JP3994000B2 - Thin film deposition apparatus and method - Google Patents

Thin film deposition apparatus and method Download PDF

Info

Publication number
JP3994000B2
JP3994000B2 JP2001368425A JP2001368425A JP3994000B2 JP 3994000 B2 JP3994000 B2 JP 3994000B2 JP 2001368425 A JP2001368425 A JP 2001368425A JP 2001368425 A JP2001368425 A JP 2001368425A JP 3994000 B2 JP3994000 B2 JP 3994000B2
Authority
JP
Japan
Prior art keywords
film
substrate
shutter
film thickness
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001368425A
Other languages
Japanese (ja)
Other versions
JP2003166055A (en
Inventor
典明 谷
寿弘 鈴木
孝文 松元
幸一 半澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2001368425A priority Critical patent/JP3994000B2/en
Priority to TW091125257A priority patent/TWI242602B/en
Priority to US10/284,287 priority patent/US7033461B2/en
Priority to CNB021479909A priority patent/CN100473755C/en
Priority to KR1020020067647A priority patent/KR100922487B1/en
Publication of JP2003166055A publication Critical patent/JP2003166055A/en
Application granted granted Critical
Publication of JP3994000B2 publication Critical patent/JP3994000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • C23C14/044Coating on selected surface areas, e.g. using masks using masks using masks to redistribute rather than totally prevent coating, e.g. producing thickness gradient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回転基板上に薄膜を成膜する装置及びこの装置を用いて薄膜を成膜する方法に関する。例えば、ガラス基板上にスパッタ装置などで成膜を行うと、基板上の所望位置にスパッタ粒子が堆積して薄膜が形成される際に、成膜条件を均一にする目的で用いる回転基板方式では、その径方向において、ターゲット中心に対応する基板部分をピークにするような膜厚分布を有する薄膜が形成されることが多い。また、回転基板の円周方向においても回転する基板のどの部分から成膜を開始し終了したかによって、これらの部分を始端または終端とするような膜厚分布が生じることが多い。このような膜厚の散布度は、所望の膜厚値の数パーセント程度であることが多いが、光素子や光フィルタ等に用いられる光学薄膜分野においては、膜厚に起因して変化する光学膜厚(膜厚と屈折率との積)を制御するため、厳密に均等な膜厚の薄膜を成膜することが求められている。
【0002】
【従来の技術】
従来、成膜条件の均一化を図るために基板を回転させ、この基板上に薄膜の成膜を行うスパッタ装置は図1に示す構成を有する。このものでは、装置チャンバ1内の上方に、回転軸2で軸支されて回転可能な基板ホルダ3を設け、該ホルダ3上にガラス基板4を取り付けている。また、装置チャンバ1の断面下方の一方の側面領域に、基板4方向に向けたTiターゲット5を載置したスパッタカソード6を成膜源として設置し、Tiターゲット5とスパッタカソード6とで構成されるスパッタリングターゲットの外側に防着板7を覆設している。さらに、装置チャンバ1内の下方に、円形状の開口部8aを有するシャッタ8を、回転軸9で軸支して該回転軸9まわりに回転可能にして設けている。(図2参照。)
【0003】
ここで、図1のスパッタ装置において、基板ホルダ3の回転軸2とシャッタ8の回転軸9とはそれぞれ独立に作動できるようにしている。また、基板ホルダ3と基板4とには、基板4上に成膜された薄膜の膜厚を計測する膜厚モニタ10が設けられている。膜厚モニタ10は、発光部10a1〜10a3と、発光部10a1〜10a3にそれぞれ対応する受光部10b1〜10b3とから成り、発光部10aと受光部10bとの組み合わせにより、第1モニタ10a1-10b1、第2モニタ10a2-10b2及び第3モニタ10a3-10b3を構成している。このように、発光部10a1〜10a3と受光部10b1〜10b3とから成る光センサで複数のモニタ(第1乃至第3モニタ)を構成することにより、膜厚モニタ10は、ガラス基板4と薄膜との光透過度を測定して、薄膜の膜厚や分布の均等性をモニタできる。また、装置チャンバ1は、排気ポンプ11により真空排気できるように構成され、さらに、装置チャンバ1断面下方のスパッタリングターゲット側の領域にガス導入口12aを設け、該ガス導入口12aからスパッタガスを導入し、装置チャンバ1断面上方の基板ホルダ3の近傍領域にガス導入口12bを設け、該ガス導入口12bから反応性ガスを導入するようにしている。
【0004】
ガラス基板4上に成膜を行うに際しては、まず、前処理として排気ポンプ11によりチャンバ1内を真空排気した後、ガス導入口12aからスパッタガスとしてArガスを導入し、シャッタ8を回転軸9まわりに回転させて開口部8aがターゲット5上に位置しないように調整する。この状態で、スパッタカソード6に電力を印加して行うプレスパッタにより、ターゲット5表面をクリーニングする。その後、ガス導入口12aからスパッタガスとしてArガスを導入すると共に、ガス導入口12bから反応性ガスとして酸素ガスを導入し、さらに、シャッタ8を回転軸9まわりに回転させて開口部8aがターゲット5上に位置するように調整し、スパッタカソード6に電力を印加してスパッタカソード6上のTiターゲット5をスパッタさせ、これにより、TiO2から成る酸化膜を基板4上に成膜する。このとき、基板ホルダ3は回転軸2まわりに回転しており、これに伴って基板4も回転されている。そして、基板4上に成膜される薄膜の膜厚を膜厚モニタ10により計測しながら、基板4上のTiO2の成膜を所定時間継続し、薄膜が所定膜厚に成膜できた時点で、再び、シャッタ8を回転させて開口部8aがターゲット5上に位置しないように調整し、この状態で成膜を終了させる。
【0005】
上記の従来の装置において、シャッタ8は、成膜の開始と終了とを切り替える手段として、あるいはプレスパッタ時に、ターゲット物質の基板4への飛来を妨げるものとして用いられているが、シャッタ8の開口部8aの形状により基板4上の薄膜の膜厚分布を補正する機能も備えている。このように膜厚補正を可能にする形状の開口部を有するシャッタ(膜厚補正板)を備えるスパッタ装置として、特開平4−173972号公報の第5図に示す開口部の形状を有するシャッタ(膜厚補正板)を備えるものが開示されている。
【0006】
ところが、このように形状が固定された開口部を有するシャッタ(膜厚補正板)では、スパッタ中における種々のスパッタ条件(真空度、ガス導入量、チャンバ内からの放出ガス量、スパッタ電圧、スパッタ電流等)の変化に対応することが困難である。特に、光学薄膜の分野においては、酸化膜や窒化膜などの薄膜を、反応性スパッタ装置を用いて成膜することが多いが、この場合の成膜速度や膜質はターゲットの表面状態に依存することが知られている。そして、ターゲットの表面状態は反応性ガスの分圧に関係している。通常、この成膜速度と反応性ガスの分圧とはヒステリシス曲線を描くような相関を有することが多く、また、投入電力においてもヒステリシス曲線が大きく異なるため不安定な状態であり、上記のようなスパッタ条件が変化し易くなっている。
【0007】
【発明が解決しようとする課題】
そこで、多数の可動な膜厚補正板により膜厚補正部材を構成し、各膜厚補正板を駆動させてその開口部の形状を調整し、膜厚分布の変化に対応できるようにしたものとして、特開昭61−183464号公報の第2図に示すものがある。しかしながら、このものでは、各膜厚補正板の駆動機構を作動させる際に、チャンバの真空度を維持できなくなる可能性があり、取扱い上効率的とは言えない。
【0008】
さらに、上記の特開平4−173972号公報及び特開昭61−183464号公報に開示されている従来技術は、ともに回転する基板上に成膜された薄膜の径方向の膜厚分布を補正するものであり、上記回転の開始及び終了時に生じる回転円周方向の膜厚分布を補正する効果については不明である。
【0009】
上記問題点に鑑み、本発明は、種々のスパッタ条件の変動により生じる、薄膜の径方向の膜厚分布の変化や、円周方向の膜厚分布に対応して効率的に膜厚を補正し得る薄膜の成膜装置を提供し、さらに、その成膜装置を用いて薄膜を成膜する方法を提供することを課題とする。
【0010】
【課題を介設するための手段】
上記課題を解決するため、本発明の薄膜の成膜装置は、互いに対向する回転基板と成膜源とを有する薄膜の成膜装置において、前記成膜源と対向する開口部を有し、前記基板と前記成膜源との間に設けられることによって前記成膜源から前記基板上に成膜される薄膜の成膜速度を規制する第1シャッタと、前記第1シャッタの開口部を覆うことによって前記開口部の面積を減少可能な、前記基板上に成膜される薄膜の膜厚を補正する前記第1シャッタに設けられた第2シャッタと、前記成膜源と前記基板との間に挿脱自在に設けられ、前記基板上の薄膜が所望膜厚に到達した時点で前記成膜源と前記基板との間に挿入されることによって前記基板上への薄膜の成膜を遮断する可動シャッタとを備えたことを特徴とする
【0011】
このものは、膜厚計測手段の計測値に応じて、第1シャッタに設けた第2シャッタ(開閉シャッタ)を作動させて、第1シャッタの開口部の開度(開口面積)を増減することにより、基板上の薄膜の成膜速度を調整でき、また、膜厚計測手段の計測値に応じて、可動シャッタを作動させて、基板上の成膜を遮断できる。したがって、第1シャッタとその第2シャッタとにより、回転基板の半径に沿って精度良く傾斜させて形成した径方向の膜厚分布を、可動シャッタにより所望膜厚に到達した成膜領域から順次成膜を遮断して、最後は、所望膜厚に揃えて平坦にしたものに補正することができる。このとき、第2シャッタを作動させて第1シャッタの開口部の開度を減少させることにより、薄膜の成膜速度が減少するので、基板上の薄膜の周方向の膜厚分布も平坦なものに補正されている。
【0012】
また、このとき、回転基板の半径に沿った複数の測定点で前記薄膜の膜厚を計測することにより、薄膜の径方向及び周方向の膜厚分布を計測する際の感度が向上するだけでなく、回転基板の径方向に傾斜した膜厚分布を精度良く観測することができる。
【0013】
これらの場合、成膜源をスパッタリングカソードで構成して、さらに、希ガスから成るスパッタガスと反応性ガスとを用いて、反応性スパッタリング法として誘電性薄膜を成膜することが可能となる。このような反応性ガスとしては、酸素、窒素、炭素、ケイ素等の元素を含むガスが考えられるが、目的に応じて、このような単体ガス(O2、O3、N2等)や化合物ガス(N2O、H2O、NH3等)のみならずこれらを混合して成る混合ガスを用いても良い。
【0014】
そして、上記の成膜装置を用い、最初に、回転基板と成膜源との間に設けられた第1シャッタの開口部を成膜源と対向させ、その状態で、基板上に薄膜を所望膜厚のうちの所定割合の膜厚に成膜する第1工程と、膜厚計測手段による膜厚の計測で基板上の薄膜の膜厚が前記所定割合に達した時点で、第1シャッタに設けられた第2シャッタにより第1シャッタの開口部を覆って該開口部の開口面積を減少させた状態で基板上に薄膜の成膜を続行する第2工程と、膜厚計測手段による膜厚の計測で基板上の薄膜の膜厚が所望値に達した時点で、基板と成膜源との間に可動シャッタを挿入して基板上への薄膜の成膜を遮断する第3工程とをこの順で順次行うこととする。このような方法によれば、第1工程において、所望膜厚の大部分(最大膜厚部において95%程度)を成膜した後、第2工程において、比較的遅い成膜速度で精度良く所望膜厚の成膜を達成すると共に周方向の膜厚分布を平坦なものに補正し、さらに、第3工程において、可動シャッタにより、所望膜厚に到達した基板上の成膜領域から成膜を遮断するので、径方向の膜厚分布は、最後には、所望膜厚に揃えて平坦にしたものに補正することができる。したがって、所望の均等な膜厚を得ることが可能である。
【0015】
図3は、本発明に用いる反応性スパッタリング装置の概略を示す。図1の反応性スパッタリング装置と異なるのは、図1のシャッタ8の替りに、成膜速度規制部材である第1シャッタ13aと膜厚補正部材である第2シャッタ14a、14bとが設けられていること、基板ホルダ3の近傍に、平板形状の可動シャッタ15が追加して設けられていること、酸化反応を促進するためのプラズマ源16が追加して設けられていることである。
【0016】
このうち、第1シャッタ13aと第2シャッタ14a、14bとを図4に上面図として示す。図4を参照して、第1シャッタ13aは、開口角度θの開口部13bと、開口部13cと、第2シャッタ14a、14bとを有し、図外の駆動機構が回転軸9と同軸の駆動歯車14cを作動させると、第2シャッタ14a、14bにより第1シャッタ13aの開口部13bの開度が増減できるように構成されている。
【0017】
また、可動シャッタ15は、基板4と平行な方向に可動であり、図外の作動機構によりスパッタリング装置1内に挿入されると、基板4とスパッタカソード6との間に介在し、スパッタリングによる基板4上の成膜を遮断できるように構成されている。
【0018】
図3の成膜装置1により、ガラス基板4上に成膜を行うに際しては、まず、図1の場合と同様の前処理とプレスパッタとを行った後、ガス導入口12aからスパッタガスとしてArガスを導入すると共に、ガス導入口12bから反応性ガスとして酸素ガスを導入する。さらに、可動シャッタ15を基板4の回転円外の充分離れた位置に待機させると共に第2シャッタ14a、14bの開度を充分に保った状態で、第1シャッタ13aを回転軸9まわりに回転させて、第1シャッタ13aの開口部13bをターゲット5上に位置させる。そして、スパッタカソード6に電力を印加してスパッタカソード6上のTiターゲット5のスパッタリングを開始し、これにより、TiO2から成る酸化膜を基板4上に成膜する。このとき、基板ホルダ3は回転軸2まわりに回転しており、これに伴って基板4も回転されている。
【0019】
なお、本実施の形態では、誘電性薄膜としてTiO2から成る酸化膜を成膜するが、ガス導入口12bから反応性ガスとして窒素ガスを導入すれば、窒化膜の形成も可能である。
【0020】
上記のTiO2から成る酸化膜の成膜に際しては、第1シャッタ13aが、回転基板4の半径に沿って回転円の外側に行くほど成膜速度が大きくなるような形状の開口部13bを有するので、基板4上に成膜された薄膜の膜厚分布は、回転基板4の半径に沿って回転円の外側が内側より大きな膜厚を有するように傾斜したものとなる。
【0021】
そして、基板4上のTiOの成膜を所定時間継続し、最も厚い部分の膜厚が所望膜厚のおおむね95%程度になるまで成膜できたことを膜厚モニタ10で計測した時点で、第1シャッタ13aの駆動歯車14cにより第2シャッタ14a、14bの開度を減じ、第1シャッタ13aの開口部13bを減少させる。このときに、第2シャッタ14a、14bの開度を減じ、第1シャッタ13aの開口部13bを減少させたのは、開口面積を小さくして当初より成膜速度を遅くするためである。薄膜の膜厚に求められる厳密な均等性を実現するためには、成膜の開始及び終了の際にシャッタが開閉する瞬間の成膜の有無が円周方向の膜厚分布の平坦性に大きく影響するが、上記のように成膜途中に成膜速度を小さくするとこの影響が軽減でき、円周方向に平坦な膜厚分布が得られる。この意味において、成膜速度規制部材の第1シャッタ13aに設けられた開閉シャッタたる第2シャッタ14a、14bは、その開口部13bの開口面積を変更できて、膜厚補正部材として機能している。また、このような方法による成膜速度の低下は、スパッタカソード6の印加電力を軽減することにより成膜速度を低下させる場合と異なり、ターゲット5の表面状態や反応性ガスの分圧などを変動させるものではないため、スパッタ条件自体に影響を与えるものではない。
【0022】
一方、膜厚モニタ10は、第1モニタ10a1-10b1、第2モニタ10a2-10b2、第3モニタ10a3-10b3により、基板4上の薄膜の膜厚を3点の測定位置101、102、103で計測しているが、この3点データを所定時間ごとに計測することにより、基板ホルダ3の回転円における径方向の薄膜の膜厚分布をモニタできる。なお、図3中、101´、102´、103´は、基板4上の成膜領域において膜厚モニタ10の測定位置101、102、103のそれぞれに対応する同心円位置である。
【0023】
そして、第2シャッタ14a、14bの開度を減少させた状態で、基板4上のTiO2の成膜を所定時間継続し、膜厚モニタ10の第1モニタ10a1-10b1において、薄膜が所望膜厚に成膜したことを計測した時点で、可動シャッタ15を移動して、測定位置に対応する同心円位置101´と102´との間の所定の位置までがこの可動シャッタ15の先端部分15aに充分覆われるようにする。かくして、前記測定位置101近傍における成膜が遮断されて終了する。
【0024】
そして、そのまま、基板4上のTiO2の成膜を所定時間継続し、膜厚モニタ10の第2モニタ10a2-10b2において、薄膜が所望膜厚に成膜したことを計測した時点で、可動シャッタ15を移動して、測定位置に対応する同心円位置102´と103´との間の所定の位置までがこの可動シャッタ15の先端部分15aに充分覆われるようにする。かくして、前記測定位置102近傍における成膜が遮断されて終了する。
【0025】
そして、そのままさらに、基板4上のTiO2の成膜を所定時間継続し、膜厚モニタ10の第3モニタ10a3-10b3において、薄膜が所望膜厚に成膜できたことを計測した時点で、可動シャッタ15を移動して、その先端部分15aを基板中心位置4aに到達させ、基板4が可動シャッタ15に完全に覆われるようにする。かくして、基板4上における成膜が遮断され、この時点で全成膜工程を終了する。
【0026】
なお、本実施の形態では、回転基板4の半径に沿って回転円の外側に行くほど成膜速度が大きくなるような形状の開口部13bを有する第1シャッタ13aを用い、回転基板4の半径に沿って回転円の外側が内側より大きな膜厚を有するように傾斜した膜厚分布を形成した。そして、このような径方向に傾斜した膜厚分布を、回転円の外側から内側へ可動シャッタ15を移動させて、回転円の外側から内側へ順次成膜を遮断して、薄膜を所望膜厚に揃えて平坦な膜厚分布を得た。
【0027】
しかしながら、本発明は、このような実施形態に限定されず、例えば、これとは逆に、回転基板4の半径に沿って回転円の内側が外側より大きな膜厚を有するように傾斜した膜厚分布を形成し、回転円の内側から外側へ順次成膜を遮断して、平坦な膜厚分布を得るようにすることも可能である。
【0028】
また、膜厚モニタ10の測定位置が多いほど、さらに精密な膜厚分布の制御が可能である。また、可動シャッタ15はステップ状に移動するより、連続的に移動できるようにした方がさらに精密な膜厚分布制御が可能である。
【0029】
【実施例】
[実施例]図3のスパッタ装置を用い、基板ホルダ3上に光学研磨した直径200mmのドーナツ状のガラス基板4を載置した後、チャンバ1内を1×10-5Pa以下に真空排気した。ガス導入口11からArガスを20sccm、ガス導入口12bから酸素ガスを5sccmでそれぞれ導入し、チャンバ1内を0.5Paに保つ。可動シャッタ15は、基板4上になく退避させた状態にして、第1シャッタ13aの開口部13b及び13cがスパッタカソード6上に位置しないことを確認して基板ホルダ3を回転軸2まわりに1500rpmで回転させた。スパッタカソード6に異常放電対策を考慮したパルスDCパワーを2kWで印加して放電を開始した。このときのターゲット材質はTiである。
【0030】
そして、第1シャッタ13aの開口部13bをスパッタカソード6上に位置させ放電を開始した。また、Tiの酸化反応を促進させるため、プラズマ源16に600Wの電力を導入しプラズマを発生させ、第1シャッタ13aの開口部13cを介してプラズマが基板4の近傍に達するようにした。このときのTiO2の成膜速度は、150Å/minである。そして、既に調整済みの光学式膜厚モニタ10により最も外側の測定ポイント101が1990Åの膜厚に達した時、図外の駆動機構により駆動歯車14cを作動させて、成膜速度を規制する第2シャッタ14a、14bの開度を減少させ、第1シャッタ13aの開口部13bの開口角度θに対し約1/10の開口角度になった時点で、第2シャッタ14a、14bの開度減少作動を停止した。
【0031】
この直前の基板4上の薄膜の膜厚は基板4の外周部の方が厚い傾向にあり、このときの第1モニタ10a1-10b1、第2モニタ10a2-10b2、第3モニタ10a3-10b3により計測された膜厚値はそれぞれ1990Å、1980Å、1965Åであった。第2シャッタ14a、14bを作動して第1シャッタ13aの開口面積を減少させたときの成膜速度は15Å/minであった。
【0032】
そのまま、さらに薄膜の成膜を続行し、第1モニタ10a1-10b1が2000Åの膜厚を計測した瞬間に、可動シャッタ15を移動させ、その先端部分15aが、第1モニタ10a1-10b1の測定位置101に対応する、基板4の成膜位置101´を充分覆うようにして、回転基板4の外周部とこの成膜位置101´近傍との領域において薄膜の成膜を遮断する。この結果、この成膜領域では、膜厚が2000Åとなって成膜が終了する。このとき、第2モニタ10a2-10b2及び第3モニタ10a3-10b3が計測する膜厚値はそれぞれ1988Å及び1971Åであった。
【0033】
そのまま、さらに薄膜の成膜を続行し、第2モニタ10a2-10b2が2000Åの膜厚を計測した瞬間に、可動シャッタ15を移動させ、その先端部分15aが、第2モニタ10a2-10b2の測定位置102に対応する、基板4の成膜位置102´を充分覆うようにして、回転基板4の外周部とこの成膜位置102´近傍との領域において薄膜の成膜を遮断する。この結果、この成膜領域では、膜厚が2000Åとなって成膜が終了する。このとき、第3モニタ10a3-10b3が計測する膜厚値は1980Åであった。
【0034】
そのまま、さらに、薄膜の成膜を続行し、第3モニタ10a3-10b3が2000Åの膜厚を計測した瞬間に、可動シャッタ15を移動させ、その先端部分15aを基板中心位置4aに到達させて、基板4を可動シャッタ15で完全に覆い、基板4上の成膜を遮断する。この結果、基板4上では、膜厚が2000Åに揃って成膜が終了する。
【0035】
成膜終了後、基板4を取り出し、薄膜の膜厚と基板4上の膜厚分布とをエリプソメータで測定したところ、平均膜厚は2000.0Åで、膜厚分布はこの膜厚に対して±0.01%の優れた散布度を有するものであった。
【0036】
[比較例]成膜速度を規制する第1シャッタ13a及び第2シャッタ14a、14b機構の替りにシャッタ板17aを用いた。図5を参照して、シャッタ板17aは、従来の装置において一般的に用いられている開口部17bと、図4における開口部13cと同形状の開口部17cとを有している。この開口部17cにより、[実施例]と同様の条件で、基板4の近傍にプラズマを到達させることができる。このシャッタ板17aを用いた以外は、[実施例]と同じく図3に示すスパッタ装置1を用いて同様の方法で薄膜の成膜を行った。得られた基板4を測定したところ、基板中心位置4aからの距離が40mmの成膜位置では、その円周上での平均膜厚とその散布度とが2007.2ű1.3%として示される膜厚分布であった。また、基板中心位置4aからの距離が80mmの成膜位置では、その円周上での平均膜厚とその散布度とが2006.9ű1.0%として示される膜厚分布であった。そして、基板全面では、平均膜厚とその散布度とが、2007.1ű1.8%として示される膜厚分布を有することが分かった。
【0037】
【発明の効果】
以上の説明から明らかなように、本発明は、通常の成膜法により薄膜の所望膜厚の大部分を成膜した後、基板上に成膜される薄膜の膜厚と膜厚分布との計測結果に基づき、第2シャッタ(開閉シャッタ)を作動させ、第1シャッタの開口部の開度を調整して成膜速度を低下させた状態で、残りの膜厚部分を成膜し、さらに、基板上に成膜される薄膜の膜厚と膜厚分布との計測結果に基づき、可動シャッタを作動させ、所望の膜厚に到達した基板上の成膜領域の成膜を遮断できる。即ち、基板上では、所望の膜厚に到達した領域が出現した時点で、その成膜領域における成膜を終了させるので、基板上の全成膜領域で成膜が終了したとき、回転基板の径方向及び円周方向に良好な精度で均等な膜厚分布を有する薄膜を成膜できる。
【図面の簡単な説明】
【図1】従来の反応性スパッタリング装置の概要断面図
【図2】図1のシャッタ(成膜速度規制部材)の上面図
【図3】本発明の[実施例]において用いる反応性スパッタリング装置の概要断面図
【図4】図3の第1及び第2の両シャッタ(成膜速度規制部材)の上面図
【図5】[比較例]において用いるシャッタ板(成膜速度規制部材)の上面図
【符号の説明】
4 回転基板
6 スパッタカソード
8 シャッタ(膜厚補正部材) 8a 開口部
10 膜厚モニタ
101 第1モニタの計測点
102 第2モニタの計測点
103 第3モニタの計測点
13a 第1シャッタ 13b、13c 開口部 θ 開口角度(開度)
14a、14b 第2シャッタ(開閉シャッタ)
15 可動シャッタ
17a シャッタ板 17b、17c 開口部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for forming a thin film on a rotating substrate and a method for forming a thin film using the apparatus. For example, when a film is formed on a glass substrate with a sputtering apparatus or the like, when a sputtered particle is deposited at a desired position on the substrate to form a thin film, the rotating substrate system used for the purpose of uniform film formation conditions is used. In the radial direction, a thin film having a film thickness distribution such that the substrate portion corresponding to the center of the target peaks is often formed. Further, in many cases, a film thickness distribution in which these portions are used as the start end or the end depends on which part of the rotating substrate starts and ends in the circumferential direction of the rotating substrate. In many cases, the spread degree of the film thickness is about several percent of the desired film thickness value. However, in the field of optical thin films used for optical elements, optical filters, etc. In order to control the film thickness (product of the film thickness and the refractive index), it is required to form a thin film having a strictly uniform film thickness.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a sputtering apparatus that rotates a substrate in order to make the film forming conditions uniform and forms a thin film on the substrate has the configuration shown in FIG. In this apparatus, a substrate holder 3 that is rotatably supported by a rotation shaft 2 is provided above the apparatus chamber 1, and a glass substrate 4 is mounted on the holder 3. Further, a sputtering cathode 6 on which a Ti target 5 facing the direction of the substrate 4 is placed as a film forming source in one side region below the cross section of the apparatus chamber 1, and is composed of the Ti target 5 and the sputtering cathode 6. The deposition preventing plate 7 is provided outside the sputtering target. Furthermore, a shutter 8 having a circular opening 8 a is provided below the apparatus chamber 1 so as to be supported by a rotating shaft 9 and rotatable around the rotating shaft 9. (See Figure 2.)
[0003]
Here, in the sputtering apparatus of FIG. 1, the rotating shaft 2 of the substrate holder 3 and the rotating shaft 9 of the shutter 8 can be operated independently. The substrate holder 3 and the substrate 4 are provided with a film thickness monitor 10 for measuring the film thickness of the thin film formed on the substrate 4. Film thickness monitor 10 includes a light emitting portion 10a 1 10 A 3, consists emitting portion 10a 1 10 A correspond to the third light receiving portion 10b 1 ~10B 3 Prefecture, in combination with the light receiving portion 10b and the light emitting portion 10a, the 1 monitor 10a 1 -10b 1, constitutes a second monitor 10a 2 -10B 2 and the third monitor 10a 3 -10b 3. In this way, by forming a plurality of monitors (first to third monitors) with the optical sensor including the light emitting units 10a 1 to 10a 3 and the light receiving units 10b 1 to 10b 3 , the film thickness monitor 10 is made of a glass substrate. By measuring the light transmittance between the thin film 4 and the thin film, the film thickness and distribution uniformity of the thin film can be monitored. The apparatus chamber 1 is configured to be evacuated by an exhaust pump 11, and further, a gas introduction port 12a is provided in a region on the sputtering target side below the section of the apparatus chamber 1, and a sputtering gas is introduced from the gas introduction port 12a. A gas inlet 12b is provided in the vicinity of the substrate holder 3 above the section of the apparatus chamber 1, and a reactive gas is introduced from the gas inlet 12b.
[0004]
When forming a film on the glass substrate 4, first, as a pretreatment, the inside of the chamber 1 is evacuated by an exhaust pump 11, Ar gas is then introduced as a sputter gas from the gas introduction port 12 a, and the shutter 8 is connected to the rotating shaft 9. It is adjusted so that the opening 8a is not positioned on the target 5 by rotating around. In this state, the surface of the target 5 is cleaned by pre-sputtering performed by applying power to the sputtering cathode 6. Thereafter, Ar gas is introduced as a sputtering gas from the gas introduction port 12a, oxygen gas is introduced as a reactive gas from the gas introduction port 12b, and the shutter 8 is rotated about the rotation axis 9 so that the opening 8a is the target. The Ti target 5 on the sputter cathode 6 is sputtered by adjusting the power so as to be positioned on the sputter cathode 6, thereby forming an oxide film made of TiO 2 on the substrate 4. At this time, the substrate holder 3 is rotated around the rotation axis 2, and the substrate 4 is also rotated accordingly. Then, while the film thickness of the thin film formed on the substrate 4 is measured by the film thickness monitor 10, the film formation of TiO 2 on the substrate 4 is continued for a predetermined time, and the thin film can be formed to the predetermined film thickness. Then, the shutter 8 is rotated again so that the opening 8a is not positioned on the target 5, and the film formation is finished in this state.
[0005]
In the above-described conventional apparatus, the shutter 8 is used as a means for switching the start and end of film formation or as a means for preventing the target material from flying to the substrate 4 during pre-sputtering. It also has a function of correcting the film thickness distribution of the thin film on the substrate 4 by the shape of the portion 8a. As a sputtering apparatus having a shutter (thickness correction plate) having an opening having a shape that enables film thickness correction in this way, a shutter having the shape of the opening shown in FIG. 5 of Japanese Patent Laid-Open No. 4-173972 ( What is provided with a film thickness correction board) is disclosed.
[0006]
However, in the shutter (thickness correction plate) having an opening having a fixed shape in this way, various sputtering conditions (vacuum degree, gas introduction amount, gas discharge amount from the chamber, sputtering voltage, sputtering voltage, etc.) during sputtering. It is difficult to cope with changes in current and the like. In particular, in the field of optical thin films, thin films such as oxide films and nitride films are often formed using a reactive sputtering apparatus. In this case, the film formation speed and film quality depend on the surface condition of the target. It is known. The surface state of the target is related to the partial pressure of the reactive gas. In general, the deposition rate and the partial pressure of the reactive gas often have a correlation that draws a hysteresis curve, and the hysteresis curve also varies greatly in the applied power, which is an unstable state. The sputter conditions are likely to change.
[0007]
[Problems to be solved by the invention]
Therefore, it is assumed that a film thickness correcting member is constituted by a large number of movable film thickness correcting plates, and each film thickness correcting plate is driven to adjust the shape of the opening to cope with the change in the film thickness distribution. FIG. 2 of Japanese Patent Application Laid-Open No. 61-183464. However, in this case, when operating the drive mechanism of each film thickness correction plate, there is a possibility that the degree of vacuum of the chamber cannot be maintained, and it cannot be said that it is efficient in handling.
[0008]
Furthermore, the prior art disclosed in the above Japanese Patent Laid-Open Nos. 4-173972 and 61-183464 corrects the film thickness distribution in the radial direction of the thin film formed on the rotating substrate. The effect of correcting the film thickness distribution in the rotational circumferential direction that occurs at the start and end of the rotation is unclear.
[0009]
In view of the above problems, the present invention efficiently corrects the film thickness in response to changes in the film thickness distribution in the radial direction of the thin film and the film thickness distribution in the circumferential direction caused by variations in various sputtering conditions. An object of the present invention is to provide a thin film forming apparatus to be obtained, and to provide a method of forming a thin film using the film forming apparatus.
[0010]
[Means for interposing problems]
In order to solve the above problems, a thin film deposition apparatus of the present invention is a thin film deposition apparatus having a rotating substrate and a deposition source facing each other, and has an opening facing the deposition source, A first shutter that is provided between the substrate and the film forming source to regulate a film forming speed of a thin film formed on the substrate from the film forming source, and covers an opening of the first shutter. The area of the opening can be reduced by the second shutter provided in the first shutter for correcting the film thickness of the thin film formed on the substrate, and between the film formation source and the substrate. A movable device that is detachably provided and is inserted between the film forming source and the substrate when the thin film on the substrate reaches a desired film thickness, thereby blocking the film formation on the substrate. characterized in that a shutter.
[0011]
According to this, the second shutter (opening / closing shutter) provided in the first shutter is operated according to the measurement value of the film thickness measuring means, and the opening degree (opening area) of the opening portion of the first shutter is increased or decreased. Thus, the film formation speed of the thin film on the substrate can be adjusted, and the film formation on the substrate can be blocked by operating the movable shutter in accordance with the measurement value of the film thickness measurement means. Accordingly, the radial film thickness distribution formed by the first shutter and the second shutter with high accuracy along the radius of the rotating substrate is sequentially formed from the film formation region that has reached the desired film thickness by the movable shutter. The film can be cut off and finally corrected to be flat to the desired film thickness. At this time, by operating the second shutter to reduce the opening degree of the opening of the first shutter , the film forming speed of the thin film is reduced, so that the film thickness distribution in the circumferential direction of the thin film on the substrate is also flat. It has been corrected.
[0012]
In addition, at this time, by measuring the film thickness of the thin film at a plurality of measurement points along the radius of the rotating substrate, only the sensitivity when measuring the film thickness distribution in the radial direction and the circumferential direction of the thin film is improved. In addition, the film thickness distribution inclined in the radial direction of the rotating substrate can be accurately observed.
[0013]
In these cases, it is possible to form a dielectric thin film as a reactive sputtering method by using a sputtering cathode as a film forming source and further using a sputtering gas composed of a rare gas and a reactive gas. As such a reactive gas, a gas containing an element such as oxygen, nitrogen, carbon, or silicon can be considered. Depending on the purpose, such a simple gas (O 2 , O 3 , N 2, etc.) or a compound may be used. gas (N 2 O, H 2 O , NH 3 , etc.) not only can be used a mixed gas obtained by mixing them.
[0014]
Then, using the film forming apparatus, first, the opening of the first shutter provided between the rotating substrate and the film forming source is opposed to the film forming source, and in this state, a thin film is desired on the substrate. When the film thickness of the thin film on the substrate reaches the predetermined ratio in the first step of forming the film at a predetermined ratio of the film thickness and the film thickness measurement by the film thickness measuring means, the first shutter is applied. a second step of continuing the deposition of a thin film on a substrate in a provided a second state in which it covers the opening portion of the first shutter to reduce the opening area of the opening by the shutter, the film thickness by the film thickness measuring device When the film thickness of the thin film on the substrate reaches a desired value in the measurement of step 3 , a movable shutter is inserted between the substrate and the film formation source and a third step of blocking film formation on the substrate is performed. It will be performed sequentially in this order. According to such a method, in the first step, after a large part of the desired film thickness (about 95% in the maximum film thickness portion) is formed, the desired value is accurately obtained at a relatively low film formation speed in the second step. At the same time, the film thickness distribution in the circumferential direction is corrected to a flat one, and in the third step, the film is formed from the film formation region on the substrate that has reached the desired film thickness by the movable shutter. Since the blocking is performed, the film thickness distribution in the radial direction can be corrected to a flat film finally with a desired film thickness. Therefore, a desired uniform film thickness can be obtained.
[0015]
FIG. 3 shows an outline of the reactive sputtering apparatus used in the present invention. The reactive sputtering apparatus of FIG. 1 is different from the shutter 8 of FIG. 1 in that a first shutter 13a that is a film forming speed regulating member and second shutters 14a and 14b that are film thickness correcting members are provided. being in the vicinity of the substrate holder 3, the movable shutter 15 of the flat plate is provided in addition, is that a plasma source 16 for accelerating the oxidation reaction are additionally provided.
[0016]
Among these, the first shutter 13a and the second shutters 14a and 14b are shown as a top view in FIG. Referring to FIG. 4, the first shutter 13 a has an opening 13 b having an opening angle θ, an opening 13 c, and second shutters 14 a and 14 b, and a drive mechanism (not shown) is coaxial with the rotary shaft 9. When the drive gear 14c is operated, the opening degree of the opening 13b of the first shutter 13a can be increased or decreased by the second shutters 14a and 14b.
[0017]
The movable shutter 15 is movable in a direction parallel to the substrate 4 and is inserted between the substrate 4 and the sputter cathode 6 when inserted into the sputtering apparatus 1 by an operating mechanism (not shown). 4 is configured to be able to block the film formation on 4.
[0018]
When performing film formation on the glass substrate 4 by the film forming apparatus 1 in FIG. 3, first, pre-processing and pre-sputtering similar to those in FIG. 1 are performed, and then Ar is sputtered from the gas inlet 12a. While introducing gas, oxygen gas is introduce | transduced as reactive gas from the gas inlet 12b. Further, the first shutter 13a is rotated around the rotation shaft 9 while the movable shutter 15 is kept at a position sufficiently away from the rotation circle of the substrate 4 and the opening degree of the second shutters 14a and 14b is sufficiently maintained. Thus, the opening 13b of the first shutter 13a is positioned on the target 5. Then, power is applied to the sputtering cathode 6 to start sputtering of the Ti target 5 on the sputtering cathode 6, thereby forming an oxide film made of TiO 2 on the substrate 4. At this time, the substrate holder 3 is rotated around the rotation axis 2, and the substrate 4 is also rotated accordingly.
[0019]
In this embodiment, an oxide film made of TiO 2 is formed as the dielectric thin film. However, if nitrogen gas is introduced as the reactive gas from the gas inlet 12b, a nitride film can be formed.
[0020]
When forming the oxide film made of TiO 2 , the first shutter 13a has an opening 13b having a shape such that the film forming speed increases toward the outside of the rotating circle along the radius of the rotating substrate 4. Therefore, the film thickness distribution of the thin film formed on the substrate 4 is inclined so that the outer side of the rotating circle has a larger film thickness than the inner side along the radius of the rotating substrate 4.
[0021]
At the time when the film thickness monitor 10 measured that the film formation of TiO 2 on the substrate 4 was continued for a predetermined time and the film thickness of the thickest part was about 95% of the desired film thickness. The opening of the second shutter 14a, 14b is reduced by the drive gear 14c of the first shutter 13a, and the opening 13b of the first shutter 13a is reduced. At this time, the reason why the opening degree of the second shutters 14a and 14b is reduced and the opening part 13b of the first shutter 13a is reduced is to reduce the opening area and to reduce the film formation rate from the beginning. In order to achieve the strict uniformity required for the thickness of the thin film, the presence or absence of film formation at the moment when the shutter opens and closes at the start and end of film formation greatly increases the flatness of the film thickness distribution in the circumferential direction. However, if the film formation rate is reduced during film formation as described above, this influence can be reduced, and a flat film thickness distribution in the circumferential direction can be obtained. In this sense, the second shutters 14a and 14b, which are open / close shutters, provided on the first shutter 13a of the film formation speed regulating member can change the opening area of the opening 13b and function as a film thickness correction member . . Further, the decrease in the film formation rate by such a method is different from the case in which the film formation rate is decreased by reducing the power applied to the sputter cathode 6, and the surface state of the target 5 and the partial pressure of the reactive gas are changed. Therefore, the sputtering conditions themselves are not affected.
[0022]
On the other hand, the film thickness monitor 10 measures the film thickness of the thin film on the substrate 4 at three points by the first monitor 10a 1 -10b 1 , the second monitor 10a 2 -10b 2 , and the third monitor 10a 3 -10b 3. Although the measurement is performed at 10 1 , 10 2 , and 10 3 , the thickness distribution of the thin film in the radial direction in the rotation circle of the substrate holder 3 can be monitored by measuring the three-point data at predetermined time intervals. In FIG. 3, 10 1 ′, 10 2 ′, 10 3 ′ are concentric positions corresponding to the measurement positions 10 1 , 10 2 , 10 3 of the film thickness monitor 10 in the film formation region on the substrate 4. is there.
[0023]
Then, the film formation of TiO 2 on the substrate 4 is continued for a predetermined time in a state where the opening degree of the second shutters 14 a and 14 b is decreased, and the thin film is formed in the first monitors 10 a 1 to 10 b 1 of the film thickness monitor 10. When it is measured that the film has been formed to have a desired film thickness, the movable shutter 15 is moved to a predetermined position between the concentric positions 10 1 ′ and 10 2 ′ corresponding to the measurement position. The tip portion 15a is sufficiently covered. Thus, film formation at the measurement position 10 1 near the ends are cut off.
[0024]
Then, the film formation of TiO 2 on the substrate 4 is continued for a predetermined time, and at the time when the second monitor 10a 2 -10b 2 of the film thickness monitor 10 measures that the thin film has been formed to the desired film thickness, The movable shutter 15 is moved so that the tip portion 15a of the movable shutter 15 is sufficiently covered up to a predetermined position between the concentric positions 10 2 ′ and 10 3 ′ corresponding to the measurement position. Thus, film formation at the measurement position 10 2 near ends blocked.
[0025]
Then, the film formation of TiO 2 on the substrate 4 is further continued for a predetermined time, and when the third monitor 10a 3 -10b 3 of the film thickness monitor 10 measures that the thin film has been formed to the desired film thickness. Thus, the movable shutter 15 is moved so that the front end portion 15a reaches the substrate center position 4a so that the substrate 4 is completely covered by the movable shutter 15. Thus, the film formation on the substrate 4 is blocked, and at this point, the entire film formation process is completed.
[0026]
In the present embodiment, the first shutter 13a having the opening 13b having a shape in which the film forming speed increases toward the outside of the rotation circle along the radius of the rotation substrate 4 is used. A film thickness distribution that is inclined so that the outer side of the rotating circle has a larger film thickness than the inner side is formed. The film thickness distribution inclined in the radial direction is moved from the outer side to the inner side of the rotating circle to move the movable shutter 15 so that the film formation is sequentially interrupted from the outer side to the inner side of the rotating circle. A flat film thickness distribution was obtained.
[0027]
However, the present invention is not limited to such an embodiment. For example, on the contrary, the film thickness is inclined so that the inner side of the rotating circle has a larger film thickness than the outer side along the radius of the rotating substrate 4. It is also possible to form a distribution and sequentially block the film formation from the inside to the outside of the rotating circle to obtain a flat film thickness distribution.
[0028]
Further, the more the measurement positions of the film thickness monitor 10, the more precise control of the film thickness distribution is possible. Further, it is possible to control the film thickness distribution more precisely by allowing the movable shutter 15 to move continuously rather than moving in a stepped manner.
[0029]
【Example】
[Embodiment] Using a sputtering apparatus of FIG. 3, a glass substrate 4 having a diameter of 200 mm that was optically polished was placed on the substrate holder 3, and then the inside of the chamber 1 was evacuated to 1 × 10 −5 Pa or less. . Ar gas is introduced at 20 sccm from the gas inlet 11 and oxygen gas is introduced at 5 sccm from the gas inlet 12 b, and the inside of the chamber 1 is maintained at 0.5 Pa. The movable shutter 15 is retracted without being on the substrate 4, and it is confirmed that the openings 13 b and 13 c of the first shutter 13 a are not located on the sputter cathode 6, and the substrate holder 3 is rotated about 1500 rpm around the rotation axis 2. It was rotated with. Discharge was started by applying a pulse DC power of 2 kW in consideration of abnormal discharge countermeasures to the sputter cathode 6. The target material at this time is Ti.
[0030]
Then, the opening 13b of the first shutter 13a was positioned on the sputter cathode 6 to start discharging. In order to promote the oxidation reaction of Ti, 600 W of electric power was introduced into the plasma source 16 to generate plasma, so that the plasma reached the vicinity of the substrate 4 through the opening 13c of the first shutter 13a. At this time, the deposition rate of TiO 2 is 150 Å / min. Then, the outermost measurement points 10 1 by previously adjusted optical film thickness monitor 10 when reaching the film thickness of 1990A, actuates the drive gear 14c by an unshown driving mechanism, to regulate the deposition rate When the opening degree of the second shutters 14a and 14b is decreased, and the opening angle θ of the opening part 13b of the first shutter 13a reaches about 1/10, the opening degree of the second shutters 14a and 14b decreases. The operation was stopped.
[0031]
The film thickness of the thin film on the substrate 4 immediately before this tends to be thicker in the outer peripheral portion of the substrate 4, and at this time, the first monitor 10a 1 -10b 1 , the second monitor 10a 2 -10b 2 , the third monitor 10a The film thickness values measured by 3-10b 3 were 1990 mm, 1980 mm, and 1965 mm, respectively. When the second shutters 14a and 14b were operated to reduce the opening area of the first shutter 13a, the film formation rate was 15 Å / min.
[0032]
The film formation is further continued as it is, and at the moment when the first monitor 10a 1 -10b 1 measures the film thickness of 2000 mm, the movable shutter 15 is moved, and the tip portion 15a thereof is the first monitor 10a 1 -10b. A thin film is formed in a region between the outer peripheral portion of the rotating substrate 4 and the vicinity of the film forming position 10 1 ′ so as to sufficiently cover the film forming position 10 1 ′ corresponding to the measurement position 10 1 of 1. Cut off. As a result, in this film formation region, the film thickness is 2000 mm and the film formation is completed. At this time, the film thickness values measured by the second monitor 10a 2 -10b 2 and the third monitor 10a 3 -10b 3 were 1988 mm and 1971 mm, respectively.
[0033]
The film formation is further continued as it is, and at the moment when the second monitor 10a 2 -10b 2 measures the film thickness of 2000 mm, the movable shutter 15 is moved, and the tip portion 15a thereof is moved to the second monitor 10a 2 -10b. The thin film is formed in the region between the outer peripheral portion of the rotating substrate 4 and the vicinity of the film forming position 10 2 ′ so as to sufficiently cover the film forming position 10 2 ′ of the substrate 4 corresponding to the second measurement position 10 2. Cut off. As a result, in this film formation region, the film thickness is 2000 mm and the film formation is completed. At this time, the film thickness value measured by the third monitor 10a 3 -10b 3 was 1980 mm.
[0034]
The thin film deposition is continued as it is, and at the moment when the third monitor 10a 3 -10b 3 measures the film thickness of 2000 mm, the movable shutter 15 is moved so that the tip portion 15a reaches the substrate center position 4a. Then, the substrate 4 is completely covered with the movable shutter 15 to block the film formation on the substrate 4. As a result, the film formation is completed on the substrate 4 with a film thickness of 2000 mm.
[0035]
After the film formation was completed, the substrate 4 was taken out and the film thickness of the thin film and the film thickness distribution on the substrate 4 were measured with an ellipsometer. The average film thickness was 2000.0 mm, and the film thickness distribution was ±± It had an excellent spreading degree of 0.01%.
[0036]
[Comparative Example] A shutter plate 17a was used in place of the first shutter 13a and the second shutters 14a and 14b which regulate the film forming speed. Referring to FIG. 5, shutter plate 17a has an opening 17b generally used in a conventional apparatus and an opening 17c having the same shape as opening 13c in FIG. This opening 17c allows plasma to reach the vicinity of the substrate 4 under the same conditions as in the [Example]. A thin film was formed by the same method using the sputtering apparatus 1 shown in FIG. 3 as in Example, except that this shutter plate 17a was used. When the obtained substrate 4 was measured, the average film thickness on the circumference and the degree of dispersion were shown as 2007.2Å ± 1.3% at the film formation position where the distance from the substrate center position 4a was 40 mm. Film thickness distribution. In addition, at the film forming position where the distance from the substrate center position 4a is 80 mm, the film thickness distribution shows the average film thickness on the circumference and the degree of dispersion as 2006.96 ± 1.0%. And it turned out that it has a film thickness distribution shown as an average film thickness and its dispersion | spreading degree as 2007.1 ± 1.8% in the whole substrate surface.
[0037]
【The invention's effect】
As is apparent from the above description, the present invention provides a relationship between the film thickness and the film thickness distribution of the thin film formed on the substrate after forming a large portion of the desired film thickness by a normal film forming method. Based on the measurement result, the second shutter (opening / closing shutter) is operated, the opening of the opening of the first shutter is adjusted, and the film forming speed is reduced, and the remaining film thickness portion is further formed. Based on the measurement results of the film thickness and the film thickness distribution of the thin film formed on the substrate, the movable shutter can be operated to block the film formation in the film formation region on the substrate that has reached the desired film thickness. That is, when a region having reached a desired film thickness appears on the substrate, the film formation in the film formation region is terminated, so when the film formation is completed in all the film formation regions on the substrate, A thin film having a uniform film thickness distribution can be formed with good accuracy in the radial direction and the circumferential direction.
[Brief description of the drawings]
1 is a schematic cross-sectional view of a conventional reactive sputtering apparatus. FIG. 2 is a top view of a shutter (film formation rate regulating member) in FIG. 1. FIG. 3 is a schematic view of a reactive sputtering apparatus used in [Example] of the present invention. FIG. 4 is a top sectional view of the first and second shutters (film formation rate regulating member) in FIG. 3. FIG. 5 is a top view of a shutter plate (film formation rate regulating member) used in [Comparative Example]. [Explanation of symbols]
4 Rotating Substrate 6 Sputter Cathode 8 Shutter (Film Thickness Correction Member) 8a Opening 10 Film Thickness Monitor 10 1 First Monitor Measurement Point 10 2 Second Monitor Measurement Point 10 3 Third Monitor Measurement Point 13a First Shutter 13b , 13c Opening θ Opening angle (opening)
14a, 14b Second shutter (open / close shutter)
15 Movable shutter 17a Shutter plate 17b, 17c Opening

Claims (3)

互いに対向する回転基板と成膜源とを有する薄膜の成膜装置において、前記成膜源と対向する開口部を有し、前記基板と前記成膜源との間に設けられることによって前記成膜源から前記基板上に成膜される薄膜の成膜速度を規制する第1シャッタと、前記第1シャッタの開口部を覆うことによって前記開口部の面積を減少可能な、前記基板上に成膜される薄膜の膜厚を補正する前記第1シャッタに設けられた第2シャッタと、前記成膜源と前記基板との間に挿脱自在に設けられ、前記基板上の薄膜が所望膜厚に到達した時点で前記成膜源と前記基板との間に挿入されることによって前記基板上への薄膜の成膜を遮断する可動シャッタとを備えたことを特徴とする薄膜の成膜装置。In a thin film forming apparatus having a rotating substrate and a film forming source facing each other, the film forming device has an opening facing the film forming source and is provided between the substrate and the film forming source. A first shutter that regulates a deposition rate of a thin film formed on the substrate from a source ; and a film formation on the substrate that can reduce an area of the opening by covering the opening of the first shutter A second shutter provided in the first shutter for correcting the thickness of the thin film to be formed, and a film formed on the substrate so as to be detachable between the film forming source and the substrate. film forming apparatus of thin film characterized in that a movable shutter for blocking the deposition of thin films on the substrate by being inserted between the substrate and the deposition source at a time when the arrived. 前記成膜源がスパッタリングカソードから成り、希ガスから成るスパッタガスと反応性ガスとを用いる反応性スパッタリング法により、誘電性薄膜を成膜することを特徴とする請求項1に記載の薄膜の成膜装置。2. The thin film formation according to claim 1, wherein the film forming source is formed of a sputtering cathode, and the dielectric thin film is formed by a reactive sputtering method using a sputtering gas composed of a rare gas and a reactive gas. Membrane device. 互いに対向する回転基板と成膜源とを有し、基板上に薄膜を成膜する方法において、前記基板と前記成膜源との間に設けられた第1シャッタの開口部を前記成膜源と対向させ、その状態で、前記基板上に薄膜を所望膜厚のうちの所定割合の膜厚に成膜する第1工程と、膜厚計測手段による膜厚の計測で前記基板上の薄膜の膜厚が前記所定割合に達した時点で、前記第1シャッタに設けられた第2シャッタにより前記第1シャッタの開口部を覆って該開口部の開口面積を減少させた状態で前記基板上に薄膜の成膜を続行する第2工程と、前記膜厚計測手段による膜厚の計測で前記基板上の薄膜の膜厚が前記所望値に達した時点で、前記基板と前記成膜源との間に可動シャッタを挿入して前記基板上への薄膜の成膜を遮断する第3工程とから成ることを特徴とする薄膜の成膜方法。 In a method of forming a thin film on a substrate having a rotating substrate and a film forming source facing each other, an opening of a first shutter provided between the substrate and the film forming source is used as the film forming source. In this state, the first step of forming a thin film on the substrate at a predetermined proportion of the desired film thickness, and the measurement of the film thickness by the film thickness measuring means, When the film thickness reaches the predetermined ratio, the second shutter provided on the first shutter covers the opening of the first shutter and reduces the opening area of the opening on the substrate. When the film thickness of the thin film on the substrate reaches the desired value in the second step of continuing film deposition and the film thickness measurement by the film thickness measuring means, the substrate and the film deposition source insert the movable shutter between and a third step of interrupting the deposition of thin films on the substrate Method of forming a thin film characterized and.
JP2001368425A 2001-11-02 2001-12-03 Thin film deposition apparatus and method Expired - Fee Related JP3994000B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001368425A JP3994000B2 (en) 2001-12-03 2001-12-03 Thin film deposition apparatus and method
TW091125257A TWI242602B (en) 2001-11-02 2002-10-25 Thin film forming apparatus and method
US10/284,287 US7033461B2 (en) 2001-11-02 2002-10-31 Thin film forming apparatus and method
CNB021479909A CN100473755C (en) 2001-11-02 2002-11-01 Film forming equipment and method
KR1020020067647A KR100922487B1 (en) 2001-11-02 2002-11-02 Thin film forming apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001368425A JP3994000B2 (en) 2001-12-03 2001-12-03 Thin film deposition apparatus and method

Publications (2)

Publication Number Publication Date
JP2003166055A JP2003166055A (en) 2003-06-13
JP3994000B2 true JP3994000B2 (en) 2007-10-17

Family

ID=19178017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001368425A Expired - Fee Related JP3994000B2 (en) 2001-11-02 2001-12-03 Thin film deposition apparatus and method

Country Status (1)

Country Link
JP (1) JP3994000B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131883A (en) * 2005-11-09 2007-05-31 Ulvac Japan Ltd Film deposition apparatus
KR101790625B1 (en) * 2015-03-25 2017-10-26 (주)에스엔텍 Film forming apparatus capable of adjusting forming thickness
JP6698509B2 (en) * 2016-12-14 2020-05-27 株式会社神戸製鋼所 Target shutter mechanism and film forming apparatus including the same
JP7390997B2 (en) 2020-09-15 2023-12-04 芝浦メカトロニクス株式会社 Film forming equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181264A (en) * 1984-02-24 1985-09-14 Konishiroku Photo Ind Co Ltd Method and device for forming film
JPS6115964A (en) * 1984-06-29 1986-01-24 Fujitsu Ltd Vacuum deposition device
JPH04157154A (en) * 1990-10-19 1992-05-29 Mitsubishi Heavy Ind Ltd Device for controlling thickness of vapor deposited film of continuous vacuum deposition device
JPH09291358A (en) * 1996-04-24 1997-11-11 Olympus Optical Co Ltd Production of optical thin film and optical thin film
JPH10317128A (en) * 1997-03-18 1998-12-02 Asahi Optical Co Ltd Coating thickness uniformizing device, vacuum deposition method and vacuum deposition device

Also Published As

Publication number Publication date
JP2003166055A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
US7033461B2 (en) Thin film forming apparatus and method
US10418231B2 (en) Method for producing a multilayer coating and device for carrying out said method
US9530629B2 (en) Method for depositing multilayer coatings
JP4487264B2 (en) Sputtering apparatus and sputter deposition method
JP3994000B2 (en) Thin film deposition apparatus and method
JP4003159B2 (en) Thin film deposition apparatus and method
US20040182701A1 (en) Sputtering apparatus, a mixed film produced by the sputtering apparatus and a multilayer film including the mixed film
JP4792242B2 (en) Thin film forming apparatus and thin film forming method
JPH11229131A (en) Sputtering device for film formation
JP4280890B2 (en) Sputtering apparatus and sputter deposition method
JP5246862B2 (en) Sputtering equipment
JP4678996B2 (en) Dielectric film forming method and film forming apparatus
JP2002256429A (en) Sputtering apparatus
JP2003073823A (en) Method and apparatus for sputtering
JP2005139549A (en) Thin film deposition apparatus, thin film deposition method, and optical element
JP3706409B2 (en) Method for producing composite oxide thin film
JP2002194529A (en) Manufacture method for optical thin film
JPH11229135A (en) Sputtering device and formation of film
JP3892961B2 (en) Optical thin film manufacturing method
JP2002088470A (en) Sputtering system
JP2006009049A (en) Film deposition apparatus, polyhedron, and film deposition method
JP2005163133A (en) Sputtering film deposition apparatus
WO2024056313A1 (en) Process to deposit quantized nano layers by magnetron sputtering
KR100584927B1 (en) Method and apparatus for manufacturing optical thin film utilizing sputter deposition method and the thin film made by the method
JPH02250963A (en) Sputtering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070730

R150 Certificate of patent or registration of utility model

Ref document number: 3994000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees