に塗り潰しの三角形で示した物体位置から大きなずれが生じる。
【0016】
このような大きなずれを生じさせた原因を、図1の(A)を参照して説明すると次のようになる。すなわち、送受信チャンネル#2の場合、アンテナA2のメインローブが物体位置をカバーせず、そのサイドローブのみが角度θ4の近傍において物体位置をカバーしている。
【0017】
この結果、この送受信チャンネル#2では、あたかも、アンテナA2のほぼ正面(メインローブの中心の角度θ2の位置)にレベルL2の反射波を生じさせた物体が存在するかのように認識される。何故ならば、従来のレーダ装置は、レベルL2の受信信号がメインローブによるのかサイドローブによるのかを弁別する機能を備えていないからである。
【0018】
これに対して、本実施例のレーダ装置では、図1の(A)に例示するような各アンテナA1〜A5の利得特性がプロセッサPSに内蔵されたデータメモリに予め保持されている。そして、プロセッサPSはこの保持中の各アンテナの利得特性と、各送受信チャンネルの受信レベルとから各受信信号がメインローブによるものかサイドローブによるものかを弁別する機能を備えている。
【0019】
まず、プロセッサPSは、各送受信チャンネルの受信レベルを検査し、最大の受信レベルが得られた送受信チャンネル#4のビーム放射方向(角度θ4)を、反射波を発生させた物体の方向であると暫定的に見做す。次に、プロセッサPSは、この最大の受信レベルL4と内蔵のメモリから読出した各アンテナの利得特性とに基づき、受信信号が得られた各送受信チャンネルについて、各受信信号に含まれるサイドローブによる成分を算定する。
【0020】
すなわち、プロセッサPSは、送受信チャンネル#2については、角度θ4の位置におけるアンテナAのメインローブとアンテナAのサイドローブの比率ρを算定する。プロセッサPSは、このようにして算定した比率ρに受信レベルL4を乗算することにより、送受信チャンネル#2の受信信号中に含まれるサイドローブによる成分を算定する。
【0021】
プロセッサPSは、このようにして算定したサイドローブによる成分を、送受信チャンネル#2の受信信号から減算して除去することにより、メインローブのみで検出された受信信号の成分を算定する。図1の例では、サイドローブによる成分がL2にほぼ等しくなるため、減算後の受信信号のレベルは、閾値α以下となる。
【0022】
隣接の送受信チャンネル#3については、角度θ4の位置にアンテナA3のサイドローブが存在しないため、サイドローブによる成分は直ちにゼロと算定される。この結果、送受信チャンネル#3の受信信号からはサイドローブによる成分の減算が行われず、受信信号のレベルはL3のままとなる。送受信チャンネル#5についても、送受信チャンネル#3場合と同様の理由により、サイドローブによる成分の減算は行われず、受信信号のレベルL5はそのままの値に保たれる。
【0023】
このようにして、サイドローブによる受信信号の成分による減算が行われた後に、閾値αを越えている受信信号は、送受信チャンネル#3,#4,#5のレベルL3,L4,L5の受信信号のみであり、これらによる重み付け平均値Θが算定される。すなわち、
Θ=( L3θ3+L4θ4+L5θ5) /(L3+L4+L5)
【0024】
このようにして算定された重み付け平均値Θは、図1の(B)に塗り潰しの三角印で例示するように、角度θ4とθ5の中間でかつθ4の近傍の値となり、図1の(A)に例示された物体位置に近いものとなる。
【0025】
以上、サイドローブによる受信信号の成分のみを不要成分として除去する構成を例示した。しかしながら、メインローブの広がりが大きくて幅の広いビームしか放射できないようなアンテナに対しても、メインローブ内のその中心から所定角度以上離れた部分による受信信号の成分を不要成分として除去する構成を採用することができる。
【0026】
例えば、図3(A)に点線で示すような実線で示すようなメインローブのみから成る利得特性のアンテナを使用する場合を想定する。各メインローブは、点線で示す図1と類似のメインローブとサイドローブから成る利得特性に外接している。この場合、物体の幅がビーム幅に比べて十分に狭いとすれば、図3(B)に例示するように、図1(B)の場合とほぼ同様の受信信号が得られ、サイドローブの場合について既に説明したとほぼ同様の不要成分の除去処理を適用できる。この不要成分除去処理の結果、アンテナの実質的な利得特性が先鋭になり、空間分解能が高まり、物体の方向の検出精度が向上する。
【0027】
上述のような目的を考慮すると、プロセッサPSのデータメモリに保持するアンテナの利得特性は連続的な曲線である必要はなく、いくつかの離散的な角度についての離散的なデータで十分である。
【0028】
また、従来の反射波検出用閾値αをそのまま利用し、サイドローブによる成分を除去した後の受信信号が閾値αを越えている送受信チャンネルのみについて重み付け平均化を行って物体の方向を算定する構成を説明した。しかしながら、上記反射波検出用閾値αに追加して、あるいはこのαの代わりに、新たに重み付け平均化専用の閾値βを導入し、サイドローブの成分を除去後の受信レベルがこの新たな閾値βを越えたレベルの受信信号が得られた送受信チャンネルのみについて重み付け平均化による物体方向の算定を行う構成とすることもできる。
【0029】
このような閾値βとしては、最大レベルの受信信号が得られた送受信チャンネルに着目し、この最大の受信レベルよりも所定値γ(dB)だけ小さな値を設定することができる。
【0030】
また、各アンテナの利得特性が全て同一の場合を例にとって本発明の一実施例を説明した。しかしながら、前述した本出願人の特許第2567332 号に開示されているように、任意のアンテナから放射したビームの反射波を同一のアンテナで受信したり、隣接する他のアンテナで受信するという動作を混在させる場合には、送受信アンテナの組合せに応じてアンテナの利得特性が異なってくる。
【0031】
この場合、送受信アンテナの組合せに応じた各種のアンテナ利得特性を、予めデータメモリに保持させておき、上記送受信アンテナの組合せについて選択中の動作に対応したアンテナ利得特性をメモリから読出して、これに基づきサイドローブによる受信信号の成分を算定する構成とすればよい。
【0032】
また、複数の方向のうち最大の受信信号が得られたものを暫定的に物体の方向と見做す構成を例示した。しかしながら、この暫定的な物体の方向としては、レベルの大きな受信信号が得られた二つ、あるいは三つの送受信チャンネルについて算定した重み付け平均値など、他の適宜なものを適用することもできる。
【0033】
さらに、電子式走査を行うレーダ装置を例にとって本発明を説明したが、機械式走査を行う構成のレーダ装置にも本発明を適用できることは明らかである。
【0034】
【発明の効果】
以上詳細に説明したように、本発明のレーダ装置は、保持中の利得特性と、最大レベルの受信信号とから各方向のアンテナの受信信号の中に含まれるサイドローブやメインローブの周辺部分による成分を不要成分として算定し、この算定した成分を各方向で得られた受信信号から減算して除去する構成であるから、サイドローブや、幅の広いメインローブによる空間分解能への悪影響が大幅に軽減され、物体の方向の検出精度の大幅な向上が図られる。
【図面の簡単な説明】
【図1】本発明の一実施例の動作を説明するための概念図である。
【図2】上記実施例のレーダ装置の構成を示す機能ブロック図である。
【図3】本発明の他の実施例の動作を説明するための概念図である。
【符号の説明】
θ1〜θ5 各送受信チャンネルのアンテナの方向
L1〜L5 各アンテナの受信レベル
α 反射波検出用閾値
β 重心計算用閾値
A1〜A5 各送受信チャンネルのアンテナ
TR1 〜TR5 各送受信チャンネルの送受信回路
PS プロセッサ
[0001]
[Industrial application fields]
The present invention relates to a radar apparatus used in a vehicle collision prevention system and the like.
[0002]
[Prior art]
As components such as a vehicle collision prevention system, an in-vehicle radar device that detects a distance from an object such as a preceding vehicle or an oncoming vehicle has been developed. Recently, electronic scanning and mechanical scanning type radar devices capable of detecting not only the distance to an object but also the direction in which the object is seen from the host vehicle are being developed.
[0003]
In the electronic scanning radar device, antenna devices that radiate beams in different directions and receive the reflected waves are arrayed adjacent to each other with their directions slightly shifted, and the time for each antenna device is shifted. By sequentially transmitting and receiving beams, it is configured to detect which antenna device, that is, in which direction the reflected wave is generated. The direction of the object that caused the reflected wave can also be detected by mechanical scanning that mechanically deflects the direction of one transmitting / receiving antenna device.
[0004]
For example, Japanese Patent No. 2567332 of the present applicant discloses a method for accurately detecting the direction of an object that has caused a reflected wave by performing a weighted averaging process of the reception level on the reflected wave in each direction. . Further, in this type of radar apparatus, in order to prevent erroneous detection due to noise, a predetermined threshold is set with respect to the reception level of the reflected wave, and only a reception signal having a level exceeding the predetermined value is regarded as a reflected wave. A received signal at a level below this threshold is discarded as noise.
[0005]
[Problems to be solved by the invention]
As a vehicle-mounted radar device, downsizing is an important issue, and in particular, downsizing of an antenna that occupies a considerable portion of the entire radar device is an important technical issue. However, as the antenna device is reduced in size, there arises a problem that the ratio of the gain of the side lobe to the main lobe increases. The ratio of the gain of the side lobe is particularly large when a reflected wave of a beam radiated from one antenna is received by another adjacent antenna in order to realize high directional resolution with a small number of antennas.
[0006]
As described above, when the ratio of the gain of the side lobe increases, the reflected wave detected only by the side lobe off the front of the antenna exceeds the threshold, and it is detected by the main lobe, that is, at the front of the antenna. There is a problem that it is recognized as if it is an existing object, and the accuracy of detecting the direction is lowered. Accordingly, a main object of the present invention is to provide a radar apparatus that improves the detection accuracy of the direction of an object by reducing the influence of side lobes.
[0007]
The radar apparatus according to the present invention includes an antenna gain characteristic holding unit that holds the antenna gain characteristic of the antenna, and a direction in which a received signal of a maximum level is obtained or a direction of the maximum level among the directions in which the beam is radiated and received . tentatively regarded as a direction of the object the direction obtained by weighted average at each level for two or three directions received signal of large level is obtained including the received signal, in the holding and the maximum level Based on the antenna gain characteristics in each direction, calculate the received signal component in the direction considered as the direction of the object included in the received signal in each direction, and subtract the calculated component from the received signal obtained in each direction. And an unnecessary component removing means for removing the side lobes.
[000 8 ]
DETAILED DESCRIPTION OF THE INVENTION
According to good optimal embodiment of the present invention, the antenna gain property is a plurality of types held in accordance with a combination status of the transmit and receive antennas. According to another preferred embodiment of the present invention , there is provided a direction detecting means for calculating a weighted average value of directions by the received signal from which the unnecessary component is removed, and detecting the calculated value as a final object direction. I have.
[0009]
According to yet another preferred embodiment of the present invention, a radar apparatus radiation beam to a plurality of directions it is mounted on a vehicle, division manner when a plurality of antennas arranged facing different directions Done. According to yet another preferred embodiment of the invention, the beam emitted in a plurality of directions is a beam of FM signals.
[0010]
【Example】
FIG. 2 is a functional block diagram showing a schematic configuration of an in-vehicle radar device according to an embodiment of the present invention, in which A1 to A5 are antennas exemplified by a transmission / reception antenna for convenience of illustration, and TR1 to TR5 are transmission / reception circuits. PS is a processor.
[0011]
Five antennas A1, A2,... A5 are installed in front of the vehicle with their directions slightly shifted in order of arrangement, and beams B1, B2,. They are arranged so that they partially overlap each other. Under the control of the processor PS, a transmission signal generated by one of the transmission / reception circuits TR1 to TR5 is radiated as a transmission beam from the one corresponding to the antennas A1 to A5. A reflected wave generated by an object ahead of the vehicle such as a preceding vehicle, an oncoming vehicle, or a guard rail on the shoulder is received by one of the antennas A1 to A5 that radiates a transmission beam, and is supplied to a corresponding transmission / reception circuit.
[0012]
The processor PS controls transmission / reception timings of the five transmission / reception systems (hereinafter referred to as “transmission / reception channels # 1 to # 5”) in which transmission / reception is performed in a time-division manner, and transmission / reception circuits TR1 to TR5 of each transmission / reception channel. Receive and process the information about the reflected wave obtained in (1). For example, if this radar apparatus is an FM radar apparatus that transmits an FM signal and receives the reflected wave, the processor PS transmits as information on the received reflected wave from the transmission / reception circuits TR1 to TR5 of each transmission / reception channel. The frequency and the amplitude (level) of the beat signal generated by mixing the signal and the reflected wave are received. The frequency of the beat signal indicates the distance to the object, and the level of the beat signal indicates the reception level of the reflected wave.
[0013]
In FIG. 2, in order to avoid complication of illustration, the influence of the side lobe is omitted for each of the radiation beams B1 to B5. However, in an actual small vehicle-mounted antenna, as illustrated as an antenna gain in FIG. 1A, side lobes of a considerably large level appear on both sides of the main lobe in the gain characteristics of the antennas A1 to A5. . In addition, the installation angles of the antennas A1 to A5 of the five transmission / reception channels # 1 to # 5 are maintained at equal angular intervals as shown in the figure as θ1, θ2,. .
[0014]
In the example of FIG. 1, if an object such as a preceding vehicle is present at a position (direction, angle) illustrated by a solid triangle mark in (A), the reception level of the reflected wave generated by this object is (B) as illustrated. That is, no reflected wave is received by the leftmost antenna A1, and the four antennas A2, A3, A4, A5 arranged on the right side thereof are illustrated by reception levels L2, L3, L4, L5, respectively. A reflected wave having such a magnitude is received. Each reception level in (B) is a value when the lateral width of the object is sufficiently smaller than the width of the spread of the radiation beam, that is, between each gain characteristic curve in (A) and the object position. Illustrated by the height of the intersection.
[0015]
The conventional threshold radar apparatus uses all received signals that are regarded as reflected waves because it has a level higher than the preset threshold value α for reflected wave detection in consideration of the noise level and the like. According to the formula, the weighted average value Θ of the angle was calculated, and this was set as the reception position of the object.
Θ = (L2θ2 + L3θ3 + L4θ4 + L5θ5) / (L2 + L3 + L4 + L5) As a result, the weighted average value Θ is an intermediate value between the angles θ3 and θ4 as illustrated by white triangles in FIG. (A) A large deviation occurs from the object position indicated by the filled triangle in FIG.
[0016]
The cause of such a large shift will be described as follows with reference to FIG. That is, in the case of the transmission / reception channel # 2, the main lobe of the antenna A2 does not cover the object position, and only the side lobe covers the object position in the vicinity of the angle θ4.
[0017]
As a result, in this transmission / reception channel # 2, it is recognized as if there is an object that has generated a reflected wave of level L2 almost in front of the antenna A2 (position at the angle θ2 of the center of the main lobe). This is because the conventional radar apparatus does not have a function of discriminating whether the received signal of level L2 is due to the main lobe or the side lobe.
[0018]
On the other hand, in the radar apparatus of this embodiment, the gain characteristics of the antennas A1 to A5 as exemplified in FIG. 1A are held in advance in a data memory built in the processor PS. The processor PS has a function of discriminating whether each received signal is a main lobe or a side lobe from the gain characteristics of each antenna being held and the reception level of each transmission / reception channel.
[0019]
First, the processor PS checks the reception level of each transmission / reception channel, and the beam radiation direction (angle θ4) of the transmission / reception channel # 4 at which the maximum reception level is obtained is the direction of the object that generated the reflected wave. Temporarily consider. Next, based on the maximum reception level L4 and the gain characteristics of each antenna read from the built-in memory, the processor PS, for each transmission / reception channel from which the reception signal is obtained, includes a component due to the side lobe included in each reception signal. Is calculated.
[0020]
That is, the processor PS, for the transmission and reception channels # 2, calculates the ratio ρ of the main lobe and the antenna A 2 side lobes of the antenna A 4 at the position of the angle .theta.4. The processor PS calculates the component due to the side lobe included in the reception signal of the transmission / reception channel # 2 by multiplying the ratio ρ thus calculated by the reception level L4.
[0021]
The processor PS calculates the component of the received signal detected only by the main lobe by subtracting the component due to the side lobe thus calculated from the received signal of the transmission / reception channel # 2 and removing it. In the example of FIG. 1, since the component due to the side lobe is substantially equal to L2, the level of the received signal after subtraction is equal to or less than the threshold value α.
[0022]
For the adjacent transmission / reception channel # 3, since the side lobe of the antenna A3 does not exist at the position of the angle θ4, the component due to the side lobe is immediately calculated as zero. As a result, the subtraction of the component due to the side lobe is not performed from the reception signal of the transmission / reception channel # 3, and the level of the reception signal remains L3. Also for the transmission / reception channel # 5, for the same reason as in the case of the transmission / reception channel # 3, subtraction of components by side lobes is not performed, and the level L5 of the reception signal is maintained as it is.
[0023]
Thus, after the subtraction by the received signal component by the side lobe is performed, the received signal exceeding the threshold value α is the received signal of the levels L3, L4, and L5 of the transmission / reception channels # 3, # 4, and # 5. Thus, the weighted average value Θ is calculated. That is,
Θ = (L3θ3 + L4θ4 + L5θ5) / (L3 + L4 + L5)
[0024]
The weighted average value Θ calculated in this way is a value between the angles θ4 and θ5 and in the vicinity of θ4, as illustrated by the solid triangle mark in FIG. ) Is close to the object position exemplified in FIG.
[0025]
The configuration in which only the received signal component due to the side lobe is removed as an unnecessary component has been described above. However, even for antennas that have a large main lobe spread and can only radiate a wide beam, a configuration that removes received signal components as unnecessary components from the center of the main lobe at a predetermined angle or more away from the center. Can be adopted.
[0026]
For example, a case is assumed where an antenna having a gain characteristic including only a main lobe as indicated by a solid line as shown by a dotted line in FIG. Each main lobe circumscribes a gain characteristic composed of a main lobe and a side lobe similar to that shown in FIG. In this case, if the width of the object is sufficiently narrow compared to the beam width, as illustrated in FIG. 3B, a reception signal substantially similar to that in FIG. It is possible to apply a removal process of unnecessary components that is almost the same as described above. As a result of this unnecessary component removal processing, the substantial gain characteristic of the antenna becomes sharp, the spatial resolution is increased, and the detection accuracy of the object direction is improved.
[0027]
In view of the above-described purpose, the antenna gain characteristic held in the data memory of the processor PS does not need to be a continuous curve, and discrete data for several discrete angles is sufficient.
[0028]
Further, a configuration in which the conventional reflected wave detection threshold value α is used as it is, and the direction of the object is calculated by performing weighted averaging only for transmission / reception channels in which the reception signal after the sidelobe component is removed exceeds the threshold value α. Explained. However, in addition to or instead of the above-described reflected wave detection threshold value α, a new threshold value β dedicated to weighted averaging is introduced, and the reception level after removing the sidelobe components is the new threshold value β. It is also possible to adopt a configuration in which the object direction is calculated by weighted averaging only for the transmission and reception channels where a received signal with a level exceeding 1 is obtained.
[0029]
As such a threshold value β, a value that is smaller than the maximum reception level by a predetermined value γ (dB) can be set by paying attention to the transmission / reception channel from which the reception signal of the maximum level is obtained.
[0030]
Further, the embodiment of the present invention has been described by taking the case where the gain characteristics of the respective antennas are all the same as an example. However, as disclosed in the above-mentioned applicant's patent No. 2567332, the operation of receiving the reflected wave of the beam radiated from an arbitrary antenna with the same antenna or with another adjacent antenna is performed. When mixed, the gain characteristics of the antennas differ depending on the combination of the transmission / reception antennas.
[0031]
In this case, various antenna gain characteristics corresponding to the transmission / reception antenna combinations are stored in the data memory in advance, and the antenna gain characteristics corresponding to the operation being selected for the transmission / reception antenna combinations are read from the memory. Based on the side lobe, the received signal component may be calculated.
[0032]
In addition, the configuration in which the maximum received signal obtained from a plurality of directions is tentatively regarded as the direction of the object is illustrated. However, as the provisional object direction, other appropriate ones such as a weighted average value calculated for two or three transmission / reception channels from which a high-level received signal is obtained can be applied.
[0033]
Furthermore, although the present invention has been described by taking a radar apparatus that performs electronic scanning as an example, it is obvious that the present invention can also be applied to a radar apparatus configured to perform mechanical scanning.
[0034]
【The invention's effect】
As described above in detail, the radar apparatus according to the present invention is based on the gain characteristics being held and the peripheral portion of the side lobe and main lobe included in the received signal of the antenna in each direction from the maximum level of the received signal. Since the component is calculated as an unnecessary component, and the calculated component is subtracted from the received signal obtained in each direction , the side lobe and the wide main lobe significantly affect the spatial resolution. As a result, the detection accuracy of the direction of the object is greatly improved.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram for explaining the operation of an embodiment of the present invention.
FIG. 2 is a functional block diagram showing a configuration of a radar apparatus according to the embodiment.
FIG. 3 is a conceptual diagram for explaining the operation of another embodiment of the present invention.
[Explanation of symbols]
θ1 to θ5 Antenna direction L1 to L5 of each transmission / reception channel Reception level α of each antenna Reflected wave detection threshold β Center of gravity calculation threshold A1 to A5 Antenna of each transmission / reception channel
TR1 to TR5 Transmit / receive circuit for each transmit / receive channel PS processor

Claims (6)

複数の方向にビームを放射し物体からの反射波を受信信号として受信するアンテナを備え、これらの反射波を生じさせた物体を検出するレーダ装置において、
前記アンテナのメインローブとサイドローブとから成る各方向のアンテナ利得特性を保持するアンテナ利得特性保持手段と、
前記ビームが放射・受信される各方向のうち、最大レベルの受信信号が得られた方向又はこの最大レベルの受信信号を含む大きなレベルの受信信号が得られた二つ若しくは三つの方向について各レベルで重み付け平均して得られた方向を暫定的に物体の方向と見做し、前記最大レベルと前記保持中の各方向のアンテナ利得特性とに基づき、各方向の受信信号に含まれる前記物体の方向と見做した方向のサイドローブによる受信信号成分を算定し、この算定した成分を各方向で得られた受信信号から減算して除去する不要成分除去手段と
を備えたことを特徴とするレーダ装置。
In a radar apparatus that includes an antenna that emits a beam in a plurality of directions and receives a reflected wave from an object as a reception signal, and detects an object that has caused the reflected wave,
Antenna gain characteristic holding means for holding antenna gain characteristics in each direction consisting of a main lobe and side lobes of the antenna;
Among the directions in which the beam is radiated and received, each level in the direction in which the maximum level received signal is obtained or in two or three directions in which a large level received signal including this maximum level received signal is obtained. in regarded as the direction of the tentatively object the direction obtained by weighted average, based on the respective direction of the antenna gain characteristics in the maximum level and the holding of the object included in each direction of the received signal A radar comprising: an unnecessary component removing means for calculating a received signal component based on a side lobe in a direction regarded as a direction and subtracting the calculated component from a received signal obtained in each direction apparatus.
複数の方向にビームを放射し物体からの反射波を受信信号として受信するアンテナを備え、これらの反射波を生じさせた物体を検出するレーダ装置において、
前記アンテナの各方向のメインローブのアンテナ利得特性を保持するアンテナ利得特性保持手段と、
前記ビームが放射・受信される各方向のうち、最大レベルの受信信号が得られた方向又はこの最大レベルの受信信号を含む大きなレベルの受信信号が得られた二つ若しくは三つの方向について各レベルで重み付け平均して得られた方向を暫定的に物体の方向と見做し、前記最大レベルと前記保持中の各方向のアンテナ利得特性とに基づき、各方向の受信信号に含まれる前記物体の方向と見做した方向の受信信号成分を算定し、この算定した成分を各方向で得られた受信信号から減算して除去する不要成分除去手段と
を備えたことを特徴とするレーダ装置。
In a radar apparatus that includes an antenna that emits a beam in a plurality of directions and receives a reflected wave from an object as a reception signal, and detects an object that has caused the reflected wave,
Antenna gain characteristic holding means for holding the antenna gain characteristic of the main lobe in each direction of the antenna;
Among the directions in which the beam is radiated and received, each level in the direction in which the maximum level received signal is obtained or in two or three directions in which a large level received signal including this maximum level received signal is obtained. in regarded as the direction of the tentatively object the direction obtained by weighted average, based on the respective direction of the antenna gain characteristics in the maximum level and the holding of the object included in each direction of the received signal A radar apparatus comprising: an unnecessary component removing unit that calculates a received signal component in a direction regarded as a direction and subtracts the calculated component from a received signal obtained in each direction and removes the calculated component.
請求項1または2のいずれかにおいて、
前記アンテナ利得性は、送信アンテナと受信アンテナとの組合せ状況に応じて複数種類保持されることを特徴とするレーダ装置。
In either claim 1 or 2,
The antenna gain characteristics are radar apparatus, wherein a plurality of kinds held in accordance with a combination status of the transmit and receive antennas.
請求項1乃至3のいずれかにおいて、
前記不要成分が除去された受信信号による方向の重み付け平均値を算定し、この算定値を最終的な物体の方向として検出する方向検出手段を備えたことを特徴とするレーダ装置。
In any one of claims 1 to 3,
A radar apparatus, comprising: a direction detection unit that calculates a weighted average value of directions based on a received signal from which the unnecessary component has been removed, and detects the calculated value as a final object direction.
請求項1乃至4のいずれかにおいて、
前記レーダ装置は車両に搭載されており、前記複数の方向へのビームの放射は、異なる方向を向いて配列された複数のアンテナから時分割的に行われることを特徴とするレーダ装置。
In any one of claims 1 to 4,
The radar apparatus is mounted on a vehicle, and the radiation of the beam in the plurality of directions is performed in a time-sharing manner from a plurality of antennas arranged in different directions.
請求項1乃至5のいずれかにおいて、
前記複数の方向に放射されるビームはFM信号のビームであることを特徴とするレーダ装置。
In any one of claims 1 to 5,
The radar apparatus according to claim 1, wherein the beams emitted in the plurality of directions are FM signal beams.
JP37213898A 1998-12-28 1998-12-28 Radar equipment Expired - Fee Related JP3995816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37213898A JP3995816B2 (en) 1998-12-28 1998-12-28 Radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37213898A JP3995816B2 (en) 1998-12-28 1998-12-28 Radar equipment

Publications (2)

Publication Number Publication Date
JP2000193744A JP2000193744A (en) 2000-07-14
JP3995816B2 true JP3995816B2 (en) 2007-10-24

Family

ID=18499919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37213898A Expired - Fee Related JP3995816B2 (en) 1998-12-28 1998-12-28 Radar equipment

Country Status (1)

Country Link
JP (1) JP3995816B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100662064B1 (en) 2001-03-15 2006-12-27 후지쓰 텐 가부시키가이샤 Signal processing method for scanning radar
KR100773240B1 (en) * 2003-11-18 2007-11-02 가부시키가이샤 무라타 세이사쿠쇼 Radar
JPWO2006013689A1 (en) * 2004-08-06 2008-05-01 株式会社村田製作所 Radar
CN107505592B (en) * 2017-07-27 2020-10-16 中国船舶重工集团公司第七二四研究所 Communication access method based on multi-beam radar rough direction finding
CN108767479B (en) * 2018-05-25 2020-08-14 成都电科星天科技有限公司 Antenna main lobe maximum broadening method meeting given minimum main lobe gain

Also Published As

Publication number Publication date
JP2000193744A (en) 2000-07-14

Similar Documents

Publication Publication Date Title
US6992613B2 (en) Object detecting device
EP1557690B1 (en) Radar apparatus
EP1031851B1 (en) Radar Apparatus
EP1326087B1 (en) Apparatus and method for radar data processing
EP1371997A1 (en) Method for detecting stationary object on road by radar
EP1548458A2 (en) Vehicle-mounted radar
US7379018B1 (en) System and method for verifying a radar detection
JP2000207694A (en) Gate for radar loaded vehicle
US6522286B1 (en) Multi-channel radar apparatus
US9715014B2 (en) Antenna array, radar system, vehicle and method
EP2485066B1 (en) Radar device
JP3995816B2 (en) Radar equipment
WO2018092307A1 (en) Communication control device, toll collection system, communication control method, and program
JP4356820B2 (en) Radar equipment
CN112986945B (en) Radar target identification method, device, equipment and storage medium
JP3723804B2 (en) Automotive radar equipment
US20220334220A1 (en) Radar Based Target-Type Vehicle Detection
JP3447234B2 (en) Object Position Detection Method for Scanning Radar
JP2006250793A (en) Radar apparatus
US7026976B1 (en) Radar apparatus having function of estimating target's width
JPH10325869A (en) Radar device for vehicle and automatic traveling control system using it
JP3126495B2 (en) In-vehicle collision prevention radar system
JP2002156450A (en) Obstacle discriminating method
CN219512394U (en) Radar system for detecting angle of full plane
JP2000241537A (en) Angle-measuring device by fm-cw radar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees