JP3992401B2 - Seismic reinforcement method for existing buildings with RC seismic walls - Google Patents

Seismic reinforcement method for existing buildings with RC seismic walls Download PDF

Info

Publication number
JP3992401B2
JP3992401B2 JP14128999A JP14128999A JP3992401B2 JP 3992401 B2 JP3992401 B2 JP 3992401B2 JP 14128999 A JP14128999 A JP 14128999A JP 14128999 A JP14128999 A JP 14128999A JP 3992401 B2 JP3992401 B2 JP 3992401B2
Authority
JP
Japan
Prior art keywords
seismic
wall
steel
steel frame
bars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14128999A
Other languages
Japanese (ja)
Other versions
JP2001027048A (en
Inventor
勝義 小南
啓史 大貫
秀則 花本
崇博 毛井
靖昌 宮内
雅彦 藤村
勝 藤村
充 木村
優子 津司
亨 奥野
靖 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP14128999A priority Critical patent/JP3992401B2/en
Publication of JP2001027048A publication Critical patent/JP2001027048A/en
Application granted granted Critical
Publication of JP3992401B2 publication Critical patent/JP3992401B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、鉄筋コンクリート造耐震壁(以下、RC耐震壁と言う。)の増設により既存建物を耐震補強する方法の技術分野に属する。
【0002】
【従来の技術】
阪神大震災の後に、旧基準で設計された既存建物の耐震補強の必要性が改めて認識された。しかし、認識の高まりの割りに、既存建物の耐震補強の実施はあまり進んでいない。その理由は、工事中の騒音等により工事期間中の既存建物の使用が大きく制限されるためと言われている。
【0003】
即ち、既存建物の耐震補強方法として各種の工法が開発され実施されているが、RC耐震壁の増設による補強方法が最も一般的で実施例が多い。しかるに、RC耐震壁の増設による耐震補強方法、或いは鉄骨枠組みブレースの増設による耐震補強方法のいずれであれ、これらを既存建物構造体と一体化する手段としては、既存の仕上げを撤去し、目荒らし、アンカー打ちする各工程が必須であり、多大の騒音と振動を発生するので、とても「居ながら」施工が可能な条件にないのである。
【0004】
既存建物の耐震補強工事の普及の遅れは重大な社会問題である。
【0005】
従来、上記騒音と振動の問題を解決して、「居ながら」施工を可能にする技術として、例えば特開昭58ー146663号公報に記載された既存建物の補強用耐震要素取付方法が公知である。この耐震補強方法は、柱及び上位の梁には断面コ字状の取付金物ピースを、それぞれ接着剤の注入に必要な間隔をあけて複数個不連続的に、柱又は梁を抱く向きに配置してそれぞれ接着剤で固定する。下位の梁(スラブの上)には平プレート状の取付金物を、やはり接着剤の注入に必要な間隔をあけて複数個不連続的に配置してそれぞれ接着剤で固定する。各取付金物には予め定着用鉄筋又は鋼材を取り付けておく。その後、前記定着用鉄筋等に壁用鉄筋を固定しコンクリートを打設して耐震壁を増設することを内容としている。
【0006】
【発明が解決しようとする課題】
上述した従来公知の耐震補強方法は、多数のピース状取付金物を一つ一つ接着剤により柱及び梁へ取り付けねばならないから、たいへん手間がかかって作業能率が悪い。のみならず、取付金物は、RC耐震壁の壁用鉄筋を定着用鉄筋等を介して柱梁架構と繋ぐ働きの要素でしかなく、RC耐震壁(のコンクリート)を拘束して地震等による過大応力を伝達する要素とはなり得ない。そのため地震等による過大応力を受けたとき、RC耐震壁の外周部分の局部破壊を防ぐことはできず、よってRC耐震壁が真に耐震補強要素として機能しない懸念がある。
【0007】
本発明の目的は、増設したRC耐震壁は、その外周部分を鉄骨枠材で拘束して局部破壊を防ぐ構造であり、しかも柱梁架構との間において確実に地震等による過大応力を伝達する構造であり、従って、真に耐震要素として既存建物の耐震補強に実効を奏する、RC耐震壁による既存建物の耐震補強方法を提供することにある。
【0008】
【課題を解決するための手段】
前記課題を解決するための手段として、請求項1記載の発明に係るRC耐震壁による既存建物の耐震補強方法は、柱梁架構の面内にRC耐震壁を増設する既存建物の耐震補強方法において、
柱梁架構の内面に沿い、柱又は梁の内法寸法にほぼ等しい長さで耐震壁の壁厚よりも大きい幅寸の平坦な接着面を有する平鋼板状、T形鋼状、若しくはハット形鋼状又は溝形鋼状材から成り予め内向きにアンカー筋を突設した鉄骨枠材を、その平坦な接着面を外向きに配置して柱梁架構の内面へエポキシ樹脂で接着する段階と
前記鉄骨枠材のアンカー筋を利用して耐震壁の剪断補強筋を配筋すると共に、外周部分にはコンクリートの拘束効果を高める主筋を鉄骨枠材の長手方向に通し、幅止め筋も配置してその両側に壁用のコンクリート型枠を組立てると共に、外周部分については前記鉄骨枠材の幅寸を限度に壁厚を大きくコンクリート型枠を組立てる段階と、
コンクリートを打設し、養生後に型枠を解体して、外周部分の壁厚を鉄骨枠材の幅寸を限度に耐震壁本来の壁厚よりも大きく形成した耐震壁を増設して補強することを特徴とする。
【0009】
【発明の実施形態及び実施例】
発明に係るRC耐震壁による既存建物の耐震補強方法は、柱梁架構の面内にRC耐震壁を増設する既存建物の耐震補強方法として好適に実施される。
【0010】
具体的には、図1〜図6に実施形態を示したように、柱1と梁2とより成る架構の内面に沿い、柱1又は梁2の内法寸法にほぼ等しい長さ(一例として2500mm×5000mm)で、しかも耐震壁3の壁厚W(通例180mm位)に比してかなり大きい幅寸(一例として300mm)の溝形鋼状材から成る鉄骨枠材4を、その溝形を内向きに配置して柱梁架構と接着剤5で強固に接着し、前記鉄骨枠材4の溝底から内向きにアンカー筋6を突設させたRC耐震壁3を増設して補強する。
【0011】
但し、鉄骨枠材4は、図1のように上下の梁2、2及び左右の柱1、1の内面に沿って耐震壁3の四周に配置し接着する場合と、図5のように上下の梁2、2の内面に沿ってのみ、即ち耐震壁3上下辺にのみ配置し接着する場合とに大別される。
【0012】
また、鉄骨枠材4は、溝形鋼状材の限りではない。柱1及び梁2との強固な接着に十分広い平坦面を有する材料であれば、例えば平鋼板状、又はT形鋼状、若しくはハット形鋼状、その他の鋼材を全く同様に使用することができる。
【0013】
アンカー筋6は、鉄骨枠材4への溶接の利便性を考慮して、一般にはスタッド溶接とするが、場合によってはU字形状に曲げ加工した鉄筋を壁長方向又は壁厚方向に配置して溶接し固定する。
【0014】
鉄骨枠材4の溝形内には更に、長手方向に主筋7を通し、幅止め筋8を配置してコンクリートの拘束効果を一層高めている。図5のように柱1の内面に沿って鉄骨枠材を配置しない場合は、図6に明示したように鉄筋篭10を配置してコンクリートの拘束効果を高めた構造とする。以上のようにRC耐震壁3の外周部分は鉄骨枠材4の幅寸を利用して通常の壁厚Wよりも大きな壁厚とし(図4)、且つ鉄骨枠材4とアンカー筋6、さらには鉄筋7、8、10を配置してコンクリートの拘束効果を高めているので、地震等の過大応力が負荷されても局部破壊を発生する懸念は皆無である。その上、鉄骨枠材4と柱梁架構は全長にわたり連続的に強固に接着して一体化されているので、RC耐震壁3と柱梁架構との間で確実に応力を伝達し、耐震補強の実効を奏する。
【0015】
耐震壁3には、壁用剪断補強筋9がダブルに配置されている。RC耐震壁3の外周部分は、鉄骨枠材4によって拘束されている。そして、周辺部の壁厚は、耐震壁本来の壁厚Wよりもせいが大きい溝形鋼状材の溝幅寸法そのものとし、本来の壁厚Wへと傾斜面(又は直角面でも可)で繋いでいる。
【0016】
鉄骨枠材4を柱梁架構と接着する接着剤5には、エポキシ樹脂が好適に使用される。
【0017】
次に、図7〜図10は、本発明に係る現場打ちRC耐震壁の増設による既存建物の耐震補強方法の実施形態を工程順に示している。このRC耐震壁3は、上下の梁2、2に沿ってのみ、鉄骨枠材4、4を配置した構造の実施例である。
【0018】
先ず図7A、Bは、予めアンカー筋6を内向きに溶接し突設した鉄骨枠材4を柱梁架構を形成する上下の梁2、2の内面に沿って配置し、接着剤5で接着した段階を示している。図8A、Bは、上下の鉄骨枠材4、4の内側に前記アンカー筋6を利用して耐震壁の剪断補強筋9を配筋し、また、柱1の内面に沿っては鉄骨枠材に代わる鉄筋篭10を配置した段階を示している。図9は壁用のコンクリート型枠11を組立て、コンクリートを打設した段階を示している。更に図10A、Bは、打設したコンクリートの養生後に型枠を解体してRC耐震壁3の増設を完了した段階を示している。
【0019】
従って、既存の仕上げを撤去することは行うにしても、目荒らし、アンカー打ちする工程は無いので、騒音や振動を発生する度合いは極めて低く、「居ながら」施工が可能な条件を満たし得る。
【0020】
なお、プレキャストRC耐震壁の増設による既存建物の耐震補強方法については、実施形態を図示することまでは省略したが、図1〜図10の実施形態から容易に理解できるように、工場などで柱梁架構の内面に沿う周辺部に鉄骨枠材を配置したプレキャストコンクリート耐震壁を製作し、現場へ運んで柱梁架構の面内へ建て込み、前記耐震壁周辺の鉄骨枠材と柱梁架構の内面との隙間に接着剤を注入して強固に接着する。但し、プレキャストコンクリート耐震壁は、柱梁架構の面内へぴったり納まる一枚板として製作して建て込む場合と、縦に分割した複数のプレキャストコンクリート耐震壁を次々並べて建て込み、相互に接合して一枚板状の耐震壁に完成する場合とを選択的に実施できる。
【0021】
【本発明が奏する効果】
請求項1記載の発明に係るRC耐震壁による既存建物の耐震補強方法により増設するRC耐震壁は、その外周部分を鉄骨枠材その他で拘束し局部破壊を防ぐ構造であり、しかも柱梁架構とは鉄骨枠材を介して強固に接着して両者間で確実に地震等による過大応力を伝達する構造であるから、真に耐震要素として既存建物の耐震補強に実効を奏する。
【0022】
また、本発明の耐震補強方法は、目荒らしやアンカー打ちする工程がないので、騒音や振動を発生する度合いは極めて低く、「居ながら」施工が可能な条件を満たす。よって旧基準で設計された既存建物の耐震補強の必要性、認識に基づき、耐震補強工事の普及に大きく寄与するものと考えられる。
【図面の簡単な説明】
【図1】 本発明の方法で既存建物にRC耐震壁を増設した状況を示す正面図である。
【図2】 図1の2−2線矢視の断面図である。
【図3】 図2と同じ視点で耐震壁の構造を詳示した拡大断面図である。
【図4】 図1の4−4線矢視の詳細断面図である。
【図5】 本発明の方法で既存建物に異なる構造のRC耐震壁を増設した状況を示す正面図である。
【図6】 図5の6−6線矢視の詳細断面図である。
【図7】 AとBは本発明の方法で既存建物にRC耐震壁を増設するため鉄骨枠材を接着した段階を示す正面図と縦断面図である。
【図8】 AとBは壁用の剪断補強筋を配置した段階を示す正面図と縦断面図である。
【図9】 壁用のコンクリート型枠を組み立てた段階を示す縦断面図である。
【図10】 AとBはRC耐震壁の完成段階を示す正面図と縦断面図である。
【符号の説明】
1 柱
2 梁
3 RC耐震壁
4 鉄骨枠材
5 接着剤
6 アンカー筋
9 剪断補強筋
7、8、10 壁外周部補強筋
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of a method for seismically reinforcing an existing building by adding a reinforced concrete seismic wall (hereinafter referred to as an RC seismic wall).
[0002]
[Prior art]
After the Great Hanshin Earthquake, the need for seismic reinforcement of existing buildings designed according to the old standards was recognized again. However, despite the increasing awareness, the implementation of seismic reinforcement for existing buildings has not progressed much. The reason is said to be that the use of existing buildings during the construction period is greatly restricted by noise during construction.
[0003]
In other words, various methods have been developed and implemented as seismic reinforcement methods for existing buildings, but the reinforcement method by adding RC seismic walls is the most common and has many examples. However, either the seismic reinforcement method by adding RC seismic walls or the seismic reinforcement method by adding steel frame braces, as a means to integrate these with the existing building structure, the existing finish is removed and the surface is broken. Each process of anchoring is indispensable and generates a lot of noise and vibration.
[0004]
The delay in the spread of seismic reinforcement work for existing buildings is a serious social problem.
[0005]
Conventionally, as a technique for solving the above-described noise and vibration problems and enabling construction while "while living", for example, a method for attaching a seismic element for reinforcement of an existing building described in Japanese Patent Application Laid-Open No. 58-146663 is known. is there. In this seismic reinforcement method, mounting pieces with a U-shaped cross-section are arranged on the columns and the upper beam in a direction that holds the columns or beams discontinuously at intervals necessary for the injection of adhesive. And fix each with an adhesive. On the lower beam (on the slab), a plurality of flat plate-like attachments are arranged discontinuously at intervals necessary for the injection of the adhesive, and fixed with the adhesive. A fixing rebar or steel material is attached to each mounting hardware in advance. Then, the content is to add a seismic wall by fixing a wall reinforcing bar to the fixing reinforcing bar and placing concrete.
[0006]
[Problems to be solved by the invention]
The conventionally known seismic reinforcement method described above requires a lot of work and poor work efficiency because a large number of piece-shaped mounting hardware must be attached to the columns and beams one by one with an adhesive. In addition, the mounting hardware is not only an element that works to connect the rebar for the RC seismic wall to the column beam frame via the anchoring rebar, etc., but the RC seismic wall (concrete) is constrained to be excessive due to an earthquake, etc. It cannot be an element that transmits stress. Therefore, when subjected to excessive stress due to an earthquake or the like, local destruction of the outer peripheral portion of the RC earthquake resistant wall cannot be prevented, and thus there is a concern that the RC earthquake resistant wall does not truly function as an earthquake resistant reinforcement element.
[0007]
The object of the present invention is a structure in which the added RC seismic wall has a structure in which the outer peripheral portion thereof is restrained by a steel frame member to prevent local destruction, and an excessive stress due to an earthquake or the like is reliably transmitted to a column beam frame. Therefore, it is an object of the present invention to provide a seismic reinforcement method for an existing building using RC seismic walls, which is effective as a seismic element and is effective for seismic reinforcement of an existing building.
[0008]
[Means for Solving the Problems]
As a means for solving the above-mentioned problem, the seismic reinforcement method for an existing building using the RC seismic wall according to claim 1 is the seismic reinforcement method for an existing building in which an RC seismic wall is added in the plane of the column beam frame. ,
A flat steel plate shape, T-shaped steel shape, or hat shape having a flat adhesive surface with a width that is substantially equal to the inner dimension of the column or beam and larger than the wall thickness of the earthquake resistant wall along the inner surface of the column beam structure A steel frame member made of a steel or channel steel member and having anchor bars projecting inward in advance , with its flat bonding surface facing outward and bonding to the inner surface of the column beam frame with epoxy resin; and ,
The steel frame material anchor bars are used to place shear reinforcement bars for the seismic walls, and the main bars that enhance the concrete restraining effect are passed along the longitudinal direction of the steel frame material and the width stop bars are also arranged on the outer periphery. Assembling the concrete formwork for the wall on both sides of the lever, and assembling the concrete formwork to increase the wall thickness up to the width dimension of the steel frame material for the outer peripheral part ,
Place concrete, dismantle the mold after curing, and add and strengthen the seismic wall with the outer wall thickness made larger than the original wall thickness to the limit of the width of the steel frame material. It is characterized by.
[0009]
Embodiments and Examples of the Invention
The seismic reinforcement method for an existing building using an RC seismic wall according to the present invention is suitably implemented as a seismic reinforcement method for an existing building in which an RC seismic wall is added in the plane of a column beam frame.
[0010]
Specifically, as shown in the embodiment in FIGS. 1 to 6, along the inner surface of the frame composed of the column 1 and the beam 2, a length substantially equal to the internal dimension of the column 1 or the beam 2 (as an example) A steel frame material 4 made of a grooved steel material having a width (as an example, 300 mm) that is considerably larger than the wall thickness W of the earthquake resistant wall 3 (typically about 180 mm). place inwardly firmly glued 5 and Column frame, the you reinforced by adding a RC Shear walls 3 where the anchors 6 inwardly to protrude from the groove bottom of the steel frame member 4 .
[0011]
However, the steel frame 4 is arranged on the four sides of the earthquake-resistant wall 3 along the inner surfaces of the upper and lower beams 2 and 2 and the left and right columns 1 and 1 as shown in FIG. only along the inner surface of the beam 2, 2, i.e. shear wall 3 only on upper and lower sides are arranged Ru is roughly divided into a case of bonding.
[0012]
Further, the steel frame material 4 is not limited to the channel steel material. If the material has a flat surface sufficiently wide for strong adhesion to the column 1 and the beam 2, for example, a flat steel plate shape, a T-shaped steel shape, a hat-shaped steel shape, or other steel materials may be used in the same manner. can Ru.
[0013]
The anchor bars 6 are generally stud welded in consideration of the convenience of welding to the steel frame member 4, but in some cases, reinforcing bars bent into a U shape are arranged in the wall length direction or wall thickness direction. Weld and fix.
[0014]
In the groove shape of the steel frame member 4, the main reinforcement 7 is further passed in the longitudinal direction, and the width stop reinforcement 8 is arranged to further enhance the concrete restraining effect. In the case where the steel frame material is not arranged along the inner surface of the pillar 1 as shown in FIG. 5, a reinforcing bar 10 is arranged as shown in FIG. As described above, the outer peripheral portion of the RC earthquake-resistant wall 3 has a wall thickness larger than the normal wall thickness W by utilizing the width dimension of the steel frame material 4 (FIG. 4), and the steel frame material 4 and the anchor reinforcement 6, Since the reinforcing bars 7, 8, and 10 are arranged to enhance the concrete restraining effect, there is no concern that local destruction will occur even if an excessive stress such as an earthquake is applied. In addition, the steel frame material 4 and the column beam frame are integrated firmly and continuously over the entire length, so that the stress is reliably transmitted between the RC earthquake resistant wall 3 and the column beam frame, and the earthquake resistance is strengthened. The effect of.
[0015]
The seismic wall 3 is provided with double wall shear reinforcement bars 9. The outer peripheral portion of the RC seismic wall 3 is restrained by the steel frame material 4. And the wall thickness of the peripheral part is the groove width dimension of the grooved steel material that is larger than the original wall thickness W of the earthquake resistant wall, and is inclined to the original wall thickness W (or a right-angled surface is also acceptable). Are connected.
[0016]
An epoxy resin is suitably used for the adhesive 5 for bonding the steel frame material 4 to the column beam frame.
[0017]
Next, FIGS. 7 to 10 show an embodiment of the earthquake-proof reinforcement method of existing buildings by adding the cast-in-place RC shear wall according to the present onset bright in the order of steps. This RC earthquake-resistant wall 3 is an embodiment having a structure in which the steel frame members 4 and 4 are arranged only along the upper and lower beams 2 and 2.
[0018]
First, in FIGS. 7A and 7B, a steel frame material 4 that is preliminarily welded inward with anchor bars 6 is arranged along the inner surfaces of the upper and lower beams 2 and 2 that form a column beam frame, and bonded with an adhesive 5. Shows the stage. 8A and 8B, the shear reinforcement bars 9 of the earthquake-resistant wall are arranged inside the upper and lower steel frame members 4 and 4 by using the anchor bars 6, and the steel frame members are arranged along the inner surface of the column 1. The stage which has arrange | positioned the reinforcing bar rod 10 replaced with is shown. FIG. 9 shows the stage where the concrete formwork 11 for the wall is assembled and the concrete is placed. Further, FIGS. 10A and 10B show a stage where the formwork is disassembled after curing of the placed concrete and the expansion of the RC seismic wall 3 is completed.
[0019]
Therefore, even if the existing finish is removed, there is no roughening and anchoring process, so that the degree of noise and vibration is extremely low, and the conditions that allow construction while "while living" can be satisfied.
[0020]
Note that the earthquake-proof reinforcement method of existing buildings by adding the flop Rekyasuto RC Shear Walls, until it illustrating an embodiment is omitted, as can be readily understood from the embodiments of FIGS. 1-10, factories, etc. A precast concrete seismic wall with steel frame material arranged around the inner surface of the column beam frame is manufactured, transported to the site and built in the plane of the column beam frame, and the steel frame material and column beam frame around the earthquake beam wall Adhesive is injected into the gap with the inner surface of the adhesive to firmly adhere. However, precast concrete shear walls are built and built as a single plate that fits in the plane of the column beam frame, and multiple precast concrete shear walls are installed one after the other and joined together. It is possible to selectively implement the case where a single plate-shaped seismic wall is completed.
[0021]
[Effects of the present invention]
RC Shear Walls Boost by earthquake-proof reinforcement method of existing buildings by RC shear wall according to the invention of claim 1 Symbol placement has a structure to prevent local destruction restraining the outer peripheral portion other steel frame members, moreover Column Frame Because it is a structure that firmly adheres via steel frame material and reliably transmits overstress due to earthquakes etc. between them, it is truly effective for seismic reinforcement of existing buildings as a seismic element.
[0022]
In addition, since the seismic retrofitting method of the present invention does not have a process of roughening or anchoring, the degree of noise and vibration is extremely low, and satisfies the conditions that allow construction to be performed “while living”. Therefore, based on the necessity and recognition of seismic reinforcement of existing buildings designed according to the old standards, it is considered that it will greatly contribute to the spread of seismic reinforcement work.
[Brief description of the drawings]
FIG. 1 is a front view showing a situation in which an RC earthquake-resistant wall is added to an existing building by the method of the present invention.
2 is a cross-sectional view taken along line 2-2 in FIG.
FIG. 3 is an enlarged cross-sectional view showing in detail the structure of a seismic wall from the same viewpoint as FIG.
4 is a detailed cross-sectional view taken along line 4-4 of FIG.
FIG. 5 is a front view showing a situation in which RC seismic walls having different structures are added to an existing building by the method of the present invention.
6 is a detailed cross-sectional view taken along line 6-6 in FIG.
FIGS. 7A and 7B are a front view and a longitudinal sectional view showing a stage in which a steel frame member is bonded to add an RC earthquake resistant wall to an existing building by the method of the present invention.
FIGS. 8A and 8B are a front view and a longitudinal sectional view showing a stage where shear reinforcement bars for walls are arranged, respectively.
FIG. 9 is a longitudinal sectional view showing a stage in which a wall concrete formwork is assembled.
FIGS. 10A and 10B are a front view and a longitudinal sectional view showing a completed stage of an RC earthquake-resistant wall.
[Explanation of symbols]
1 Column 2 Beam 3 RC Earthquake Resistant Wall 4 Steel Frame Material 5 Adhesive 6 Anchor Reinforcement 9 Shear Reinforcement 7, 8, 10 Wall Perimeter Reinforcement

Claims (1)

柱梁架構の面内にRC耐震壁を増設する既存建物の耐震補強方法において、
柱梁架構の内面に沿い、柱又は梁の内法寸法にほぼ等しい長さで耐震壁の壁厚よりも大きい幅寸の平坦な接着面を有する平鋼板状、T形鋼状、若しくはハット形鋼状又は溝形鋼状材から成り予め内向きにアンカー筋を突設した鉄骨枠材を、その平坦な接着面を外向きに配置して柱梁架構の内面へエポキシ樹脂で接着する段階と
前記鉄骨枠材のアンカー筋を利用して耐震壁の剪断補強筋を配筋すると共に、外周部分にはコンクリートの拘束効果を高める主筋を鉄骨枠材の長手方向に通し、幅止め筋も配置してその両側に壁用のコンクリート型枠を組立てると共に、外周部分については前記鉄骨枠材の幅寸を限度に壁厚を大きくコンクリート型枠を組立てる段階と、
コンクリートを打設し、養生後に型枠を解体して、外周部分の壁厚を鉄骨枠材の幅寸を限度に耐震壁本来の壁厚よりも大きく形成した耐震壁を増設して補強することを特徴とする、RC耐震壁による既存建物の耐震補強方法。
In the seismic retrofitting method for existing buildings where RC seismic walls are added in the plane of the column beam frame,
A flat steel plate shape, T-shaped steel shape, or hat shape having a flat adhesive surface with a width that is substantially equal to the inner dimension of the column or beam and larger than the wall thickness of the earthquake resistant wall along the inner surface of the column beam structure A steel frame member made of a steel or channel steel member and having anchor bars projecting inward in advance , with its flat bonding surface facing outward and bonding to the inner surface of the column beam frame with epoxy resin; and ,
The steel frame frame anchor reinforcement bars are used to place shear reinforcement bars for the seismic walls, and the main bars that enhance the concrete's restraining effect are passed along the longitudinal direction of the steel frame material and the width stop bars are also arranged on the outer periphery. Assembling the concrete formwork for the wall on both sides of the lever, and assembling the concrete formwork to increase the wall thickness up to the width dimension of the steel frame material for the outer peripheral part ,
Place concrete, dismantle the formwork after curing, and add and strengthen the seismic wall whose outer wall thickness is made larger than the original wall thickness to the limit of the width of the steel frame material A seismic reinforcement method for existing buildings with RC seismic walls.
JP14128999A 1999-05-11 1999-05-21 Seismic reinforcement method for existing buildings with RC seismic walls Expired - Lifetime JP3992401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14128999A JP3992401B2 (en) 1999-05-11 1999-05-21 Seismic reinforcement method for existing buildings with RC seismic walls

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-130558 1999-05-11
JP13055899 1999-05-11
JP14128999A JP3992401B2 (en) 1999-05-11 1999-05-21 Seismic reinforcement method for existing buildings with RC seismic walls

Publications (2)

Publication Number Publication Date
JP2001027048A JP2001027048A (en) 2001-01-30
JP3992401B2 true JP3992401B2 (en) 2007-10-17

Family

ID=26465659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14128999A Expired - Lifetime JP3992401B2 (en) 1999-05-11 1999-05-21 Seismic reinforcement method for existing buildings with RC seismic walls

Country Status (1)

Country Link
JP (1) JP3992401B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936039A (en) * 2010-10-25 2011-01-05 刘成建 T-shaped connector for new and old buildings and construction method thereof
CN102127933A (en) * 2010-10-25 2011-07-20 刘成建 Y-type connector for new and old structures in added stories of low-storey buildings and construction method thereof
JP2015117496A (en) * 2013-12-17 2015-06-25 株式会社奥村組 Aseismatic strengthening method of existing frame

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169608A (en) * 2007-01-11 2008-07-24 Asahi Glass Co Ltd Bearing wall
JP2008208643A (en) * 2007-02-27 2008-09-11 Ohbayashi Corp Structure and method for joining existing skeleton and new skeleton together
JP5026830B2 (en) * 2007-03-22 2012-09-19 鹿島建設株式会社 Reinforced concrete block wall
JP4949116B2 (en) * 2007-04-17 2012-06-06 株式会社奥村組 Wall unit and shear wall
KR101193074B1 (en) 2011-01-20 2012-10-22 동국대학교 산학협력단 Method of strengthening foundation where above main structure is reinforced with external load bearing precast concrete wall panel
CN107023093A (en) * 2017-04-26 2017-08-08 浙江大学 A kind of modular architectural wall of flexible connection
CN107143148B (en) * 2017-05-12 2022-07-29 东南大学 Structure for reinforcing original frame by embedded prestress assembly type frame
CN113846771A (en) * 2021-11-02 2021-12-28 怀化品格建筑工程有限公司 Anti-seismic shear wall

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936039A (en) * 2010-10-25 2011-01-05 刘成建 T-shaped connector for new and old buildings and construction method thereof
CN102127933A (en) * 2010-10-25 2011-07-20 刘成建 Y-type connector for new and old structures in added stories of low-storey buildings and construction method thereof
CN102127933B (en) * 2010-10-25 2012-05-02 刘成建 Y-type connector for new and old structures in added stories of low-storey buildings and construction method thereof
CN101936039B (en) * 2010-10-25 2012-05-23 刘成建 T-shaped connector for new and old buildings and construction method thereof
JP2015117496A (en) * 2013-12-17 2015-06-25 株式会社奥村組 Aseismatic strengthening method of existing frame

Also Published As

Publication number Publication date
JP2001027048A (en) 2001-01-30

Similar Documents

Publication Publication Date Title
JP3992401B2 (en) Seismic reinforcement method for existing buildings with RC seismic walls
KR102311223B1 (en) Resistance to earthquake reinforcement method for DIY reinforcement of multi-household house piloti column
JP2522714B2 (en) Construction method of building frame
KR100401671B1 (en) Composite beam with prestressed precast concrete panel
JP2958880B1 (en) Seismic reinforcement method
JP2016216899A (en) Earthquake-proof wall structure
JP3929006B2 (en) Construction method for expanded seismic walls
JPH10331437A (en) Earthquake resistant reinforcing construction for existing beam and column
JP2004156395A (en) Aseismatic strengthening method for existing building, and aseismatic strengthened structure
JP3851563B2 (en) Frame reinforcement structure and its construction method
JP2005330758A (en) Additional reinforced wall method and additional reinforced wall structure of existing concrete wall
JP3608130B2 (en) Out-of-plane fall prevention structure for expanded seismic walls
JP3909488B2 (en) Seismic reinforcement structure of existing building and its construction method
JP3422942B2 (en) Reinforcement method for reinforced concrete columns
JP2004092248A (en) Joint metal of anchor bar, joint structure using the same and joining method used for the same
JPH07238610A (en) Connection method of precast concrete member
JP2001254519A (en) Reinforcing construction and reinforcing method using steel plate with joint bar
JP3870871B2 (en) Reinforcement structure of frame
JP2878382B2 (en) Frame structure of structure consisting of PC steel column and PC steel beam or PS steel beam
JP3521372B2 (en) Building frame reinforcement structure
JP3401747B2 (en) Seismic retrofitting structure of existing structures
KR200323668Y1 (en) Prefabrication struture by composing steel frame and concrete composite
JP2960715B1 (en) Structure reinforcement structure
JPH1025921A (en) Earthquake-resisting precast wall
JP3528887B2 (en) Method and structure of joining frame to existing building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

EXPY Cancellation because of completion of term