JP3995385B2 - Paste type hydrogen storage alloy electrode - Google Patents

Paste type hydrogen storage alloy electrode Download PDF

Info

Publication number
JP3995385B2
JP3995385B2 JP2000061512A JP2000061512A JP3995385B2 JP 3995385 B2 JP3995385 B2 JP 3995385B2 JP 2000061512 A JP2000061512 A JP 2000061512A JP 2000061512 A JP2000061512 A JP 2000061512A JP 3995385 B2 JP3995385 B2 JP 3995385B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode
nickel
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000061512A
Other languages
Japanese (ja)
Other versions
JP2001250537A (en
Inventor
喜裕 増田
佳文 曲
信幸 東山
靖彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000061512A priority Critical patent/JP3995385B2/en
Publication of JP2001250537A publication Critical patent/JP2001250537A/en
Application granted granted Critical
Publication of JP3995385B2 publication Critical patent/JP3995385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、ペースト式水素吸蔵合金電極に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
近年、ニッケル・カドミウム蓄電池に比べて2倍以上の容量を有し、しかも環境適合性にも優れる、負極に水素吸蔵合金電極を使用したニッケル・水素蓄電池が、次世代のアルカリ蓄電池として注目されており、各種ポータブル機器の普及に伴い、種々の改良技術が提案されている。
【0003】
その一つとして、水素吸蔵合金電極を活性化して、安定した容量を取り出せる状態にするために必要な処理(充放電を数サイクル繰り返し行う活性化処理)に要する時間(サイクル)を短縮する技術がある。
【0004】
例えば、特開平5−82124号公報では、水素吸蔵合金に水酸化ニッケルを添加することにより、水素吸蔵合金電極の親液性が高められて、水素吸蔵合金電極の充放電サイクル初期の活性(初期活性)が向上することが報告されている。
【0005】
しかしながら、本発明者らが検討したところ、上記の従来技術には、水素吸蔵合金電極の初期活性は若干向上するものの、水酸化ニッケルの添加により、酸素ガス吸収能が低下し、その結果、電池内圧が、無添加の場合と比べて、上昇し易くなるという問題があることが分かった。
【0006】
ニッケル・水素蓄電池の如き密閉型電池においては、電池内圧が安全弁の作動圧を越えて高くなると、安全弁が作動して、電解液が電池内のガスとともに漏出する。その結果、内部抵抗が増大して、放電容量が低下する。また、電解液の漏出は、充放電サイクル特性低下の一因ともなる。
【0007】
したがって、本発明は、充放電サイクル初期の放電容量が大きく、しかも電池内圧が上昇しにくい密閉型アルカリ蓄電池を与える、初期活性が高く、しかも酸素ガス吸収能が良いペースト式水素吸蔵合金電極を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明に係わる水素吸蔵合金電極(本発明電極)は、集電体と、当該集電体上に形成された活物質層とからなり、前記活物質層が、CaCu5 型結晶構造を有する水素吸蔵合金と、Li p NiO 2 〔0.05≦p≦0.9〕と、結着剤とを含む混合物である。
【0009】
本発明電極は、水素吸蔵合金にLi p NiO 2 〔0.05≦p≦0.9〕が添加されているので、初期活性が高く、しかも酸素ガス吸収能が良い。この理由は定かでないが、添加せるLi p NiO 2 〔0.05≦p≦0.9〕が、電極の含液性を向上させるとともに、過充電時に正極で発生した酸素ガスが負極において水素と反応して水に還元される際の触媒として働くためと、考えられる。
【0010】
CaCu5 型結晶構造を有する水素吸蔵合金の具体例としては、MmNix Coy z 〔式中、Mmは希土類元素の混合物であるミッシュメタル、MはAl、Mg、Mn、Fe、Sn、Si、W、Zn、Cr及びCuからなる群から選ばれた少なくとも一種の元素、2.8≦x≦4.4、0≦y≦1.0、0≦z≦1.5、4.5≦x+y+z≦5.8である。〕で表される水素吸蔵合金が挙げられる。
【0011】
Li p NiO 2 のpが0.05≦p≦0.9に限定されるのは、初期活性が高く、しかも酸素ガス吸収能が良い水素吸蔵合金電極を得る上で、好ましいからである。
【0012】
結着剤としては、ペースト式水素吸蔵合金電極の製造において従来使用されているものを特に制限無く使用することができる。具体例としては、ポリエチレンオキサイド、ポリビニルピロリドン及びカルボキシメチルセルロースが挙げられる。
【0013】
初期活性が高く、しかも酸素ガス吸収能が良い水素吸蔵合金電極を得る上で、水素吸蔵合金に対するLi p NiO 2 〔0.05≦p≦0.9〕の添加量は、水素吸蔵合金とニッケルとの重量比で、100:0.1〜100:5が好ましい。
【0014】
【実施例】
以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は下記実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。
【0015】
〔実験1〕
本発明電極及び比較電極を作製し、次いでそれらを使用してニッケル・水素蓄電池を作製し、各電池の充放電サイクル初期の放電容量及び過充電時の電池内圧特性を調べた。
【0016】
(実施例1)
Mm(希土類元素の混合物であるミッシュメタルであり、La25重量%、Ce50重量%、Pr7重量%、Nd18重量%含有)と、Ni(純度99.9%)と、Co(純度99.9%)と、Mn(純度99.9%)と、Al(純度99.9%)とを、モル比1:3.5:0.7:0.5:0.3で混合し、アルゴン雰囲気で加熱溶融し、双ロール法にて急冷し、アルゴン中で機械的に粉砕して、組成式:MmNi3.5 Co0.7 Mn0.5 Al0.3 で表される平均粒径50μmの水素吸蔵合金粉末を作製した。
【0017】
上記の水素吸蔵合金粉末と、Li0.5 NiO2 粉末とを、水素吸蔵合金とニッケルとの重量比100:3で混合し、次いで、得られた混合粉末100重量部と、結着剤としての、PEO(ポリエチレンオキサイド)の5重量%水溶液10重量部とを混合してペーストを調製し、このペーストをニッケルめっきを施したパンチングメタル(集電体)の両面に塗布し、室温で乾燥した後、所定の寸法に切断して、水素吸蔵合金電極a1(本発明電極)を作製した。
【0018】
上記の本発明電極a1を負極として使用して、電池容量が正極容量により規制されるAAサイズのニッケル・水素蓄電池A1(設計容量:1000mAh)を作製した。正極として従来公知の焼結式ニッケル極を、セパレータとして耐アルカリ性の不織布を、また電解液として水酸化カリウムの30重量%水溶液を、それぞれ使用した。
【0019】
図1は、作製したニッケル・水素蓄電池A1を模式的に示す断面図であり、正極1、負極2、セパレータ3、正極リード4、負極リード5、正極外部端子6、負極缶7、封口蓋8、絶縁パッキング9、コイルスプリング10などからなる。
【0020】
正極1及び負極2は、セパレータ3を介して渦巻き状に巻取られた状態で負極缶7内に収容されており、正極1は正極リード4を介して封口蓋8に、また負極2は負極リード5を介して、負極缶7に接続されている。負極缶7と封口蓋8との接合部には絶縁パッキング9が装着されて電池の密閉化がなされている。正極外部端子6と封口蓋8との間には、コイルスプリング10が設けられ、電池内圧が異常に上昇した際に圧縮されて、電池内部のガスを大気中に放出し得るようになっている。
【0021】
参考例1
Li0.5 NiO2 粉末に代えて、LiNi2 3 粉末を用いたこと以外は実施例1と同様にして、水素吸蔵合金電極a2(参考電極)を作製した。次いで、負極として水素吸蔵合金電極a2を使用して、負極のみがニッケル・水素蓄電池A1と異なるニッケル・水素蓄電池A2を作製した。
【0022】
参考例2
Li0.5 NiO2 粉末に代えて、Li0.5 NiO粉末を用いたこと以外は実施例1と同様にして、水素吸蔵合金電極a3(参考電極)を作製した。次いで、負極として水素吸蔵合金電極a3を使用して、負極のみがニッケル・水素蓄電池A1と異なるニッケル・水素蓄電池A3を作製した。
【0023】
(比較例1)
水素吸蔵合金粉末(実施例1で使用したものと同じもの)100重量部と、PEOの5重量%水溶液10重量部とを混合してペーストを調製し、このペーストをニッケルめっきを施したパンチングメタルの両面に塗布し、室温で乾燥した後、所定の寸法に切断して、水素吸蔵合金電極x1(比較電極)を作製した。次いで、負極として比較電極x1を使用して、負極のみがニッケル・水素蓄電池A1と異なるニッケル・水素蓄電池X1を作製した。
【0024】
(比較例2)
水素吸蔵合金粉末(実施例1で使用したものと同じもの)と、水酸化ニッケル粉末とを、水素吸蔵合金とニッケルとの重量比100:3で混合し、次いで、得られた混合粉末100重量部と、PEOの5重量%水溶液を10重量部とを混合してペーストを調製し、このペーストをニッケルめっきを施したパンチングメタルの両面に塗布し、室温で乾燥した後、所定の寸法に切断して、水素吸蔵合金電極x2(比較電極)を作製した。次いで、負極として比較電極x2を使用して、負極のみがニッケル・水素蓄電池A1と異なるニッケル・水素蓄電池X2を作製した。
【0025】
〈充放電サイクル初期の放電容量〉
各電池を、常温にて、0.2Cで6時間充電した後、0.2Cで1.0Vまで放電した。次いで、1.0Cで1.2時間充電した後、1.0Cで1.0Vまで放電して、放電容量を求めた。結果を表1に示す。
【0026】
〈電池内圧特性〉
0.2Cで6時間充電した後、0.2Cで1.0Vまで放電する充放電を、放電容量が設計容量(1000mAh)に達するまで繰り返し行なって、各電池を活性化した。次いで、1.0Cで連続充電し、電池内圧が8kgf/cm2 になるまでの充電時間を求めた。結果を表1に示す。この充電時間が長い電池ほど、過充電時に電池内圧が上昇しにくい、すなわち電池内圧特性の良い電池である。
【0027】
【表1】

Figure 0003995385
【0028】
表1に示すように、ニッケル・水素蓄電池A1〜A3は、ニッケル・水素蓄電池X1及びX2に比べて、充放電サイクル初期の放電容量が大きく、しかも過充電時に電池内圧が上昇しにくい。この結果から、本発明電極a1及び参考電極a2、a3は、比較電極x1及びx2に比べて、初期活性が高く、しかも酸素ガス吸収能が良いことが分かる。
【0029】
〔実験2〕
Li p NiO 2 中のpの値と、水素吸蔵合金電極の初期活性及び酸素ガス吸収能との関係を調べた。
【0030】
リチウム含有ニッケル酸化物として、Li0.01NiO2 、Li0.05NiO2 、Li0.9 NiO2 又はLiNiO2 を用いたこと以外は実施例1と同様にして、水素吸蔵合金電極b1〜b4を作製した。次いで、負極としてこれらの各水素吸蔵合金電極を使用して、負極のみがニッケル・水素蓄電池A1と異なるニッケル・水素蓄電池B1〜B4を作製した。各ニッケル・水素蓄電池について、実験1で行ったものと同じ条件の試験を行い、負極の初期活性及び酸素ガス吸収能を調べた。結果を表2に示す。表2には、ニッケル・水素蓄電池A1の結果も表1より転記して示してある。
【0031】
【表2】
Figure 0003995385
【0032】
表2より、Lip NiO2 を使用する場合は、初期活性が高く、しかも酸素ガス吸収能が良い水素吸蔵合金電極を得る上で、0.05≦p≦0.9のLip NiO2 を使用することが好ましいことが分かる。
【0033】
〔実験3〕
リチウム含有ニッケル酸化物の好適な添加量を調べた。
【0034】
水素吸蔵合金粉末(実施例1で使用したものと同じもの)と、Li0.5 NiO2 粉末とを、水素吸蔵合金とニッケルとの重量比100:0.05、100:0.1、100:5又は100:10で混合し、次いで、得られた混合粉末100重量部と、PEOの5重量%水溶液10重量部とを混合してペーストを調製し、このペーストをニッケルめっきを施したパンチングメタルの両面に塗布し、室温で乾燥した後、所定の寸法に切断して、水素吸蔵合金電極c1〜c4を作製した。次いで、負極としてこれらの各水素吸蔵合金電極を使用して、負極のみがニッケル・水素蓄電池A1と異なるニッケル・水素蓄電池C1〜C4を作製した。各ニッケル・水素蓄電池について、実験1で行ったものと同じ条件の試験を行い、負極の初期活性及び酸素ガス吸収能を調べた。結果を表3に示す。表3には、ニッケル・水素蓄電池A1の結果も表1より転記して示してある。
【0035】
【表3】
Figure 0003995385
【0036】
表3より、初期活性が高く、しかも酸素ガス吸収能が良い水素吸蔵合金電極を得る上で、水素吸蔵合金に対するリチウム含有ニッケル酸化物の添加量は、水素吸蔵合金とニッケルとの重量比で、100:0.1〜100:5が好ましいことが分かる。
【0037】
【発明の効果】
充放電サイクル初期の放電容量が大きく、しかも電池内圧が上昇しにくい密閉型アルカリ蓄電池を与える、初期活性が高く、しかも酸素ガス吸収能が良いペースト式水素吸蔵合金電極が提供される。
【図面の簡単な説明】
【図1】実施例で作製したニッケル・水素蓄電池の断面図である。
【符号の説明】
A1 ニッケル・水素蓄電池
1 正極
2 負極
3 セパレータ
4 正極リード
5 負極リード
6 正極外部端子
7 負極缶
8 封口蓋
9 絶縁パッキング
10 コイルスプリング[0001]
[Technical field to which the invention belongs]
The present invention relates to a paste-type hydrogen storage alloy electrode.
[0002]
[Prior art and problems to be solved by the invention]
In recent years, nickel-hydrogen storage batteries that use hydrogen storage alloy electrodes for the negative electrode, which have more than twice the capacity of nickel-cadmium storage batteries and have excellent environmental compatibility, are attracting attention as next-generation alkaline storage batteries. With the spread of various portable devices, various improved techniques have been proposed.
[0003]
One of the technologies is to shorten the time (cycle) required for the process necessary to activate the hydrogen storage alloy electrode so that a stable capacity can be taken out (activation process in which charging and discharging are repeated several cycles). is there.
[0004]
For example, in Japanese Patent Application Laid-Open No. 5-82124, by adding nickel hydroxide to a hydrogen storage alloy, the lyophilicity of the hydrogen storage alloy electrode is enhanced, and the initial charge / discharge cycle activity of the hydrogen storage alloy electrode (initial Activity) has been reported to improve.
[0005]
However, as a result of investigations by the present inventors, the above-described prior art shows that although the initial activity of the hydrogen storage alloy electrode is slightly improved, the addition of nickel hydroxide decreases the oxygen gas absorption capacity. It has been found that there is a problem that the internal pressure is likely to rise as compared with the case of no addition.
[0006]
In a sealed battery such as a nickel-hydrogen storage battery, when the battery internal pressure exceeds the operating pressure of the safety valve, the safety valve is activated and the electrolyte leaks together with the gas in the battery. As a result, the internal resistance increases and the discharge capacity decreases. In addition, leakage of the electrolyte also contributes to deterioration of charge / discharge cycle characteristics.
[0007]
Therefore, the present invention provides a paste-type hydrogen storage alloy electrode that provides a sealed alkaline storage battery that has a large discharge capacity at the beginning of the charge / discharge cycle and is less likely to increase the internal pressure of the battery, has a high initial activity, and has a good oxygen gas absorption capacity. The purpose is to do.
[0008]
[Means for Solving the Problems]
A hydrogen storage alloy electrode according to the present invention (electrode of the present invention) comprises a current collector and an active material layer formed on the current collector, and the active material layer is a hydrogen having a CaCu 5 type crystal structure. It is a mixture containing an occlusion alloy, Li p NiO 2 [0.05 ≦ p ≦ 0.9], and a binder.
[0009]
In the electrode of the present invention, since Li p NiO 2 [0.05 ≦ p ≦ 0.9] is added to the hydrogen storage alloy, the initial activity is high and the oxygen gas absorption ability is good. The reason for this is not clear, but Li p NiO 2 [0.05 ≦ p ≦ 0.9] to be added improves the liquid-containing property of the electrode, and oxygen gas generated at the positive electrode during overcharge is reduced with hydrogen at the negative electrode. This is thought to be because it acts as a catalyst when reacted and reduced to water.
[0010]
Specific examples of the hydrogen-absorbing alloy having a CaCu 5 type crystal structure, MmNi x Co y M z wherein misch metal Mm is a mixture of rare earth elements, M is Al, Mg, Mn, Fe, Sn, Si At least one element selected from the group consisting of W, Zn, Cr and Cu, 2.8 ≦ x ≦ 4.4, 0 ≦ y ≦ 1.0, 0 ≦ z ≦ 1.5, 4.5 ≦ x + y + z ≦ 5.8. ] The hydrogen storage alloy represented by these is mentioned.
[0011]
The reason why p of Li p NiO 2 is limited to 0.05 ≦ p ≦ 0.9 is that it is preferable for obtaining a hydrogen storage alloy electrode having high initial activity and good oxygen gas absorption ability.
[0012]
As the binder, those conventionally used in the production of paste-type hydrogen storage alloy electrodes can be used without any particular limitation. Specific examples include polyethylene oxide, polyvinyl pyrrolidone, and carboxymethyl cellulose.
[0013]
In order to obtain a hydrogen storage alloy electrode having high initial activity and good oxygen gas absorption ability, the amount of Li p NiO 2 [0.05 ≦ p ≦ 0.9] added to the hydrogen storage alloy is such that the hydrogen storage alloy and nickel Is preferably 100: 0.1 to 100: 5.
[0014]
【Example】
Hereinafter, the present invention will be described in more detail on the basis of examples. However, the present invention is not limited to the following examples, and can be implemented with appropriate modifications without departing from the scope of the present invention. It is.
[0015]
[Experiment 1]
The electrode of the present invention and the comparative electrode were prepared, and then a nickel-hydrogen storage battery was prepared using them, and the discharge capacity at the beginning of the charge / discharge cycle of each battery and the internal pressure characteristics of the battery during overcharge were examined.
[0016]
Example 1
Mm (Misch metal which is a mixture of rare earth elements, containing La 25% by weight, Ce 50% by weight, Pr 7% by weight, Nd 18% by weight), Ni (purity 99.9%), Co (purity 99.9%) Mn (purity 99.9%) and Al (purity 99.9%) are mixed at a molar ratio of 1: 3.5: 0.7: 0.5: 0.3 and heated in an argon atmosphere. The mixture was melted, rapidly cooled by a twin roll method, and mechanically pulverized in argon to prepare a hydrogen storage alloy powder having an average particle size of 50 μm represented by a composition formula: MmNi 3.5 Co 0.7 Mn 0.5 Al 0.3 .
[0017]
The above-mentioned hydrogen storage alloy powder and Li 0.5 NiO 2 powder are mixed at a weight ratio of 100: 3 of the hydrogen storage alloy and nickel, and then 100 parts by weight of the obtained mixed powder is used as a binder. A paste was prepared by mixing 10 parts by weight of a 5% by weight aqueous solution of PEO (polyethylene oxide). This paste was applied to both sides of a nickel-plated punching metal (current collector) and dried at room temperature. It cut | disconnected to the predetermined dimension and produced hydrogen storage alloy electrode a1 (this invention electrode).
[0018]
Using the above-described electrode a1 of the present invention as a negative electrode, an AA size nickel-hydrogen storage battery A1 (design capacity: 1000 mAh) whose battery capacity is regulated by the positive electrode capacity was produced. A conventionally known sintered nickel electrode was used as the positive electrode, an alkali-resistant non-woven fabric as the separator, and a 30% by weight aqueous solution of potassium hydroxide as the electrolyte.
[0019]
FIG. 1 is a cross-sectional view schematically showing the produced nickel-hydrogen storage battery A1. The positive electrode 1, the negative electrode 2, the separator 3, the positive electrode lead 4, the negative electrode lead 5, the positive electrode external terminal 6, the negative electrode can 7, and the sealing lid 8 , Insulating packing 9, coil spring 10 and the like.
[0020]
The positive electrode 1 and the negative electrode 2 are accommodated in a negative electrode can 7 while being wound in a spiral shape via a separator 3. The positive electrode 1 is accommodated in a sealing lid 8 via a positive electrode lead 4, and the negative electrode 2 is a negative electrode. The lead 5 is connected to the negative electrode can 7. An insulating packing 9 is attached to the joint between the negative electrode can 7 and the sealing lid 8 to seal the battery. A coil spring 10 is provided between the positive electrode external terminal 6 and the sealing lid 8, and is compressed when the battery internal pressure rises abnormally so that the gas inside the battery can be released into the atmosphere. .
[0021]
( Reference Example 1 )
A hydrogen storage alloy electrode a2 ( reference electrode ) was produced in the same manner as in Example 1 except that LiNi 2 O 3 powder was used instead of Li 0.5 NiO 2 powder. Next, using the hydrogen storage alloy electrode a2 as the negative electrode, a nickel / hydrogen storage battery A2 in which only the negative electrode was different from the nickel / hydrogen storage battery A1 was produced.
[0022]
( Reference Example 2 )
A hydrogen storage alloy electrode a3 ( reference electrode ) was produced in the same manner as in Example 1 except that Li 0.5 NiO powder was used instead of Li 0.5 NiO 2 powder. Next, using the hydrogen storage alloy electrode a3 as a negative electrode, a nickel / hydrogen storage battery A3 having only the negative electrode different from the nickel / hydrogen storage battery A1 was produced.
[0023]
(Comparative Example 1)
A paste was prepared by mixing 100 parts by weight of hydrogen storage alloy powder (the same as that used in Example 1) and 10 parts by weight of a 5% by weight aqueous solution of PEO, and this paste was subjected to nickel plating. After being coated on both sides and dried at room temperature, it was cut to a predetermined size to produce a hydrogen storage alloy electrode x1 (comparative electrode). Next, using the comparative electrode x1 as the negative electrode, a nickel / hydrogen storage battery X1 having only the negative electrode different from the nickel / hydrogen storage battery A1 was produced.
[0024]
(Comparative Example 2)
Hydrogen storage alloy powder (same as that used in Example 1) and nickel hydroxide powder were mixed at a weight ratio of 100: 3 of hydrogen storage alloy and nickel, and then obtained mixed powder 100 weight Part and 10 parts by weight of a 5% by weight aqueous solution of PEO were prepared, and this paste was applied to both sides of a nickel-plated punching metal, dried at room temperature, and then cut into predetermined dimensions Thus, a hydrogen storage alloy electrode x2 (comparative electrode) was produced. Next, using the comparative electrode x2 as a negative electrode, a nickel / hydrogen storage battery X2 in which only the negative electrode was different from the nickel / hydrogen storage battery A1 was produced.
[0025]
<Discharge capacity at the beginning of charge / discharge cycle>
Each battery was charged at 0.2 C for 6 hours at room temperature, and then discharged to 1.0 V at 0.2 C. Next, after charging at 1.0 C for 1.2 hours, the battery was discharged at 1.0 C to 1.0 V, and the discharge capacity was determined. The results are shown in Table 1.
[0026]
<Battery pressure characteristics>
After charging at 0.2 C for 6 hours, charging / discharging at 0.2 C to 1.0 V was repeated until the discharge capacity reached the design capacity (1000 mAh) to activate each battery. Next, the battery was continuously charged at 1.0 C, and the charging time until the battery internal pressure reached 8 kgf / cm 2 was determined. The results are shown in Table 1. A battery having a longer charging time is less likely to increase the battery internal pressure during overcharging, that is, a battery having good battery internal pressure characteristics.
[0027]
[Table 1]
Figure 0003995385
[0028]
As shown in Table 1, the nickel-hydrogen storage batteries A1 to A3 have a larger discharge capacity at the beginning of the charge / discharge cycle than the nickel-hydrogen storage batteries X1 and X2, and the internal pressure of the battery is unlikely to increase during overcharge. From this result, it can be seen that the present invention electrode a1 and the reference electrodes a2 and a3 have higher initial activity and better oxygen gas absorption capacity than the comparison electrodes x1 and x2.
[0029]
[Experiment 2]
The relationship between the value of p in Li p NiO 2 and the initial activity and oxygen gas absorption capacity of the hydrogen storage alloy electrode was examined.
[0030]
Hydrogen storage alloy electrodes b1 to b4 were produced in the same manner as in Example 1 except that Li 0.01 NiO 2 , Li 0.05 NiO 2 , Li 0.9 NiO 2, or LiNiO 2 was used as the lithium-containing nickel oxide. Next, using each of these hydrogen storage alloy electrodes as a negative electrode, nickel / hydrogen storage batteries B1 to B4 differing only in the negative electrode from the nickel / hydrogen storage battery A1 were produced. Each nickel-hydrogen storage battery was tested under the same conditions as in Experiment 1, and the initial activity and oxygen gas absorption capacity of the negative electrode were examined. The results are shown in Table 2. Table 2 also shows the results of nickel-hydrogen storage battery A1 transcribed from Table 1.
[0031]
[Table 2]
Figure 0003995385
[0032]
From Table 2, when using Li p NiO 2 , in order to obtain a hydrogen storage alloy electrode having high initial activity and good oxygen gas absorption capacity, Li p NiO 2 of 0.05 ≦ p ≦ 0.9 is used. It can be seen that it is preferable to use it.
[0033]
[Experiment 3]
A suitable addition amount of lithium-containing nickel oxide was investigated.
[0034]
Hydrogen storage alloy powder (the same as that used in Example 1) and Li 0.5 NiO 2 powder were used in a weight ratio of hydrogen storage alloy to nickel of 100: 0.05, 100: 0.1, 100: 5. Or 100: 10, and then mixing 100 parts by weight of the obtained mixed powder and 10 parts by weight of a 5% by weight aqueous solution of PEO to prepare a paste, and this paste is made of nickel-plated punching metal After apply | coating to both surfaces and drying at room temperature, it cut | disconnected to the predetermined dimension and produced hydrogen storage alloy electrode c1-c4. Next, using each of these hydrogen storage alloy electrodes as the negative electrode, nickel / hydrogen storage batteries C1 to C4 having only the negative electrode different from the nickel / hydrogen storage battery A1 were produced. Each nickel-hydrogen storage battery was tested under the same conditions as in Experiment 1, and the initial activity and oxygen gas absorption capacity of the negative electrode were examined. The results are shown in Table 3. Table 3 also shows the results of nickel-hydrogen storage battery A1 transcribed from Table 1.
[0035]
[Table 3]
Figure 0003995385
[0036]
From Table 3, in order to obtain a hydrogen storage alloy electrode with high initial activity and good oxygen gas absorption capacity, the amount of lithium-containing nickel oxide added to the hydrogen storage alloy is the weight ratio of the hydrogen storage alloy and nickel. It turns out that 100: 0.1-100: 5 is preferable.
[0037]
【The invention's effect】
Provided is a paste-type hydrogen storage alloy electrode that provides a sealed alkaline storage battery that has a large discharge capacity at the beginning of the charge / discharge cycle and is less likely to increase the internal pressure of the battery, has a high initial activity, and has a good oxygen gas absorption capability.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a nickel-hydrogen storage battery manufactured in an example.
[Explanation of symbols]
A1 Nickel-hydrogen storage battery 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode lead 5 Negative electrode lead 6 Positive electrode external terminal 7 Negative electrode can 8 Sealing lid 9 Insulating packing 10 Coil spring

Claims (2)

集電体と、当該集電体上に形成された活物質層とからなるペースト式水素吸蔵合金電極において、前記活物質層が、CaCu5 型結晶構造を有する水素吸蔵合金と、Li p NiO 2 〔0.05≦p≦0.9〕と、結着剤とを含む混合物であることを特徴とするペースト式水素吸蔵合金電極。In a paste-type hydrogen storage alloy electrode comprising a current collector and an active material layer formed on the current collector, the active material layer comprises a hydrogen storage alloy having a CaCu 5 type crystal structure, and Li p NiO 2 A paste-type hydrogen storage alloy electrode, which is a mixture containing [0.05 ≦ p ≦ 0.9] and a binder. 請求項1記載のペースト式水素吸蔵合金電極を負極として備えるニッケル・水素蓄電池。A nickel-hydrogen storage battery comprising the paste-type hydrogen storage alloy electrode according to claim 1 as a negative electrode.
JP2000061512A 2000-03-07 2000-03-07 Paste type hydrogen storage alloy electrode Expired - Fee Related JP3995385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000061512A JP3995385B2 (en) 2000-03-07 2000-03-07 Paste type hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000061512A JP3995385B2 (en) 2000-03-07 2000-03-07 Paste type hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JP2001250537A JP2001250537A (en) 2001-09-14
JP3995385B2 true JP3995385B2 (en) 2007-10-24

Family

ID=18581642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000061512A Expired - Fee Related JP3995385B2 (en) 2000-03-07 2000-03-07 Paste type hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP3995385B2 (en)

Also Published As

Publication number Publication date
JP2001250537A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
JP2001316744A (en) Hydrogen storage alloy and alkali secondary battery
EP1137085A1 (en) Nickel-metal hydride storage battery
JP4420767B2 (en) Nickel / hydrogen storage battery
JP2001325957A (en) Alkaline secondary cell
JP3995385B2 (en) Paste type hydrogen storage alloy electrode
JPH11162468A (en) Alkaline secondary battery
JP2004296394A (en) Nickel-hydrogen storage battery and battery pack
JP3653710B2 (en) Hydrogen storage electrode
US6924062B2 (en) Nickel-metal hydride storage battery
US6926998B2 (en) Nickel-metal hydride storage battery
JP2001223000A (en) Alkaline secondary battery
JP2566912B2 (en) Nickel oxide / hydrogen battery
JPH08138658A (en) Hydrogen storage alloy-based electrode
JP4236399B2 (en) Alkaline storage battery
JP2000030702A (en) Nickel-hydrogen secondary battery
JP3573905B2 (en) Method for producing hydrogen storage alloy electrode
JP3685643B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery using the electrode
JP3454574B2 (en) Manufacturing method of alkaline secondary battery
JP2000021398A (en) Alkaline secondary battery
JP3547980B2 (en) Nickel-hydrogen storage battery
JPH1040950A (en) Alkaline secondary battery
JP2000188106A (en) Alkaline secondary battery
JP2002042802A (en) Sealed nickel-hydrogen secondary battery
JPH11191412A (en) Alkaline storage battery
JP2000277101A (en) Positive electrode for alkaline secondary battery and alkaline secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees