JP3993716B2 - Seismic structure manufacturing method, earthquake resistant structure, and seismic connection tool - Google Patents

Seismic structure manufacturing method, earthquake resistant structure, and seismic connection tool Download PDF

Info

Publication number
JP3993716B2
JP3993716B2 JP09795599A JP9795599A JP3993716B2 JP 3993716 B2 JP3993716 B2 JP 3993716B2 JP 09795599 A JP09795599 A JP 09795599A JP 9795599 A JP9795599 A JP 9795599A JP 3993716 B2 JP3993716 B2 JP 3993716B2
Authority
JP
Japan
Prior art keywords
facing
opening portion
diagonal
diagonal point
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09795599A
Other languages
Japanese (ja)
Other versions
JP2000248620A (en
Inventor
雄一 真崎
Original Assignee
株式会社グレイプ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社グレイプ filed Critical 株式会社グレイプ
Priority to JP09795599A priority Critical patent/JP3993716B2/en
Publication of JP2000248620A publication Critical patent/JP2000248620A/en
Application granted granted Critical
Publication of JP3993716B2 publication Critical patent/JP3993716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、耐震強度を高めるための部材を設けた構造物、例えば、建築物並びにそれに用いる耐震連結用具に関するものである。なお、この発明において、部材とは、構造物の所定の部分を構成する材料をいう。また、以下の図において、同一符号で示す部分は、いずれかの図において説明する同一符号の部分と同一の機能をもつ部分である。
【0002】
【従来の技術】
耐震強度を高めるようにした構造物100、例えば、図8のような平屋建の木造家屋による構造物100Aの構成(以下、第1従来技術という)において、2つの平行した第1の平行部材P、例えば、土台用部材2・8・8a、梁用部材1・5、桁用部材6・7などのように平行に配置された部材と、例えば、これらの第1の平行部材Pと直角に配置した2つの平行した第2の平行部材Q、例えば、柱用部材3・4、9・10などとを、四角形の空間Uを形成する枠部材P・Qとして形成するとともに、この四角形における第1の対角点、例えば、対角点a1・a2どうしを連結する第1の対角点連結部材R、例えば、筋交い用部材11・13・15と、この第1の対角a1・a2とは異なる第2の対角点、例えば、対角点b1・b2どうしを連結する第2の対角点連結部材S、例えば、筋交い用部材12・14・16とを連結することにより耐震強度を高めるようにした構成が周知である。
【0003】
なお、図8の構成では、骨組になる部分のみを図示しているが、必要に応じて、こうした骨組に内壁・外壁・天井・床・屋根などを付設していることは言うまでもない。
【0004】
また、構造物100が図9のような2階建木造家屋による構造物100Bの構成(以下、第2従来技術という)場合にも、上記の枠部材P・Q、例えば、第1の平行部材Pと第2の平行部材Qで形成された四角形の空間Uに対して所要の対角点どうし、例えば、第1の対角点a1・a2どうしと、第2の対角点b1・b2どうしを、同様の第1の対角点連結部材Pと第2の対角点連結部材Qで連結することにより耐震強度を高めるようにしており、図8の構造物100の場合と異なるのは、2階部分での四角形の空間Uを形成する枠部材P・Qのうちの第1の平行部材Pの下方側が土台用部材に代えて、桁用部材1a・6・7・5aが用いられた構成になっているだけである。
【0005】
なお、図8・図9の構成では、骨組になる部分のみを図示しているが、必要に応じて、こうした骨組に内壁・外壁・天井・床・屋根などを付設していることは言うまでもない。
【0006】
こうした四角形の空間Uを形成する枠部材P・Qに第1の対角点連結部材Rと第2の対角点連結部材Sを固定する構成には、図10の〔四隅固定構成〕(以下、第3従来技術という)と[四隅・中心固定構成〕(以下、第4従来技術という)とのような2種類の構成が用いられている。
【0007】
そして、図10の〔四隅固定構成〕では、各対角点の箇所、すなわち、第1の対角点a1・a2と第2の対角点b1・b2の箇所に、例えば、鉄板などの強靭な板材を適宜の形状、例えば、四角形に形成した固定用部材c1・c2・c3・c4を適宜の固定具、例えば、第1の平行部材Pと第2の平行部材Qに対しては、木ねじ、ねじ釘、コーチスクリューなどによる固定具d1を用い、第1の対角点連結部材Rと第2の対角点連結部材Sに対して、ボルトナットによる固定具d2を用いて固定する構成にしてある。
【0008】
また、図10の〔四隅・中心固定構成〕では、上記の〔四隅固定構成〕に加えて、第1の対角点連結部材Rと第2の対角点連結部材Sとが、対向して交差する部分(この明細書において、交差対向部分という)Tを、第1の対角点連結部材Rと第2の対角点連結部材Sとの両方に貫通して固定する適宜の固定具、例えば、ボルトナットによる固定具d3で固定している。
【0009】
なお、交差対向部分Tの隙間には、適宜の材質、例えば、対角点連結部材R・Sと同一材質の詰物e1、例えば、菱形の板材を挟み込むとともに、その板材にも固定具e1を貫通させて固着している。
【0010】
そして、地震の際には、例えば、図10の四角形の空間Uの上方部分が左右に揺れ動いて左向き傾斜の平行四辺形又は右向き傾斜の平行四辺形に変形することになるので、対角点a1・a2どうしの間の距離と、対角点b1・b2どうしの間の距離との部分は、一方が伸長するような応力が加わるときは、他方が短縮するような応力が加わることになる。
【0011】
したがって、図10の〔四隅固定構成〕を右側面で見ると、定常状態では、図11の〔定常状態〕のように、第1の対角点連結部材Rと第2の対角点連結部材Sとの両方が平行状態になっており、両方の外側に内壁又は外壁を形成する壁部21・22が固定されいるが、第1の対角点連結部材Rと第2の対角点連結部材Sとに対する壁部21・22の固定は間隔を置いた釘打ちで固定されているので、第1の対角点連結部材Rと第2の対角点連結部材Sとを補強する部材としては作用せずに、壁部21・22が四角形の空間Uの中央部分、すなわち、交差対向部分Tでは、第1の対角点連結部材Rと第2の対角点連結部材Sとに重量体を付加したと同様に作用するので、壁部21・22は、それぞれ、第1の対角点連結部材Rと第2の対角点連結部材Sとの震動を加震するような部材になっている。
【0012】
ここで、震動によって、四角形の空間Uの上方部分が左方向に揺れた場合には、第1の対角点a1・a2どうしの間の距離を短縮する方向(矢印f)の応力、すなわち、圧縮応力が加わるので、例えば、図11の〔左揺状態〕のように、第1の対角点連結部材Rは、上記の圧縮応力に抗する際に外側に屈曲される方向(矢印g)の屈曲応力を受けて交差対向部分Tの箇所で外側に反り出し、また、対角点b1・b2どうしの間の距離が伸長する方向(矢印h)の応力が加わるので、第2の対角点連結部材Sは上下に引っ張られるような引張応力を受けるとになる。
【0013】
また、震動によって、四角形の空間Uの上方部分が右方向に揺れた場合には、第2の対角点a1・a2どうしの間の距離を短縮する方向(矢印f)の応力、すなわち、圧縮応力が加わるので、例えば、図11の〔右揺状態〕のように、第1の対角点連結部材Rは、上記の圧縮応力に抗する際に外側に屈曲される方向(矢印g)の屈曲応力を受けて交差対向部分Tの箇所で外側に反り出し、また、対角点b1・b2どうしの間の距離が伸長する方向(矢印h)に応力が加わるので、第2の対角点連結部材Sは上下に引っ張られるような引張応力を受けるとになる。
【0014】
地震による震動では、上記の〔左揺状態〕と〔右揺状態〕とが交互に繰り返されるので、第1の対角点連結部材Rと第2の対角点連結部材Sとのうちのいずか弱い方の対角点連結部材が先に折損し、次いで残りの対角点連結部材が折損するというなり、耐震的に弱いことが周知である。
【0015】
そこで、図10の〔四隅・中心固定構成〕を用いる対策が取られているが、この構成の場合には、図11の〔定常状態〕〔左揺状態〕〔右揺状態〕が、交差対向部分の固定により、それぞれ、図12の〔定常状態〕〔左揺状態〕〔右揺状態〕に変更されたことになるが、交差対向部分Tには固定具e1を貫通するための貫通穴e2が穿ってあることで、第1の対角点連結部材Rと第2の対角点連結部材Sとにおける交差対向部分Tの実効断面積が貫通穴e2の分と座金d4のための掘込欠損部Dの分だけ小さくなっており、しかも、貫通穴e2による切り欠き弱化を伴って折損に対する弱さが助長されることから、期待し得るほどの耐震性が得られない。
【0016】
こうした耐震条件は、鉄骨構造物、例えば、軽量気泡コンクリートパネル張り鉄骨建築物の場合でも、ほぼ同様なので、鉄骨構造物用の第1の対角点連結部材R又は第2の対角点連結部材Sに用いる耐震用部材として、図13のように、内部に粘弾性を有する部材を配置して構成した筋交い用部材、すなわち、粘弾性筋交部材300の構成(以下、第5従来技術という)、例えば、昭和電線株式会社の製品名「粘弾性ダンパー」などを用いて、耐震性を向上させた構造物を得ることが試みられている。
【0017】
なお、この発明において、粘弾性とは、静的な応力による変形力に対しては、その応力に追従して可塑的な変形を生ずるような粘性をもって作用し、地震時の震動などによる動的なエネルギーに対しては、速度依存の減衰効果を生ずるような粘性と、弾力により対抗力を生ずるような弾性とをもって作用する性質をいうものであり、例えば、非加硫又は半加硫のゴム材、例えば、ネオプレンゴム、ブチルゴムなどが、こうした粘弾性を有する材質であることが周知である。
【0018】
図13において、粘弾性筋交部材300は、横断面を「日字形」に形成した長い管状の外側部材301の一端に一方の固定端302を設けたものと、2片の細長い板状体303a・303bの各端部を一体に連結した箇所に他方の固定端304を設けて音叉状に形成した内側部材305とを設けてある。
【0019】
そして、内側部材305の2片の板状体303a・303bの部分を外側部材301の「日字形」の上下の空間部分に入れ込むとともに、2片の板状体303a・303b面と「日字形」の空間の内側面との間に粘弾性を有する粘弾性部材306を介装させて構成したものである。
【0020】
したがって、固定端302・304を所要の対角点、例えば、対角点a1・a2又は対角点b1・b2の箇所に固定したとすると、圧縮方向(矢印f)と引張方向(矢印h)と屈曲方向(g)との各方向の応力に対して粘弾性部材306の粘弾性が作用するので、耐震性が向上することになる。
【0021】
【発明が解決しようとする課題】
上記の第5従来技術の構成による粘弾性筋交部材300は、骨組の鉄骨を重重量用鉄骨で構成した構造物100の場合には有効に作用するが、骨組を木造や軽量鉄骨で構成した構造物100、例えば、木造家屋や軽量鉄骨プレハブ家屋の場合には、粘弾性筋交部材300自体の大きさや重量がかさむほか、価格採算面から実用的な構造物が得られないとい不都合がある。
【0022】
このため、上記の第3従来技術・第4従来技術の構成のように現場で施工し得る簡便安価な構成で、粘弾性による耐震性をもった構造物を提供することが望まれているという課題がある。
【0023】
【課題を解決するための手段】
この発明は、上記のような粘弾性部材を、第1の対角点連結部材Rと第2の対角点連結部材Sとの交差対向部分Tに、直接的又は間接的に介装させて連結する粘弾性連結手段を装着することによって、上記の課題を解決したものである。
【0024】
そして、上記の直接的に介装させて連結する構成は、粘弾性を有する粘弾性部材、それ自体を、そのまま交差対向部分Tに介装させ、例えば、接着などにより粘弾性部材の両面を第1の対角点連結部材Rと第2の対角点連結部材Sとに固着させて連結するように構成するものである。この場合に、接着剤を用いることなしに、ポリウレタンなどによる柔軟な環状体52の中央部分に粘弾性体の硬化前の液状体を注入して硬化させてもよい。
【0025】
また、上記の間接的に介装させて連結する構成は、第1の対角点連結部材Rと第2の対角点連結部材Sとに、それぞれを固定する金具などを設け、その金具などの間に、粘弾性部材を介装させて、例えば、接着などにより粘弾性部材の両面を固着させることにより、粘弾性部材と金具とによって第1の対角点連結部材Rと第2の対角点連結部材Sとの交差対向部分Tを連結するように構成するものである。
【0026】
さらに、上記の間接的に介装させて連結する構成による部分を耐震連結用具として構成して提供するとこにより、建築現場などにおいて、骨組作業を行いながら、粘弾性を備えた耐震性連結用具による耐震施工を行い得るようにしたものである。
【0027】
【作用】
したがって、この発明によれば、例えば、図2のように、第1の対角点連結部材Rと第2の対角点連結部材Sとの交差対向部分Tが、直接的に、粘弾性を有する粘弾性部材50を介して連結され、又は、図5のように、第1の対角点連結部材Rと第2の対角点連結部材Sとの交差対向部分Tが、耐震連結用具50Xによって、間接的に、粘弾性を有する粘弾性部材50を介して相互に連結されるので、圧縮方向(矢印f)の応力を受けた際にも外側に屈曲するような分力の発生を抑制するように作用するので、耐震強度を向上させた構造物を得ることが可能になるものである。
【0028】
【実施例】
以下、図1〜図7によって、この発明を上記の第3従来技術・第4従来技術の構成に適用した実施例を説明する。なお、図1〜図7において図8〜図13の符号と同一符号で示す部分は図8〜図13において説明した同一符号の部分と同一の機能をもつ部分である。また、図1〜図7において同一符号で示す部分は図1〜図7のいずれかにおいて説明する同一符号の部分と同一の機能をもつ部分である。
【0029】
〔第1実施例〕
以下、図1の〔直接介装型構成〕と図2とにより第1実施例を説明する。この第1実施例が上記の図10の〔四隅固定構成〕の構成と異なるのは、第1の対角点連結部材Rと第2の対角点連結部材Sとの交差対向部分Tに、粘弾性を有する粘弾性部材50を直接的に介装させて、交差対向部分Tを連結する構成を付加した点である。すなわち、第1の対角点連結部材Rと第2の対角点連結部材Sとを粘弾性的に連結するような粘弾性連結手段50Xが、両対角点連結部材R・Sの交差対向部分Tに装着される。
【0030】
粘弾性部材50は、上記のような、例えば、非加硫又は半加硫のゴム材、例えば、ネオプレンゴム、ブチルゴムなどの材質による板材であって、交差対向部分Tの隙間G1(図1〔側面〕)よりも、やや大きい厚さ、例えば、隙間G1の1.3倍程度の厚さの板材を交差対向部分Tの形状よりも、やや大きい形状、例えば、1.1倍程度の大きさの菱形の形状にに形成したものである。
【0031】
そして、連結させる構成は、粘弾性部材50から成る板材の両面に予め接着剤、例えば、ゴム材系の接着剤(図示せず)を被覆したものの外面に、非接着性の薄紙(図示せず)、例えば、紙の片面にフッ素系合成樹脂、エチレン系合成樹脂などの塗膜を施した薄紙を張り付けたものを製品として提供しておいて、施工する現場において、この薄紙を剥がして露出させた接着剤の表面に、接着性復活剤、例えば、石油ベンジン、シクロヘキサン、ノルマルヘキサンなどを塗布することにより接着剤の表面の接着性を復活させるようにしたものである。
【0032】
また、第1の対角点連結部材Rと第2の対角点連結部材Sとの交差対向部分Tとして対向する各面は、必要に応じて鉋(かんな)掛けなどで木面を清浄した後に、所定の接着剤、例えば、上記の接着剤と同様の接着剤を塗布して、上記の接着性を復活させた面を押圧することにより、粘弾性を有する粘弾性部材50を接着するか、又は、上記の粘弾性部材50の場合と同様に、予め接着剤を被覆した外面に、非接着性の薄紙を張り付けておき、接着作業の際に、同様に接着剤の表面の接着性を復活させて接着するように構成するものである。
【0033】
さらに、必要に応じて、第1の対角点連結部材Rと第2の対角点連結部材Sとの交差対向部分Tを、釘止めなどよって、仮止めしておき、接着が安定した後に、仮止めを除去する作業を行うようにすることもできる。
【0034】
この第1実施例により交差対向部分Tを粘弾性的に連結した構成では、粘弾性を有する粘弾性部材50が直接的に介装して図1の〔直接介装型構成〕及び図2のように装着されるので、第1の対角点連結部材Rと第2の対角点連結部材Sとが、剛性の比較的高い材料の場合には、図2の〔高剛性型構成〕のように、粘弾性部材50が呈する粘弾性のうちの弾性の方が作用して、交差対向部分Tに掛かる動的な屈曲応力を低減することにより、構造物100の耐震性を向上するように作用する。
【0035】
また、その剛性が比較的低い材料の場合には、図2の〔低剛性型構成〕のように、やはり、粘弾性部材50が呈する粘弾性のうちの弾性の方が作用して、交差対向部分Tに掛かる動的な屈曲応力を十分に抑制するとともに、第1の対角点連結部材Rと第2の対角点連結部材Sとに掛かる動的な屈曲応力を低減することにより、構造物100の耐震性を向上するように作用することになる。
【0036】
さらに、構造物100全体を施工した後に、骨組の各部に生ずる長期の応力又は乾燥収縮などによる歪みに対しては、その歪みによる応力が静的な応力として働くので、粘弾性部材50が呈する粘弾性のうちの粘性の方が作用して、時間の経過ととともに、その静的な応力に対応した可塑変形を生ずることで、こうした歪みによる応力が除去されてゆくことになる。
【0037】
〔第2実施例〕
以下、図1の〔間接介装型構成〕と図3〜図5とにより第2実施例を説明する。この第2実施例の構成が上記の第1実施例のそれと異なるのは、直接的に介装させた粘弾性部材50に代えて、この粘弾性部材50を、所定の金具を介して間接的に介装させるように構成した点である。
【0038】
図3・図4において、取付金具61は、断面がコ字形に形成されていて、該コ字形の片側に開口されている片側開口部分Yに対面する非開口部分Xに対して略直交するように連設され、互いに対面する1対の対面部分Zを備えている。1対の対面部分Zに対しては、これと隣接して連成され、片側開口部分Yに対して略直交して互いに対面する1対の両側開口部分YYが備えられている。このように構成された1対の取付金具61の一方に対して、1対の両側開口部分YYを貫通するようにして、1対の対面部分Zの間に、片側開口部分Yから、上記両対角点連結部材R・Sの交差対向部分Tにおける一方の連結部材を嵌め込んで固定することができ、一方、同様に構成された取付金具61の他方に対して、同様にして、上記両対角点連結部材R・Sの交差対向部分Tにおける他方の連結部材を嵌め込んで固定することができる。
そして、1対の取付金具61の各々は、取付金具61の非開口部分Xに平行な摺接面62Aを備えた対向金具62と組み合わせられており、該非開口部分Xが該摺接面62Aに摺接するように、例えば、鋲63により、該対向金具62の摺接面62Aに対して摺動可能に樞着されて、揺動金物65を構成している。なお、この場合、ここでの樞着は、取付金具61と対向金具62とを摺接面62Aの面内で、相対的に矢印B(図3)のように、揺動可能とするものであるが、鋲63を中心にして回転可能とするものであってもよい。
【0039】
このような揺動金物65の1対を1組として、1対の揺動金物65の対向金物62における摺接面62Aの反対面どうしの間に後述の粘弾性を有する材質でなる板材51、すなわち、粘弾性板51を間接的に介装することで、粘弾性手段50・50Xを構成している。
以上の説明において、図3の〔コ字形/各部〕を参照すれば、一層明らかなように、取付金具61のコ字形の形状の各部に関しては、コ字形の方向から見た場合の1つの開口部分Yを「片側開口部分Y」といい、コ字形に対して側面から見た2つの開口部分YYを「1対の両側開口部分YY」といっている。
【0040】
そして、1対の取付金物61のコ字形の各開口部分Yを第1の対角点連結部材Rの交差対向部分Tと第2の対角点連結部材Sの交差対向部分Tとに嵌め込んで、第1の対角点連結部材Rと前記第2の対角点連結部材Sとに対して貫通孔を穿つことなく、コ字形の2つの平行部分Zを所定の固定具V、例えば、木ねじ、ねじ釘、コーチスクリューなどにより第1の対角点連結部材Rと前記第2の対角点連結部材Sとに対して、各別に固定するとともに、1対の対向金具62の両対向面62Bの間に粘弾性を有する材質の板材、すなわち、粘弾性板材51を介装させてることにより、第1の対角点連結部材Rの交差対向部分Tと第2の対角点連結部材Sの交差対向部分Tを、粘弾性を有する粘弾性部材50、すなわち、粘弾性板材51を間接的に介装させて連結するようにした粘弾性連結部材50Xを構成しているものである。
【0041】
なお、各揺動金物65を構成する各部分は、金属材、例えば、厚さ1・5〜2mm程度のステンレス鋼板をプレス加工して形成したものであり、鋲63の部分は、座金状に形成した頭部分と丸棒とを溶接した形成するとともに、鋲63を対向金具62に遊び嵌めした後に、丸棒の端部を取付金具61に通して溶接することにより、対向金具62を取付金具61に対して揺動可能に固定するように構成することもできる。
【0042】
また、粘弾性板材51の外形を円形にして形成したものを、その円形の半径方向に対する変形を阻止するために、この円形の外周に接して、柔軟性の環状体52を配置して構成してあり、粘弾性板材51を、例えば、上記の非加硫又は半加硫のゴム材を主体とする材質の板材を積層して構成し、また、柔軟性の環状体52を、多孔性の合成樹脂材、例えば、スポンジ状のポリウレタンなどで構成してある。
【0043】
なお、粘弾性板材51と環状体52とを一体にしたものを、上記の第1実施例における粘弾性を有する粘弾性部材50と同様に予め接着剤を施した部品とし、揺動金物65も同様に接着剤を施した部品として提供し、現場で接着して組み立てるようにした現場組立型構成にした耐震用連結具50Xとして提供してもよく、また、図4の〔一体型構成〕のように、予め粘弾性板材51と環状体52とを各揺動金物65の対向金具62の間に接着して一体に構成したものを耐震用連結具50Xとして提供するようにしてもよい。
【0044】
そして、この第2実施例による構成では、粘弾性部材50に相当する粘弾性板51が間接的に介装して図1の〔間接介装型構成〕と図4の〔連結部分/拡大〕のように装着されるので、粘弾性による耐震性の作用は、図5の〔高剛性型構成〕と〔低剛性型構成〕のように作用する。したがって、第1実施例における図2の〔高剛性型構成〕〔低剛性型構成〕の場合よりも、対向金具62と粘弾性板材51とを交差対向部分Tにおける対向部分の面積よりも大きくして構成することで、その大きさに対応した粘弾性を得ることができるので、第1実施例の場合よりも、さらに耐震性を向上させた構造物100が得られることになる。
【0045】
〔第3実施例〕
以下、図6により第3実施例を説明する。この第3実施例の構成が上記の第2実施例のそれと異なるのは、揺動金物65に代えて、対向金具62と同様の単なる平板状の固定金具71のみによる対向金物73を配置するように構成した点である。
【0046】
図6において、固定金具71は、金属板、例えば、厚さ1.5〜2mm程度のステンレス鋼板を、単に四角形に裁断して形成したものに、取付用穴72を設けたものである。そして、粘弾性板材51・環状体52は、上記の第2実施例における構成と全く同様のものである。
【0047】
そして、取付用穴72は、交差対向部分Tにおける第1の対角点連結部材Rと第2の対角点連結部材Sとの交差角度が種々に変化した場合でも、第1の対角点連結部材Rと第2の対角点連結部材Sとに、矢印で示す方向から、適宜の固定具(図示せず)、例えば、木ねじ、ねじ釘、コーチスクリューなどによって固定できるように、その種々の角度に対応して配置してある。
【0048】
なお、第2実施例の場合と同様に、固定金具71と粘弾性板材51・環状体52とを別個の部品にして提供する現場組立型構成と、これらを予め一体にして提供する一体型構成とが採用可能であり、これらの構成は、上記の第2実施例の場合と同様のものである。ただし、一体型構成の場合には、取付用穴72が、粘弾性板材51・環状体52の予め接着されている固定金具71上の位置を外して、その外周に配置されるのは当然である。
【0049】
この第3実施例による構成の場合には、粘弾性による耐震性の作用は、図5の〔高剛性型構成〕と〔低剛性型構成〕と同様に作用するので、第2実施例における耐震性と全く同様に耐震性をもつ構造物100が得られることになる。
【0050】
〔第4実施例〕
以下、図7により第4実施例を説明する。この第4実施例の構成が上記の第2実施例のそれと異なるのは、揺動金物65に代えて、取付金具61のみによる対向金物75を配置するように構成した点である。
【0051】
図7において、取付金具61は、上記の第2実施例における取付金具61と全く同様のものである。そして、粘弾性板材51・環状体52は、上記の第2実施例における構成と全く同様のものを、外径が交差対向部分Tの対向する面積の中に入る程度の大きさにして、これをコ字形の取付金具61の非開口部分Xの平面61Aに対して直接に接着するようにして構成したものである。
【0052】
なお、第2実施例の場合と同様に、コ字形の取付金具61と粘弾性板材51・環状体52とを別個の部品にして提供する現場組立型構成と、これらを予め一体にして提供する一体型構成とが可能であり、これらの構成は、上記の第2実施例の場合と同様にして構成するものである。
【0053】
したがって、この第4実施例による構成の場合には、粘弾性による耐震性の作用は、図2の〔高剛性型構成〕と〔低剛性型構成〕と同様に作用するが、粘弾性板材51・環状体52とを円形にした分だけ粘弾性に寄与する面積が小さくなるので、第1実施例における耐震性よりも僅かに低い耐震性をもつ構造物100が得られることになる。
【0054】
〔変形実施例〕
この発明は次のように変形して実施することを含むものである。
(1)図1の〔直接介装型構成〕の第1実施例における粘弾性部材50の外形を円形又は四角形以外の多角形に形成して構成する。
【0055】
(2)図1の〔直接介装型構成〕の第1実施例における粘弾性部材50の外周に、図3の第2実施例における環状体52と同様の環状体を設けて構成する。
【0056】
(3)図3・図4の第2実施例における粘弾性板51・環状体52の外形を四角形などの多角形にして構成する。また、四角形に形成する場合において、その四角形を対向金具62の外形に沿った四角形にして構成する。
【0057】
(4)図3・図4の第2実施例における対向金具62の外形を円形にして構成する。
(5)図6の第3実施例における粘弾性板51・環状体52の外形を四角形などの多角形にして構成する。また、四角形に形成する場合において、その四角形を対向金具71の外形に沿った四角形にして構成する。
【0058】
(6)図7の第4実施例における粘弾性板51・環状体52の外形を四角形などの多角形にして構成する。
(7)3階建以上の構造物に適用して構成する。
(8)平面61Aと平面62Aとの間、すなわち、摺接面の間に若干の隙間を設けて、交差対向部分Tにおける第1の対角点連結部材Rの面と第2の対角点連結部材Sの面との平行度が不正確な場合にも対応し得るように構成する。
【図面の簡単な説明】
図面中、図1〜図7はこの発明の実施例を、また、図8〜図13は従来技術を示し、各図の内容は次のとおりである。
【図1】要部構成斜視・側面図
【図2】要部構成側面図
【図3】要部構成分解状態斜視図
【図4】要部構成斜視・縦断面図
【図5】要部構成側面図
【図6】要部構成分解状態斜視図
【図7】要部構成分解状態斜視図
【図8】要部構成斜視図
【図9】要部構成斜視図
【図10】要部構成斜視図
【図11】要部構成側面図
【図12】要部構成側面図
【図13】要部構成斜視・横断面図
【符号の説明】
1 梁用部材
1a 桁用部材
2 土台用部材
3 柱用部材
4 柱用部材
5 柱用部材
5a 桁用部材
6 桁用部材
7 桁用部材
8 土台用部材
8a 土台用部材
9 柱用部材
10 柱用部材
11 筋交い用部材
12 筋交い用部材
13 筋交い用部材
14 筋交い用部材
15 筋交い用部材
16 筋交い用部材
21 壁部
22 壁部
50 粘弾性部材
50X 粘弾性部材/耐震用連結具
51 粘弾性板
52 環状体
61 取付金具
61A 平面
62 対向金具
62A 摺接面
63 鋲
65 揺動金物
71 固定金具
72 取付用穴
73 対向金物
100 構造物
100A 構造物
100B 構造物
300 粘弾性筋交部材
301 外側部材
302 固定端
303a 板状体
303b 板状体
304 固定端
305 内側部材
306 粘弾性部材
D 掘込欠損部
P 平行部材
Q 平行部材
R 対角点連結部材
S 対角点連結部材
T 交差対向部分
U 四角形空間
X 非開口部分
Y 片側開口部分
YY 両側開口部分
Z 対面部分
a1 対角点
a2 対角点
b1 対角点
b2 対角点
c1 固定用部材
c2 固定用部材
c3 固定用部材
c4 固定用部材
d1 固定具
d3 固定具
d4 座金
e1 詰物
e2 貫通穴
f 応力方向
h 応力方向
g 応力方向
h 応力方向
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure provided with a member for increasing seismic strength, for example, a building and a seismic connection tool used therefor. In the present invention, the member means a material constituting a predetermined part of the structure. Further, in the following drawings, portions denoted by the same reference numerals are portions having the same functions as those denoted by the same reference numerals described in any of the drawings.
[0002]
[Prior art]
Two parallel first parallel members P in a structure 100 (hereinafter, referred to as a first conventional technique) of a structure 100A having a structure in which a seismic strength is increased, for example, a single-story wooden house as shown in FIG. For example, the members arranged in parallel such as the base members 2, 8, 8a, the beam members 1, 5, the beam members 6, 7 and the like, for example, perpendicular to these first parallel members P The two parallel second parallel members Q arranged, for example, the pillar members 3, 4, 9, 10, etc. are formed as frame members P • Q that form a square space U, and the A first diagonal point connecting member R that connects the diagonal points, for example, the diagonal points a1 and a2, for example, the bracing members 11, 13, and 15, and the first diagonal points a1 and a2. Are different second diagonal points, for example, the diagonal points b1 and b2 Second diagonal points connecting member S for connecting, for example, configuration in which to enhance the earthquake resistance by linking the bracing member 12, 14, 16 are well known.
[0003]
In the configuration of FIG. 8, only a portion that becomes a framework is illustrated, but it goes without saying that an inner wall, an outer wall, a ceiling, a floor, a roof, and the like are attached to the framework as necessary.
[0004]
Further, when the structure 100 is a structure 100B composed of a two-story wooden house as shown in FIG. 9 (hereinafter referred to as second prior art), the frame members P and Q, for example, the first parallel member, are used. Necessary diagonal points with respect to the rectangular space U formed by P and the second parallel member Q, for example, the first diagonal points a1 and a2 and the second diagonal points b1 and b2 Are connected by the same first diagonal point connecting member P and second diagonal point connecting member Q to increase the seismic strength, which is different from the structure 100 of FIG. Girder members 1a, 6, 7, 5a were used instead of the base member on the lower side of the first parallel member P of the frame members P, Q forming the rectangular space U in the second floor portion. It just has a configuration.
[0005]
8 and 9, only the portion that becomes the framework is illustrated, but it goes without saying that the inner wall, the outer wall, the ceiling, the floor, the roof, etc. are attached to the framework as necessary. .
[0006]
In the configuration in which the first diagonal point connecting member R and the second diagonal point connecting member S are fixed to the frame members P and Q forming such a rectangular space U, [Four Corner Fixing Configuration] in FIG. , The third prior art) and [four corners / center fixed configuration] (hereinafter referred to as the fourth prior art) are used.
[0007]
In [Four-corner fixed configuration] in FIG. 10, at each diagonal point, that is, at the first diagonal points a1 and a2 and the second diagonal points b1 and b2, for example, a strong plate such as an iron plate. Fixing members c1, c2, c3, and c4 formed in a suitable shape, for example, a quadrangle, as appropriate fixtures such as wood screws for the first parallel member P and the second parallel member Q A fixing tool d1 such as a screw nail or a coach screw is used to fix the first diagonal point connecting member R and the second diagonal point connecting member S using a fixing tool d2 using a bolt and nut. It is.
[0008]
In addition, in the [four corner / center fixed configuration] of FIG. 10, in addition to the above [four corner fixed configuration], the first diagonal point connecting member R and the second diagonal point connecting member S are opposed to each other. An appropriate fixture for fixing an intersecting portion (referred to as a cross-opposing portion in this specification) T through both the first diagonal point connecting member R and the second diagonal point connecting member S; For example, it is fixed with a fixture d3 using bolts and nuts.
[0009]
In addition, an appropriate material, for example, a filling e1 of the same material as the diagonal point connecting member R / S, for example, a rhombus plate material, is sandwiched in the gap between the crossing facing portions T, and the fixture e1 is also passed through the plate material. Let it stick.
[0010]
In the event of an earthquake, for example, the upper part of the rectangular space U in FIG. 10 swings left and right and deforms into a parallelogram with a leftward inclination or a parallelogram with a rightward inclination. -When a stress is applied such that one of the distances between a2 and the distance between the diagonal points b1 and b2 is extended, a stress is applied so that the other is shortened.
[0011]
Accordingly, when the [Four Corner Fixing Configuration] in FIG. 10 is viewed on the right side, in the steady state, the first diagonal point connecting member R and the second diagonal point connecting member are in the steady state as in FIG. Both S and S are in a parallel state, and the wall portions 21 and 22 forming the inner wall or the outer wall are fixed to the outside of both, but the first diagonal point connection member R and the second diagonal point connection Since the wall portions 21 and 22 are fixed to the member S by nailing at intervals, the first diagonal point connecting member R and the second diagonal point connecting member S are used as members to reinforce the member S. Does not act, and the wall portions 21 and 22 are weighted to the first diagonal point connecting member R and the second diagonal point connecting member S at the central portion of the space U having a square shape, that is, at the intersection facing portion T. Since it acts in the same manner as when the body is added, the walls 21 and 22 are respectively connected to the first diagonal point connecting member R and the second diagonal point. It has a vibration between the binding member S to a member such as Cassin.
[0012]
Here, when the upper part of the rectangular space U is shaken leftward due to the vibration, the stress in the direction (arrow f) for shortening the distance between the first diagonal points a1 and a2, that is, Since the compressive stress is applied, for example, as shown in [left-handed state] in FIG. 11, the first diagonal connecting member R is bent outwardly when resisting the compressive stress (arrow g). Since the bending stress is applied in the direction (arrow h) in which the distance between the diagonal points b1 and b2 extends, the second diagonal is applied. The point connecting member S receives a tensile stress that is pulled up and down.
[0013]
Further, when the upper part of the rectangular space U is shaken to the right due to the vibration, the stress in the direction (arrow f) for shortening the distance between the second diagonal points a1 and a2, that is, compression Since stress is applied, for example, as shown in [right-handed state] in FIG. 11, the first diagonal point connecting member R is bent in the direction of bending outward (arrow g) when resisting the compressive stress. Due to the bending stress, the second diagonal point begins to warp outward at the location of the cross-facing portion T and stress is applied in the direction in which the distance between the diagonal points b1 and b2 extends (arrow h). The connecting member S receives a tensile stress that is pulled up and down.
[0014]
In the vibration caused by the earthquake, the [left-handed state] and the [right-handed state] are alternately repeated, and therefore, one of the first diagonal point connecting member R and the second diagonal point connecting member S. It is well known that the weaker diagonal point connecting member breaks first, and then the remaining diagonal point connecting member breaks, which is weak in earthquake resistance.
[0015]
Therefore, a countermeasure using the [Four Corner / Center Fixed Configuration] in FIG. 10 is taken, but in this configuration, the [steady state], [left-handed state] and [right-handed state] in FIG. By fixing the portion, the state is changed to [steady state], [left-handed state], and [right-handed state] in FIG. 12, respectively. As a result, the effective cross-sectional area of the crossing facing portion T in the first diagonal point connecting member R and the second diagonal point connecting member S is dug for the through hole e2 and the washer d4. Since it is reduced by the amount of the defective portion D, and the weakness against breakage is promoted along with the weakening of the notch due to the through hole e2, the expected earthquake resistance cannot be obtained.
[0016]
Such seismic conditions are substantially the same even in the case of a steel structure, for example, a lightweight cellular concrete panel-clad steel structure, so the first diagonal connection member R or the second diagonal connection member for a steel structure. As the seismic member used for S, as shown in FIG. 13, a bracing member constituted by arranging a member having viscoelasticity therein, that is, a viscoelastic bracing member 300 (hereinafter referred to as fifth prior art). For example, using a product name “viscoelastic damper” of Showa Electric Cable Co., Ltd. has been attempted to obtain a structure with improved earthquake resistance.
[0017]
In the present invention, viscoelasticity means that a deformation force caused by a static stress acts with a viscosity that causes plastic deformation following the stress, and a dynamic force due to vibrations during an earthquake. For such energy, it has the property of acting with a viscosity that produces a speed-dependent damping effect and an elasticity that produces an opposing force due to elasticity, for example, non-vulcanized or semi-cured rubber It is well known that materials such as neoprene rubber and butyl rubber are materials having such viscoelasticity.
[0018]
In FIG. 13, the viscoelastic muscle member 300 includes a long tubular outer member 301 having a cross section of a “Japanese character” and one fixed end 302 provided at one end, and two pieces of an elongated plate-like body 303a. An inner member 305 formed in a tuning fork shape by providing the other fixed end 304 at a place where the ends of 303b are integrally connected.
[0019]
Then, the two pieces of plate-like bodies 303a and 303b of the inner member 305 are inserted into the upper and lower space portions of the “day-shaped” of the outer member 301, and the two pieces of plate-like bodies 303a and 303b and the “day-shaped” And a viscoelastic member 306 having viscoelasticity between the inner surface of the space.
[0020]
Therefore, if the fixed ends 302 and 304 are fixed at a required diagonal point, for example, at the diagonal points a1 and a2 or the diagonal points b1 and b2, the compression direction (arrow f) and the tension direction (arrow h) Since the viscoelasticity of the viscoelastic member 306 acts on the stress in each direction of the bending direction (g), the earthquake resistance is improved.
[0021]
[Problems to be solved by the invention]
The viscoelastic interstitial member 300 according to the configuration of the fifth prior art works effectively in the case of the structure 100 in which the steel frame of the frame is configured with heavy-weight steel frames, but the frame is configured with a wooden structure or a lightweight steel frame. In the case of the structure 100, for example, a wooden house or a light steel prefab house, the size and weight of the viscoelastic bracing member 300 itself is increased, and there is a disadvantage that a practical structure cannot be obtained from the price profit side. .
[0022]
For this reason, it is said that it is desired to provide a structure having seismic resistance due to viscoelasticity with a simple and inexpensive configuration that can be constructed in the field like the configurations of the third prior art and the fourth prior art. There are challenges.
[0023]
[Means for Solving the Problems]
In the present invention, the viscoelastic member as described above is directly or indirectly interposed in the intersection facing portion T between the first diagonal point connecting member R and the second diagonal point connecting member S. By mounting viscoelastic coupling means for coupling, the above-described problems are solved.
[0024]
In the configuration in which the viscoelastic member is directly interposed and connected, the viscoelastic member having viscoelasticity, itself, is directly interposed in the cross-facing portion T, and both sides of the viscoelastic member are bonded by, for example, adhesion. The first diagonal point connecting member R and the second diagonal point connecting member S are fixedly connected to each other. In this case, the liquid material before curing of the viscoelastic body may be injected and cured into the central portion of the flexible annular body 52 made of polyurethane or the like without using an adhesive.
[0025]
In addition, the above-described configuration in which they are indirectly interposed and connected is provided with metal fittings for fixing the first diagonal point connecting member R and the second diagonal point connecting member S, and the like. Between the first diagonal point connecting member R and the second pair by the viscoelastic member and the metal fitting, for example, by interposing a viscoelastic member and fixing both surfaces of the viscoelastic member by adhesion or the like. The crossing facing portion T with the corner point connecting member S is connected.
[0026]
Furthermore, by providing and providing a part by the above-mentioned configuration that is indirectly interposed and connected as an earthquake-resistant connection tool, it is possible to use an earthquake-resistant connection tool having viscoelasticity while performing a skeleton work at a construction site or the like. It is designed to perform seismic construction.
[0027]
[Action]
Therefore, according to the present invention, for example, as shown in FIG. 2, the cross-opposing portion T between the first diagonal point connecting member R and the second diagonal point connecting member S directly exhibits viscoelasticity. The cross-opposing portion T of the first diagonal point connecting member R and the second diagonal point connecting member S is connected to the seismic connecting tool 50X as shown in FIG. Are indirectly connected to each other via a viscoelastic member 50 having viscoelasticity, so that generation of a component force that bends outward even when subjected to stress in the compression direction (arrow f) is suppressed. Therefore, it is possible to obtain a structure with improved seismic strength.
[0028]
【Example】
1 to 7, an embodiment in which the present invention is applied to the configurations of the third prior art and the fourth prior art will be described. 1 to 7, the parts denoted by the same reference numerals as those in FIGS. 8 to 13 are parts having the same functions as the parts having the same reference numerals described in FIGS. 8 to 13. Moreover, the part shown with the same code | symbol in FIGS. 1-7 is a part which has the same function as the part of the same code | symbol demonstrated in either of FIGS.
[0029]
[First embodiment]
Hereinafter, the first embodiment will be described with reference to FIG. The difference between the first embodiment and the configuration of [Four-corner fixed configuration] of FIG. 10 is that the first diagonal point connecting member R and the second diagonal point connecting member S intersect with each other in the cross-facing portion T. This is a point in which a viscoelastic member 50 having viscoelasticity is directly interposed to connect the crossing facing portions T. That is, viscoelastic coupling means 50X that viscoelastically couples the first diagonal point coupling member R and the second diagonal point coupling member S is formed so that both diagonal point coupling members R and S cross each other. Mounted on the part T.
[0030]
The viscoelastic member 50 is a plate material made of a material such as, for example, a non-vulcanized or semi-vulcanized rubber material such as neoprene rubber or butyl rubber, and has a gap G1 (see FIG. 1 [ Side plate] is slightly larger in thickness, for example, about 1.3 times the thickness of the gap G1, and is slightly larger than the shape of the cross-facing portion T, for example, about 1.1 times larger. It is formed in a rhombus shape.
[0031]
And the structure to connect is the non-adhesive thin paper (not shown) on the outer surface of what coated the adhesive agent, for example, rubber-type adhesive agent (not shown) on both surfaces of the board | plate material which consists of the viscoelastic member 50 previously. ) For example, we provide a product with a thin paper with a coating of fluorine-based synthetic resin, ethylene-based synthetic resin, etc. applied to one side of the paper, and peel it off at the construction site to expose it. The adhesiveness of the adhesive surface is restored by applying an adhesive restoration agent such as petroleum benzine, cyclohexane, or normal hexane to the surface of the adhesive.
[0032]
Further, the surfaces facing each other as the cross-facing portion T between the first diagonal point connecting member R and the second diagonal point connecting member S were cleaned with a wooden hook as necessary. Later, a viscoelastic member 50 having viscoelasticity is bonded by applying a predetermined adhesive, for example, an adhesive similar to the above adhesive, and pressing the surface where the adhesiveness is restored. Alternatively, as in the case of the viscoelastic member 50, a non-adhesive thin paper is pasted on the outer surface coated with the adhesive in advance, and the adhesiveness of the surface of the adhesive is similarly increased during the bonding operation. It is designed to be revived and bonded.
[0033]
Further, if necessary, the cross-opposing portion T between the first diagonal point connecting member R and the second diagonal point connecting member S is temporarily fixed by nailing or the like, and after the adhesion is stabilized. Further, the work for removing the temporary fixing can be performed.
[0034]
In the configuration in which the cross-opposing portions T are viscoelastically connected according to the first embodiment, the viscoelastic member 50 having viscoelasticity is directly interposed and the [directly interposed configuration] in FIG. 1 and FIG. When the first diagonal point connecting member R and the second diagonal point connecting member S are made of a material having a relatively high rigidity, the [high rigidity type configuration] of FIG. As described above, the elasticity of the viscoelasticity exhibited by the viscoelastic member 50 acts to reduce the dynamic bending stress applied to the crossing facing portion T, thereby improving the earthquake resistance of the structure 100. Works.
[0035]
Further, in the case of a material having a relatively low rigidity, the elasticity of the viscoelasticity exhibited by the viscoelastic member 50 acts as shown in [Low rigidity type configuration] in FIG. By sufficiently suppressing the dynamic bending stress applied to the portion T and reducing the dynamic bending stress applied to the first diagonal point connecting member R and the second diagonal point connecting member S, the structure This acts to improve the earthquake resistance of the object 100.
[0036]
Furthermore, after the construction of the entire structure 100, since the stress due to long-term stress or drying shrinkage that occurs in each part of the framework acts as a static stress, the viscoelastic member 50 exhibits the viscosity. As the viscosity of elasticity acts, and with the passage of time, plastic deformation corresponding to the static stress occurs, so that the stress due to such strain is removed.
[0037]
[Second Embodiment]
Hereinafter, a second embodiment will be described with reference to [Indirect Interposing Type Configuration] in FIG. 1 and FIGS. The configuration of the second embodiment is different from that of the first embodiment described above in that the viscoelastic member 50 is indirectly connected to the viscoelastic member 50 via a predetermined metal fitting instead of the viscoelastic member 50 interposed directly. It is the point which comprised so that it might interpose.
[0038]
3 and 4, the mounting bracket 61 has a U-shaped cross section, and is substantially perpendicular to the non-opening portion X facing the one-side opening portion Y opened on one side of the U-shape. And a pair of facing portions Z facing each other. The pair of facing portions Z is provided with a pair of both-side opening portions YY that are coupled adjacent to each other and face each other substantially orthogonally to the one-side opening portion Y. One of the pair of mounting brackets 61 thus configured penetrates the pair of both-side opening portions YY so as to pass from the one-side opening portion Y between the pair of facing portions Z. One of the connecting members in the cross-opposing portion T of the diagonal point connecting members R and S can be fitted and fixed. On the other hand, in the same manner, The other connecting member in the intersection facing portion T of the diagonal point connecting members R and S can be fitted and fixed.
Each of the pair of mounting brackets 61 is combined with an opposing bracket 62 having a sliding contact surface 62A parallel to the non-opening portion X of the mounting bracket 61, and the non-opening portion X is in contact with the sliding contact surface 62A. For example, the swing metal fitting 65 is configured to be slidably attached to the sliding contact surface 62 </ b> A of the opposing metal fitting 62 by a flange 63 so as to be in sliding contact. In this case, the attachment here allows the mounting bracket 61 and the counter bracket 62 to swing relative to each other in the plane of the sliding contact surface 62A as indicated by an arrow B (FIG. 3). However, it may be rotatable about the collar 63.
[0039]
A plate member 51 made of a material having viscoelasticity, which will be described later, between opposite surfaces of the sliding contact surface 62A of the opposing hardware 62 of the pair of rocking hardware 65, with one pair of such rocking hardware 65 as one set, That is, the viscoelastic means 50 and 50X are configured by interposing the viscoelastic plate 51 indirectly.
In the above description, referring to [U-shaped / each part] in FIG. 3, as is clearer, each U-shaped part of the mounting bracket 61 has one opening when viewed from the direction of the U-shaped. The portion Y is referred to as “one-side opening portion Y”, and the two opening portions YY viewed from the side with respect to the U-shape are referred to as “a pair of both-side opening portions YY”.
[0040]
Then, each U-shaped opening portion Y of the pair of mounting hardware 61 is fitted into the crossing facing portion T of the first diagonal point connecting member R and the crossing facing portion T of the second diagonal point connecting member S. Then, without forming a through hole in the first diagonal point connecting member R and the second diagonal point connecting member S, two U-shaped parallel parts Z are connected to a predetermined fixture V, for example, Both opposing surfaces of the pair of opposing fittings 62 are fixed to the first diagonal point connecting member R and the second diagonal point connecting member S by wood screws, screw nails, coach screws, etc. By interposing the viscoelastic plate material between 62B, that is, the viscoelastic plate material 51, the crossing facing portion T of the first diagonal point connecting member R and the second diagonal point connecting member S are provided. The viscoelastic member 50 having viscoelasticity, i.e., the viscoelastic plate 51 is indirectly connected Those constituting the viscoelastic coupling member 50X which is adapted for coupling by instrumentation.
[0041]
Each portion constituting each swing metal piece 65 is formed by pressing a metal material, for example, a stainless steel plate having a thickness of about 1.5 to 2 mm, and the portion of the flange 63 is formed in a washer shape. The formed head portion and the round bar are welded to each other, and after the flange 63 is loosely fitted to the counter metal fitting 62, the end of the round bar is welded through the attachment metal fitting 61 so that the counter metal fitting 62 is attached to the metal fitting. It is also possible to configure so as to be able to swing with respect to 61.
[0042]
Further, a viscoelastic plate 51 having a circular outer shape is formed by disposing a flexible annular body 52 in contact with the outer circumference of the circle in order to prevent deformation in the radial direction of the circle. The viscoelastic plate 51 is formed by laminating, for example, a plate mainly made of the above-mentioned non-vulcanized or semi-vulcanized rubber material, and the flexible annular body 52 is made of a porous material. It is made of a synthetic resin material such as sponge-like polyurethane.
[0043]
The viscoelastic plate material 51 and the annular body 52 are integrated into a component pre-adhered in the same manner as the viscoelastic member 50 having the viscoelasticity in the first embodiment, and the swing metal fitting 65 is also used. Similarly, it may be provided as an anti-seismic connector 50X having an on-site assembly type structure that is provided as a part to which an adhesive is applied, and is assembled and assembled on site. As described above, the viscoelastic plate member 51 and the annular member 52 may be provided as the seismic coupler 50X by integrally bonding them between the opposing metal fittings 62 of the swing metal fittings 65 in advance.
[0044]
In the configuration according to the second embodiment, a viscoelastic plate 51 corresponding to the viscoelastic member 50 is indirectly interposed so that [indirectly interposed type configuration] in FIG. 1 and [connection portion / enlargement] in FIG. Therefore, the seismic action by viscoelasticity acts as shown in [High Rigidity Configuration] and [Low Rigidity Configuration] in FIG. Accordingly, the opposing metal fitting 62 and the viscoelastic plate material 51 are made larger than the area of the opposing portion in the cross opposing portion T, as compared with the case of [High rigidity type configuration] [Low rigidity type configuration] in FIG. Since the viscoelasticity corresponding to the magnitude | size can be obtained by comprising, the structure 100 which improved further earthquake resistance compared with the case of 1st Example will be obtained.
[0045]
[Third embodiment]
The third embodiment will be described below with reference to FIG. The configuration of the third embodiment is different from that of the second embodiment described above in that instead of the swinging metal fitting 65, a counter metal fitting 73 made of only a flat plate-like fixing metal 71 similar to the counter metal fitting 62 is arranged. This is the point that was configured.
[0046]
In FIG. 6, the fixing metal 71 is a metal plate, for example, a stainless steel plate having a thickness of about 1.5 to 2 mm, which is simply cut into a square and provided with mounting holes 72. The viscoelastic plate material 51 and the annular body 52 are exactly the same as those in the second embodiment.
[0047]
The mounting hole 72 is not limited to the first diagonal point even when the crossing angle between the first diagonal point connecting member R and the second diagonal point connecting member S at the crossing facing portion T changes variously. The connecting member R and the second diagonal point connecting member S can be fixed to the connecting member R and the second diagonal point connecting member S by an appropriate fixing tool (not shown) such as a wood screw, a screw nail, and a coach screw from the direction indicated by the arrow. It is arranged corresponding to the angle of.
[0048]
As in the case of the second embodiment, the on-site assembly type configuration in which the fixing bracket 71, the viscoelastic plate 51 and the annular body 52 are provided as separate parts, and the integrated type configuration in which these are provided in advance as an integral unit. These configurations are the same as those in the second embodiment. However, in the case of an integral configuration, the mounting holes 72 are naturally disposed on the outer periphery of the viscoelastic plate member 51 and the annular body 52 on the outer periphery of the fixing member 71 after being removed. is there.
[0049]
In the case of the configuration according to the third embodiment, the action of earthquake resistance by viscoelasticity acts in the same way as the [high rigidity type configuration] and [low rigidity type configuration] in FIG. As a result, a structure 100 having earthquake resistance in exactly the same manner is obtained.
[0050]
[Fourth embodiment]
The fourth embodiment will be described below with reference to FIG. The configuration of the fourth embodiment is different from that of the second embodiment described above in that it is configured to dispose the opposing metal fitting 75 using only the mounting bracket 61 instead of the swing metal fitting 65.
[0051]
In FIG. 7, a mounting bracket 61 is exactly the same as the mounting bracket 61 in the second embodiment. The viscoelastic plate member 51 and the annular member 52 have the same structure as that in the second embodiment described above, and are sized so that the outer diameter falls within the opposing area of the cross-facing portion T. Is directly adhered to the flat surface 61A of the non-opening portion X of the U-shaped mounting bracket 61.
[0052]
As in the case of the second embodiment, the U-shaped mounting bracket 61, the viscoelastic plate member 51 and the annular body 52 are provided as separate parts, and these are assembled in advance. An integrated configuration is possible, and these configurations are configured in the same manner as in the second embodiment.
[0053]
Therefore, in the case of the configuration according to the fourth embodiment, the action of earthquake resistance by viscoelasticity is the same as that of the [high-rigidity type configuration] and [low-rigidity type configuration] in FIG. Since the area contributing to the viscoelasticity is reduced by the circular shape of the annular body 52, the structure 100 having an earthquake resistance slightly lower than the earthquake resistance in the first embodiment is obtained.
[0054]
[Modified Example]
The present invention includes the following modifications.
(1) The outer shape of the viscoelastic member 50 in the first embodiment shown in [Directly Interposed Configuration] in FIG. 1 is formed in a polygon other than a circle or a rectangle.
[0055]
(2) An annular body similar to the annular body 52 in the second embodiment of FIG. 3 is provided on the outer periphery of the viscoelastic member 50 in the first embodiment of [Directly Interposed Configuration] in FIG.
[0056]
(3) The viscoelastic plate 51 and the annular body 52 in the second embodiment of FIGS. 3 and 4 are configured to have a polygonal shape such as a quadrangle. Further, in the case of forming a quadrangle, the quadrangle is formed into a quadrangle along the outer shape of the counter metal fitting 62.
[0057]
(4) The opposing metal fitting 62 in the second embodiment shown in FIGS.
(5) The viscoelastic plate 51 and the annular body 52 in the third embodiment of FIG. Further, in the case of forming a quadrangle, the quadrangle is formed into a quadrangle along the outer shape of the opposing metal fitting 71.
[0058]
(6) The viscoelastic plate 51 and the annular body 52 in the fourth embodiment of FIG.
(7) Applicable to structures with more than 3 stories.
(8) Between the plane 61A and the plane 62A, that is, by providing a slight gap between the sliding contact surfaces, the surface of the first diagonal point connecting member R and the second diagonal point at the intersection facing portion T It is configured to be able to cope with a case where the parallelism with the surface of the connecting member S is inaccurate.
[Brief description of the drawings]
In the drawings, FIGS. 1 to 7 show an embodiment of the present invention, and FIGS. 8 to 13 show the prior art. The contents of each figure are as follows.
FIG. 1 is a perspective view and a side view of a main part configuration.
FIG. 2 is a side view of the main part configuration.
FIG. 3 is an exploded perspective view of a main part configuration.
FIG. 4 is a perspective view and a longitudinal sectional view of a main part configuration.
FIG. 5 is a side view of the main part configuration.
FIG. 6 is an exploded perspective view of a main part configuration.
FIG. 7 is an exploded perspective view of the main part configuration.
FIG. 8 is a perspective view of the main part configuration.
FIG. 9 is a perspective view of the main part configuration.
FIG. 10 is a perspective view of the main part configuration.
FIG. 11 is a side view of the main part configuration.
FIG. 12 is a side view of the main part configuration.
FIG. 13 is a perspective view and a cross-sectional view of the main part configuration.
[Explanation of symbols]
1 Beam members
1a Girder material
2 Foundation materials
3 Pillar members
4 Pillar members
5 Pillar members
5a Girder material
6 Girder materials
7 Girder materials
8 Foundation materials
8a Foundation material
9 Column members
10 Pillar members
11 Bracing members
12 Bracing members
13 Bracing members
14 Bracing members
15 Bracing members
16 Bracing members
21 Wall
22 Wall
50 Viscoelastic members
50X Viscoelastic member / Seismic coupling
51 Viscoelastic plate
52 toroid
61 Mounting bracket
61A plane
62 Opposing bracket
62A sliding surface
63 鋲
65 Swing hardware
71 Fixing bracket
72 Mounting hole
73 Opposite hardware
100 structures
100A structure
100B structure
300 Viscoelastic interstitial member
301 Outer member
302 Fixed end
303a Plate
303b Plate
304 Fixed end
305 Inner member
306 Viscoelastic member
D excavation defect
P Parallel member
Q Parallel member
R diagonal point connecting member
S Diagonal point connecting member
T crossing opposite part
U square space
X Non-opening part
Y one side opening
YY Opening on both sides
Z facing part
a1 Diagonal point
a2 Diagonal point
b1 diagonal point
b2 Diagonal point
c1 Fixing member
c2 Fixing member
c3 Fixing member
c4 Fixing member
d1 Fixing tool
d3 fixture
d4 washer
e1 filling
e2 Through hole
f Stress direction
h Stress direction
g Stress direction
h Stress direction

Claims (10)

四角形の空間(U)を形成する枠部材(P・Q)に対し、前記四角形の第1の対角点(a1・a2)どうしを、少なくても1辺が第1の長手方向平面に形成された第1の対角点連結部材(R)により連結する第1の対角点連結工程と、前記四角形の第1の対角点(a1・a2)とは異なる第2の対角点(b1・b2)どうしを、少なくても1辺が第2の長手方向平面に形成された第2の対角点連結部材(S)により連結する第2の対角点連結工程とを含んで成る耐震構造物(100)の製造方法において、
前記第1の対角点連結部材(R)と前記第2の対角点連結部材(S)との交差領域(T)内で、前記第1の長手方向平面と前記第2の長手方向平面とにより形成される1対の菱形対向面の菱形に対応する菱形の両面を有する粘弾性の板材を形成する粘弾性板材形成工程と、
前記1対の菱形対向面に対し、前記粘弾性の板材の菱形の両面を整合させて直接的に接着する粘弾性板材接着工程と
をさらに含んでいることを特徴とする耐震構造物(100)の製造方法。
To the frame member forming a rectangular space (U) (P · Q) , formed was what first diagonal points of the rectangle (a1 · a2), the fewer or one side first longitudinal plane The first diagonal point connecting step of connecting by the first diagonal point connecting member (R), and a second diagonal point different from the first diagonal point (a1 · a2) of the quadrangle ( b1 and b2) including a second diagonal point connecting step in which at least one side is connected by a second diagonal point connecting member (S) formed on the second longitudinal plane. In the manufacturing method of the earthquake-resistant structure (100),
The first longitudinal plane and the second longitudinal plane within an intersection region (T) of the first diagonal point connecting member (R) and the second diagonal point connecting member (S). A viscoelastic plate forming step of forming a viscoelastic plate having both rhombuses corresponding to the rhombus of the pair of rhombus facing surfaces formed by
A viscoelastic plate material bonding step in which both sides of the rhomboid plate of the viscoelastic plate material are aligned and directly bonded to the pair of rhombus facing surfaces;
The manufacturing method of the earthquake-resistant structure (100) characterized by further including these.
前記粘弾性板材接着工程が、The viscoelastic plate material bonding step
菱形の両面を有する前記粘弾性の板材の両面に予め塗布された接着剤を覆っている非接着性の薄い被覆材を剥ぎ取る被覆材剥取り工程をA coating material stripping step of stripping a non-adhesive thin coating material covering the adhesive previously applied to both surfaces of the viscoelastic plate material having both rhombus surfaces
さらに含んでいる請求項1記載の耐震構造物(100)の製造方法。The method for manufacturing an earthquake-resistant structure (100) according to claim 1, further comprising:
前記非接着性の薄い被覆材が被覆材剥取り工程により剥ぎ取られた後に、前記粘弾性の板材の両面に予め塗布された接着剤に対し接着性復活剤を塗布する接着剤復活工程をさら含んでいる請求項2記載の耐震構造物(100)の製造方法。 After the non-adhesive thin coating material is peeled off by the coating material peeling process, an adhesive restoration process is further performed in which an adhesive restoration agent is applied to the adhesive previously applied to both surfaces of the viscoelastic plate. The manufacturing method of the earthquake-proof structure (100) of Claim 2 which contains. 前記耐震構造物(100)が、建築物(100A・100B)であり、前記四角形の空間(U)を形成する枠部材(P・Q)が2つの平行した第1の平行部材(P)と該第1の平行部材(P)に対して直角に配置された2つの平行した第2の平行部材(Q)であり、前記第1の対角点連結部材(R)と前記第2の対角点連結部材(S)とが筋交い用部材(11・12、13・14、15・16)である請求項1記載の耐震構造物(100)の製造方法。 The seismic structure (100) is a building (100A / 100B), and the frame members (PQ) forming the square space (U) are two parallel first parallel members (P) Two parallel second parallel members (Q) arranged at right angles to the first parallel member (P), the first diagonal point connecting member (R) and the second pair The method of manufacturing an earthquake-resistant structure (100) according to claim 1, wherein the corner point connecting member (S) is a bracing member (11, 12, 13, 14, 15, 16) . 四角形の空間(U)を形成する枠部材(P・Q)と、
前記四角形の第1の対角点 ( a1・a2 ) どうしを連結する第1の対角点連結部材(R)と、
前記四角形の第1の対角点 ( a1・a2 ) とは異なる第2の対角点(b1・b2)どうしを連結する第2の対角点連結部材 ( ) を有し、
前記第1の対角点連結部材(R)と前記第2の対角点連結部材(S)との交差対向部分(T)には、粘弾性を有する粘弾性部材(50)が間接的に介装されて、該第1の対角点連結部材(R)と該第2の対角点連結部材(S)とを粘弾性的に連結する粘弾性連結手段(50X)が装着されている耐震構造物であって、
断面がコ字形に形成されて、片側開口部分(Y)に対面する非開口部分(X)と該開口部分(X)に対して略直交して連設され、互い対面する1対の対面部分(Z)と該対面部分(Z)に隣接して連成され、該片側開口部分(Y)に対して略直交して、互いに対面する1対の両側開口部分(YY)とを備え、1対の該両側開口部分(YY)を貫通して、1対の該対面部分(Z)の間に、該片側開口部分(Y)から、前記第1、第2の対角点連結部材(R・S)の前記交差対向部分(T)における該第1の対角点連結部材(R)を嵌め込んで固定できるようにした第1の取付金具(61)と、
前記第1の取付金具(61)の非開口部分(X)に摺接し、該第1の取付金具(61)が摺動可能に樞着される摺接面(62A)を備えた第1の対向金具(62)と、
断面がコ字形に形成されて、片側開口部分(Y)に対面する非開口部分(X)と該非開口部分(X)に対して略直交して連設され、互いに対面する1対の対面部分(Z)と該対面部分(Z)に対して隣接して連成され、該片側開口部分(Y)に対して略直交して、互いに対面する1対の両側開口部分(YY)とを備え、1対の該両側開口部分(YY)を貫通して、1対の該対面部分(Z)の間に、該片側開口部分(Y)から、前記第1、第2の対角点連結部材(R・S)の前記交差対向部分(T)における該第2の対角連結部材(S)を嵌め込んで固定できるようにした第2の取付金具(61)と、
前記第2の取付金具(61)の非開口部分(X)に摺接し、該第2の取付金具(61)が摺動可能に樞着される摺接面(62A)を備えた第2の対向金具(62)と、
前記第1の対向金具(62)の摺接面(62A)の反対面と前記第2の対向金具(62)の摺接面(62A)の反対面との間に介装されて固定された粘弾性を有する粘弾性板材(51)と、
を具備することを特徴とする耐震連結用具が前記粘弾性連結手段(51X)として装着されている耐震構造物。
A frame member (PQ) that forms a rectangular space (U);
A first diagonal point connecting member (R) for connecting the first diagonal points ( a1 and a2 ) of the quadrangle ;
A second diagonal point connecting member ( S ) for connecting the second diagonal points (b1, b2) different from the first diagonal point ( a1, a2 ) of the quadrangle ;
A viscoelastic member (50) having viscoelasticity is indirectly attached to a crossing facing portion (T) between the first diagonal point connecting member (R) and the second diagonal point connecting member (S). A viscoelastic coupling means (50X) is provided which is interposed and viscoelastically couples the first diagonal point coupling member (R) and the second diagonal point coupling member (S). An earthquake-resistant structure,
A non-opening portion (X) facing the one-side opening portion (Y) and a pair of facing portions facing each other and being substantially orthogonal to the opening portion (X) and having a U-shaped cross section. adjacent to (Z) and the pair surface section (Z) is Coupling, and substantially perpendicular to該片side opening portion (Y), and a both side opening portion of a pair of facing (YY) from one another, 1 The first and second diagonal point connecting members (R) pass through the opening portions (YY) of the pair from the opening portion (Y) between the pair of facing portions (Z). A first mounting bracket (61) adapted to be fitted and fixed to the first diagonal point connecting member (R) in the crossing facing portion (T) of S);
In sliding contact with the non-opening portion (X) of said first mounting member (61), first the first mounting member (61) is provided with a sliding surface which is樞着slidably (62A) Opposing metal fitting (62);
A non-opening portion (X) facing the one-side opening portion (Y) and a pair of facing portions facing each other that are formed in a U-shaped cross-section and connected substantially perpendicular to the non-opening portion (X) (Z) and a pair of both side opening portions (YY) that are coupled adjacent to the facing portion (Z), substantially orthogonal to the one-side opening portion (Y), and facing each other. The first and second diagonal point connecting members pass through the pair of both side opening portions (YY) and between the pair of facing portions (Z) from the one side opening portion (Y). A second mounting bracket (61) adapted to fit and fix the second diagonal connecting member (S) in the crossing facing portion (T) of (R · S);
Said second sliding contact with the non-opening portion (X) of the mounting bracket (61), mounting bracket (61) of said second second with capable sliding surface being樞着the (62A) sliding Opposing metal fitting (62);
The first opposing metal fitting (62) is interposed and fixed between the opposite surface of the sliding contact surface (62A) and the second opposing metal fitting (62) opposite the sliding contact surface (62A). A viscoelastic plate (51) having viscoelasticity;
A seismic structure having a seismic coupling tool mounted as the viscoelastic coupling means (51X) .
前記粘弾性板材(51)の外形が円形であり、柔軟性の環状体(52)が前記円形の外周に接して配置されている請求項5記載の耐震構造物。  The earthquake-resistant structure according to claim 5, wherein the viscoelastic plate (51) has a circular outer shape, and a flexible annular body (52) is arranged in contact with the circular outer periphery. 前記粘弾性板材(51)が非硫化又は半加硫のゴム材を主体とする材質の板材を積層して構成され、前記柔軟性の環状体(52)が多孔性の合成樹脂材である請求項6記載の耐震構造物。  The viscoelastic plate (51) is formed by laminating plates made mainly of a non-sulfurized or semi-vulcanized rubber material, and the flexible annular body (52) is a porous synthetic resin material. Item 6. The earthquake-resistant structure according to item 6. 四角形の空間(U)を形成する枠部材(P・Q)と、
前記四角形の第1の対角点(a1・a2)どうしを連結する第1の対角点連結部材(R)と、
前記四角形の第1の対角点(a1・a2)とは異なる第2の対角点(b1・b2)どうしを連結する第2の対角点連結部材(S)と
を有する耐震構造物(100)に用いる耐震連結用具(50X)であって、
断面がコ字形に形成されて、片側開口部分(Y)に対面する非開口部分(X)と該開口部分(X)に対して略直交して連設され、互い対面する1対の対面部分(Z)と該対面部分(Z)に隣接して連成され、該片側開口部分(Y)に対して略直交して、互いに対面する1対の両側開口部分(YY)とを備え、1対の該両側開口部分(YY)を貫通して、1対の該対面部分(Z)の間に、該片側開口部分(Y)から、前記第1、第2の対角点連結部材(R・S)の前記交差対向部分(T)における該第1の対角点連結部材(R)を嵌め込んで固定できるようにした第1の取付金具(61)と、
前記第1の取付金具(61)の非開口部分(X)に摺接し、該第1の取付金具(61)が摺動可能に樞着される摺接面(62A)を備えた第1の対向金具(62)と、
断面がコ字形に形成されて、片側開口部分(Y)に対面する非開口部分(X)と該非開口部分(X)に対して略直交して連設され、互いに対面する1対の対面部分(Z)と該対面部分(Z)に対して隣接して連成され、該片側開口部分(Y)に対して略直交して、互いに対面する1対の両側開口部分(YY)とを備え、1対の該両側開口部分(YY)を貫通して、1対の該対面部分(Z)の間に、該片側開口部分(Y)から、前記第1、第2の対角点連結部材(R・S)の前記交差対向部分(T)における該第2の対角連結部材(S)を嵌め込んで固定できるようにした第2の取付金具(61)と、
前記第2の取付金具(61)の非開口部分(X)に摺接し、該第2の取付金具(61)が摺動可能に樞着される摺接面(62A)を備えた第2の対向金具(62)と、
前記第1の対向金具(62)の摺接面(62A)の反対面と前記第2の対向金具(62)の摺接面(62A)の反対面との間に介装されて固定された粘弾性を有する粘弾性板材(51)と、
を具備することを特徴とする耐震連結用具。
A frame member (PQ) that forms a rectangular space (U);
A first diagonal point connecting member (R) for connecting the first diagonal points (a1, a2) of the quadrangle;
A seismic structure having a second diagonal point connecting member (S) for connecting the second diagonal points (b1, b2) different from the first diagonal points (a1, a2) of the quadrangle ( 100) Seismic coupling tool (50X) used for
A non-opening portion (X) facing the one-side opening portion (Y) and a pair of facing portions facing each other and being substantially orthogonal to the opening portion (X) and having a U-shaped cross section. adjacent to (Z) and the pair surface section (Z) is Coupling, and substantially perpendicular to該片side opening portion (Y), and a both side opening portion of a pair of facing (YY) from one another, 1 The first and second diagonal point connecting members (R) pass through the opening portions (YY) of the pair from the opening portion (Y) between the pair of facing portions (Z). A first mounting bracket (61) adapted to be fitted and fixed to the first diagonal point connecting member (R) in the crossing facing portion (T) of S);
In sliding contact with the non-opening portion (X) of said first mounting member (61), first the first mounting member (61) is provided with a sliding surface which is樞着slidably (62A) Opposing metal fitting (62);
A non-opening portion (X) facing the one-side opening portion (Y) and a pair of facing portions facing each other that are formed in a U-shaped cross-section and connected substantially perpendicular to the non-opening portion (X) (Z) and a pair of both side opening portions (YY) that are coupled adjacent to the facing portion (Z), substantially orthogonal to the one-side opening portion (Y), and facing each other. The first and second diagonal point connecting members pass through the pair of both side opening portions (YY) and between the pair of facing portions (Z) from the one side opening portion (Y). A second mounting bracket (61) adapted to fit and fix the second diagonal connecting member (S) in the crossing facing portion (T) of (R · S);
Said second sliding contact with the non-opening portion (X) of the mounting bracket (61), mounting bracket (61) of said second second with capable sliding surface being樞着the (62A) sliding Opposing metal fitting (62);
The first opposing metal fitting (62) is interposed and fixed between the opposite surface of the sliding contact surface (62A) and the second opposing metal fitting (62) opposite the sliding contact surface (62A). A viscoelastic plate (51) having viscoelasticity;
A seismic connection tool characterized by comprising:
前記粘弾性板材(51)の外形が円形であり、柔軟性の環状体(52)が前記円形の外周に接して配置されている請求項8記載の耐震連結用具。  The seismic connection tool according to claim 8, wherein the viscoelastic plate (51) has a circular outer shape, and a flexible annular body (52) is disposed in contact with the outer periphery of the circular shape. 前記粘弾性板材(51)が非硫化又は半加硫のゴム材を主体とする材質の板材を積層して構成され、前記柔軟性の環状体(52)が多孔性の合成樹脂材である請求項9記載の耐震連結用具。  The viscoelastic plate (51) is formed by laminating plates made mainly of a non-sulfurized or semi-vulcanized rubber material, and the flexible annular body (52) is a porous synthetic resin material. Item 10. The earthquake-resistant connection tool according to item 9.
JP09795599A 1999-02-28 1999-02-28 Seismic structure manufacturing method, earthquake resistant structure, and seismic connection tool Expired - Fee Related JP3993716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09795599A JP3993716B2 (en) 1999-02-28 1999-02-28 Seismic structure manufacturing method, earthquake resistant structure, and seismic connection tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09795599A JP3993716B2 (en) 1999-02-28 1999-02-28 Seismic structure manufacturing method, earthquake resistant structure, and seismic connection tool

Publications (2)

Publication Number Publication Date
JP2000248620A JP2000248620A (en) 2000-09-12
JP3993716B2 true JP3993716B2 (en) 2007-10-17

Family

ID=14206102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09795599A Expired - Fee Related JP3993716B2 (en) 1999-02-28 1999-02-28 Seismic structure manufacturing method, earthquake resistant structure, and seismic connection tool

Country Status (1)

Country Link
JP (1) JP3993716B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065190A (en) * 1999-08-27 2001-03-13 Daiwa House Ind Co Ltd External wall panel frame having vibration attenuating function
JP4828053B2 (en) * 2001-08-09 2011-11-30 学校法人日本大学 Structure damping device
WO2010007476A1 (en) * 2008-07-13 2010-01-21 Iyad Mohamad Adnan Daadoush Cubical structural system

Also Published As

Publication number Publication date
JP2000248620A (en) 2000-09-12

Similar Documents

Publication Publication Date Title
US6138420A (en) Blast-resistant building
JP2012526936A (en) Flexible material
CN215889446U (en) Ancient building timber structure tenon fourth of twelve earthly branches node reinforced structure
JP2000110399A (en) Earthquake resistant construction of building for detached house
JP2002322817A (en) Fiber reinforcement system for building and building novel member
JP6322429B2 (en) Braces and methods of attaching braces
JP3993716B2 (en) Seismic structure manufacturing method, earthquake resistant structure, and seismic connection tool
JP2001107473A (en) Joining section of woody member and woody member for joining
JP4585470B2 (en) Reinforcing members and reinforcing structures for buildings and structures
JP2000352218A (en) Earthquake resistant structure of wooden building
US20050252142A1 (en) Anchorage system for structural reinforcement of fiber reinforced plastic materials and the like
KR102578034B1 (en) Assembly construction method of noncombustible engineering plastic panel attached FRP wraping and X-brace for seismic reinforcement of column
JP6345565B2 (en) Reinforcement structure for wooden buildings
JP2011157728A (en) Damper and wood construction using the same
JP2006057388A (en) Base isolation construction method of building
JP2004285817A (en) Woody earthquake-resistance opening frame built into wooden body
KR100718585B1 (en) Punching-shear strengthening method with externally bonded prestressed frp strips
JP3588015B2 (en) Fiber reinforcement system for buildings
KR20230018805A (en) Shear reinforcing method of concrete structure using engineering plastic panel attached stress reinforcing brace
KR20050113911A (en) Reinforcing structure of column and beam connection part using frp strap
JP2000160681A (en) Joint for wood and method for joining wood by using the same
JP2006046051A (en) Vibration control wall and reinforced structure of frame structure provided therewith
JP2004084404A (en) Reinforcing structure for earthquake-resisting wall material
JP4889050B2 (en) Reinforcing members and reinforcing structures for buildings and structures
JP2018131869A (en) Wooden material joining structure and joint reinforcement material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees