JP3992917B2 - Semiconductor device and semiconductor manufacturing method - Google Patents

Semiconductor device and semiconductor manufacturing method Download PDF

Info

Publication number
JP3992917B2
JP3992917B2 JP2000313858A JP2000313858A JP3992917B2 JP 3992917 B2 JP3992917 B2 JP 3992917B2 JP 2000313858 A JP2000313858 A JP 2000313858A JP 2000313858 A JP2000313858 A JP 2000313858A JP 3992917 B2 JP3992917 B2 JP 3992917B2
Authority
JP
Japan
Prior art keywords
terminal electrode
substrate
substrate terminal
electroless plating
plating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000313858A
Other languages
Japanese (ja)
Other versions
JP2002124540A (en
Inventor
文一 原園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000313858A priority Critical patent/JP3992917B2/en
Publication of JP2002124540A publication Critical patent/JP2002124540A/en
Application granted granted Critical
Publication of JP3992917B2 publication Critical patent/JP3992917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置を製造する半導体製造方法についての技術に関する。
【0002】
【従来の技術】
LSI等の半導体をプリント基板に実装する方法として、LSIの端子電極とプリント基板端子電極とを導電性接着剤を介して接合し、LSIとプリント基板との間に液体状の樹脂を注入し樹脂封止することによって、半導体をプリント基板に実装していた。
また、導電性接着剤を用いずに、加熱圧接法による実装方法によって、LSIの端子電極とプリント基板端子電極とを接合することも行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の導電性接着剤を用いた実装方法では、導電性接着剤の接合強度が低い為に、LSIやプリント基板に外部からの振動、衝撃、熱ストレスなどを受けたときに、LSIの端子電極とプリント基板端子電極間の導電性接着剤による接合状態が良好に維持できない。
また、この導電性接着剤を用いた実装方法では、プリント基板端子電極の表面処理の状態によっては、導電性接着剤とプリント基板端子電極とが剥離することもあった。
更に、導電性接着剤による接合後に、液体状の樹脂を注入する際にLSIを浮き上がらせてしまい、LSIの端子電極とプリント基板端子電極との接合状態が不安定になる問題があった。
【0004】
また、加熱圧接法による実装方法では、特に大型のLSIにおいてLSIの各端子電極に均一な圧力をかけることが困難であり、更に、加熱し圧接していた状態から常温に戻すときに、LSIとプリント基板の温度に対する収縮率の違いから、LSIの端子電極とプリント基板端子電極との接合部分に残留応力が残り、接合部分における接合状態の信頼性が低下する問題があった。
【0005】
本発明はこのような状況に鑑みてなされたもので、半導体とプリント基板の接合状態を良好にした半導体装置とその半導体製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成する為の本発明の半導体装置は、プリント基板の基板端子電極に向かう突起部を有した1つ以上の接続端子電極を半導体基板上に備えた半導体装置であり、
前記接続端子電極の前記突起部に導電性接着剤を付着し、前記突起部に付着した前記導電性接着剤を加熱して硬化し、硬化した前記導電性接着剤の先端部に無電解メッキ液を付着し、前記無電解メッキ液を付着したまま前記突起部を前記基板端子電極に接触させて加圧加熱し、前記突起部と前記基板端子電極間に合金接続層を生成して前記突起部と前記基板端子電極を接合し、前記接合後に前記プリント基板と前記半導体基板間に樹脂を注入して構成されることを特徴とする半導体装置。
【0007】
この半導体装置によれば、半導体やプリント基板に外部からの振動、衝撃、熱ストレスなどを受けたときでも、半導体の接続端子電極とプリント基板の基板端子電極間に、導電性接着剤と無電解メッキ液による合金接続層とを生成するので、接合状態を強固することができる。
また、導電性接着剤と基板端子電極間に合金接続層を生成したので、導電性接着剤と基板端子電極間が剥離することを無くすことができる。
また、接続端子電極と基板端子電極の接合後に、液体状の樹脂を注入する際の半導体の浮き上がりに対しても、接続端子電極と基板端子電極との接合が十分に強固になったので、接合状態が不安定になることを無くすることができる。
【0008】
本発明の半導体製造方法は、プリント基板の基板端子電極に向かう突起部を有した1つ以上の接続端子電極を半導体基板上に備えた半導体装置の半導体製造方法であり、
前記接続端子電極の前記突起部に導電性接着剤を付着し、前記突起部に付着した前記導電性接着剤を加熱して硬化し、硬化した前記導電性接着剤の先端部に無電解メッキ液を付着し、前記無電解メッキ液を付着したまま前記突起部を前記基板端子電極に接触させて加圧加熱し、前記突起部と前記基板端子電極間に合金接続層を生成して前記突起部と前記基板端子電極を接合し、前記接合後に前記プリント基板と前記半導体基板間に樹脂を注入することを特徴とする。
【0009】
この半導体製造方法によれば、半導体やプリント基板に外部からの振動、衝撃、熱ストレスなどを受けたときでも、半導体の接続端子電極とプリント基板の基板端子電極間に、導電性接着剤と無電解メッキ液による合金接続層とを生成するので、接合状態が強固になる。
また、導電性接着剤と基板端子電極間に合金接続層を生成したので、導電性接着剤と基板端子電極間が剥離することが無くなった。
また、接続端子電極と基板端子電極の接合後に、液体状の樹脂を注入する際の半導体の浮き上がりに対しても、接続端子電極と基板端子電極との接合が十分に強固になったので、接合状態が不安定になることも無くなった。
また、加熱圧接法を用いずに、接続端子電極と基板端子電極との接合状態が良好になった。
【0010】
本発明の半導体装置は、プリント基板の基板端子電極に向かう突起部を有した1つ以上の接続端子電極を半導体基板上に備えた半導体装置であり、
前記接続端子電極の前記突起部に導電性接着剤を付着し、前記突起部に付着した前記導電性接着剤を加熱して硬化し、
前記基板端子電極に無電解メッキ液を水滴状にのせ、
硬化した前記導電性接着剤の付着した前記突起部を、前記無電解メッキ液の付着した前記基板端子電極に接触させて加圧加熱し、前記突起部と前記基板端子電極間に合金接続層を生成して前記突起部と前記基板端子電極を接合し、前記接合後に前記プリント基板と前記半導体基板間に樹脂を注入して構成されることを特徴とする。
【0011】
この半導体装置によれば、半導体やプリント基板に外部からの振動、衝撃、熱ストレスなどを受けたときでも、半導体の接続端子電極とプリント基板の基板端子電極間に、導電性接着剤と無電解メッキ液による合金接続層とを生成するので、接合状態が強固になる。
また、導電性接着剤と基板端子電極間に合金接続層を生成したので、導電性接着剤と基板端子電極間が剥離することが無くなった。
また、接続端子電極と基板端子電極の接合後に、液体状の樹脂を注入する際の半導体の浮き上がりに対しても、接続端子電極と基板端子電極との接合が十分に強固になったので、接合状態が不安定になることも無くなった。
また、加熱圧接法を用いずに、接続端子電極と基板端子電極との接合状態が良好になった。
また、接続端子電極に導電性接着剤を付着する工程と、基板端子電極に無電解メッキ液を付着させる工程を同時に行える。
【0012】
本発明の半導体製造方法は、プリント基板の基板端子電極に向かう突起部を有した1つ以上の接続端子電極を半導体基板上に備えた半導体装置の半導体製造方法であり、
前記接続端子電極の前記突起部に導電性接着剤を付着し、前記突起部に付着した前記導電性接着剤を加熱して硬化し、
前記基板端子電極に無電解メッキ液を水滴状にのせ、
硬化した前記導電性接着剤の付着した前記突起部を、前記無電解メッキ液の付着した前記基板端子電極に接触させて加圧加熱し、前記突起部と前記基板端子電極間に合金接続層を生成して前記突起部と前記基板端子電極を接合し、前記接合後に前記プリント基板と前記半導体基板間に樹脂を注入することを特徴とする。
【0013】
この半導体製造方法によれば、半導体やプリント基板に外部からの振動、衝撃、熱ストレスなどを受けたときでも、半導体の接続端子電極とプリント基板の基板端子電極間に、導電性接着剤と無電解メッキ液による合金接続層とを生成するので、接合状態が強固になる。
また、導電性接着剤と基板端子電極間に合金接続層を生成したので、導電性接着剤と基板端子電極間が剥離することが無くなった。
また、接続端子電極と基板端子電極の接合後に、液体状の樹脂を注入する際の半導体の浮き上がりに対しても、接続端子電極と基板端子電極との接合が十分に強固になったので、接合状態が不安定になることも無くなった。
また、加熱圧接法を用いずに、接続端子電極と基板端子電極との接合状態が良好になった。
また、接続端子電極に導電性接着剤を付着する工程と、基板端子電極に無電解メッキ液を付着させる工程を同時に行える。
【0014】
本発明の半導体装置は、プリント基板の基板端子電極に向かう突起部を有した1つ以上の接続端子電極を半導体基板上に備えた半導体装置であり、
前記接続端子電極の前記突起部の先端に無電解メッキ液を付着し、前記無電解メッキ液を付着したまま前記突起部を前記基板端子電極に接触させて加圧加熱し、前記突起部と前記基板端子電極間に合金接続層を生成して前記突起部と前記基板端子電極を接合し、前記接合後に前記プリント基板と前記半導体基板間に樹脂を注入して構成されることを特徴とする半導体装置。
【0015】
この半導体装置によれば、半導体やプリント基板に外部からの振動、衝撃、熱ストレスなどを受けたときでも、半導体の接続端子電極とプリント基板の基板端子電極間に、無電解メッキ液による合金接続層を生成するので、接合状態が強固になる。
また、接続端子電極と基板端子電極の接合後に、液体状の樹脂を注入する際の半導体の浮き上がりに対しても、接続端子電極と基板端子電極との接合が十分に強固になったので、接合状態が不安定になることも無くなった。
【0016】
本発明の半導体製造方法は、プリント基板の基板端子電極に向かう突起部を有した1つ以上の接続端子電極を半導体基板上に備えた半導体装置の半導体製造方法であり、
前記接続端子電極の前記突起部の先端に無電解メッキ液を付着し、前記無電解メッキ液を付着したまま前記突起部を前記基板端子電極に接触させて加圧加熱し、前記突起部と前記基板端子電極間に合金接続層を生成して前記突起部と前記基板端子電極を接合し、前記接合後に前記プリント基板と前記半導体基板間に樹脂を注入することを特徴とする。
【0017】
この半導体製造方法によれば、半導体やプリント基板に外部からの振動、衝撃、熱ストレスなどを受けたときでも、半導体の接続端子電極とプリント基板の基板端子電極間に、無電解メッキ液による合金接続層を生成するので、接合状態が強固になる。
また、接続端子電極と基板端子電極の接合後に、液体状の樹脂を注入する際の半導体の浮き上がりに対しても、接続端子電極と基板端子電極との接合が十分に強固になったので、接合状態が不安定になることも無くなった。
【0018】
本発明の半導体装置は、プリント基板の基板端子電極に向かう突起部を有した1つ以上の接続端子電極を半導体基板上に備えた半導体装置であり、
前記基板端子電極に無電解メッキ液を水滴状にのせ、
前記突起部を、前記無電解メッキ液の付着した前記基板端子電極に接触させて加圧加熱し、前記突起部と前記基板端子電極間に合金接続層を生成して前記突起部と前記基板端子電極を接合し、前記接合後に前記プリント基板と前記半導体基板間に樹脂を注入して構成されることを特徴とする。
【0019】
この半導体装置によれば、半導体やプリント基板に外部からの振動、衝撃、熱ストレスなどを受けたときでも、半導体の接続端子電極とプリント基板の基板端子電極間に、無電解メッキ液による合金接続層を生成するので、接合状態が強固になる。
また、接続端子電極と基板端子電極の接合後に、液体状の樹脂を注入する際の半導体の浮き上がりに対しても、接続端子電極と基板端子電極との接合が十分に強固になったので、接合状態が不安定になることも無くなった。
【0020】
本発明の半導体製造方法は、プリント基板の基板端子電極に向かう突起部を有した1つ以上の接続端子電極を半導体基板上に備えた半導体装置の半導体製造方法であり、
前記基板端子電極に無電解メッキ液を水滴状にのせ、
前記突起部を、前記無電解メッキ液の付着した前記基板端子電極に接触させて加圧加熱し、前記突起部と前記基板端子電極間に合金接続層を生成して前記突起部と前記基板端子電極を接合し、前記接合後に前記プリント基板と前記半導体基板間に樹脂を注入することを特徴とする。
【0021】
この半導体製造方法によれば、半導体やプリント基板に外部からの振動、衝撃、熱ストレスなどを受けたときでも、半導体の接続端子電極とプリント基板の基板端子電極間に、無電解メッキ液による合金接続層を生成するので、接合状態が強固になる。
また、接続端子電極と基板端子電極の接合後に、液体状の樹脂を注入する際の半導体の浮き上がりに対しても、接続端子電極と基板端子電極との接合が十分に強固になったので、接合状態が不安定になることも無くなった。
【0022】
本発明の半導体装置は、シリンジ内の前記無電解メッキ液を、前記シリンジに連結したニードルにより前記基板端子電極に水滴状に塗布することを特徴とする。
【0023】
この半導体装置によれば、近年の高密度実装の為に、電極間隔が狭く、各々の電極面積が小さく、電極数も多数である基板端子電極に対して、手作業による基板端子電極への無電解メッキ液の塗布よりも、迅速に一定量の無電解メッキ液を塗布することができる。
【0024】
本発明の半導体製造方法は、シリンジ内の前記無電解メッキ液を、前記シリンジに連結したニードルにより前記基板端子電極に水滴状に塗布することを特徴とする。
【0025】
この半導体製造方法によれば、近年の高密度実装の為に、電極間隔が狭く、各々の電極面積が小さく、電極数も多数である基板端子電極に対して、手作業による基板端子電極への無電解メッキ液の塗布よりも、迅速に一定量の無電解メッキを塗布することができる。
【0026】
本発明の半導体装置は、前記基板端子電極以外の部分をマスキングし、
前記無電解メッキ液を含浸したスポンジを前記基板端子電極に接触させ、前記無電解メッキ液を前記基板端子電極に水滴状に塗布することを特徴とする。
【0027】
この半導体装置によれば、近年の高密度実装の為に、電極間隔が狭く、各々の電極面積が小さく、電極数も多数である基板端子電極に対して、手作業による基板端子電極への無電解メッキ液の塗布よりも、同時に多数の基板端子電極に塗布できるので、迅速に無電解メッキ液を塗布することができる。
また、基板端子電極以外の部分はマスキングされているので、基板端子電極以外に無電解メッキ液は塗布されない。
【0028】
本発明の半導体製造方法は、前記基板端子電極以外の部分をマスキングし、
前記無電解メッキ液を含浸したスポンジを前記基板端子電極に接触させ、前記無電解メッキ液を前記基板端子電極に水滴状に塗布することを特徴とする。
【0029】
この半導体製造方法によれば、近年の高密度実装の為に、電極間隔が狭く、各々の電極面積が小さく、電極数も多数である基板端子電極に対して、手作業による基板端子電極への無電解メッキ液の塗布よりも、同時に多数の基板端子電極に塗布できるので、迅速に無電解メッキ液を塗布することができる。
また、基板端子電極以外の部分はマスキングされているので、基板端子電極以外に無電解メッキ液は塗布されない。
【0030】
本発明の半導体装置は、前記基板端子電極は、前記基板端子電極の周囲に基板端子電極面より高い段差をレジストによって設けたことを特徴とする。
【0031】
この半導体装置によれば、基板端子電極はその周囲をレジストによって基板端子電極面より高い段差を設けたので、所定量の無電解メッキ液を基板端子電極に塗布することができる。
或いは、このレジストによる段差のない場合に比較して、生成される合金接続層は、厚くなるので、接続端子電極と基板端子電極とを堅固に接合することができる。
【0032】
本発明の半導体装置は、前記基板端子電極は、前記突起部と接合する接合電極面を前記接合電極面の周囲の基板端子電極面より低くし、
前記基板端子電極と接する前記プリント基板は、前記基板端子電極の高低に沿った形状の立体プリント基板であることを特徴とする。
【0033】
この半導体装置によれば、突起部と接合する接合電極面が、その周囲の基板端子電極面よりも低くなっているので、所定量の無電解メッキ液を基板端子電極に塗布することができる。
或いは、この低い接合電極面がない、即ち、平らな基板端子電極面である場合と比較して、生成される合金接続層は、厚くなるので、接続端子電極と基板端子電極とを堅固に接合することができる。
【0034】
【発明の実施の形態】
[第1実施形態]
図1〜3を参照して、本発明の第1実施形態の半導体製造方法について説明する。
図1は、半導体基板の接続端子電極側と接続端子電極を示す斜視図、図2は、第1実施形態の半導体製造工程を示す工程図、図3は、第1実施形態の半導体製造方法を示すフローチャートである。
図1(a)に示すように、半導体基板1は、後述するプリント基板3の基板端子電極3aと接続する接続端子電極2が、プリント基板3と対向する面に複数個並んで配置されている。この接続端子電極2の配置は、プリント基板3に対する半導体基板1の実装密度を高める為の配置である。
また、図1(b)に示すように、各々の接続端子電極2は、半導体基板1側のアルミ電極2aと、そのアルミ電極2a上にあって基板端子電極3a(図1(b)上方)に向かって先端が小さくなっている突起部2bとによって構成されている。
【0035】
次に、図2と図3とを参照して、本実施形態の半導体製造方法について順次説明していく。
図2の工程(1)は、半導体基板1と接続端子電極2の断面を示している。尚、以下の各工程の図は、各工程における断面を示している。
次に、工程(2)において、接続端子電極2の突起部2bを、導電性接着剤5が入っている導電性接着剤漕5aに浸して、突起部2bに導電性接着剤5を付着させる(図3のステップ11)。
そして、工程(3)において、突起部2bを導電性接着剤漕5aから引き上げて、突起部2bに付着した導電性接着剤5を加熱して硬化させる(ステップ12)。
【0036】
次の工程(4)では、硬化した導電性接着剤5の先端部を無電解メッキ液漕7aに浸して(ステップ13)、無電解メッキ液漕7aから引き上げると、工程(5)に示すように、硬化した導電性接着剤5の先端部に無電解メッキ液7が付着する。
次に、工程(6)において、硬化した導電性接着剤5の先端部に無電解メッキ液7が付着したまま突起部2bをプリント基板3の基板端子電極3aにのせ、半導体基板1をプリント基板3にマウントする(ステップ14)。
そして、半導体基板1をプリント基板3に向かって加圧し、即ち、突起部2bをプリント基板3に向かって加圧し、同時に突起部2bに付着した導電性接着剤5と無電解メッキ液7を加熱する(ステップ15)。
【0037】
ここで、各々の接続端子電極2に対して、例えば、10〜50gの圧力を加える。よって、半導体基板1に24個の接続端子電極2がある場合は、240〜1200gの圧力を、半導体基板に加えることになる。また、加圧と同時に、例えば、80〜100℃の加熱も行う。
そして、工程(7)においては、工程(6)の加圧加熱により、接続端子電極2と基板端子電極3aの間に、無電解メッキ液7による合金接続層7bが形成され、硬化する(ステップ16)。
この合金接続層7bの形成は、無電解メッキ液7において、その溶液中の金属イオンと素地金属である基板端子電極3aとの間の置換反応による置換メッキ、或いは、無電解メッキ液7の還元剤の酸化反応によって生じる電子を金属イオンが受け取って、素地金属表面に析出する自己触媒メッキ等により形成される。
【0038】
よって、合金接続層7bを介して、突起部2bは基板端子電極3aと強固に接合され、接続端子電極2と基板端子電極3aとの電気的導通と同時に、接続端子電極2と基板端子電極3aとは、接合強度が高い状態で結合している。この合金接続層7bによる強固な接続によって、残留応力が残っていても良好な接続状態維持できる。また、導電性接着剤5は、接続端子電極2と基板端子電極3aとの電気的導通と接合を補助的に支持している。
次に、工程(8)において、半導体基板1とプリント基板3の間に樹脂4を注入し(ステップ17)、樹脂4が硬化して(ステップ18)、実装が完了する。
【0039】
よって、以上の構成によれば、半導体基板1やプリント基板3に外部からの振動、衝撃、熱ストレスなどを受けたときでも、接続端子電極2と基板端子電極3aの間に、導電性接着剤5と無電解メッキ液7による合金接続層7bとを生成するので、接合状態が強固になる。
【0040】
[第2実施形態]
次に、図4、5を参照して、本発明の第2実施形態の半導体製造方法について説明する。
図4は、第2実施形態の半導体製造工程を示す工程図、図5は、第2実施形態の半導体製造方法を示すフローチャートである。
尚、半導体基板1と接続端子電極2と、プリント基板3と基板端子電極3aの構成は、第1実施形態と同一であるので、詳細な説明を省略する。
【0041】
まず、無電解メッキ液7をプリント基板3上の基板端子電極3aに水滴上に塗布する(ステップ21)。図4の工程(1)は、基板端子電極3aに無電解メッキ液7が水滴上に塗布した状態の断面を示している。尚、以下の各工程の図は、各工程における断面を示している。
一方、工程(2)においては、接続端子電極2の突起部2bを、導電性接着剤5が入っている導電性接着剤漕5aに浸して、突起部2bに導電性接着剤5を付着させる(図5のステップ22)。
そして、工程(3)において、突起部2bを導電性接着剤漕5aから引き上げて、突起部2bに付着した導電性接着剤5を加熱して硬化させる(ステップ23)。
【0042】
次の工程(4)では、硬化した導電性接着剤5の付着した突起部2bを、無電解メッキ液7の付着した基板端子電極3a上にのせ、半導体基板1をプリント基板3にマウントする(ステップ24)。
そして、半導体基板1をプリント基板3に向かって加圧し、即ち、突起部2bをプリント基板3に向かって加圧し、同時に突起部2bに付着した導電性接着剤5と基板端子電極3aに付着した無電解メッキ液7を加熱する(ステップ25)。
【0043】
ここで、各々の接続端子電極2に対して、例えば、10〜50gの圧力を加える。よって、半導体基板1に24個の接続端子電極2がある場合は、240〜1200gの圧力を、半導体基板に加えることになる。また、加圧と同時に、例えば、80〜100℃の加熱も行う。
そして、工程(5)においては、工程(4)の加圧加熱により、接続端子電極2と基板端子電極3aの間に、無電解メッキ液7による合金接続層7bが形成され、硬化する(ステップ26)。
この合金接続層7bの形成は、無電解メッキ液7において、その溶液中の金属イオンと素地金属である基板端子電極3aとの間の置換反応による置換メッキ、或いは、無電解メッキ液7の還元剤の酸化反応によって生じる電子を金属イオンが受け取って、素地金属表面に析出する自己触媒メッキ等により形成される。
【0044】
よって、合金接続層7bを介して、突起部2bは基板端子電極3aと強固に接合し、接続端子電極2と基板端子電極3aとの電気的導通と同時に、接続端子電極2と基板端子電極3aとは、接合強度が高い状態で結合している。また、導電性接着剤5は、接続端子電極2と基板端子電極3aとの電気的導通と接合を補助的に支持している。
次に、工程(6)において、半導体基板1とプリント基板3の間に樹脂4を注入し(ステップ27)、樹脂4が硬化して(ステップ28)、実装が完了する。
【0045】
よって、以上の構成によれば、半導体基板1やプリント基板3に外部からの振動、衝撃、熱ストレスなどを受けたときでも、接続端子電極2と基板端子電極3aの間に、導電性接着剤5と無電解メッキ液7による合金接続層7bとを生成するので、接合状態が強固になる。
また、接続端子電極2に導電性接着剤5を付着する工程と、基板端子電極3aに無電解メッキ液7を付着させる工程を同時に行える。
【0046】
[第3実施形態]
次に、図6、7を参照して、本発明の第3実施形態の半導体製造方法について説明する。
図6は、第3実施形態の半導体製造工程を示す工程図、図7は、第3実施形態の半導体製造方法を示すフローチャートである。
尚、半導体基板1と接続端子電極2と、プリント基板3と基板端子電極3aの構成は、第1実施形態と同一であるので、詳細な説明を省略する。
【0047】
図6の工程(1)は、半導体基板1と接続端子電極2の断面を示している。尚、以下の各工程の図は、各工程における断面を示している。次に、工程(2)において、接続端子電極2の突起部2bを、無電解メッキ液7が入っている無電解メッキ液漕7aに浸す。そして、工程(3)において、突起部2bを無電解メッキ液漕7aから引き上げると、突起部2bに無電解メッキ液7が付着する(図7のステップ31)。
【0048】
次の工程(4)では、突起部2bに無電解メッキ液7を付着したまま突起部2bをプリント基板3の基板端子電極3aにのせ、半導体基板1をプリント基板3にマウントする(ステップ32)。
そして、半導体基板1をプリント基板3に向かって加圧し、即ち、突起部2bをプリント基板3に向かって加圧し、同時に突起部2bに付着した無電解メッキ液7を加熱する(ステップ33)。
【0049】
ここで、各々の接続端子電極2に対して、例えば、10〜50gの圧力を加える。よって、半導体基板1に24個の接続端子電極2がある場合は、240〜1200gの圧力を、半導体基板に加えることになる。また、加圧と同時に、例えば、80〜100℃の加熱も行う。
そして、工程(5)においては、工程(4)の加圧加熱により、突起部2bの周辺部と、接続端子電極2と基板端子電極3aとの間に、無電解メッキ液7による合金接続層7bが形成されて硬化する(ステップ34)。
この合金接続層7bの形成は、無電解メッキ液7において、その溶液中の金属イオンと素地金属である基板端子電極3aや突起部2bとの間の置換反応による置換メッキ、或いは、無電解メッキ液7の還元剤の酸化反応によって生じる電子を金属イオンが受け取って、素地金属表面に析出する自己触媒メッキ等により形成される。
【0050】
よって、合金接続層7bを介して、突起部2bは基板端子電極3aと強固に接合し、接続端子電極2と基板端子電極3aとの電気的導通と同時に、接続端子電極2と基板端子電極3aとは、接合強度が高い状態で結合している。
次に、工程(6)において、半導体基板1とプリント基板3の間に樹脂4を注入し(ステップ35)、樹脂4が硬化して(ステップ36)、実装が完了する。
【0051】
よって、以上の構成によれば、半導体基板1やプリント基板3に外部からの振動、衝撃、熱ストレスなどを受けたときでも、接続端子電極2と基板端子電極3aの間に、導電性接着剤5と無電解メッキ液7による合金接続層7bとを生成するので、接合状態が強固になる。
【0052】
[第4実施形態]
次に、図8、9を参照して、本発明の第4実施形態の半導体製造方法について説明する。
図8は、第4実施形態の半導体製造工程を示す工程図、図9は、第4実施形態の半導体製造方法を示すフローチャートである。
尚、半導体基板1と接続端子電極2と、プリント基板3と基板端子電極3aの構成は、第1実施形態と同一であるので、詳細な説明を省略する。
【0053】
まず、無電解メッキ液7をプリント基板3上の基板端子電極3aに水滴上に塗布する(ステップ41)。図4の工程(1)は、基板端子電極3aに無電解メッキ液7が水滴上に塗布した状態の断面を示している。尚、以下の各工程の図は、各工程における断面を示している。
次に、工程(2)では、接続端子電極2の突起部2bを、無電解メッキ液7が塗布された基板端子電極3aに近づける。
【0054】
次の工程(3)では、突起部2bをプリント基板3の基板端子電極3aにのせ、半導体基板1をプリント基板3にマウントする(ステップ42)。
そして、半導体基板1をプリント基板3に向かって加圧し、即ち、突起部2bをプリント基板3に向かって加圧し、同時に基板端子電極3aに付着した無電解メッキ液7を加熱する(ステップ43)。
【0055】
ここで、各々の接続端子電極2に対して、例えば、10〜50gの圧力を加える。よって、半導体基板1に24個の接続端子電極2がある場合は、240〜1200gの圧力を、半導体基板に加えることになる。また、加圧と同時に、例えば、80〜100℃の加熱も行う。
そして、工程(4)においては、工程(3)の加圧加熱により、突起部2bの周辺部と、接続端子電極2と基板端子電極3aとの間に、無電解メッキ液7による合金接続層7bが形成されて硬化する(ステップ44)。
この合金接続層7bの形成は、無電解メッキ液7において、その溶液中の金属イオンと素地金属である基板端子電極3aや突起部2bとの間の置換反応による置換メッキ、或いは、無電解メッキ液7の還元剤の酸化反応によって生じる電子を金属イオンが受け取って、素地金属表面に析出する自己触媒メッキ等により形成される。
【0056】
よって、合金接続層7bを介して、突起部2bは基板端子電極3aと強固に接合し、接続端子電極2と基板端子電極3aとの電気的導通と同時に、接続端子電極2と基板端子電極3aとは、接合強度が高い状態で結合している。
次に、工程(5)において、半導体基板1とプリント基板3の間に樹脂4を注入し(ステップ45)、樹脂4が硬化して(ステップ46)、実装が完了する。
【0057】
よって、以上の構成によれば、半導体基板1やプリント基板3に外部からの振動、衝撃、熱ストレスなどを受けたときでも、接続端子電極2と基板端子電極3aの間に、導電性接着剤5と無電解メッキ液7による合金接続層7bとを生成するので、接合状態が強固になる。
【0058】
[第5実施形態]
次に、図10、11を参照して、本発明の第5実施形態の半導体製造方法について説明する。
図10は、第5実施形態の半導体製造を示す図であり、図10(a)は、シリンジの断面図、図10(b)は、半導体製造の様子を示す斜視図である。また、図11は、第5実施形態の半導体製造方法を示すフローチャートである。
本実施形態は、第2実施形態と第4実施形態の半導体製造方法に基づいて行われる半導体製造方法において、プリント基板3上の基板端子電極3aに無電解メッキ液7を塗布する方法である。よって、半導体製造方法の無電解メッキ液7塗布工程を説明し、その他の半導体製造工程については、第2、4実施形態と同様であるので説明を省略する。
【0059】
まず、本実施形態のシリンジ9とそのシリンジ9に連結したニードル10の構成について説明する。
シリンジ9は、内部に無電解メッキ液7が入っており、シリンジ9内の無電解メッキ液7は所定の温度に保たれ、無電解メッキ液7の粘度が所定の値となるように、制御器12によって温度制御されている。
尚、無電解メッキ液7の所定温度は、予め定められた一定量の無電解メッキ液7が、後述するニードル10によってプリント基板3の基板端子電極3aに塗布できるような温度に設定されている。
【0060】
具体的には、無電解メッキ液7の材料や、ニードル10の内径寸法や、基板端子電極3aへの塗布速度等によって、適宜温度設定することができる。
また、シリンジ9には、無電解メッキ液7の塗布対象である基板端子電極3a側にニードル10が連結しており、シリンジ9は、ニードル10に向かって無電解メッキ液7が流れやすいように、漏斗形状になっている。
更に、シリンジ9は、制御器12により制御されているシリンジ駆動部11によって、ニードル10と共にプリント基板3方向に上下することができる。
【0061】
ニードル10は、無電解メッキ液7を塗布する基板端子電極3aが、ニードル10の下に来たときに、シリンジ9と共に基板端子電極3aに向かって下降し、制御器12の制御により、一定量の無電解メッキ液7が基板端子電極3aに水滴状に塗布される。そして、コンベヤ13によってニードル10の下に基板端子電極3aが来る毎に、ニードル10はシリンジ9と共に下降し、基板端子電極3aに一定量の無電解メッキ液7を水滴状に塗布する。
尚、上記の塗布方法は、プリント基板3がコンベヤ13によって搬送され、ニードル10の下に来た基板端子電極3aに対して、無電解メッキ液7を塗布しているが、シリンジ9とニードル10をプリント基板3上の平面内において、縦横(XY)方向に移動させて、その平面内の所定位置にある基板端子電極3aに、無電解メッキ液7を塗布する塗布方法と組み合わせても良い。
【0062】
次に、無電解メッキ液7の塗布工程の動作を図11を参照して説明する。
まず、シリンジ9に無電解メッキ液7を注入する(ステップ51)。また、同時に、注入された無電解メッキ液7は所定温度に制御される。
そして、プリント基板3をシリンジ9の下に搬送するコンベヤ13の移動量を調整し、プリント基板3上の基板端子電極3aの位置に対応するシリンジ9の動き(移動量、移動方向等)を、制御器12に入力する(ステップ52)。
次に、実装システムを起動する(ステップ53)と、プリント基板3がシリンジ9の下に搬送される(ステップ54)。
【0063】
そして、シリンジ9のニードル10が所定の基板端子電極3a上に移動して(ステップ55)、ニードル10が基板端子電極3aに向かって降下し、無電解メッキ液7を基板端子電極3aに塗布する(ステップ56)。
そして、シリンジ9がプリント基板3上を移動し、ニードル10によって各々の基板端子電極3aに、同様にして無電解メッキ液7を塗布する(ステップ57)。
シリンジ9下のプリント基板3の基板端子電極3aに対して無電解メッキ液7の塗布が完了すると、プリント基板3はコンベヤ13によって次の工程に搬送され(ステップ58)、次のプリント基板3がシリンジ9の下に搬送される(ステップ59)。
【0064】
よって、以上の構成によれば、近年の高密度実装の為に、電極間隔が狭く、各々の電極面積が小さく、電極数も多数である基板端子電極3aに対して、手作業による基板端子電極3aへの無電解メッキ液7の塗布よりも、迅速に一定量の無電解メッキ液7を塗布することができる。
【0065】
[第6実施形態]
次に、図12、13を参照して、本発明の第6実施形態の半導体製造方法について説明する。
図12は、第6実施形態の半導体製造を示す図であり、図12(a)は、スポンジの断面図、図12(b)は、半導体製造の様子を示す斜視図である。また、図13は、第6実施形態の半導体製造方法を示すフローチャートである。
本実施形態は、第2実施形態と第4実施形態の半導体製造方法に基づいて行われる半導体製造方法において、プリント基板3上の基板端子電極3aに無電解メッキ液7を塗布する方法である。よって、半導体製造方法の無電解メッキ液7塗布工程を説明し、その他の半導体製造工程については、第2、4実施形態と同様であるので説明を省略する。
【0066】
まず、本実施形態の無電解メッキ漕14とその無電解メッキ漕14に連結したスポンジ15の構成について説明する。
無電解メッキ漕14は、内部に無電解メッキ液7が入っており、無電解メッキ漕14内の無電解メッキ液7は所定の温度に保たれ、無電解メッキ液7の粘度が所定の値となるように、制御器17によって温度制御されている。
尚、無電解メッキ液7の所定温度は、予め定められた一定量の無電解メッキ液7が、後述するスポンジ15に含浸でき、プリント基板3の基板端子電極3aに塗布できるような温度に設定されている。
具体的には、無電解メッキ液7の材料や、スポンジ15の材料や、基板端子電極3aへの塗布速度等によって、適宜温度設定することができる。
【0067】
更に、無電解メッキ漕14は、制御器17により制御されているメッキ漕駆動部16によって、スポンジ15と共にプリント基板3方向に上下することができる。
スポンジ15は、無電解メッキ漕14に入っている無電解メッキ液7をスポンジ15全体に含浸でき、且つ、無電解メッキ液7がスポンジ15の底面(基板端子電極3aと接する面)に均一に含浸するように、スポンジ厚さやスポンジ材質が調整してある。
【0068】
また、スポンジ15は、無電解メッキ液7を塗布する基板端子電極3aが、無電解メッキ漕14の下に来たときに、無電解メッキ漕14と共に基板端子電極3aに向かって下降し、無電解メッキ液7が含浸したスポンジ15を基板端子電極3aに押し当てて、一定量の無電解メッキ液7を基板端子電極3aに水滴状に塗布する。即ち、スタンプのように塗布している。
そして、コンベヤ18によってスポンジ15の下に基板端子電極3aが来る毎に、スポンジ15は無電解メッキ漕14と共に下降し、基板端子電極3aに一定量の無電解メッキ液7を水滴状に塗布する。
【0069】
尚、上記の塗布方法は、プリント基板3がコンベヤ18によって搬送され、スポンジ15の下に来たプリント基板3の全ての基板端子電極3aに対して、スポンジ15によって、一度に無電解メッキ液7を塗布している。
しかし、スポンジ15によって無電解メッキ液7が塗布できる面積が小さく、プリント基板3の全ての基板端子電極3aに対して一度に無電解メッキ液7を塗布できない場合は、無電解メッキ漕14とスポンジ15をプリント基板3上の平面内において、縦横(XY)方向に移動させて、その平面内の所定位置にある複数の基板端子電極3aに、無電解メッキ液7を塗布する塗布方法としても良い。
【0070】
次に、無電解メッキ液7の塗布工程の動作を図13を参照して説明する。
まず、プリント基板3の全基板端子電極3aに対して一度に無電解メッキ液7を塗布可能な大きさであり、且つ、全基板端子電極3aに塗布する無電解メッキ液7を含浸することができる材質のスポンジを選択して、無電解メッキ漕14の無電解メッキ液7が含浸するように接続する(ステップ61)。
次に、無電解メッキ液漕7に無電解メッキ液7を注入する(ステップ62)。また、同時に、注入された無電解メッキ液7は所定温度に制御される。
そして、プリント基板3をスポンジ15の下に搬送するコンベヤ18の移動量を調整し、プリント基板3上の基板端子電極3aの位置に対応するスポンジ15の位置と押圧力等を、制御器17に入力する(ステップ63)。
【0071】
次に、実装システムを起動する(ステップ64)と、プリント基板3がスポンジ15の下に搬送される(ステップ65)。
ここで、スポンジ15の下に搬送されるプリント基板3は、プリント基板3の基板端子電極3a以外の部分が、無電解メッキ液7が付着しないように、マスキングされている。
そして、スポンジ15は、基板端子電極3aに向かって降下し、基板端子電極3aに押圧することにより無電解メッキ液7を全基板端子電極3aに一度に塗布する(ステップ66)。
スポンジ15が上昇し、所定の位置に戻ると、プリント基板3はコンベヤ18によって次の工程に搬送され(ステップ67)、次のプリント基板3がスポンジ15の下に搬送される(ステップ68)。
【0072】
近年の高密度実装の為に、電極間隔が狭く、各々の電極面積が小さく、電極数も多数である基板端子電極3aに対して、手作業による基板端子電極3aへの無電解メッキ液7の塗布よりも、同時に多数の基板端子電極3aに塗布できるので、迅速に無電解メッキ液7を塗布することができる。
また、基板端子電極3a以外の部分はマスキングされているので、基板端子電極3a以外に無電解メッキ液7は塗布されない。
【0073】
[第7実施形態]
次に、図14を参照して、本発明の第7実施形態の半導体装置について説明する。
図14は、第7実施形態の半導体装置の断面を示す断面図であり、図14(a)は、無電解メッキ液が付着する以前の断面図、図14(b)は、無電解メッキ液が付着した後の断面図である。
【0074】
本実施形態は、第1実施形態から第6実施形態の半導体製造方法によって製造される半導体装置において、プリント基板3上の基板端子電極3aの周囲に、基板端子電極面より高い段差をレジスト19によって設けた半導体装置である。
また、本実施形態は、無電解メッキ液7を基板端子電極3aに塗布する場合でも、接続端子電極2の突起部2bに無電解メッキ液7が付着したまま、突起部2bを基板端子電極3aに接合する場合にも適用できる。
【0075】
図14(a)の左側に示した基板端子電極3aには、基板端子電極3aの周囲にレジスト19よる段差を設けずに、図14(a)の右側に示した基板端子電極3aには、基板端子電極3aの周囲に、基板端子電極面より高い段差をレジスト19によって設け、基板端子電極3aの端部もレジスト19で覆った。
次に、この左右の基板端子電極3aに無電解メッキ液7を塗布した場合を、図14(b)に示す。
ここで、基板端子電極3aに付着した無電解メッキ液7が大量である場合は、図14(b)の左に示したように、基板端子電極3aから無電解メッキ液7が流れてしまう。
【0076】
または、近年の高密度実装に対応するために、基板端子電極3aの面積が小さかったり、基板端子電極3a間が狭かったりすると、付着させる無電解メッキ液7の量の制御が困難になる。
即ち、付着させる無電解メッキ液7の量が適正な量よりも多くなると、基板端子電極3aから無電解メッキ液7が流れてしまい、隣接する基板端子電極3aやその他の回路パターンに接触して短絡する可能性が生ずる。
そこで、付着させる無電解メッキ液7の量を少なくすると、流れ出ることは少なくなるが、今度は、生成される合金接続層7bの厚みが薄くなり、接合強度が弱くなってしまう。
【0077】
よって、本実施形態では、図14(b)の右側に示したように、基板端子電極3aの周囲に、基板端子電極面より高い段差をレジスト19によって設け、基板端子電極3aの端部もレジスト19で覆うことにより、所定量の無電解メッキ液を基板端子電極3aに塗布することができる。
更には、このレジスト19による段差のない場合に比較して、生成される合金接続層7bは、厚くなるので、接続端子電極2と基板端子電極3aとを堅固に接合することができる。
また、基板端子電極3aに付着する無電解メッキ液7の量の制御が容易になり、無電解メッキ液7が流れ出て、隣接する基板端子電極3aやその他の回路パターンに接触して短絡することも無くなる。
【0078】
[第8実施形態]次に、図15を参照して、本発明の第8実施形態の半導体装置について説明する。図15は、第8実施形態の半導体装置の断面を示す断面図であり、図15(a)は、無電解メッキ液が流れ出た時の断面図、図15(b)は、立体プリント基板に無電解メッキ液が付着した時の断面図、図15(c)は、立体プリント基板の実装斜視図である。
【0079】
本実施形態は、第1実施形態から第6実施形態の半導体製造方法によって製造される半導体装置において、突起部2bと接合する基板端子電極20aの接合電極面を接合電極面の周囲の基板端子電極面より低くし、基板端子電極20aと接するプリント基板は、基板端子電極20aの高低に沿った形状の立体プリント基板20である半導体装置である。
また、本実施形態は、無電解メッキ液7を基板端子電極20aに塗布する場合でも、接続端子電極2の突起部2bに無電解メッキ液7が付着したまま、突起部2bを基板端子電極20aに接合する場合にも適用できる。
【0080】
まず、図15(a)は、平坦なプリント基板3上の基板端子電極3aに対して、無電解メッキ液7が付着したときに、基板端子電極3aから無電解メッキ液7が流れ出た場合を示す。
基板端子電極3aに付着した無電解メッキ液7が大量である場合は、図15(a)に示したように、基板端子電極3aから無電解メッキ液7が流れてしまう。
【0081】
また、近年の高密度実装に対応するために、基板端子電極3aの面積が小さかったり、基板端子電極3a間が狭かったりすると、付着させる無電解メッキ液7の量の制御が困難になる。
即ち、付着させる無電解メッキ液7の量が適正な量よりも多くなると、基板端子電極3aから無電解メッキ液7が流れてしまい、隣接する基板端子電極3aやその他の回路パターンに接触して短絡する可能性が生ずる。
そこで、付着させる無電解メッキ液7の量を少なくすると、流れ出ることは少なくなるが、今度は、生成される合金接続層7bの厚みが薄くなり、接合強度が弱くなってしまう。
【0082】
よって、本意実施形態では、図15(b)に示したように、突起部2bと接合する基板端子電極20aの接合電極面を接合電極面の周囲の基板端子電極面より低くし、基板端子電極20aと接するプリント基板は、基板端子電極20aの高低に沿った形状の立体プリント基板20とすることによって、所定量の無電解メッキ液を基板端子電極3aに塗布することができる。
更には、この低い接合電極面がない、即ち、平らな基板端子電極面である場合と比較して、生成される合金接続層7bは、厚くなるので、接続端子電極2と基板端子電極20aとを堅固に接合することができる。
また、基板端子電極20aに付着する無電解メッキ液7の量の制御が容易になり、無電解メッキ液7が流れ出て、隣接する基板端子電極やその他の回路パターンに接触して短絡することも無くなる。
【0083】
また、本実施形態の立体プリント基板20と基板端子電極20aとを用いた場合の実装斜視図を図15(c)に示す。半導体基板1は矢印方向の面に、接続端子電極2を有し、同矢印方向に立体プリント基板20に実装される。
【0084】
【発明の効果】
この半導体製造方法によれば、半導体やプリント基板に外部からの振動、衝撃、熱ストレスなどを受けたときでも、半導体の接続端子電極とプリント基板の基板端子電極間に、導電性接着剤と無電解メッキ液による合金接続層とを生成するので、接合状態を強固にすることができる。
また、導電性接着剤と基板端子電極間に合金接続層を生成したので、導電性接着剤と基板端子電極間が剥離することを無くすことができる。
また、接続端子電極と基板端子電極の接合後に、液体状の樹脂を注入する際の半導体の浮き上がりに対しても、接続端子電極と基板端子電極との接合が十分に強固になったので、接合状態が不安定になることを無くすことができる。
また、超音波溶接法や加熱圧接法を用いずに、接続端子電極と基板端子電極との接合状態を良好にすることができる。
【0085】
【図面の簡単な説明】
【図1】半導体基板の接続端子電極側と接続端子電極を示す斜視図であり、図1(a)は、半導体基板の接続端子電極側の斜視図であり、図1(b)は、接続端子電極の斜視図である。
【図2】第1実施形態の半導体製造工程を示す工程図である。
【図3】第1実施形態の半導体製造方法を示すフローチャートである。
【図4】第2実施形態の半導体製造工程を示す工程図である。
【図5】第2実施形態の半導体製造方法を示すフローチャートである。
【図6】第3実施形態の半導体製造工程を示す工程図である。
【図7】第3実施形態の半導体製造方法を示すフローチャートである。
【図8】第4実施形態の半導体製造工程を示す工程図である。
【図9】第4実施形態の半導体製造方法を示すフローチャートである。
【図10】第5実施形態の半導体製造を示す図であり、図10(a)は、シリンジの断面図、図10(b)は、半導体製造の様子を示す斜視図である。
【図11】第5実施形態の半導体製造方法を示すフローチャートである。
【図12】図12は、第6実施形態の半導体製造を示す図であり、図12(a)は、スポンジの断面図、図12(b)は、半導体製造の様子を示す斜視図である。
【図13】第6実施形態の半導体製造方法を示すフローチャートである。
【図14】図14は、第7実施形態の半導体装置の断面を示す断面図であり、図14(a)は、無電解メッキ液が付着する以前の断面図、図14(b)は、無電解メッキ液が付着した後の断面図である。
【図15】図15は、第8実施形態の半導体装置の断面を示す断面図であり、図15(a)は、無電解メッキ液が流れ出た時の断面図、図15(b)は、立体プリント基板に無電解メッキ液が付着した時の断面図、図15(c)は、立体プリント基板の実装斜視図である。
【符号の説明】
1 半導体基板
2 接続端子電極
2a アルミ電極
2b 突起部
3 プリント基板
3a 基板端子電極
4 樹脂
5 導電性接着剤
5a 導電性接着剤漕
7 無電解メッキ液
7a 無電解メッキ液漕
7b 合金接続層
9 シリンジ
10 ニードル
11 シリンジ駆動部
12 制御器
13 コンベヤ
14 無電解メッキ漕
15 スポンジ
16 メッキ漕駆動部
17 制御器
18 コンベヤ
19 レジスト
20 立体プリント基板
20a 基板端子電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for a semiconductor manufacturing method for manufacturing a semiconductor device.
[0002]
[Prior art]
As a method of mounting a semiconductor such as an LSI on a printed circuit board, the LSI terminal electrode and the printed circuit board terminal electrode are joined via a conductive adhesive, and a liquid resin is injected between the LSI and the printed circuit board. The semiconductor was mounted on the printed circuit board by sealing.
In addition, an LSI terminal electrode and a printed circuit board terminal electrode are bonded to each other by a mounting method using a heat pressure method without using a conductive adhesive.
[0003]
[Problems to be solved by the invention]
However, in the conventional mounting method using a conductive adhesive, since the bonding strength of the conductive adhesive is low, when the LSI or the printed circuit board is subjected to external vibration, impact, thermal stress, etc., the LSI The bonding state by the conductive adhesive between the terminal electrode and the printed circuit board terminal electrode cannot be maintained well.
In the mounting method using the conductive adhesive, the conductive adhesive and the printed circuit board terminal electrode may be peeled off depending on the state of the surface treatment of the printed circuit board terminal electrode.
Furthermore, there is a problem that the LSI is lifted when the liquid resin is injected after the bonding with the conductive adhesive, and the bonding state between the LSI terminal electrode and the printed circuit board terminal electrode becomes unstable.
[0004]
In addition, in the mounting method using the heating and pressure welding method, it is difficult to apply uniform pressure to each terminal electrode of the LSI, particularly in a large-sized LSI. Due to the difference in shrinkage ratio with respect to the temperature of the printed circuit board, there is a problem that residual stress remains in the joint portion between the LSI terminal electrode and the printed circuit board terminal electrode, and the reliability of the joint state in the joint portion is lowered.
[0005]
The present invention has been made in view of such a situation, and an object of the present invention is to provide a semiconductor device and a semiconductor manufacturing method thereof in which a bonding state between a semiconductor and a printed circuit board is improved.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a semiconductor device of the present invention is a semiconductor device comprising one or more connection terminal electrodes on a semiconductor substrate having protrusions directed toward the substrate terminal electrode of the printed circuit board,
A conductive adhesive is attached to the protruding portion of the connection terminal electrode, the conductive adhesive attached to the protruding portion is cured by heating, and an electroless plating solution is applied to the tip of the cured conductive adhesive. The protrusion is brought into contact with the substrate terminal electrode with the electroless plating solution being attached and heated by pressure, and an alloy connection layer is formed between the protrusion and the substrate terminal electrode to generate the protrusion. And a substrate terminal electrode, and a resin is injected between the printed circuit board and the semiconductor substrate after the bonding.
[0007]
According to this semiconductor device, even when the semiconductor or the printed circuit board is subjected to external vibration, impact, thermal stress, etc., the conductive adhesive and the electroless electrode are connected between the semiconductor connection terminal electrode and the printed circuit board terminal electrode. Since the alloy connection layer by the plating solution is generated, the bonding state can be strengthened.
In addition, since the alloy connection layer is generated between the conductive adhesive and the substrate terminal electrode, it is possible to eliminate peeling between the conductive adhesive and the substrate terminal electrode.
In addition, the bonding between the connection terminal electrode and the substrate terminal electrode is sufficiently strong against the floating of the semiconductor when the liquid resin is injected after the connection terminal electrode and the substrate terminal electrode are bonded. The state can be prevented from becoming unstable.
[0008]
The semiconductor manufacturing method of the present invention is a semiconductor manufacturing method of a semiconductor device provided on a semiconductor substrate with one or more connection terminal electrodes having projections directed toward the substrate terminal electrodes of the printed circuit board,
A conductive adhesive is attached to the protruding portion of the connection terminal electrode, the conductive adhesive attached to the protruding portion is cured by heating, and an electroless plating solution is applied to the tip of the cured conductive adhesive. The protrusion is brought into contact with the substrate terminal electrode with the electroless plating solution being attached and heated by pressure, and an alloy connection layer is formed between the protrusion and the substrate terminal electrode to generate the protrusion. And the substrate terminal electrode are joined, and a resin is injected between the printed circuit board and the semiconductor substrate after the joining.
[0009]
According to this semiconductor manufacturing method, even when a semiconductor or a printed circuit board is subjected to external vibration, impact, thermal stress, etc., there is no conductive adhesive between the semiconductor connection terminal electrode and the printed circuit board terminal electrode. Since the alloy connection layer is generated by the electrolytic plating solution, the bonding state becomes strong.
Moreover, since the alloy connection layer was generated between the conductive adhesive and the substrate terminal electrode, the conductive adhesive and the substrate terminal electrode were not peeled off.
In addition, the bonding between the connection terminal electrode and the substrate terminal electrode is sufficiently strong against the floating of the semiconductor when the liquid resin is injected after the connection terminal electrode and the substrate terminal electrode are bonded. The situation is no longer unstable.
Moreover, the joining state of the connection terminal electrode and the substrate terminal electrode became good without using the heating and pressure welding method.
[0010]
The semiconductor device of the present invention is a semiconductor device provided with one or more connection terminal electrodes on the semiconductor substrate having protrusions directed toward the substrate terminal electrodes of the printed circuit board,
A conductive adhesive is attached to the protrusions of the connection terminal electrode, and the conductive adhesive attached to the protrusions is heated and cured,
Place the electroless plating solution in the form of water droplets on the substrate terminal electrode,
The protruding portion having the cured conductive adhesive adhered is brought into contact with the substrate terminal electrode to which the electroless plating solution has been adhered and heated under pressure, and an alloy connection layer is formed between the protruding portion and the substrate terminal electrode. The protrusion is formed and bonded to the substrate terminal electrode, and after the bonding, a resin is injected between the printed circuit board and the semiconductor substrate.
[0011]
According to this semiconductor device, even when the semiconductor or the printed circuit board is subjected to external vibration, impact, thermal stress, etc., the conductive adhesive and the electroless electrode are connected between the semiconductor connection terminal electrode and the printed circuit board terminal electrode. Since the alloy connection layer is generated by the plating solution, the bonding state becomes strong.
Moreover, since the alloy connection layer was generated between the conductive adhesive and the substrate terminal electrode, the conductive adhesive and the substrate terminal electrode were not peeled off.
In addition, the bonding between the connection terminal electrode and the substrate terminal electrode is sufficiently strong against the floating of the semiconductor when the liquid resin is injected after the connection terminal electrode and the substrate terminal electrode are bonded. The situation is no longer unstable.
Moreover, the joining state of the connection terminal electrode and the substrate terminal electrode became good without using the heating and pressure welding method.
Further, the step of attaching the conductive adhesive to the connection terminal electrode and the step of attaching the electroless plating solution to the substrate terminal electrode can be performed simultaneously.
[0012]
The semiconductor manufacturing method of the present invention is a semiconductor manufacturing method of a semiconductor device provided on a semiconductor substrate with one or more connection terminal electrodes having projections directed toward the substrate terminal electrodes of the printed circuit board,
A conductive adhesive is attached to the protrusions of the connection terminal electrode, and the conductive adhesive attached to the protrusions is heated and cured,
Place the electroless plating solution in the form of water droplets on the substrate terminal electrode,
The protruding portion having the cured conductive adhesive adhered is brought into contact with the substrate terminal electrode to which the electroless plating solution has been adhered and heated under pressure, and an alloy connection layer is formed between the protruding portion and the substrate terminal electrode. The protrusion and the substrate terminal electrode are bonded to each other, and a resin is injected between the printed circuit board and the semiconductor substrate after the bonding.
[0013]
According to this semiconductor manufacturing method, even when a semiconductor or a printed circuit board is subjected to external vibration, impact, thermal stress, etc., there is no conductive adhesive between the semiconductor connection terminal electrode and the printed circuit board terminal electrode. Since the alloy connection layer is generated by the electrolytic plating solution, the bonding state becomes strong.
Moreover, since the alloy connection layer was generated between the conductive adhesive and the substrate terminal electrode, the conductive adhesive and the substrate terminal electrode were not peeled off.
In addition, the bonding between the connection terminal electrode and the substrate terminal electrode is sufficiently strong against the floating of the semiconductor when the liquid resin is injected after the connection terminal electrode and the substrate terminal electrode are bonded. The situation is no longer unstable.
Moreover, the joining state of the connection terminal electrode and the substrate terminal electrode became good without using the heating and pressure welding method.
Further, the step of attaching the conductive adhesive to the connection terminal electrode and the step of attaching the electroless plating solution to the substrate terminal electrode can be performed simultaneously.
[0014]
The semiconductor device of the present invention is a semiconductor device provided with one or more connection terminal electrodes on the semiconductor substrate having protrusions directed toward the substrate terminal electrodes of the printed circuit board,
An electroless plating solution is attached to the tip of the protruding portion of the connection terminal electrode, the protruding portion is brought into contact with the substrate terminal electrode while the electroless plating solution is attached, and is heated under pressure. A semiconductor comprising: an alloy connection layer formed between substrate terminal electrodes to bond the protrusion and the substrate terminal electrode; and a resin is injected between the printed circuit board and the semiconductor substrate after the bonding apparatus.
[0015]
According to this semiconductor device, even when a semiconductor or a printed circuit board is subjected to external vibration, shock, thermal stress, etc., an alloy connection between the semiconductor connection terminal electrode and the printed circuit board terminal electrode by an electroless plating solution Since the layer is generated, the bonding state becomes strong.
In addition, the bonding between the connection terminal electrode and the substrate terminal electrode is sufficiently strong against the floating of the semiconductor when the liquid resin is injected after the connection terminal electrode and the substrate terminal electrode are bonded. The situation is no longer unstable.
[0016]
The semiconductor manufacturing method of the present invention is a semiconductor manufacturing method of a semiconductor device provided on a semiconductor substrate with one or more connection terminal electrodes having projections directed toward the substrate terminal electrodes of the printed circuit board,
An electroless plating solution is attached to the tip of the protruding portion of the connection terminal electrode, the protruding portion is brought into contact with the substrate terminal electrode while the electroless plating solution is attached, and is heated under pressure. An alloy connection layer is generated between the substrate terminal electrodes to bond the projection and the substrate terminal electrode, and after the bonding, a resin is injected between the printed circuit board and the semiconductor substrate.
[0017]
According to this semiconductor manufacturing method, even when an external vibration, impact, thermal stress, or the like is applied to a semiconductor or a printed circuit board, an alloy with an electroless plating solution is formed between the connection terminal electrode of the semiconductor and the substrate terminal electrode of the printed circuit board. Since the connection layer is generated, the bonding state becomes strong.
In addition, the bonding between the connection terminal electrode and the substrate terminal electrode is sufficiently strong against the floating of the semiconductor when the liquid resin is injected after the connection terminal electrode and the substrate terminal electrode are bonded. The situation is no longer unstable.
[0018]
The semiconductor device of the present invention is a semiconductor device provided with one or more connection terminal electrodes on the semiconductor substrate having protrusions directed toward the substrate terminal electrodes of the printed circuit board,
Place the electroless plating solution in the form of water droplets on the substrate terminal electrode,
The protrusion is brought into contact with the substrate terminal electrode to which the electroless plating solution is adhered and heated under pressure to generate an alloy connection layer between the protrusion and the substrate terminal electrode, thereby generating the protrusion and the substrate terminal. An electrode is bonded, and after the bonding, a resin is injected between the printed circuit board and the semiconductor substrate.
[0019]
According to this semiconductor device, even when a semiconductor or a printed circuit board is subjected to external vibration, shock, thermal stress, etc., an alloy connection between the semiconductor connection terminal electrode and the printed circuit board terminal electrode by an electroless plating solution Since the layer is generated, the bonding state becomes strong.
In addition, the bonding between the connection terminal electrode and the substrate terminal electrode is sufficiently strong against the floating of the semiconductor when the liquid resin is injected after the connection terminal electrode and the substrate terminal electrode are bonded. The situation is no longer unstable.
[0020]
The semiconductor manufacturing method of the present invention is a semiconductor manufacturing method of a semiconductor device provided on a semiconductor substrate with one or more connection terminal electrodes having projections directed toward the substrate terminal electrodes of the printed circuit board,
Place the electroless plating solution in the form of water droplets on the substrate terminal electrode,
The protrusion is brought into contact with the substrate terminal electrode to which the electroless plating solution is adhered and heated under pressure to generate an alloy connection layer between the protrusion and the substrate terminal electrode, thereby generating the protrusion and the substrate terminal. Electrodes are bonded, and resin is injected between the printed circuit board and the semiconductor substrate after the bonding.
[0021]
According to this semiconductor manufacturing method, even when an external vibration, impact, thermal stress, or the like is applied to a semiconductor or a printed circuit board, an alloy with an electroless plating solution is formed between the connection terminal electrode of the semiconductor and the substrate terminal electrode of the printed circuit board. Since the connection layer is generated, the bonding state becomes strong.
In addition, the bonding between the connection terminal electrode and the substrate terminal electrode is sufficiently strong against the floating of the semiconductor when the liquid resin is injected after the connection terminal electrode and the substrate terminal electrode are bonded. The situation is no longer unstable.
[0022]
The semiconductor device of the present invention is characterized in that the electroless plating solution in a syringe is applied to the substrate terminal electrode in the form of water droplets by a needle connected to the syringe.
[0023]
According to this semiconductor device, because of high-density mounting in recent years, there is no need to manually attach the substrate terminal electrode to the substrate terminal electrode having a narrow electrode interval, a small electrode area, and a large number of electrodes. A certain amount of electroless plating solution can be applied more rapidly than application of the electrolytic plating solution.
[0024]
The semiconductor manufacturing method of the present invention is characterized in that the electroless plating solution in a syringe is applied to the substrate terminal electrode in the form of water droplets by a needle connected to the syringe.
[0025]
According to this semiconductor manufacturing method, because of high-density mounting in recent years, the electrode spacing is narrow, the area of each electrode is small, and the number of electrodes is large. A certain amount of electroless plating can be applied more rapidly than application of the electroless plating solution.
[0026]
The semiconductor device of the present invention masks portions other than the substrate terminal electrode,
The sponge impregnated with the electroless plating solution is brought into contact with the substrate terminal electrode, and the electroless plating solution is applied to the substrate terminal electrode in the form of water droplets.
[0027]
According to this semiconductor device, because of high-density mounting in recent years, there is no need to manually attach the substrate terminal electrode to the substrate terminal electrode having a narrow electrode interval, a small electrode area, and a large number of electrodes. Since it can apply | coat to many board | substrate terminal electrodes simultaneously rather than application | coating of an electroplating liquid, an electroless-plating liquid can be apply | coated rapidly.
Moreover, since portions other than the substrate terminal electrode are masked, the electroless plating solution is not applied to the portion other than the substrate terminal electrode.
[0028]
The semiconductor manufacturing method of the present invention masks parts other than the substrate terminal electrode,
The sponge impregnated with the electroless plating solution is brought into contact with the substrate terminal electrode, and the electroless plating solution is applied to the substrate terminal electrode in the form of water droplets.
[0029]
According to this semiconductor manufacturing method, because of high-density mounting in recent years, the electrode spacing is narrow, the area of each electrode is small, and the number of electrodes is large. Since it can apply | coat to many board | substrate terminal electrodes simultaneously rather than application | coating of an electroless-plating liquid, an electroless-plating liquid can be apply | coated rapidly.
Moreover, since portions other than the substrate terminal electrode are masked, the electroless plating solution is not applied to the portion other than the substrate terminal electrode.
[0030]
The semiconductor device according to the present invention is characterized in that the substrate terminal electrode is provided with a step higher than the substrate terminal electrode surface by a resist around the substrate terminal electrode.
[0031]
According to this semiconductor device, since the substrate terminal electrode is provided with a step higher than the substrate terminal electrode surface by the resist, a predetermined amount of electroless plating solution can be applied to the substrate terminal electrode.
Or since the alloy connection layer produced | generated becomes thick compared with the case where there is no level | step difference by this resist, a connection terminal electrode and a board | substrate terminal electrode can be joined firmly.
[0032]
In the semiconductor device of the present invention, the substrate terminal electrode has a bonding electrode surface that is bonded to the protrusion, lower than the substrate terminal electrode surface around the bonding electrode surface,
The printed circuit board in contact with the substrate terminal electrode is a three-dimensional printed circuit board having a shape along a height of the substrate terminal electrode.
[0033]
According to this semiconductor device, since the bonding electrode surface bonded to the protrusion is lower than the surrounding substrate terminal electrode surface, a predetermined amount of electroless plating solution can be applied to the substrate terminal electrode.
Alternatively, compared to the case where there is no low bonding electrode surface, that is, a flat substrate terminal electrode surface, the generated alloy connection layer is thick, so that the connection terminal electrode and the substrate terminal electrode are firmly bonded. can do.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
With reference to FIGS. 1-3, the semiconductor manufacturing method of 1st Embodiment of this invention is demonstrated.
FIG. 1 is a perspective view showing a connection terminal electrode side and a connection terminal electrode of a semiconductor substrate, FIG. 2 is a process diagram showing a semiconductor manufacturing process of the first embodiment, and FIG. 3 is a semiconductor manufacturing method of the first embodiment. It is a flowchart to show.
As shown in FIG. 1A, a semiconductor substrate 1 has a plurality of connection terminal electrodes 2 connected to substrate terminal electrodes 3a of a printed circuit board 3 to be described later arranged in a line facing the printed circuit board 3. . The arrangement of the connection terminal electrodes 2 is an arrangement for increasing the mounting density of the semiconductor substrate 1 with respect to the printed board 3.
Further, as shown in FIG. 1B, each connection terminal electrode 2 includes an aluminum electrode 2a on the side of the semiconductor substrate 1 and a substrate terminal electrode 3a on the aluminum electrode 2a (above FIG. 1B). And a protrusion 2b having a tip that decreases toward the end.
[0035]
Next, with reference to FIG. 2 and FIG. 3, the semiconductor manufacturing method of this embodiment is demonstrated sequentially.
Step (1) in FIG. 2 shows a cross section of the semiconductor substrate 1 and the connection terminal electrode 2. In addition, the figure of each following process has shown the cross section in each process.
Next, in the step (2), the protrusion 2b of the connection terminal electrode 2 is immersed in a conductive adhesive rod 5a containing the conductive adhesive 5, and the conductive adhesive 5 is attached to the protrusion 2b. (Step 11 in FIG. 3).
In step (3), the protrusion 2b is pulled up from the conductive adhesive rod 5a, and the conductive adhesive 5 attached to the protrusion 2b is heated and cured (step 12).
[0036]
In the next step (4), the tip of the cured conductive adhesive 5 is immersed in the electroless plating bath 7a (step 13) and pulled up from the electroless plating bath 7a, as shown in step (5). In addition, the electroless plating solution 7 adheres to the tip of the cured conductive adhesive 5.
Next, in step (6), the protrusion 2b is placed on the substrate terminal electrode 3a of the printed circuit board 3 while the electroless plating solution 7 is adhered to the tip of the cured conductive adhesive 5, and the semiconductor substrate 1 is mounted on the printed circuit board. 3 is mounted (step 14).
Then, the semiconductor substrate 1 is pressurized toward the printed circuit board 3, that is, the protrusion 2b is pressurized toward the printed circuit board 3, and at the same time, the conductive adhesive 5 and the electroless plating solution 7 adhering to the protrusion 2b are heated. (Step 15).
[0037]
Here, for example, a pressure of 10 to 50 g is applied to each connection terminal electrode 2. Therefore, when there are 24 connection terminal electrodes 2 on the semiconductor substrate 1, a pressure of 240 to 1200 g is applied to the semiconductor substrate. In addition, for example, heating at 80 to 100 ° C. is performed simultaneously with pressurization.
In the step (7), an alloy connection layer 7b is formed by the electroless plating solution 7 between the connection terminal electrode 2 and the substrate terminal electrode 3a by the pressure heating in the step (6), and is cured (step). 16).
The alloy connection layer 7b is formed by replacing the electroless plating solution 7 by a displacement reaction between the metal ions in the solution and the substrate terminal electrode 3a, which is a base metal, or reducing the electroless plating solution 7 It is formed by autocatalytic plating or the like in which metal ions receive electrons generated by the oxidation reaction of the agent and deposit on the surface of the base metal.
[0038]
Therefore, the protrusion 2b is firmly joined to the substrate terminal electrode 3a via the alloy connection layer 7b, and simultaneously with the electrical conduction between the connection terminal electrode 2 and the substrate terminal electrode 3a, the connection terminal electrode 2 and the substrate terminal electrode 3a. Are bonded in a state where the bonding strength is high. Due to the strong connection by the alloy connection layer 7b, a good connection state can be maintained even if residual stress remains. In addition, the conductive adhesive 5 supports the electrical continuity and bonding between the connection terminal electrode 2 and the substrate terminal electrode 3a in an auxiliary manner.
Next, in step (8), the resin 4 is injected between the semiconductor substrate 1 and the printed board 3 (step 17), the resin 4 is cured (step 18), and the mounting is completed.
[0039]
Therefore, according to the above configuration, even when the semiconductor substrate 1 or the printed circuit board 3 is subjected to external vibration, impact, thermal stress, or the like, the conductive adhesive is interposed between the connection terminal electrode 2 and the substrate terminal electrode 3a. 5 and the alloy connection layer 7b made of the electroless plating solution 7 are produced, so that the joining state becomes strong.
[0040]
[Second Embodiment]
Next, a semiconductor manufacturing method according to the second embodiment of the present invention will be described with reference to FIGS.
FIG. 4 is a process diagram showing a semiconductor manufacturing process of the second embodiment, and FIG. 5 is a flowchart showing a semiconductor manufacturing method of the second embodiment.
The configurations of the semiconductor substrate 1, the connection terminal electrode 2, the printed circuit board 3, and the substrate terminal electrode 3a are the same as those in the first embodiment, and thus detailed description thereof is omitted.
[0041]
First, the electroless plating solution 7 is applied onto the substrate terminal electrode 3a on the printed circuit board 3 on the water droplets (step 21). Step (1) in FIG. 4 shows a cross section in a state where the electroless plating solution 7 is applied to the substrate terminal electrode 3a on the water droplets. In addition, the figure of each following process has shown the cross section in each process.
On the other hand, in the step (2), the protrusion 2b of the connection terminal electrode 2 is immersed in a conductive adhesive rod 5a containing the conductive adhesive 5, and the conductive adhesive 5 is attached to the protrusion 2b. (Step 22 in FIG. 5).
In step (3), the protrusion 2b is pulled up from the conductive adhesive rod 5a, and the conductive adhesive 5 attached to the protrusion 2b is heated and cured (step 23).
[0042]
In the next step (4), the protrusion 2b to which the hardened conductive adhesive 5 is attached is placed on the substrate terminal electrode 3a to which the electroless plating solution 7 is attached, and the semiconductor substrate 1 is mounted on the printed board 3 ( Step 24).
Then, the semiconductor substrate 1 is pressed toward the printed circuit board 3, that is, the protrusion 2b is pressed toward the printed circuit board 3, and at the same time, the conductive adhesive 5 attached to the protrusion 2b and the substrate terminal electrode 3a are attached. The electroless plating solution 7 is heated (step 25).
[0043]
Here, for example, a pressure of 10 to 50 g is applied to each connection terminal electrode 2. Therefore, when there are 24 connection terminal electrodes 2 on the semiconductor substrate 1, a pressure of 240 to 1200 g is applied to the semiconductor substrate. In addition, for example, heating at 80 to 100 ° C. is performed simultaneously with pressurization.
In the step (5), an alloy connection layer 7b is formed by the electroless plating solution 7 between the connection terminal electrode 2 and the substrate terminal electrode 3a by the pressure heating in the step (4), and is cured (step). 26).
The alloy connection layer 7b is formed by replacing the electroless plating solution 7 by a displacement reaction between the metal ions in the solution and the substrate terminal electrode 3a, which is a base metal, or reducing the electroless plating solution 7 It is formed by autocatalytic plating or the like in which metal ions receive electrons generated by the oxidation reaction of the agent and deposit on the surface of the base metal.
[0044]
Therefore, the protrusion 2b is firmly bonded to the substrate terminal electrode 3a through the alloy connection layer 7b, and simultaneously with the electrical conduction between the connection terminal electrode 2 and the substrate terminal electrode 3a, the connection terminal electrode 2 and the substrate terminal electrode 3a. Are bonded in a state where the bonding strength is high. In addition, the conductive adhesive 5 supports the electrical continuity and bonding between the connection terminal electrode 2 and the substrate terminal electrode 3a in an auxiliary manner.
Next, in step (6), the resin 4 is injected between the semiconductor substrate 1 and the printed board 3 (step 27), the resin 4 is cured (step 28), and the mounting is completed.
[0045]
Therefore, according to the above configuration, even when the semiconductor substrate 1 or the printed circuit board 3 is subjected to external vibration, impact, thermal stress, or the like, the conductive adhesive is interposed between the connection terminal electrode 2 and the substrate terminal electrode 3a. 5 and the alloy connection layer 7b made of the electroless plating solution 7 are produced, so that the joining state becomes strong.
Further, the step of attaching the conductive adhesive 5 to the connection terminal electrode 2 and the step of attaching the electroless plating solution 7 to the substrate terminal electrode 3a can be performed simultaneously.
[0046]
[Third Embodiment]
Next, with reference to FIGS. 6 and 7, a semiconductor manufacturing method according to a third embodiment of the present invention will be described.
FIG. 6 is a process diagram showing the semiconductor manufacturing process of the third embodiment, and FIG. 7 is a flowchart showing the semiconductor manufacturing method of the third embodiment.
The configurations of the semiconductor substrate 1, the connection terminal electrode 2, the printed circuit board 3, and the substrate terminal electrode 3a are the same as those in the first embodiment, and thus detailed description thereof is omitted.
[0047]
Step (1) in FIG. 6 shows a cross section of the semiconductor substrate 1 and the connection terminal electrode 2. In addition, the figure of each following process has shown the cross section in each process. Next, in the step (2), the protrusion 2b of the connection terminal electrode 2 is immersed in an electroless plating bath 7a containing the electroless plating solution 7. In step (3), the protrusion 2b is Electroless plating bath 7a The electroless plating solution 7 adheres to the protrusion 2b (step 31 in FIG. 7).
[0048]
In the next step (4), the protrusion 2b is placed on the substrate terminal electrode 3a of the printed circuit board 3 with the electroless plating solution 7 attached to the protrusion 2b, and the semiconductor substrate 1 is mounted on the printed circuit board 3 (step 32). .
Then, the semiconductor substrate 1 is pressurized toward the printed circuit board 3, that is, the protrusion 2b is pressurized toward the printed circuit board 3, and at the same time, the electroless plating solution 7 attached to the protrusion 2b is heated (step 33).
[0049]
Here, for example, a pressure of 10 to 50 g is applied to each connection terminal electrode 2. Therefore, when there are 24 connection terminal electrodes 2 on the semiconductor substrate 1, a pressure of 240 to 1200 g is applied to the semiconductor substrate. In addition, for example, heating at 80 to 100 ° C. is performed simultaneously with pressurization.
In the step (5), the alloy connection layer by the electroless plating solution 7 is formed between the peripheral portion of the protrusion 2b and the connection terminal electrode 2 and the substrate terminal electrode 3a by the pressure heating in the step (4). 7b is formed and cured (step 34).
The formation of the alloy connection layer 7b is performed in the electroless plating solution 7 by substitution plating by a substitution reaction between the metal ions in the solution and the substrate terminal electrode 3a or the protrusion 2b, which is a base metal, or electroless plating. It is formed by autocatalytic plating or the like in which metal ions receive electrons generated by the oxidation reaction of the reducing agent in the liquid 7 and are deposited on the surface of the base metal.
[0050]
Therefore, the protrusion 2b is firmly bonded to the substrate terminal electrode 3a through the alloy connection layer 7b, and simultaneously with the electrical conduction between the connection terminal electrode 2 and the substrate terminal electrode 3a, the connection terminal electrode 2 and the substrate terminal electrode 3a. Are bonded in a state where the bonding strength is high.
Next, in step (6), the resin 4 is injected between the semiconductor substrate 1 and the printed board 3 (step 35), the resin 4 is cured (step 36), and the mounting is completed.
[0051]
Therefore, according to the above configuration, even when the semiconductor substrate 1 or the printed circuit board 3 is subjected to external vibration, impact, thermal stress, or the like, the conductive adhesive is interposed between the connection terminal electrode 2 and the substrate terminal electrode 3a. 5 and the alloy connection layer 7b made of the electroless plating solution 7 are produced, so that the joining state becomes strong.
[0052]
[Fourth Embodiment]
Next, a semiconductor manufacturing method according to the fourth embodiment of the present invention will be described with reference to FIGS.
FIG. 8 is a process diagram showing the semiconductor manufacturing process of the fourth embodiment, and FIG. 9 is a flowchart showing the semiconductor manufacturing method of the fourth embodiment.
The configurations of the semiconductor substrate 1, the connection terminal electrode 2, the printed circuit board 3, and the substrate terminal electrode 3a are the same as those in the first embodiment, and thus detailed description thereof is omitted.
[0053]
First, the electroless plating solution 7 is applied onto the substrate terminal electrode 3a on the printed circuit board 3 on the water droplets (step 41). Step (1) in FIG. 4 shows a cross section in a state where the electroless plating solution 7 is applied to the substrate terminal electrode 3a on the water droplets. In addition, the figure of each following process has shown the cross section in each process.
Next, in step (2), the protrusion 2b of the connection terminal electrode 2 is brought close to the substrate terminal electrode 3a to which the electroless plating solution 7 is applied.
[0054]
In the next step (3), the protrusion 2b is placed on the substrate terminal electrode 3a of the printed circuit board 3, and the semiconductor substrate 1 is mounted on the printed circuit board 3 (step 42).
Then, the semiconductor substrate 1 is pressurized toward the printed circuit board 3, that is, the protrusion 2b is pressurized toward the printed circuit board 3, and at the same time, the electroless plating solution 7 adhered to the substrate terminal electrode 3a is heated (step 43). .
[0055]
Here, for example, a pressure of 10 to 50 g is applied to each connection terminal electrode 2. Therefore, when there are 24 connection terminal electrodes 2 on the semiconductor substrate 1, a pressure of 240 to 1200 g is applied to the semiconductor substrate. In addition, for example, heating at 80 to 100 ° C. is performed simultaneously with pressurization.
In the step (4), the alloy connection layer formed by the electroless plating solution 7 is formed between the peripheral portion of the protrusion 2b and the connection terminal electrode 2 and the substrate terminal electrode 3a by the pressure heating in the step (3). 7b is formed and cured (step 44).
The formation of the alloy connection layer 7b is performed in the electroless plating solution 7 by substitution plating by a substitution reaction between the metal ions in the solution and the substrate terminal electrode 3a or the protrusion 2b, which is a base metal, or electroless plating. It is formed by autocatalytic plating or the like in which metal ions receive electrons generated by the oxidation reaction of the reducing agent in the liquid 7 and are deposited on the surface of the base metal.
[0056]
Therefore, the protrusion 2b is firmly bonded to the substrate terminal electrode 3a through the alloy connection layer 7b, and simultaneously with the electrical conduction between the connection terminal electrode 2 and the substrate terminal electrode 3a, the connection terminal electrode 2 and the substrate terminal electrode 3a. Are bonded in a state where the bonding strength is high.
Next, in step (5), the resin 4 is injected between the semiconductor substrate 1 and the printed board 3 (step 45), the resin 4 is cured (step 46), and the mounting is completed.
[0057]
Therefore, according to the above configuration, even when the semiconductor substrate 1 or the printed circuit board 3 is subjected to external vibration, impact, thermal stress, or the like, the conductive adhesive is interposed between the connection terminal electrode 2 and the substrate terminal electrode 3a. 5 and the alloy connection layer 7b made of the electroless plating solution 7 are produced, so that the joining state becomes strong.
[0058]
[Fifth Embodiment]
Next, with reference to FIGS. 10 and 11, a semiconductor manufacturing method according to the fifth embodiment of the present invention will be described.
10A and 10B are diagrams showing semiconductor manufacturing according to the fifth embodiment. FIG. 10A is a cross-sectional view of a syringe, and FIG. 10B is a perspective view showing a state of semiconductor manufacturing. FIG. 11 is a flowchart showing the semiconductor manufacturing method of the fifth embodiment.
The present embodiment is a method of applying an electroless plating solution 7 to the substrate terminal electrode 3a on the printed circuit board 3 in the semiconductor manufacturing method performed based on the semiconductor manufacturing methods of the second and fourth embodiments. Therefore, the electroless plating solution 7 application process of the semiconductor manufacturing method will be described, and the other semiconductor manufacturing processes are the same as those in the second and fourth embodiments, and the description thereof will be omitted.
[0059]
First, the structure of the syringe 9 of this embodiment and the needle 10 connected to the syringe 9 will be described.
The syringe 9 contains the electroless plating solution 7, and the electroless plating solution 7 in the syringe 9 is controlled at a predetermined temperature so that the viscosity of the electroless plating solution 7 becomes a predetermined value. The temperature is controlled by the vessel 12.
The predetermined temperature of the electroless plating solution 7 is set to a temperature at which a predetermined amount of the electroless plating solution 7 can be applied to the substrate terminal electrode 3a of the printed circuit board 3 by a needle 10 described later. .
[0060]
Specifically, the temperature can be set as appropriate depending on the material of the electroless plating solution 7, the inner diameter of the needle 10, the application rate to the substrate terminal electrode 3a, and the like.
In addition, a needle 10 is connected to the syringe 9 on the side of the substrate terminal electrode 3 a to which the electroless plating solution 7 is applied, so that the electroless plating solution 7 can easily flow toward the needle 10. It has a funnel shape.
Furthermore, the syringe 9 can be moved up and down in the direction of the printed circuit board 3 together with the needle 10 by the syringe drive unit 11 controlled by the controller 12.
[0061]
The needle 10 descends toward the substrate terminal electrode 3a together with the syringe 9 when the substrate terminal electrode 3a to which the electroless plating solution 7 is applied comes below the needle 10, and is controlled by the controller 12 to a certain amount. The electroless plating solution 7 is applied to the substrate terminal electrode 3a in the form of water droplets. Each time the substrate terminal electrode 3a comes under the needle 10 by the conveyor 13, the needle 10 descends together with the syringe 9, and applies a certain amount of electroless plating solution 7 to the substrate terminal electrode 3a in the form of water droplets.
In the above application method, the printed circuit board 3 is conveyed by the conveyor 13 and the electroless plating solution 7 is applied to the substrate terminal electrode 3a that comes under the needle 10, but the syringe 9 and the needle 10 May be combined with an application method in which the electroless plating solution 7 is applied to the substrate terminal electrode 3a at a predetermined position in the plane by moving in the plane on the printed circuit board 3 in the vertical and horizontal (XY) directions.
[0062]
Next, the operation of the application process of the electroless plating solution 7 will be described with reference to FIG.
First, the electroless plating solution 7 is injected into the syringe 9 (step 51). At the same time, the injected electroless plating solution 7 is controlled to a predetermined temperature.
And the movement amount of the conveyor 13 which conveys the printed circuit board 3 under the syringe 9 is adjusted, and the movement (movement amount, movement direction, etc.) of the syringe 9 corresponding to the position of the board terminal electrode 3a on the printed circuit board 3 is Input to the controller 12 (step 52).
Next, when the mounting system is activated (step 53), the printed circuit board 3 is conveyed under the syringe 9 (step 54).
[0063]
Then, the needle 10 of the syringe 9 moves onto the predetermined substrate terminal electrode 3a (step 55), the needle 10 descends toward the substrate terminal electrode 3a, and the electroless plating solution 7 is applied to the substrate terminal electrode 3a. (Step 56).
Then, the syringe 9 moves on the printed board 3, and the electroless plating solution 7 is applied to each board terminal electrode 3a by the needle 10 in the same manner (step 57).
When the application of the electroless plating solution 7 to the substrate terminal electrode 3a of the printed circuit board 3 under the syringe 9 is completed, the printed circuit board 3 is transported to the next process by the conveyor 13 (step 58). It is conveyed under the syringe 9 (step 59).
[0064]
Therefore, according to the above configuration, the substrate terminal electrode 3a which is manually formed with respect to the substrate terminal electrode 3a having a small electrode interval, a small electrode area, and a large number of electrodes due to the recent high-density mounting. A certain amount of the electroless plating solution 7 can be applied more rapidly than the application of the electroless plating solution 7 to 3a.
[0065]
[Sixth Embodiment]
Next, with reference to FIGS. 12 and 13, a semiconductor manufacturing method according to a sixth embodiment of the present invention will be described.
12A and 12B are diagrams showing semiconductor manufacturing according to the sixth embodiment. FIG. 12A is a cross-sectional view of a sponge, and FIG. 12B is a perspective view showing a state of semiconductor manufacturing. FIG. 13 is a flowchart showing the semiconductor manufacturing method of the sixth embodiment.
The present embodiment is a method of applying an electroless plating solution 7 to the substrate terminal electrode 3a on the printed circuit board 3 in the semiconductor manufacturing method performed based on the semiconductor manufacturing methods of the second and fourth embodiments. Therefore, the electroless plating solution 7 application process of the semiconductor manufacturing method will be described, and the other semiconductor manufacturing processes are the same as those in the second and fourth embodiments, and the description thereof will be omitted.
[0066]
First, the configuration of the electroless plating rod 14 of the present embodiment and the sponge 15 connected to the electroless plating rod 14 will be described.
The electroless plating rod 14 contains the electroless plating solution 7 therein, the electroless plating solution 7 in the electroless plating vessel 14 is maintained at a predetermined temperature, and the viscosity of the electroless plating solution 7 is a predetermined value. Thus, the temperature is controlled by the controller 17.
The predetermined temperature of the electroless plating solution 7 is set to a temperature at which a predetermined amount of the electroless plating solution 7 can be impregnated in a sponge 15 described later and applied to the substrate terminal electrode 3a of the printed circuit board 3. Has been.
Specifically, the temperature can be appropriately set according to the material of the electroless plating solution 7, the material of the sponge 15, the application rate to the substrate terminal electrode 3a, and the like.
[0067]
Further, the electroless plating rod 14 can be moved up and down in the direction of the printed circuit board 3 together with the sponge 15 by the plating rod driving unit 16 controlled by the controller 17.
The sponge 15 can impregnate the whole of the sponge 15 with the electroless plating solution 7 contained in the electroless plating rod 14, and the electroless plating solution 7 is uniformly applied to the bottom surface of the sponge 15 (the surface in contact with the substrate terminal electrode 3a). The sponge thickness and sponge material are adjusted so as to be impregnated.
[0068]
Further, the sponge 15 descends toward the substrate terminal electrode 3 a together with the electroless plating rod 14 when the substrate terminal electrode 3 a to which the electroless plating solution 7 is applied comes below the electroless plating rod 14. A sponge 15 impregnated with the electrolytic plating solution 7 is pressed against the substrate terminal electrode 3a, and a certain amount of the electroless plating solution 7 is applied to the substrate terminal electrode 3a in the form of water droplets. That is, it is applied like a stamp.
Each time the substrate terminal electrode 3a comes under the sponge 15 by the conveyor 18, the sponge 15 descends together with the electroless plating rod 14 and applies a certain amount of electroless plating solution 7 to the substrate terminal electrode 3a in the form of water droplets. .
[0069]
In the above coating method, the printed circuit board 3 is conveyed by the conveyor 18, and all the substrate terminal electrodes 3a of the printed circuit board 3 coming under the sponge 15 are applied to the electroless plating solution 7 at a time by the sponge 15. Is applied.
However, if the area where the electroless plating solution 7 can be applied by the sponge 15 is small and the electroless plating solution 7 cannot be applied to all the substrate terminal electrodes 3a of the printed circuit board 3 at once, the electroless plating rod 14 and the sponge 15 may be applied in such a manner that the electroless plating solution 7 is applied to a plurality of substrate terminal electrodes 3a at predetermined positions in the plane by moving 15 in the plane on the printed circuit board 3 in the vertical and horizontal (XY) directions. .
[0070]
Next, the operation of the application process of the electroless plating solution 7 will be described with reference to FIG.
First, it is possible to apply the electroless plating solution 7 to all the substrate terminal electrodes 3a of the printed circuit board 3 at a time, and to impregnate the electroless plating solution 7 applied to all the substrate terminal electrodes 3a. A sponge made of a possible material is selected and connected so that the electroless plating solution 7 of the electroless plating rod 14 is impregnated (step 61).
Next, the electroless plating solution 7 is injected into the electroless plating solution 7 (step 62). At the same time, the injected electroless plating solution 7 is controlled to a predetermined temperature.
Then, the moving amount of the conveyor 18 that conveys the printed circuit board 3 under the sponge 15 is adjusted, and the position and pressing force of the sponge 15 corresponding to the position of the substrate terminal electrode 3a on the printed circuit board 3 are transferred to the controller 17. Input (step 63).
[0071]
Next, when the mounting system is activated (step 64), the printed circuit board 3 is conveyed under the sponge 15 (step 65).
Here, the printed circuit board 3 conveyed under the sponge 15 is masked so that the portions other than the substrate terminal electrodes 3a of the printed circuit board 3 do not adhere to the electroless plating solution 7.
Then, the sponge 15 descends toward the substrate terminal electrode 3a and applies the electroless plating solution 7 to all the substrate terminal electrodes 3a at a time by pressing against the substrate terminal electrode 3a (step 66).
When the sponge 15 rises and returns to a predetermined position, the printed circuit board 3 is conveyed to the next process by the conveyor 18 (step 67), and the next printed circuit board 3 is conveyed under the sponge 15 (step 68).
[0072]
Due to the recent high-density mounting, the electroless plating solution 7 on the substrate terminal electrode 3a is manually applied to the substrate terminal electrode 3a having a small electrode interval, a small electrode area, and a large number of electrodes. Since it can apply | coat to many board | substrate terminal electrodes 3a simultaneously rather than application | coating, the electroless-plating liquid 7 can be apply | coated rapidly.
Further, since portions other than the substrate terminal electrode 3a are masked, the electroless plating solution 7 is not applied to the portion other than the substrate terminal electrode 3a.
[0073]
[Seventh Embodiment]
Next, with reference to FIG. 14, the semiconductor device of 7th Embodiment of this invention is demonstrated.
FIG. 14 is a cross-sectional view showing a cross section of the semiconductor device of the seventh embodiment. FIG. 14A is a cross-sectional view before the electroless plating solution is adhered, and FIG. 14B is an electroless plating solution. It is sectional drawing after adhering.
[0074]
In this embodiment, in the semiconductor device manufactured by the semiconductor manufacturing method according to the first to sixth embodiments, a step higher than the substrate terminal electrode surface is formed by the resist 19 around the substrate terminal electrode 3a on the printed circuit board 3. This is a provided semiconductor device.
In the present embodiment, even when the electroless plating solution 7 is applied to the substrate terminal electrode 3a, the protrusion 2b is attached to the substrate terminal electrode 3a while the electroless plating solution 7 is adhered to the protrusion 2b of the connection terminal electrode 2. It can also be applied to the case of joining.
[0075]
The substrate terminal electrode 3a shown on the left side of FIG. 14A is not provided with a step due to the resist 19 around the substrate terminal electrode 3a, and the substrate terminal electrode 3a shown on the right side of FIG. A step higher than the surface of the substrate terminal electrode was provided around the substrate terminal electrode 3 a by the resist 19, and the end portion of the substrate terminal electrode 3 a was also covered by the resist 19.
Next, FIG. 14B shows a case where the electroless plating solution 7 is applied to the left and right substrate terminal electrodes 3a.
Here, when the electroless plating solution 7 adhering to the substrate terminal electrode 3a is large, the electroless plating solution 7 flows from the substrate terminal electrode 3a as shown on the left side of FIG.
[0076]
Alternatively, if the area of the substrate terminal electrodes 3a is small or the space between the substrate terminal electrodes 3a is narrow in order to cope with the recent high-density mounting, it becomes difficult to control the amount of the electroless plating solution 7 to be deposited.
That is, when the amount of the electroless plating solution 7 to be adhered is larger than an appropriate amount, the electroless plating solution 7 flows from the substrate terminal electrode 3a and comes into contact with the adjacent substrate terminal electrode 3a and other circuit patterns. There is a possibility of a short circuit.
Therefore, if the amount of the electroless plating solution 7 to be deposited is reduced, the amount of flowing out is reduced, but this time, the thickness of the generated alloy connection layer 7b is reduced and the bonding strength is reduced.
[0077]
Therefore, in this embodiment, as shown on the right side of FIG. 14B, a step higher than the substrate terminal electrode surface is provided around the substrate terminal electrode 3a by the resist 19, and the end portion of the substrate terminal electrode 3a is also resist. By covering with 19, a predetermined amount of electroless plating solution can be applied to the substrate terminal electrode 3a.
Furthermore, since the generated alloy connection layer 7b is thicker than when there is no step due to the resist 19, the connection terminal electrode 2 and the substrate terminal electrode 3a can be firmly bonded.
Further, it becomes easy to control the amount of the electroless plating solution 7 adhering to the substrate terminal electrode 3a, and the electroless plating solution 7 flows out and contacts the adjacent substrate terminal electrode 3a and other circuit patterns to be short-circuited. Will also disappear.
[0078]
[Eighth Embodiment] Next, a semiconductor device according to an eighth embodiment of the present invention will be described with reference to FIG. FIG. 15 is a cross-sectional view showing a cross section of the semiconductor device of the eighth embodiment, FIG. 15 (a) FIG. 15B is a cross-sectional view when the electroless plating solution flows, FIG. 15B is a cross-sectional view when the electroless plating solution adheres to the three-dimensional printed circuit board, and FIG. 15C is a perspective view of mounting the three-dimensional printed circuit board. FIG.
[0079]
In this embodiment, in the semiconductor device manufactured by the semiconductor manufacturing method according to the first to sixth embodiments, the bonding electrode surface of the substrate terminal electrode 20a bonded to the protruding portion 2b is the substrate terminal electrode around the bonding electrode surface. The printed circuit board which is lower than the surface and is in contact with the substrate terminal electrode 20a is a semiconductor device which is the three-dimensional printed circuit board 20 having a shape along the height of the substrate terminal electrode 20a.
Further, in the present embodiment, even when the electroless plating solution 7 is applied to the substrate terminal electrode 20a, the protrusion 2b is attached to the substrate terminal electrode 20a while the electroless plating solution 7 is adhered to the protrusion 2b of the connection terminal electrode 2. It can also be applied to the case of joining.
[0080]
First, FIG. 15A shows a case where the electroless plating solution 7 flows out from the substrate terminal electrode 3a when the electroless plating solution 7 adheres to the substrate terminal electrode 3a on the flat printed board 3. Show.
When the electroless plating solution 7 adhering to the substrate terminal electrode 3a is large, as shown in FIG. 15A, the electroless plating solution 7 flows from the substrate terminal electrode 3a.
[0081]
Further, if the area of the substrate terminal electrodes 3a is small or the distance between the substrate terminal electrodes 3a is narrow in order to cope with the recent high-density mounting, it becomes difficult to control the amount of the electroless plating solution 7 to be deposited.
That is, when the amount of the electroless plating solution 7 to be adhered is larger than an appropriate amount, the electroless plating solution 7 flows from the substrate terminal electrode 3a and comes into contact with the adjacent substrate terminal electrode 3a and other circuit patterns. There is a possibility of a short circuit.
Therefore, if the amount of the electroless plating solution 7 to be deposited is reduced, the amount of flowing out is reduced, but this time, the thickness of the generated alloy connection layer 7b is reduced and the bonding strength is reduced.
[0082]
Therefore, in the present embodiment, as shown in FIG. 15B, the bonding electrode surface of the substrate terminal electrode 20a bonded to the protruding portion 2b is made lower than the substrate terminal electrode surface around the bonding electrode surface, and the substrate terminal electrode The printed circuit board in contact with 20a is a three-dimensional printed circuit board 20 having a shape along the height of the substrate terminal electrode 20a, so that a predetermined amount of electroless plating solution can be applied to the substrate terminal electrode 3a.
Furthermore, since the alloy connection layer 7b generated is thicker than the case where there is no low bonding electrode surface, that is, a flat substrate terminal electrode surface, the connection terminal electrode 2 and the substrate terminal electrode 20a Can be firmly joined.
Further, it becomes easy to control the amount of the electroless plating solution 7 adhering to the substrate terminal electrode 20a, and the electroless plating solution 7 may flow out and contact the adjacent substrate terminal electrode or other circuit pattern to cause a short circuit. Disappear.
[0083]
Further, FIG. 15C shows a mounting perspective view when the three-dimensional printed circuit board 20 and the substrate terminal electrode 20a of the present embodiment are used. The semiconductor substrate 1 has connection terminal electrodes 2 on the surface in the arrow direction, and is mounted on the three-dimensional printed circuit board 20 in the arrow direction.
[0084]
【The invention's effect】
According to this semiconductor manufacturing method, even when a semiconductor or a printed circuit board is subjected to external vibration, impact, thermal stress, etc., there is no conductive adhesive between the semiconductor connection terminal electrode and the printed circuit board terminal electrode. Since the alloy connection layer by the electrolytic plating solution is generated, the bonding state can be strengthened.
In addition, since the alloy connection layer is generated between the conductive adhesive and the substrate terminal electrode, it is possible to eliminate peeling between the conductive adhesive and the substrate terminal electrode.
In addition, the bonding between the connection terminal electrode and the substrate terminal electrode is sufficiently strong against the floating of the semiconductor when the liquid resin is injected after the connection terminal electrode and the substrate terminal electrode are bonded. The state can be prevented from becoming unstable.
Moreover, the joining state of a connection terminal electrode and a board | substrate terminal electrode can be made favorable, without using an ultrasonic welding method and a heating-pressure-welding method.
[0085]
[Brief description of the drawings]
FIG. 1 is a perspective view showing a connection terminal electrode side and a connection terminal electrode of a semiconductor substrate, FIG. 1 (a) is a perspective view of the connection terminal electrode side of the semiconductor substrate, and FIG. 1 (b) is a connection diagram; It is a perspective view of a terminal electrode.
FIG. 2 is a process diagram showing a semiconductor manufacturing process of the first embodiment.
FIG. 3 is a flowchart showing the semiconductor manufacturing method of the first embodiment.
FIG. 4 is a process diagram showing a semiconductor manufacturing process of a second embodiment.
FIG. 5 is a flowchart showing a semiconductor manufacturing method according to a second embodiment.
FIG. 6 is a process diagram showing a semiconductor manufacturing process of a third embodiment.
FIG. 7 is a flowchart illustrating a semiconductor manufacturing method according to a third embodiment.
FIG. 8 is a process diagram showing a semiconductor manufacturing process of a fourth embodiment.
FIG. 9 is a flowchart showing a semiconductor manufacturing method according to the fourth embodiment.
10A and 10B are diagrams showing semiconductor manufacturing according to a fifth embodiment, in which FIG. 10A is a cross-sectional view of a syringe, and FIG. 10B is a perspective view showing a state of semiconductor manufacturing.
FIG. 11 is a flowchart illustrating a semiconductor manufacturing method according to a fifth embodiment.
12A and 12B are diagrams showing semiconductor manufacturing according to the sixth embodiment. FIG. 12A is a cross-sectional view of a sponge, and FIG. 12B is a perspective view showing a state of semiconductor manufacturing. .
FIG. 13 is a flowchart showing a semiconductor manufacturing method according to the sixth embodiment.
FIG. 14 is a cross-sectional view showing a cross section of the semiconductor device of the seventh embodiment, FIG. 14 (a) is a cross-sectional view before the electroless plating solution adheres, and FIG. 14 (b) is a cross-sectional view. It is sectional drawing after an electroless plating liquid adheres.
FIG. 15 is a cross-sectional view showing a cross section of the semiconductor device of the eighth embodiment, FIG. 15 (a) is a cross-sectional view when the electroless plating solution flows, and FIG. A cross-sectional view when the electroless plating solution adheres to the three-dimensional printed board, FIG. 15C is a mounting perspective view of the three-dimensional printed board.
[Explanation of symbols]
1 Semiconductor substrate
2 Connection terminal electrode
2a Aluminum electrode
2b Protrusion
3 Printed circuit board
3a Board terminal electrode
4 Resin
5 Conductive adhesive
5a Conductive adhesive
7 Electroless plating solution
7a Electroless plating solution
7b Alloy connection layer
9 Syringe
10 Needle
11 Syringe drive
12 Controller
13 Conveyor
14 Electroless plating
15 Sponge
16 Plated rod drive
17 Controller
18 Conveyor
19 resist
20 3D printed circuit board
20a Board terminal electrode

Claims (8)

プリント基板の基板端子電極に向かう突起部を有した1つ以上の接続端子電極を半導体基板上に備えた半導体装置であり、
前記接続端子電極の前記突起部に導電性接着剤を付着し、前記突起部に付着した前記導電性接着剤を加熱して硬化し、硬化した前記導電性接着剤の先端部に無電解メッキ液を付着し、前記無電解メッキ液を付着したまま前記突起部を前記基板端子電極に接触させて加圧加熱し、前記突起部と前記基板端子電極間に合金接続層を生成して前記突起部と前記基板端子電極を接合し、前記接合後に前記プリント基板と前記半導体基板間に樹脂を注入して構成されることを特徴とする半導体装置。
A semiconductor device provided on a semiconductor substrate with one or more connection terminal electrodes having protrusions directed toward the substrate terminal electrodes of the printed circuit board,
A conductive adhesive is attached to the protruding portion of the connection terminal electrode, the conductive adhesive attached to the protruding portion is cured by heating, and an electroless plating solution is applied to the tip of the cured conductive adhesive. The protrusion is brought into contact with the substrate terminal electrode with the electroless plating solution being attached and heated by pressure, and an alloy connection layer is formed between the protrusion and the substrate terminal electrode to generate the protrusion. And a substrate terminal electrode, and a resin is injected between the printed circuit board and the semiconductor substrate after the bonding.
プリント基板の基板端子電極に向かう突起部を有した1つ以上の接続端子電極を半導体基板上に備えた半導体装置であり、
前記接続端子電極の前記突起部に導電性接着剤を付着し、前記突起部に付着した前記導電性接着剤を加熱して硬化し、前記基板端子電極に無電解メッキ液を付着し、硬化した前記導電性接着剤の付着した前記突起部を、前記無電解メッキ液の付着した前記基板端子電極に接触させて加圧加熱し、前記突起部と前記基板端子電極間に合金接続層を生成して前記突起部と前記基板端子電極を接合し、前記接合後に前記プリント基板と前記半導体基板間に樹脂を注入して構成されることを特徴とする半導体装置。
A semiconductor device provided on a semiconductor substrate with one or more connection terminal electrodes having protrusions directed toward the substrate terminal electrodes of the printed circuit board,
A conductive adhesive is attached to the protrusions of the connection terminal electrodes, the conductive adhesive attached to the protrusions is heated and cured, and an electroless plating solution is attached to the substrate terminal electrodes and cured. The protrusion with the conductive adhesive attached is brought into contact with the substrate terminal electrode to which the electroless plating solution has been attached and heated under pressure to produce an alloy connection layer between the protrusion and the substrate terminal electrode. A semiconductor device comprising: connecting the protrusion and the substrate terminal electrode; and injecting a resin between the printed circuit board and the semiconductor substrate after the bonding.
プリント基板の基板端子電極に向かう突起部を有した1つ以上の接続端子電極を半導体基板上に備えた半導体装置であり、
前記接続端子電極の前記突起部の先端に無電解メッキ液を付着し、前記無電解メッキ液を付着したまま前記突起部を前記基板端子電極に接触させて加圧加熱し、前記突起部と前記基板端子電極間に合金接続層を生成して前記突起部と前記基板端子電極を接合し、前記接合後に前記プリント基板と前記半導体基板間に樹脂を注入して構成されることを特徴とする半導体装置。
A semiconductor device provided on a semiconductor substrate with one or more connection terminal electrodes having protrusions directed toward the substrate terminal electrodes of the printed circuit board,
An electroless plating solution is attached to the tip of the protruding portion of the connection terminal electrode, the protruding portion is brought into contact with the substrate terminal electrode while the electroless plating solution is attached, and is heated under pressure. A semiconductor comprising: an alloy connection layer formed between substrate terminal electrodes to bond the protrusion and the substrate terminal electrode; and a resin is injected between the printed circuit board and the semiconductor substrate after the bonding apparatus.
前記基板端子電極は、前記突起部と接合する接合電極面を前記接合電極面の周囲の基板端子電極面より低くし、前記基板端子電極と接する前記プリント基板は、前記基板端子電極の高低に沿った形状の立体プリント基板であることを特徴とする請求項1ないしのいずれか1項記載の半導体装置。The substrate terminal electrode has a bonding electrode surface that is bonded to the protruding portion lower than a substrate terminal electrode surface around the bonding electrode surface, and the printed circuit board that is in contact with the substrate terminal electrode is along a height of the substrate terminal electrode. the semiconductor device according to any one of 3 claims 1, characterized in that a three-dimensional printed circuit board shape. プリント基板の基板端子電極に向かう突起部を有した1つ以上の接続端子電極を半導体基板上に備えた半導体装置の半導体製造方法であり、前記接続端子電極の前記突起部に導電性接着剤を付着し、前記突起部に付着した前記導電性接着剤を加熱して硬化し、硬化した前記導電性接着剤の先端部に無電解メッキ液を付着し、前記無電解メッキ液を付着したまま前記突起部を前記基板端子電極に接触させて加圧加熱し、前記突起部と前記基板端子電極間に合金接続層を生成して前記突起部と前記基板端子電極を接合し、前記接合後に前記プリント基板と前記半導体基板間に樹脂を注入することを特徴とする半導体製造方法。  A method for manufacturing a semiconductor device of a semiconductor device having one or more connection terminal electrodes on a semiconductor substrate having protrusions directed toward substrate terminal electrodes of a printed circuit board, wherein a conductive adhesive is applied to the protrusions of the connection terminal electrodes. The conductive adhesive attached to the protrusion is heated and cured, and an electroless plating solution is attached to the tip of the cured conductive adhesive, and the electroless plating solution is left attached. A protrusion is brought into contact with the substrate terminal electrode and heated under pressure, an alloy connection layer is formed between the protrusion and the substrate terminal electrode, the protrusion and the substrate terminal electrode are bonded, and after the bonding, the print A semiconductor manufacturing method comprising injecting a resin between a substrate and the semiconductor substrate. プリント基板の基板端子電極に向かう突起部を有した1つ以上の接続端子電極を半導体基板上に備えた半導体装置の半導体製造方法であり、前記接続端子電極の前記突起部に導電性接着剤を付着し、前記突起部に付着した前記導電性接着剤を加熱して硬化し、前記基板端子電極に無電解メッキ液を付着し、硬化した前記導電性接着剤の付着した前記突起部を、前記無電解メッキ液の付着した前記基板端子電極に接触させて加圧加熱し、前記突起部と前記基板端子電極間に合金接続層を生成して前記突起部と前記基板端子電極を接合し、前記接合後に前記プリント基板と前記半導体基板間に樹脂を注入することを特徴とする半導体製造方法。A semiconductor manufacturing method for a semiconductor device having one or more connection terminal electrodes on a semiconductor substrate, each having a protrusion directed toward a substrate terminal electrode of a printed circuit board, wherein a conductive adhesive is applied to the protrusion of the connection terminal electrode. The conductive adhesive attached to the protrusion is heated and cured, the electroless plating solution is attached to the substrate terminal electrode, and the protrusion to which the cured conductive adhesive is attached is Pressurizing and heating in contact with the substrate terminal electrode to which the electroless plating solution is adhered, forming an alloy connection layer between the projection and the substrate terminal electrode, joining the projection and the substrate terminal electrode, A semiconductor manufacturing method comprising injecting a resin between the printed circuit board and the semiconductor substrate after bonding. プリント基板の基板端子電極に向かう突起部を有した1つ以上の接続端子電極を半導体基板上に備えた半導体装置の半導体製造方法であり、前記接続端子電極の前記突起部の先端に無電解メッキ液を付着し、前記無電解メッキ液を付着したまま前記突起部を前記基板端子電極に接触させて加圧加熱し、前記突起部と前記基板端子電極間に合金接続層を生成して前記突起部と前記基板端子電極を接合し、前記接合後に前記プリント基板と前記半導体基板間に樹脂を注入することを特徴とする半導体装置製造方法。  A method for manufacturing a semiconductor device of a semiconductor device comprising one or more connection terminal electrodes on a semiconductor substrate having protrusions directed toward a substrate terminal electrode of a printed circuit board, wherein electroless plating is applied to the tips of the protrusions of the connection terminal electrodes. With the liquid attached, the protrusion is brought into contact with the substrate terminal electrode while the electroless plating solution is attached, and heated under pressure to form an alloy connection layer between the protrusion and the substrate terminal electrode, thereby generating the protrusion. And a substrate terminal electrode, and a resin is injected between the printed circuit board and the semiconductor substrate after the bonding. 前記基板端子電極以外の部分をマスキングし、前記無電解メッキ液を含浸したスポンジを前記基板端子電極に接触させ、前記無電解メッキ液を前記基板端子電極に塗布することを特徴とする請求項記載の半導体製造方法。Claim 6 masking portions other than the substrate terminal electrodes, a sponge impregnated with the electroless plating solution is brought into contact with the substrate terminal electrodes, characterized by applying the electroless plating solution to the substrate terminal electrode The semiconductor manufacturing method as described.
JP2000313858A 2000-10-13 2000-10-13 Semiconductor device and semiconductor manufacturing method Expired - Fee Related JP3992917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000313858A JP3992917B2 (en) 2000-10-13 2000-10-13 Semiconductor device and semiconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000313858A JP3992917B2 (en) 2000-10-13 2000-10-13 Semiconductor device and semiconductor manufacturing method

Publications (2)

Publication Number Publication Date
JP2002124540A JP2002124540A (en) 2002-04-26
JP3992917B2 true JP3992917B2 (en) 2007-10-17

Family

ID=18793201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000313858A Expired - Fee Related JP3992917B2 (en) 2000-10-13 2000-10-13 Semiconductor device and semiconductor manufacturing method

Country Status (1)

Country Link
JP (1) JP3992917B2 (en)

Also Published As

Publication number Publication date
JP2002124540A (en) 2002-04-26

Similar Documents

Publication Publication Date Title
CN100539055C (en) Wiring board and semiconductor device
CN101347052B (en) Method and apparatus for connecting printed wiring boards
US8152953B2 (en) Method of making printed wiring board and method of making printed circuit board unit
TWI667950B (en) Method for manufacturing three-dimensional wiring substrate, three-dimensional wiring substrate, and base material for three-dimensional wiring substrate
JPH0878833A (en) Formation of printed circuit board and solder-coated body
JP2008508703A (en) Method for manufacturing an electronic circuit assembly
WO1990013990A2 (en) Circuit boards with recessed traces
KR100563502B1 (en) A cof semiconductor device and a manufacturing method for the same
JP2002290022A (en) Wiring board, its manufacturing method, and electronic device
JP2007116145A (en) Method for manufacturing circuit substrate equipped with plural solder connection parts on upper surface thereof
TWI579096B (en) Solder transferring substrate, manufacturing method of solder transferring substrate, and solder transferring method
US20060141676A1 (en) Method for producing semiconductor substrate
EP0784914B1 (en) Method of manufacturing a printed circuit board
JP3992917B2 (en) Semiconductor device and semiconductor manufacturing method
JP2002290028A (en) Connection structure and method for printed wiring board
US6398935B1 (en) Method for manufacturing pcb's
JP2000244086A (en) Printed wiring board and its manufacture
JP3715337B2 (en) How to create an electrical circuit
JP2002359469A (en) Wiring board, manufacturing method therefor, and electronic device
JP2003092467A (en) Printed wiring board and manufacturing method therefor
JPH0265198A (en) Manufacture of rigid flexible printed wiring board
JP2000124583A (en) Manufacture of wiring board and wiring board structure
JP4023093B2 (en) How to fix electronic components
JP2016207694A (en) Printed wiring board and manufacturing method therefor
JP2014195124A (en) Manufacturing method of component incorporated wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees