JP3994523B2 - Inspection method of mirror chamfered part of silicon wafer - Google Patents

Inspection method of mirror chamfered part of silicon wafer Download PDF

Info

Publication number
JP3994523B2
JP3994523B2 JP15362198A JP15362198A JP3994523B2 JP 3994523 B2 JP3994523 B2 JP 3994523B2 JP 15362198 A JP15362198 A JP 15362198A JP 15362198 A JP15362198 A JP 15362198A JP 3994523 B2 JP3994523 B2 JP 3994523B2
Authority
JP
Japan
Prior art keywords
silicon wafer
mirror
chamfered portion
etching
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15362198A
Other languages
Japanese (ja)
Other versions
JPH11330042A (en
Inventor
孝雄 音川
正樹 真島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP15362198A priority Critical patent/JP3994523B2/en
Publication of JPH11330042A publication Critical patent/JPH11330042A/en
Application granted granted Critical
Publication of JP3994523B2 publication Critical patent/JP3994523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、シリコンウエーハ鏡面面取り部の検査方法に関する。より詳しくは本発明は、非常に高感度でシリコンウエーハ鏡面面取り部のキズやカケ、ポリシリコン残留等の表面異常を検出出来るシリコンウエーハ鏡面面取り部の検査方法に関する。
【0002】
【従来の技術】
シリコンウエーハは、例えばチョクラルスキー法等で製造される場合、先ず円柱状のインゴットをスライス状に切断した後、エッジのチッピング防止又はエピタキシャル成長工程を追加する場合はそのクラウン防止等の目的で、面取りが行われる。通常のウエーハ製造工程では、面取り部は加工歪み除去のエッチングが行われた状態であり、面が粗い。そこで近年はエッジ部からの発塵防止のため、面取り部を鏡面化する鏡面面取りが行われる。この際、鏡面面取りが不十分だと、面取り部にキズ、カケ、段差、ダメージ、シリコンのカケラが残り、デバイス不良を惹き起こす。
【0003】
シリコンウエーハは、更にその後、ゲッタリング能力を高めるためにポリシリコンを化学気相成長法でウエーハ表面上に成長させる工程を追加する場合がある。この場合にも再度鏡面面取りを行なうが、鏡面面取りが不十分だと、面取り部にキズ、カケ、段差、ダメージ、シリコンのカケラ等の他に、上記ポリシリコンが残留することがあり、デバイス不良の原因となる。
【0004】
特に、エピタキシャル成長工程を後に追加する場合は、上記残留ポリシリコンがたとえ非常に微小であっても、エピタキシャル層成長中にこれも同時に成長して巨大化し、デバイス工程中で脱離しパーティクルとなることによりデバイス不良の大きな原因となる。
従って鏡面面取り後、特にエピタキシャル成長工程前の鏡面面取り後に、非常に感度良く鏡面面取り部を検査する必要がある。
【0005】
【発明が解決しようとする課題】
従来、鏡面面取り部の検査は、鏡面面取り後に直接光学顕微鏡等で観察して行なっていた。しかし、この検査方法では感度が非常に悪く、微小なカケやポリシリコン等を検出することが出来なかった。特に、エピタキシャル成長工程前の鏡面面取り部に残留する非常に微小なポリシリコンを検出出来なかったために、エピタキシャル成長工程中にこの微小なポリシリコンも成長して結晶粒が巨大化し、その結果エッジ部にノジュールと呼ばれる針状晶や凹凸のあるシリコンウエーハが製造されてしまうという問題があった。
【0006】
本発明はこのような問題に鑑みなされたもので、非常に高感度でシリコンウエーハ鏡面面取り部のキズ、カケ、ポリシリコン残留等の表面異常を検出出来るシリコンウエーハ鏡面面取り部の検査方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は上記課題を解決するためになされたもので、請求項1に記載した発明は、鏡面面取りしたシリコンウエーハをアルカリエッチングし、その後顕微鏡にて鏡面面取り部を観察することを特徴とするシリコンウエーハ鏡面面取り部の検査方法である。
【0008】
アルカリエッチングにおいては、エツチング速度がシリコン結晶表面の面方位の影響を敏感に受ける選択性を有する。従って、ウエーハの面取り部に微小なキズやカケ、ポリシリコン残留等の表面異常があっても、敏感にこれらの部分のエッチング量が異なってきて面粗れの程度が異なって現れてくる。即ち、アルカリエッチングによりシリコンウエーハ面取り部の表面上に存在するキズやポリシリコン残留等が強調され、光学顕微鏡や電子顕微鏡で簡単に且つ非常に高感度で観察、検出できるようになる。
【0009】
この場合、本発明の請求項2に記載したように、前記アルカリエッチングをNaOH水溶液及び/又はKOH水溶液にて行なうのが好ましい。
これらの水溶液は、前記エッチングの選択性を十分に有し、本発明の作用効果を発揮すると共に、容易に入手可能であり、又容易に中和・無害化できるので廃水処理も簡単である。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について説明するが、本発明はこれに限定されるものではない。
本発明の検査方法に付されるシリコンウエーハは、鏡面面取りしたものであるが、いかなる鏡面面取り法により鏡面面取りしたシリコンウエーハでも、本発明の検査方法に付すことが出来る。例えば、従来より行なわれている研磨による方法、エッチングによる方法、あるいはこれらの両方により鏡面面取りしたシリコンウエーハでも本発明の検査方法により検査することが出来る。
【0011】
又、鏡面面取りは、シリコンウエーハ製造工程中のいかなる段階で行なわれるものであってもよい。例えば、円柱状インゴットをスライス状に切断後に鏡面面取りし、その鏡面面取り部を本発明の検査方法で検査することができる。又、化学気相成長法でウエーハ表面上にポリシリコンを成長させた後に鏡面面取りをし、その鏡面面取り部を本発明の検査方法で検査することができる。
【0012】
アルカリエッチングはアルカリ水溶液が好ましく、特にNaOH水溶液、KOH水溶液、又はこれらの混合液が好ましい。
エッチング速度は、0.01〜5μm/min、特に0.15μm/min以下とするのが好ましい。このようにエッチング速度を通常のエッチング速度より遙かに小さくすれば、キズ、カケ、ポリシリコン残留等の表面異常の程度に応じて敏感にエッチング速度に選択性を生じさせることが出来、敏感に面粗れの程度に差異が生じるようになり、顕微鏡で高感度で検出出来るようになる。
【0013】
アルカリ水溶液の液温は、例えば10〜80℃であればよい。特に、15〜25℃の常温で行なえば、加熱設備や温度コントローラ等による温度管理の手間を必要としないので、好ましい。
アルカリ水溶液の濃度は、1〜60重量%、特に10〜20重量%が好ましい。
【0014】
従来、アルカリエッチングはエッチング速度が遅いため液温60〜80℃と高温にし且つ濃度を40〜60重量%と濃い状態で使用して、エッチング速度を上げている。しかし、本発明においては逆に、温度又は濃度あるいはその両方を低くしてエッチング速度を遅くすることにより、表面異常の程度に応じてエッチング速度に選択性を生じさせるようにすることができる。
【0015】
アルカリエッチングは、シリコンウエーハをアルカリ水溶液中に浸漬して行なう。浸漬の方法は通常の方法で良い。即ち、シリコンウエーハをフッ素樹脂製のキャリアに入れてアルカリ水溶液中に漬ける。アルカリ水溶液を入れる容器は、昇温する必要がなければ塩化ビニル性のもので十分であり、昇温する場合は石英、パイレックス等の容器が用いられる。浸漬中は、撹拌をしてもしなくてもよい。アルカリ水溶液は、セコ液又は混酸液等の酸性水溶液の場合のような撹拌しないとエッチングムラができてしまうということがないからである。
【0016】
エッチングによる除去量としては、0.2〜5μm、特に0.5〜2μmとするのが好ましい。エッチング量が0.2μmより少ないと検出に十分な感度が得られない場合があり、逆に5μmより多いとカケやポリシリコン残も無くなる。また、エッチング時間等を考慮すると実用的には0.5〜2μmが好ましい。
【0017】
上記アルカリエッチング終了後、必要に応じシリコンウエーハを洗浄・乾燥し、顕微鏡にて鏡面面取り部を観察する。顕微鏡としては、光学顕微鏡、走査型電子顕微鏡(SEM)等が好ましい。
【0018】
【実施例】
以下、実施例で本発明を具体的に説明する。
(実施例)
チョクラルスキー法により製造された直径200mm、面方位<100>、導電型P型、抵抗率10Ωcmのシリコンウエーハ3枚それぞれに対し、ポリシリコンを化学気相成長法で成長させた後、面取り部を60秒、90秒、及び150秒間研磨して3枚の鏡面面取りをしたシリコンウエーハを得た。
【0019】
一方、液温23℃、濃度10重量%のNaOH水溶液を、塩化ビニル製容器に入れた。これに、フッ素樹脂製のキャリアに収容した上記3種類の各シリコンウエーハを浸漬し、撹拌することなく20分間エッチングした。エッチング量は0.5μmであった。その後、各シリコンウエーハを洗浄後乾燥し、光学顕微鏡(倍率200)で観察した。
【0020】
観察の結果、研磨時間の最も長い150秒のシリコンウエーハの面取り部は滑らかであったが、90秒、60秒と研磨時間が短くなるに従って、シリコンウエーハの面取り部には筋状の模様が強くなるのが観察され、ポリシリコン残留部が選択的にエッチングされていくのが非常にはっきりと確認出来た。
図1に典型例として150秒研磨したものと60秒研磨したものの観察図を示しておいた。
【0021】
(比較例)
アルカリエッチングをしなかった以外は実施例1と同様にして、光学顕微鏡(倍率200)で観察した。
観察の結果、研磨時間に係らずいずれのシリコンウエーハの面取り部も滑らかなものと観察されてしまい、ポリシリコン残留部を全く検出することが出来なかった。
図2に典型例として150秒研磨したものと60秒研磨したものの観察図を示しておいた。
【0022】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を示し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【0023】
例えば、上記実施例では主にシリコンウエーハ全体をアルカリ水溶液中に浸漬する形でエッチングを行ったが、シリコンウエーハ周辺部、例えば面取り部のみ部分的にエッチングを行ってもよい。
【0024】
【発明の効果】
本発明のシリコンウエーハ鏡面面取り部の検査方法は、簡単且つ高感度で面取り部の加工状態等を検査できる。そのため、単にウエーハ面取り部の非常に微小な表面異常を検出出来るのみならず、従来は行なえなかった面取り研磨時間の最適化を行なうことができ、生産効率を向上させることができる。更に、不良品を完全に検出することが出来るので、後工程でのトラブルを防止出来、デバイス製造の歩留りを向上させることが出来る。
【図面の簡単な説明】
【図1】実施例の観察結果図である。
(a)は、研磨時間150秒の場合で、(b)は60秒の場合である。
【図2】比較例の観察結果図である。
(a)は、研磨時間150秒の場合で、(b)は60秒の場合である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inspection method for a silicon wafer mirror chamfer. More specifically, the present invention relates to a method for inspecting a silicon wafer mirror chamfered portion that can detect surface abnormalities such as scratches and chips on the silicon wafer mirror chamfered portion and polysilicon remaining with extremely high sensitivity.
[0002]
[Prior art]
For example, when a silicon wafer is manufactured by the Czochralski method or the like, a cylindrical ingot is first cut into slices and then chamfered for the purpose of preventing edge chipping or adding an epitaxial growth step to prevent crowning. Is done. In a normal wafer manufacturing process, the chamfered portion is in a state where etching for removing processing distortion is performed, and the surface is rough. Therefore, in recent years, in order to prevent dust generation from the edge portion, mirror chamfering is performed to mirror the chamfered portion. At this time, if the mirror chamfering is insufficient, scratches, chips, steps, damage, and silicon chips remain on the chamfered portion, causing a device defect.
[0003]
In some cases, the silicon wafer may further include a step of growing polysilicon on the wafer surface by chemical vapor deposition in order to enhance the gettering ability. In this case, the mirror chamfering is performed again. However, if the mirror chamfering is insufficient, the polysilicon may remain in the chamfered portion in addition to scratches, chips, steps, damage, silicon flaws, etc. Cause.
[0004]
In particular, when an epitaxial growth process is added later, even if the residual polysilicon is very small, it grows and grows at the same time during the growth of the epitaxial layer, and is desorbed into particles during the device process. A major cause of device failure.
Therefore, after the mirror chamfering, particularly after the mirror chamfering before the epitaxial growth process, it is necessary to inspect the mirror chamfering portion with very high sensitivity.
[0005]
[Problems to be solved by the invention]
Conventionally, the inspection of the mirror chamfered portion has been performed by directly observing with an optical microscope after the mirror chamfering. However, this inspection method has very low sensitivity and could not detect minute burrs or polysilicon. In particular, because very small polysilicon remaining in the mirror chamfered portion before the epitaxial growth process could not be detected, this minute polysilicon also grew during the epitaxial growth process, resulting in enormous crystal grains, resulting in nodules at the edge. There is a problem that a silicon wafer having needle-like crystals and irregularities is produced.
[0006]
The present invention has been made in view of such a problem, and provides a method for inspecting a silicon wafer mirror chamfered portion that can detect surface abnormalities such as scratches, chips, and polysilicon residues in the silicon wafer mirror chamfered portion with extremely high sensitivity. For the purpose.
[0007]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems, and the invention described in claim 1 is characterized in that a silicon wafer having a mirror chamfer is alkali-etched, and then the mirror chamfer is observed with a microscope. This is an inspection method for a wafer mirror chamfer.
[0008]
In alkali etching, the etching rate has a selectivity sensitive to the influence of the plane orientation of the silicon crystal surface. Therefore, even if there are surface abnormalities such as minute scratches, chips, or polysilicon residues in the chamfered portion of the wafer, the etching amount of these portions is sensitively different and the degree of surface roughness appears differently. That is, scratches, polysilicon residue, etc. existing on the surface of the silicon wafer chamfered portion are emphasized by alkali etching, and can be easily observed and detected with an optical microscope or an electron microscope with very high sensitivity.
[0009]
In this case, as described in claim 2 of the present invention, the alkali etching is preferably performed with an aqueous NaOH solution and / or an aqueous KOH solution.
These aqueous solutions have sufficient etching selectivity, exhibit the effects of the present invention, are easily available, and can be easily neutralized and detoxified, so that waste water treatment is also simple.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, although an embodiment of the present invention is described, the present invention is not limited to this.
Although the silicon wafer to be subjected to the inspection method of the present invention is mirror chamfered, any silicon wafer that has been mirror chamfered by any mirror chamfering method can be applied to the inspection method of the present invention. For example, a silicon wafer that has been mirror-finished by a conventional polishing method, etching method, or both can be inspected by the inspection method of the present invention.
[0011]
The mirror chamfering may be performed at any stage in the silicon wafer manufacturing process. For example, it is possible to chamfer a cylindrical ingot after cutting it into slices, and inspect the chamfered portion with the inspection method of the present invention. Further, after the polysilicon is grown on the wafer surface by chemical vapor deposition, mirror chamfering can be performed, and the mirror chamfered portion can be inspected by the inspection method of the present invention.
[0012]
The alkali etching is preferably an aqueous alkali solution, particularly an aqueous NaOH solution, an aqueous KOH solution, or a mixture thereof.
The etching rate is preferably 0.01 to 5 μm / min, particularly preferably 0.15 μm / min or less. By making the etching rate much smaller than the normal etching rate in this way, it is possible to produce selectivity selectively in the etching rate depending on the degree of surface abnormality such as scratches, burrs, and polysilicon residues. Differences occur in the degree of surface roughness, and detection with high sensitivity is possible with a microscope.
[0013]
The liquid temperature of aqueous alkali solution should just be 10-80 degreeC, for example. In particular, it is preferable to carry out at a room temperature of 15 to 25 ° C., because it does not require the trouble of temperature management by a heating facility, a temperature controller or the like.
The concentration of the aqueous alkali solution is preferably 1 to 60% by weight, particularly 10 to 20% by weight.
[0014]
Conventionally, since the etching rate of alkali etching is slow, the etching rate is increased by using a high temperature of 60 to 80 ° C. and a concentration of 40 to 60% by weight. However, in the present invention, conversely, by reducing the etching rate by lowering the temperature and / or concentration, selectivity can be produced in the etching rate according to the degree of surface abnormality.
[0015]
Alkaline etching is performed by immersing a silicon wafer in an alkaline aqueous solution. The dipping method may be a normal method. That is, the silicon wafer is placed in a fluororesin carrier and immersed in an alkaline aqueous solution. As the container for containing the alkaline aqueous solution, a vinyl chloride-based container is sufficient if it is not necessary to raise the temperature. For raising the temperature, a container such as quartz or pyrex is used. During the immersion, stirring may or may not be performed. This is because the alkaline aqueous solution does not cause uneven etching unless it is stirred as in the case of an acidic aqueous solution such as a seco solution or a mixed acid solution.
[0016]
The removal amount by etching is preferably 0.2 to 5 μm, particularly preferably 0.5 to 2 μm. If the etching amount is less than 0.2 μm, sufficient sensitivity for detection may not be obtained. Conversely, if the etching amount is more than 5 μm, there will be no residue or polysilicon residue. In consideration of etching time and the like, a practical range of 0.5 to 2 μm is preferable.
[0017]
After completion of the alkali etching, the silicon wafer is washed and dried as necessary, and the mirror chamfered portion is observed with a microscope. As a microscope, an optical microscope, a scanning electron microscope (SEM), etc. are preferable.
[0018]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples.
(Example)
Polysilicon is grown by chemical vapor deposition on each of three silicon wafers having a diameter of 200 mm, a surface orientation <100>, a conductivity type P type, and a resistivity of 10 Ωcm manufactured by the Czochralski method, and then chamfered. Was polished for 60 seconds, 90 seconds, and 150 seconds to obtain three silicon wafers having a mirror chamfer.
[0019]
On the other hand, an aqueous NaOH solution having a liquid temperature of 23 ° C. and a concentration of 10% by weight was placed in a vinyl chloride container. The above three types of silicon wafers contained in a fluororesin carrier were immersed in this and etched for 20 minutes without stirring. The etching amount was 0.5 μm. Then, each silicon wafer was washed and dried, and observed with an optical microscope (magnification 200).
[0020]
As a result of observation, the chamfered portion of the silicon wafer having the longest polishing time of 150 seconds was smooth, but as the polishing time was shortened to 90 seconds and 60 seconds, the chamfered portion of the silicon wafer was strongly streaked. It was observed that the polysilicon residual portion was selectively etched.
FIG. 1 shows a typical example of observations of 150 seconds polished and 60 seconds polished.
[0021]
(Comparative example)
The sample was observed with an optical microscope (magnification 200) in the same manner as in Example 1 except that alkali etching was not performed.
As a result of the observation, the chamfered portion of any silicon wafer was observed to be smooth regardless of the polishing time, and the polysilicon remaining portion could not be detected at all.
FIG. 2 shows a typical example of observations of 150 seconds polished and 60 seconds polished.
[0022]
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention shows substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. Are included in the technical scope.
[0023]
For example, in the above-described embodiment, etching is performed mainly by immersing the entire silicon wafer in an alkaline aqueous solution. However, etching may be performed only on a peripheral portion of the silicon wafer, for example, a chamfered portion.
[0024]
【The invention's effect】
The method for inspecting a silicon wafer mirror chamfered portion of the present invention can easily and highly sensitively inspect the processing state of the chamfered portion. Therefore, not only a very small surface abnormality of the wafer chamfered portion can be detected, but also the chamfering polishing time which cannot be performed conventionally can be optimized, and the production efficiency can be improved. Further, since defective products can be completely detected, troubles in the subsequent process can be prevented, and the yield of device manufacturing can be improved.
[Brief description of the drawings]
FIG. 1 is an observation result diagram of an example.
(A) is a case where the polishing time is 150 seconds, and (b) is a case where the polishing time is 60 seconds.
FIG. 2 is an observation result diagram of a comparative example.
(A) is a case where the polishing time is 150 seconds, and (b) is a case where the polishing time is 60 seconds.

Claims (5)

化学気相成長法でウエーハ表面上にポリシリコンを成長させた後に面取り部を鏡面面取りして鏡面面取り部を形成したシリコンウエーハをアルカリエッチングし、顕微鏡にて該鏡面面取り部における筋状の模様を観察することによりポリシリコン残留を検出することを特徴とするシリコンウエーハ鏡面面取り部の検査方法。After the polysilicon is grown on the wafer surface by chemical vapor deposition, the chamfered portion is mirror chamfered and the silicon wafer having the mirror chamfered portion is alkali-etched, and the streaky pattern on the mirror chamfered portion is observed with a microscope. A method for inspecting a silicon wafer mirror chamfered portion, wherein polysilicon residue is detected by observing. 前記アルカリエッチングをNaOH水溶液及び/又はKOH水溶液にて行なうことを特徴とする請求項1記載のシリコンウエーハ鏡面面取り部の検査方法。  2. The silicon wafer mirror chamfer inspection method according to claim 1, wherein the alkali etching is performed with an aqueous NaOH solution and / or an aqueous KOH solution. 前記アルカリエッチングのエッチング速度を、0.01〜5μm/minとすることを特徴とする請求項1または請求項2に記載のシリコンウエーハ鏡面面取り部の検査方法。  The silicon wafer mirror chamfer inspection method according to claim 1 or 2, wherein an etching rate of the alkali etching is set to 0.01 to 5 µm / min. 前記アルカリエッチングのアルカリ水溶液の液温を、15〜25℃とすることを特徴とする請求項1ないし請求項3のいずれか1項に記載のシリコンウエーハ鏡面面取り部の検査方法。  4. The method for inspecting a silicon wafer mirror chamfered portion according to claim 1, wherein the temperature of the alkali aqueous solution of the alkali etching is set to 15 to 25 ° C. 5. 前記アルカリエッチングのエッチングによる除去量を、0.2〜5μmとすることを特徴とする請求項1ないし請求項4のいずれか1項に記載のシリコンウエーハ鏡面面取り部の検査方法。  5. The method for inspecting a silicon wafer mirror chamfered portion according to claim 1, wherein an amount of removal by the alkali etching is 0.2 to 5 μm.
JP15362198A 1998-05-18 1998-05-18 Inspection method of mirror chamfered part of silicon wafer Expired - Fee Related JP3994523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15362198A JP3994523B2 (en) 1998-05-18 1998-05-18 Inspection method of mirror chamfered part of silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15362198A JP3994523B2 (en) 1998-05-18 1998-05-18 Inspection method of mirror chamfered part of silicon wafer

Publications (2)

Publication Number Publication Date
JPH11330042A JPH11330042A (en) 1999-11-30
JP3994523B2 true JP3994523B2 (en) 2007-10-24

Family

ID=15566502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15362198A Expired - Fee Related JP3994523B2 (en) 1998-05-18 1998-05-18 Inspection method of mirror chamfered part of silicon wafer

Country Status (1)

Country Link
JP (1) JP3994523B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433937B1 (en) * 2001-12-29 2004-06-04 주식회사 하이닉스반도체 A planalization method of semiconductor device
DE102005034120B4 (en) * 2005-07-21 2013-02-07 Siltronic Ag Method for producing a semiconductor wafer
JP5510022B2 (en) * 2010-04-20 2014-06-04 株式会社Sumco Wafer evaluation method

Also Published As

Publication number Publication date
JPH11330042A (en) 1999-11-30

Similar Documents

Publication Publication Date Title
JP4839836B2 (en) Manufacturing method of silicon epitaxial wafer
US6376335B1 (en) Semiconductor wafer manufacturing process
US9343379B2 (en) Method to delineate crystal related defects
US20130224954A1 (en) Silicon carbide single crystal substrate
JP2002076082A (en) Method for inspecting and manufacturing silicon wafer, method for manufacturing semiconductor device, and silicon wafer
CN112986294A (en) Wafer defect detection method and device
US4238275A (en) Pyrocatechol-amine-water solution for the determination of defects
JP3994523B2 (en) Inspection method of mirror chamfered part of silicon wafer
JP6418357B1 (en) GaAs substrate and manufacturing method thereof
US20090203212A1 (en) Surface Grinding Method and Manufacturing Method for Semiconductor Wafer
US20230118491A1 (en) Method for evaluating of defect area of wafer
JP4573282B2 (en) Epitaxial silicon wafer manufacturing method
JP2006108151A (en) Method of manufacturing silicon epitaxial wafer
JP2000208578A (en) Evaluation method for silicon wafer and silicon wafer
KR100384680B1 (en) A Method for detecting micro defects
US20020175143A1 (en) Processes for polishing wafers
JP2007180485A (en) Semiconductor substrate quality evaluating method and semiconductor substrate manufacturing method
JP2004119446A (en) Annealed wafer and method for manufacturing the same
KR101356400B1 (en) Wafer contamination prevention method, inspection method and production method
JP4075426B2 (en) Silicon wafer manufacturing method
KR20030030634A (en) Method for analysing surface defect of a wafer
JP2985583B2 (en) Inspection method of damaged layer on mirror-finished surface of silicon wafer and thickness measurement method
JP2002134521A (en) Heat treatment method for silicon semiconductor substrate
JP2022175082A (en) Crystal defect evaluation method for semiconductor single crystal substrate
JP2005005490A (en) Method of manufacturing semiconductor wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070413

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees