JP3992198B2 - Disinfecting and disinfecting bath water with a new disinfectant composition based on chlorine dioxide - Google Patents

Disinfecting and disinfecting bath water with a new disinfectant composition based on chlorine dioxide Download PDF

Info

Publication number
JP3992198B2
JP3992198B2 JP2004113671A JP2004113671A JP3992198B2 JP 3992198 B2 JP3992198 B2 JP 3992198B2 JP 2004113671 A JP2004113671 A JP 2004113671A JP 2004113671 A JP2004113671 A JP 2004113671A JP 3992198 B2 JP3992198 B2 JP 3992198B2
Authority
JP
Japan
Prior art keywords
chlorine dioxide
bath water
water
ppm
sterilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004113671A
Other languages
Japanese (ja)
Other versions
JP2005254223A (en
Inventor
征 助川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUKEGAWA CHEMICALS CO., LTD.
Original Assignee
SUKEGAWA CHEMICALS CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUKEGAWA CHEMICALS CO., LTD. filed Critical SUKEGAWA CHEMICALS CO., LTD.
Priority to JP2004113671A priority Critical patent/JP3992198B2/en
Publication of JP2005254223A publication Critical patent/JP2005254223A/en
Application granted granted Critical
Publication of JP3992198B2 publication Critical patent/JP3992198B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Cosmetics (AREA)

Description

本発明は二酸化塩素を主成分とする溶液を含む薬剤と共に、二酸化塩素の発生をより活性化させる賦活剤及びその活性を励起させた状態を保持する活性持続剤を併用した新規殺菌剤による浴用水の除菌・殺菌剤に関する。
ここでいう浴用水とは、温泉水・公衆浴場用水・施設風呂浴用水及び24時間風呂浴用水等を包含する。
尚、本明細書で開示する殺菌・除菌には「殺菌」、「消毒」等の概念をも包含する。
The present invention relates to a bath water by a novel disinfectant that uses a chemical containing a solution containing chlorine dioxide as a main component, an activator that activates the generation of chlorine dioxide, and an active sustaining agent that keeps the activity excited. It relates to sterilization and disinfectant.
Bath water here includes hot spring water, public bath water, facility bath water, 24-hour bath water, and the like.
The sterilization and sterilization disclosed in this specification includes concepts such as “sterilization” and “disinfection”.

1996年代、院内感染による新生児の死亡例あるいは24時間風呂によるレジオネラ菌感染の問題が発生し、最近では日本各地の保養所、特別養護施設の循環式浴場浴用水、建築物の水利用施設、例えば空調用冷却水、給水・給湯水、加湿用水あるいは修景施設用水等を感染源とするレジオネラ肺炎の集団発症が連続して発生し、死者も報告されている。
レジオネラ症はレジオネラ属菌を主起因として発症する呼吸窮迫症候群を伴った多臓器障害の臨床症状を示し、劇症例では発症後1週間で死亡する。ヒトへの感染はこの菌を含むエアロゾルを吸引あるいはこの菌で汚染された水を誤飲した場合にも発症する。
この様に経気道感染が主たる感染経路であるが創傷感染も報告されている。
主たる標的臓器は肺であるが、羅患対象者は主として網内系の不全者や不備者である新生児、エイズ患者や悪性腫瘍患者、代謝異常者で多く認められている。
In the 1996s, deaths of newborns due to nosocomial infections or problems of Legionella infection by 24-hour baths occurred, and recently, recreational baths in various places in Japan, bathing water for recreational baths in special nursing homes, water use facilities for buildings, for example, Massive outbreaks of Legionella pneumonia with infection sources such as cooling water for air conditioning, water supply / hot water, humidification water, or landscape facility water have been reported, and fatalities have been reported.
Legionellosis is a clinical manifestation of multi-organ disorder accompanied by respiratory distress syndrome that develops mainly due to Legionella spp. Infection to humans also occurs when an aerosol containing this bacterium is inhaled or water contaminated with this bacterium is accidentally swallowed.
Thus, although respiratory tract infection is the main route of infection, wound infection has also been reported.
The main target organ is the lung, but the affected subjects are mainly found in neonates, AIDS patients, malignant tumor patients, and those with metabolic abnormalities who are mainly defective or deficient in the reticuloendothelial system.

レジオネラ属菌は、自然界の土壌や淡水中で生育ないし増殖する自然生活菌であり、ヒトの皮膚、粘膜に偏在するが寄生する事はない。
しかし、生育可能とされている自然界や人工環境、水中では、他の菌や藻類の代謝産物を栄養源として生育することを特徴とし、またアカンタアメーバ等の細菌捕食性原生動物に取り込まれると、細菌内で消化崩壊することなく、逆に細胞内で増殖し宿主を破壊・死滅させる。
感染はヒトからヒトへと伝播することはなく、集団感染は常に共通の汚染源から多数のヒトへ感染する。
Legionella is a natural living organism that grows or proliferates in natural soils and fresh water. It is ubiquitous in human skin and mucous membranes, but never parasitizes.
However, it is characterized by growing as a nutrient source in metabolites of other fungi and algae in the natural world, artificial environment and underwater, and when taken up by bacterial predatory protozoa such as Acanta Amoeba Instead of digesting and disrupting in bacteria, it grows in cells and destroys and kills the host.
Infections do not spread from person to person, and mass infections always infect many people from a common source.

その感染源は前記した人工環境淡水、例えば給湯水、浴用水、修景用水、冷却塔水、加湿器、シャワー水、渦流浴槽水、うたせ湯等が挙げられる。Examples of the infection source include the above-described artificial environment fresh water, for example, hot water supply water, bath water, landscape water, cooling tower water, humidifier, shower water, swirl bath water, and utaze hot water.

レジオネラ属菌は、水中で浮遊分散しながら生育しているものもあれば、配管内壁や装置内面の水に触れる部分に形成される生物膜(バイオフイルム)の中でも棲息する事も認められている。生物膜(バイオフイルム)の内部の生育菌叢は紫外線や、薬剤等の殺菌作用を受け難く、保守された状態で生存している。Some Legionella spp. Grow while floating and dispersed in water, and it is also recognized that they inhabit biofilms (biofilms) formed on the inner walls of pipes and on the inner surface of the device that come into contact with water. . The growing flora inside the biofilm (biofilm) is not easily affected by ultraviolet light or chemicals and is alive in a conserved state.

共通の感染源には上述したように冷却塔水、及び循環式浴用水槽等が問題視され、行攻当局は、これらの感染源に対してレジオネラ症防止指針を開示し「感染因子の点数化」という考え方を導入して、レジオネラ属菌の制御対策を図ろうとしている。As mentioned above, cooling tower water, circulating bath tanks, etc. are considered to be common infectious sources, and the authorities have disclosed Legionellosis prevention guidelines for these infectious sources. Is being introduced to take measures to control Legionella spp.

レジオネラ症防止指針には、「公衆浴場における水質基準等に関する指針」に▲1▼大腸菌群は浴用水50ml中に検出されない事。▲2▼レジオネラ菌は10cfu/100ml未満であるとしており、即ち規定された方法で検出限界以下に抑えるように指示を出している。Legionellosis prevention guidelines are as follows: (1) Escherichia coli group is not detected in 50 ml of bath water according to “Guidelines for water quality standards in public baths”. {Circle around (2)} Legionella bacteria are considered to be less than 10 cfu / 100 ml, that is, an instruction is given to keep them below the detection limit by a prescribed method.

さらに、健発第1029004号に「条例等にレジオネラ症発生防止対策を追加する際の指針について」で入浴施設におけるレジオネラ症発症防止対策の基本的な考え方の中に、浴槽、配管、循環濾過装置における生物膜(バイオフイルム)の発生防止及び、除去を行うための洗浄、消毒等の衛生管理上の措置が重要である事が謳っている。これらの生物膜(バイオフイルム)では慣用されている次亜塩素酸ナトリウムは、遊離している有機物(汚濁物質)や、膜表層物質との接触により消費され、従って生物膜(バイオフイルム)に内在しているレジオネラ属菌を含め微生物と接触に到らず、当然殺菌・除去する事は困難と言われている。In addition, the basic concept of measures to prevent the development of Legionellosis in bathing facilities in “No. 109004,“ Guidelines for Adding Legionellosis Prevention Measures to Ordinances, etc. ” It is important that measures for hygiene management such as cleaning and disinfection to prevent the generation of biofilms and remove them are important. Sodium hypochlorite, which is commonly used in these biofilms (biofilms), is consumed by contact with free organic substances (contaminants) and membrane surface materials, and is therefore inherent in biofilms (biofilms). It is said that it is difficult to sterilize and remove naturally, because it does not come into contact with microorganisms including Legionella spp.

また、「公衆浴場における微生物管理要領」に浴槽水の消毒に当たって、浴槽中の遊離残留塩素濃度を頻繁に測定して通常、1日2時間以上0.2〜0.4ppm程度に保つよう指導している。In addition, in the “Microorganism Management Guidelines for Public Baths”, instructing the bath water to be disinfected, measure the free residual chlorine concentration in the bath frequently and keep it at about 0.2 to 0.4 ppm for 2 hours a day. ing.

さらに、「循環式浴場におけるレジオネラ症防止対策マニュアル」では塩素薬剤の一覧表が掲載され、その代表薬剤として次亜塩素酸ナトリウムが表示されている。
その薬剤濃度が1ppm以上にならないよう指導している。高濃度になれば発癌性の強いトリハロメタンの副成、有機物との結合による異臭の発生、塩素ガスの発生等によるヒト皮膚に対する皮膚炎症の惹起等が問題となる。
In addition, the “Manual for Preventing Legionellosis in Circulating Baths” lists chlorinated drugs, and sodium hypochlorite is displayed as the representative drug.
Guidance is given to prevent the drug concentration from exceeding 1 ppm. When the concentration is high, problems such as by-product of strong carcinogenic trihalomethane, generation of off-flavor due to binding with organic substances, and induction of skin inflammation due to generation of chlorine gas, etc. are problematic.

レジオネラ属菌は、精製水中では0.5ppmの残留塩素濃度で、5分以内で殺菌されるが、浴槽水の特性である有機物汚染や塩素消費物質が存在し、温度、pH、無機物イオン濃度により著しく影響を受け、上記マニュアルでは充分に除菌・滅菌出来ないのが通例である。
(石井営次 環境管理技術15 293 1997)
Legionella is sterilized within 5 minutes at a residual chlorine concentration of 0.5 ppm in purified water, but there are organic contamination and chlorine-consuming substances that are characteristic of bath water, depending on temperature, pH, and inorganic ion concentration. It is usually affected by the above manual and cannot be sterilized and sterilized sufficiently.
(Yuji Ishii Environmental Management Technology 15 293 1997)

また、上記指導マニュアルによる塩素系薬剤で消毒が不十分な場合、紫外線照射法、オゾン法との併用等が試みられており、現に特許公報で塩素系薬剤と紫外線の併用法が開示されている。しかし紫外線照射法では照射管ガラス表面の汚れにより著しく殺菌効力が減退すると共に、可視光線を受ける事により光回復によって再生する事、またオゾン法の使用に際してはその発癌性のある残存オゾンを完全に分解除去する必要があり、実質面では使用困難である。
特公開平10−305285 特公開平10−337569
In addition, when disinfection is insufficient with chlorinated chemicals according to the above instruction manual, combined use with the ultraviolet irradiation method, ozone method, etc. has been attempted, and the patent publication discloses the combined use method of chlorinated chemicals and ultraviolet rays. . However, in the ultraviolet irradiation method, the bactericidal effect is remarkably reduced due to contamination on the surface of the irradiation tube glass, and when it is exposed to visible light, it is regenerated by light recovery, and when the ozone method is used, the residual carcinogenic ozone is completely removed. It is necessary to disassemble and remove, and it is difficult to use in substantial terms.
JP 10-305285 Japanese Patent Publication No. 10-337569

一方、麦飯石濾過法による菌の除去は、現在多用されている砂式濾過ではその濾過限界が20〜50μであり、これにより微生物を除去する事は不可能である。On the other hand, the removal of bacteria by the barley stone filtration method has a filtration limit of 20 to 50 μm in sand filtration that is widely used at present, and it is impossible to remove microorganisms.

かかる点を考慮して、殺菌・消毒に対する有効性及び副作用の面から次亜塩素酸ソーダに代替出来る殺菌剤の選択及び使用法の改良が広く試みられている。
しかし、次亜塩素酸ソーダでは生物膜(バイオフイルム)を形成している配管、浴槽、循環器に対する除菌は殆どその有効性を期待することは出来ないことは上述のとおりである。
In view of such points, selection of a bactericidal agent that can be substituted for sodium hypochlorite and improvement of its usage have been widely attempted in terms of effectiveness against sterilization / disinfection and side effects.
However, with sodium hypochlorite, as described above, it is almost impossible to expect the effectiveness of sterilization of pipes, bathtubs, and circulators that form a biofilm (biofilm).

本発明者はこれまで生物膜(バイオフイルム)の剥離及び浮遊分散した菌に対してあらゆる環境下でも殺菌効力を示す活性化二酸化塩素について鋭意検討を重ねてきた。
生物膜(バイオフイルム)形成している器具・装置の除菌に対する二酸化塩素の有効性については健衛発第95号「循環式浴槽におけるレジオネラ症防止対策マニュアルについて」に次亜塩素酸ナトリウムとの併用により、スライム等の除去と消毒が報告されており、二酸化塩素による浴用水の除菌・殺菌の有効性が認められている。
The present inventor has so far conducted extensive studies on activated chlorine dioxide that exhibits bactericidal efficacy under any environment against bacteria that have been detached from biofilms (biofilms) and suspended and dispersed.
Regarding the effectiveness of chlorine dioxide for the sterilization of instruments and devices that are forming biofilms, refer to the Kenei No. 95 “Regional Disease Prevention Countermeasure Manual for Circulating Bathtubs” with sodium hypochlorite. It has been reported that slime is removed and disinfected by the combined use, and the effectiveness of disinfection and sterilization of bath water with chlorine dioxide is recognized.

二酸化塩素は前述したように、広いpH域で殺菌作用を示すとともに有機物との混在下でも殺菌作用を発揮し、更には発癌性の強いトリハロメタンの副成、有機物との結合による異臭の発生、皮膚に対しする刺激性等も認められず,環境に優しい特性を示す。As described above, chlorine dioxide exhibits bactericidal action in a wide pH range and also exhibits bactericidal action even in the presence of organic substances. Furthermore, it is a byproduct of highly carcinogenic trihalomethane, generation of off-flavors due to binding with organic substances, skin No irritation to the skin is observed, and it is environmentally friendly.

しかし、二酸化塩素は上述のような優れた特性を有しているにも関わらず、その殺菌効力を長時間保持する事は困難であった。本発明者はこれらの欠点を克服するため、消毒するする対象物が要求する清潔度、使用時の基本的条件の適合性、抗菌スペクトルの範囲、生体への影響、消毒作用の持続性・吸着性・浸透性、有機物在存下での有効性、消毒対象物への影響、臭気・色素の沈着、耐性菌の出現性、廃棄処理の易容性、更には効力の持続性等々に関して鋭意検討を重ね、本願明細書に開示する発明に至った。However, although chlorine dioxide has excellent characteristics as described above, it has been difficult to maintain its bactericidal efficacy for a long time. In order to overcome these drawbacks, the present inventor has required cleanliness required by the object to be sterilized, suitability of basic conditions at the time of use, antibacterial spectrum range, influence on the living body, persistence and adsorption of disinfection action Investigative research on properties, penetrability, effectiveness in the presence of organic matter, effects on disinfection objects, odor / pigmentation, appearance of resistant bacteria, ease of disposal, and sustainability of efficacy As a result, the present invention disclosed in this specification has been achieved.

循環式風呂で最も危惧されているレジオネラ属菌の除去・殺菌剤には比較的殺菌効力が高いといわれている第4級アンモニウム化合物、ピリジウム塩化合物あるいはグルタルアルデヒド等の有機系の殺菌剤が用いられているが、浴用水という特殊性と安全性の面から浴用水の浄化あるいは換水処理による残留する薬剤を完全に排除する必要がある。Organic fungicides such as quaternary ammonium compounds, pyridium salt compounds or glutaraldehyde, which are said to have a relatively high bactericidal effect, are used for the removal and bactericides of Legionella spp. However, it is necessary to completely eliminate the remaining chemicals due to purification of the bath water or water exchange treatment from the viewpoint of the special and safety of bath water.

現在汎用されている次亜塩素酸ソーダはその残留塩素による過敏症や皮膚刺激性アレルギー、臭気、目への影響を考慮して設定された法的規定上限値近似となるよう投入された浴用水でもレジオネラ属菌が検出されたり、またアルカリ性が強い温泉等浴用水では充分量の次亜塩素酸ソーダを投入しても充分な殺菌効力が認められない場合が知られている事は上述したとおりである。Sodium hypochlorite, which is currently widely used, is bath water that has been introduced so as to approximate the legal regulation upper limit set in consideration of the effects of residual chlorine on hypersensitivity, skin irritation allergy, odor, and eyes. However, as mentioned above, Legionella spp. Are detected, and it is known that sufficient bactericidal efficacy is not recognized even when a sufficient amount of sodium hypochlorite is added in hot alkaline bath water. It is.

一方、二酸化塩素が有する強力な殺菌作用は、細菌に対して直接接触し微生物表層あるいは生体系に係る重要な代謝関係酵素及び細胞膜組成中のチロシン、メチオニン及びシスチン残基を特異的に酸化させ、その機能を不活化する。同時に二酸化塩素から発生した発生期の酵素により微生物を細胞の破壊させることにより対象微生物を死滅させる。該薬剤は欧米では塩素の代替可能で安全性の高い消毒剤として広く飲料水の殺菌や環境の浄化やHACCP等食品衛生管理、医療用に既に汎用されている。On the other hand, the strong bactericidal action of chlorine dioxide specifically oxidizes tyrosine, methionine, and cystine residues in the microbial surface layer or biological system, which are in direct contact with bacteria, and important metabolic enzymes and cell membrane compositions. Inactivate its function. At the same time, the target microorganism is killed by destroying the cell with the nascent enzyme generated from chlorine dioxide. In Europe and the United States, this medicine is widely used as a highly safe disinfectant that can replace chlorine, and is already widely used for drinking water sterilization, environmental purification, HACCP food hygiene management, and medical use.

一方、塩素系消毒剤、例えば次亜塩素酸あるいはその塩である次亜塩素酸ソーダや次亜塩素酸カルシウムの殺菌機序は被対象物自体の呼吸系機序の「塩素化」による殺菌作用を発現し、その分子構造は類似しているが二酸化塩素との殺菌作用機序は異なる。On the other hand, the sterilization mechanism of chlorinated disinfectants such as hypochlorous acid or its salt sodium hypochlorite and calcium hypochlorite is the sterilization action by "chlorination" of the respiratory system of the subject itself. The molecular structure is similar but the bactericidal action mechanism with chlorine dioxide is different.

本発明者は殺菌機序の異なる二酸化塩素と次亜塩素酸あるいはその塩化物を併用することにより、二酸化塩素の持つ″切れ味″鋭い殺菌作用が次亜塩素酸あるいはその塩化物の共存により相乗的に殺菌作用が増強される事を認めた。The present inventor uses a combination of chlorine dioxide and hypochlorous acid or their chlorides, which have different sterilization mechanisms, so that the sharpness of the sharpness of chlorine dioxide is synergistic by the coexistence of hypochlorous acid or its chlorides. It was observed that the bactericidal action was enhanced.

しかし、次亜塩素酸殺菌剤は前述したとおり、有機物の共存やアルカリ性浴用水中では容易に失活し、又浴用水の39℃〜43℃という加温状況では二酸化塩素も分解される可能性がある。本発明者はこのような条件下で二酸化塩素と次亜塩素酸薬剤の併用による殺菌の相乗効果を長時間持続させるために更に鋭意検討を重ねて来た。However, as described above, the hypochlorous acid disinfectant can be easily deactivated in the presence of organic substances and in alkaline bath water, and chlorine dioxide may be decomposed in a heating condition of 39 ° C. to 43 ° C. of bath water. is there. The present inventor has conducted further intensive studies in order to maintain the synergistic effect of sterilization by the combined use of chlorine dioxide and a hypochlorous acid agent under such conditions.

この結果、第VIII族元素鉄族の2価イオン、詳しくは硫酸第一鉄あるいは塩化第一鉄あるいは塩化第一コバルトが浴用水中で二酸化塩素の分解を抑制することを認め、上記相乗効果が保持されることを認めた。As a result, it was recognized that the divalent ions of the group VIII element iron group, specifically, ferrous sulfate, ferrous chloride, or cobaltous chloride suppressed the decomposition of chlorine dioxide in bath water, and the above synergistic effect was maintained. Admitted to be.

二酸化塩素の殺菌作用を相乗的に増強する前述の賦活性物質を賦活剤MKと称し、この賦活剤MKには次亜塩素酸あるいはその塩類化合物が含まれる。又この上述の相乗殺菌効果を持続させる化合物を活性持続剤SXと称し、この活性持続剤SXには第VIII族元素鉄族ニ価イオン化合物からなる。例えば硫酸第一鉄あるいは塩化第一鉄あるいは塩化第一コバルトが含まれる。The aforementioned activator that synergistically enhances the bactericidal action of chlorine dioxide is called activator MK, and this activator MK contains hypochlorous acid or a salt compound thereof. The compound that maintains the above-mentioned synergistic bactericidal effect is referred to as an active sustaining agent SX, and the active sustaining agent SX is composed of a Group VIII element iron group divalent ion compound. For example, ferrous sulfate, ferrous chloride or ferrous cobalt is included.

本発明は二酸化塩素と賦活剤MK及び活性持続剤SXを″三位一体″の組合せで使用することを特徴とする新規殺菌組成薬剤である。The present invention is a novel bactericidal composition agent characterized by using chlorine dioxide, an activator MK, and an active sustaining agent SX in a combination of “trinity”.

本願明細書に記載する二酸化塩素剤とは二酸化塩素を含有するものをいい、例えば亜塩素酸ナトリウム、亜塩素酸カリウム等の亜塩素酸塩に塩酸、硫酸等の無機酸を加えることにより発生させることが出来る。The chlorine dioxide agent described in the specification of the present application refers to one containing chlorine dioxide, for example, generated by adding an inorganic acid such as hydrochloric acid or sulfuric acid to a chlorite such as sodium chlorite or potassium chlorite. I can do it.

また、上記二酸化塩素は亜塩素酸を安定化剤により安定化させた安定化二酸化塩素剤から発生させても良い。
ここで、安定化剤とはNaCO・3H、NaHCO及びNaBO等を挙げることができる。
このような安定化二酸化塩素剤は助川化学(株)より提供されている。
The chlorine dioxide may be generated from a stabilized chlorine dioxide agent obtained by stabilizing chlorous acid with a stabilizer.
Here, examples of the stabilizer include Na 2 CO 3 .3H 2 O 2 , NaHCO 3, and NaBO 3 .
Such a stabilized chlorine dioxide agent is provided by Sukegawa Chemical Co., Ltd.

更に、上記二酸化塩素は上記二酸化塩素剤を有機酸類、過酸化水素及びアルコール類から選択される活性化剤により二酸化塩素の発生を活性化した二酸化塩素から発生させても良い。ここで、上記有機酸類とは、例えばクエン酸等を代表例として挙げることが出来る。また、上記アルコール類としては、例えばエタノールを代表として挙げることが出来る。
このような活性化された活性化二酸化塩素も、また助川化学(株)より提供されている。
Further, the chlorine dioxide may be generated from chlorine dioxide in which the generation of chlorine dioxide is activated by an activating agent selected from organic acids, hydrogen peroxide and alcohols. Here, examples of the organic acids include citric acid and the like. Examples of the alcohols include ethanol as a representative example.
Such activated activated chlorine dioxide is also provided by Sukegawa Chemical Co., Ltd.

上記賦活剤MKは有機系塩素殺菌剤として、例えばイソシアヌル酸、無機系塩素殺菌剤として、例えば次亜塩素酸或いはその塩類、代表例として次亜塩素酸ソーダ、次亜塩素酸カルシウムを挙げることが出来る。次亜塩素酸及びその塩類は次亜塩素酸発生用装置より食塩水電気分解で得られる次亜塩素酸イオン等の機能水をも含む。Examples of the activator MK include organic chlorine disinfectants such as isocyanuric acid and inorganic chlorine disinfectants such as hypochlorous acid or salts thereof, and representative examples include sodium hypochlorite and calcium hypochlorite. I can do it. Hypochlorous acid and its salts also contain functional water such as hypochlorite ions obtained by electrolysis of saline from a hypochlorous acid generator.

上記活性持続剤SXは、VIII族元素鉄族の2価イオン、例えば塩化第一鉄、硫酸第一鉄あるいは硫酸第一コバルト或いは塩酸第一コバルトの何れからなる水溶液あるいは上記化合物を混合しても良い。The above active sustaining agent SX can be prepared by mixing an aqueous solution of a divalent ion of group VIII element iron group, for example, ferrous chloride, ferrous sulfate, ferrous cobalt sulfate, or cobaltous hydrochloride or the above compound. good.

上記新規殺菌剤組成液は浴用水のレジオネラ属菌、大腸菌(群)、一般細菌の除菌・殺菌作用に、浴用水のpH値に殆ど影響を受けず、又その有効性は入浴者による浴用水の汚染にも関係しない。The above-mentioned new bactericide composition solution is not affected by the pH value of the bath water for the sterilization and bactericidal action of Legionella spp. It is not related to water pollution.

本発明において、二酸化塩素の好ましい濃度は0.5ppm〜20ppmで、好ましくは0.5ppm〜10ppm、更に好ましくは1.0ppm〜5.0ppmである。In the present invention, the preferred concentration of chlorine dioxide is 0.5 ppm to 20 ppm, preferably 0.5 ppm to 10 ppm, more preferably 1.0 ppm to 5.0 ppm.

一方、本発明における賦活剤MK及び活性持続剤SXの好ましい添加濃度は0.01ppm〜1.0ppmで、より好ましくは0.1ppm〜0.7ppm、更に好ましくは0.2ppm〜0.5ppmである。On the other hand, the preferable addition concentration of the activator MK and the active sustaining agent SX in the present invention is 0.01 ppm to 1.0 ppm, more preferably 0.1 ppm to 0.7 ppm, and still more preferably 0.2 ppm to 0.5 ppm. .

新規殺菌剤組成の添加方法は、例えば1週間循環使用する24時間風呂の白湯浴用水では換水初日に同時に3薬剤を添加してもよいが、更に好ましくは賦活剤MKを毎日0.2ppmになるよう添加する方法が一番好ましい。For example, in the method of adding a new fungicide composition, in a 24-hour bath white bath water that is circulated for 1 week, 3 chemicals may be added simultaneously on the first day of the replacement, but more preferably, the activator MK is 0.2 ppm daily. The method of adding such is most preferable.

以上の事実より、本発明は二酸化塩素を主薬とした新規殺菌組成剤で、浴用水のレジオネラ属菌、大腸菌(群)及び一般細菌に対して強力な除菌・殺菌作用を呈し、風呂浴用水のみならず、人工環境水、給湯水、冷却用塔水、加湿器等の使用水の殺菌・消毒に提供しようとするものである。Based on the above facts, the present invention is a novel bactericidal composition comprising chlorine dioxide as a main ingredient, exhibiting a strong disinfecting and bactericidal action against Legionella spp., Escherichia coli (group) and general bacteria in bath water, and bath water In addition to artificial environment water, hot water, cooling tower water, humidifiers, etc., water is intended to be sterilized and disinfected.

以下の具体的な実験例、対照例、比較例、実施例によって本発明をさらに具体的に説明するが、本発明はこれによって限定されるものではない。The present invention will be described more specifically with the following specific experimental examples, control examples, comparative examples, and examples, but the present invention is not limited thereto.

対照例1Control Example 1

24時間循環風呂の1週間の微生物汚染状況結果を図1に示す。
該風呂は約10tの施設風呂で浴槽水(42℃)を循環し、循環工程中の集毛器、砂濾過を経由し、熱交換器で加温して元の浴槽へ循環している。濾過能力は法定規格内である。
使用状況を詳しく述べると、1日に約40〜60名が入浴し、土曜日の午後に完全排水し、月曜日午前中に新たに水道水を注入する完全換水システムをとっている。
猶、毎日の入浴時間は午後2:00〜5:00として、5時以後は循環並びに加温操作を行っていない。
図1に示すように、施設浴槽は換水を行った初日(月曜日)には一般細菌、5×10cfu/ml,レジオネラ属菌6×10cfu/mlが検出され、該施設風呂の設備は大量の一般細菌、レジオネラ属菌により微生物汚染が進んでおり、すでに配管はじめ附属設備は微生物(生物)膜により汚染された状況下にある。
The results of microbial contamination for one week in the 24-hour circulation bath are shown in FIG.
The bath is a facility bath of about 10 t, and circulates bath water (42 ° C.), passes through a hair collector and sand filtration during the circulation process, is heated by a heat exchanger, and is circulated to the original bath. Filtration capacity is within legal standards.
More specifically, about 40 to 60 people take a bath every day, complete drainage on Saturday afternoon, and a complete water exchange system in which tap water is newly injected on Monday morning.
Grace, daily bathing time is 2:00 to 5:00 pm, and after 5 o'clock circulation and heating operation are not performed.
As shown in FIG. 1, on the first day (Monday) when the facility tub was changed, general bacteria, 5 × 10 4 cfu / ml, Legionella 6 × 10 2 cfu / ml were detected, and the facility bath equipment Has been polluted by a large amount of general bacteria, Legionella spp., And pipes and attached equipment are already contaminated by microbial (biological) membranes.

比較例1Comparative Example 1

0037と同じ条件下で注水初日に二酸化塩素5.0ppmになるように添加し二酸化塩素の殺菌効力及びその殺菌効果について検討した。その結果を図2に示す。
図2に示すように、初日に二酸化塩素を5.0ppmを添加しても、次日から一般細菌、レジオネラ属菌及び大腸菌(群)の増加が認められ、二酸化塩素の効力はこの条件下では認められない。
Under the same conditions as 0037, it was added so that the chlorine dioxide was 5.0 ppm on the first day of water injection, and the bactericidal effect of chlorine dioxide and its bactericidal effect were examined. The result is shown in FIG.
As shown in FIG. 2, even when 5.0 ppm of chlorine dioxide was added on the first day, an increase in general bacteria, Legionella spp. And Escherichia coli (group) was observed from the next day. unacceptable.

実験例1Experimental example 1

小型閉鎖系循環風呂(実験スケール)における賦活剤の種類による殺菌の増強作用について、以下のとおり検討した。公設施設浴用水よりメンブランフィルターで集菌、分離をした無菌水を充分に洗菌後、滅菌精製水に懸濁(白湯に懸濁し1.0x10cfu/ml)し、これを浴槽分離菌とした。定量ポンプで無菌的に循環(3.0ml/min)した循環浴槽水に、上記菌懸湯液を接種し(懸湯液2.0ml/無菌浴槽水200ml)42℃で循環し、24時間後の菌数を検討した。この小型閉鎖系循環風呂で表1に示す薬剤を無菌的に注入しおよび試験検体を無菌的に採取した。その結果を表1に示す。

Figure 0003992198
表1に示すように、二酸化塩素と次亜塩素酸ソーダとの間に著しい相乗殺菌効果が見られ、初発菌数5.3x10cfu/mlが完全に消失した。
図3は、二酸化塩素4.0ppm及び次亜塩素酸ソーダ0.4ppmを初日添加した相乗効果を5日間の生育菌数の変動を求めた。猶、対照例として二酸化塩素及び次亜塩素酸ソーダ単独による殺菌活性を求めた。
この結果、塩素系殺菌剤に二酸化塩素併用することにより浴槽細菌に対して相乗的殺菌効果が認められ、このように有効性及び使用の簡易性から次亜塩素酸ソーダを賦活剤MKとして選択した。The effect of sterilization enhancement by the type of activator in a small closed circulation bath (experimental scale) was examined as follows. The sterile water collected and separated from the public facility bath water with a membrane filter is thoroughly washed and then suspended in sterilized purified water (1.0 × 10 7 cfu / ml suspended in white water). did. Inoculate the above circulating bath water into the circulating bath water aseptically circulated (3.0 ml / min) with a metering pump (2.0 ml of the bath water solution / 200 ml of sterile bath water) and circulate at 42 ° C., 24 hours later The number of bacteria was examined. In this small closed circulation bath, the drugs shown in Table 1 were injected aseptically and test specimens were collected aseptically. The results are shown in Table 1.
Figure 0003992198
As shown in Table 1, a remarkable synergistic bactericidal effect was observed between chlorine dioxide and sodium hypochlorite, and the initial bacterial count of 5.3 × 10 5 cfu / ml completely disappeared.
FIG. 3 shows the synergistic effect of adding 4.0 ppm of chlorine dioxide and 0.4 ppm of sodium hypochlorite on the first day to determine the fluctuation of the number of growing bacteria for 5 days. As a comparative example, bactericidal activity with chlorine dioxide and sodium hypochlorite alone was determined.
As a result, a synergistic bactericidal effect was observed against bathtub bacteria by using chlorine dioxide in combination with the chlorine-based disinfectant. Thus, sodium hypochlorite was selected as the activator MK because of its effectiveness and ease of use. .

実験例2Experimental example 2

浴槽分離菌に対する二酸化塩素の殺菌・除菌作用における賦活剤MKの相乗効果について賦活剤MKの濃度について検討した。その結果、図4に示すように0.2ppm以上で著しい殺菌相乗効果を認めた。The concentration of the activator MK was examined for the synergistic effect of the activator MK in the bactericidal and disinfecting action of chlorine dioxide against the bathtub isolate. As a result, as shown in FIG. 4, a remarkable bactericidal synergistic effect was recognized at 0.2 ppm or more.

実験例3Experimental example 3

二酸化塩素と賦活剤MKの併用による殺菌相乗効果を更に持続させるため活性剤持続剤の検討を行った。図5に示すように、塩化及び硫酸第一価鉄塩化及び硫酸第一価鉄FeCl、FeSO及び塩化第一価コバルトCoClで殺菌効力の持続性を認めた。
0039で記述した方法で浴槽水分離菌株に対する殺菌効力の有効期間について経時的に測定した結果、図6に示すように、塩化及び硫酸第一価鉄FeCl、FeSOに相乗的殺菌効力に対する持続性が認め、FeSOを活性保持剤SXとした。
この活性持続剤SXの濃度と活性保持効果について図6に示す。
In order to further maintain the bactericidal synergistic effect of the combined use of chlorine dioxide and the activator MK, an activator continuation agent was examined. As shown in FIG. 5 , persistence of the bactericidal effect was observed with chloride, ferrous sulfate, ferrous sulfate, FeCl 2 , FeSO 4, and monovalent cobalt CoCl 2 .
As a result of measuring the effective period of the bactericidal efficacy against the bathtub water isolate by the method described in 0039 over time, as shown in FIG. 6, the chloride and ferrous sulfate FeCl 2 , FeSO 4 sustained the synergistic bactericidal efficacy. Therefore, FeSO 4 was used as the active retention agent SX.
FIG. 6 shows the concentration of the active sustaining agent SX and the activity retention effect.

実験例4Experimental Example 4

二酸化塩素、賦活剤MK及び活性持続剤3成分のコンビネーション実験例4の結果を図7に示す。
この図に示すように、三剤併用により浴槽分離細菌に対して著しい殺菌作用を認めた。
The result of the combination experimental example 4 of chlorine dioxide, activator MK, and active sustaining agent 3 component is shown in FIG.
As shown in this figure, a remarkable bactericidal action was observed against bathtub-separated bacteria by the combined use of three agents.

実験例5Experimental Example 5

浴槽分離細菌に対する各薬剤及びその組合せによる最小致死濃度(MBC)の測定結果を表2に示す。

Figure 0003992198
この結果、二酸化塩素、賦活剤MK及び活性持続剤SXの併用により、その最小致死濃度は二酸化塩素は0.16ppm、賦活剤はMK0.02ppm及び活性持続剤SXは0.02ppm以下の併用であり、二酸化塩素単独では60ppm、賦活剤単独で0.44ppm及び活性持続剤単独では>7.5ppmで、三剤併用により20〜400倍の殺菌活性の増強が本実験結果より認められた。Table 2 shows the measurement results of the minimum lethal concentration (MBC) of each drug against the bathtub-isolated bacteria and the combination thereof.
Figure 0003992198
As a result, with the combined use of chlorine dioxide, activator MK and active sustaining agent SX, the minimum lethal concentration is chlorine dioxide 0.16 ppm, activator MK 0.02 ppm and active sustaining agent SX 0.02 ppm or less. In addition, chlorine dioxide alone was 60 ppm, activator alone was 0.44 ppm, and active sustainer alone was> 7.5 ppm, and a combination of the three agents showed an enhancement of bactericidal activity 20 to 400 times from the results of this experiment.

実験例6Experimental Example 6

0039で記述した小型循環風呂で新規殺菌剤組成の除菌・殺菌作用に対する有効な薬剤投入条件について検討した。図8に示すように除菌・殺菌に対する投入方法は換水初日に二酸化塩素は5.0ppm、賦活剤MKは0.4ppm及び活性持続剤SXはは0.4ppmを投入し、更に賦活剤MKは0.4ppmのみを日次追加添加するのが最も好ましい事を見出した。In the small circulation bath described in 0039, the conditions for effective drug introduction for the sterilization and bactericidal action of the new fungicide composition were examined. As shown in FIG. 8, the introduction method for sterilization / sterilization is 5.0 ppm for chlorine dioxide, 0.4 ppm for the activator MK and 0.4 ppm for the active sustaining agent SX, and the activator MK is It has been found that it is most preferable to add only 0.4 ppm daily.

公設施設風呂(浴槽約10t)の浴用水に対する新規殺菌組成による除菌・殺菌作用について検討した。
該公設施設風呂は1日約40〜60名の入浴者で、月曜日に換水する24時間循環で1週間連続使用している。
換水初日に二酸化塩素が5.0ppm、賦活剤が0.4ppm及び活性持続剤が0.4ppmになるよう投入し、次日は賦活剤のみを0.4ppmになるように添加した。
その浴槽中の検出細菌として一般細菌、大腸菌(類)及びレジオネラ属菌の推移について検討した。
浴槽水中の一般細菌の推移を図9に示す。検出された菌数は多数の人達が入浴するにも拘わらず約5.0×10cfu/mlであり、又その分離菌を検討したところ殆ど芽胞菌であった。猶、その際の比較例2の菌数は約1.0×10cfu/mlの菌数であった。
一方、レジオネラ属菌及び大腸菌は浴槽中から全く検出されず(図10、図11)、これら新規殺菌薬剤組成液の投入により該浴槽水中のレジオネラ属菌や大腸菌(群)は完全に除菌・殺菌されることを認めた。
The sterilization and sterilization action by the new sterilization composition with respect to the bath water of the public facility bath (tub approximately 10t) was examined.
The public facility bath is about 40 to 60 bathers per day, and is used continuously for a week with a 24-hour circulation that changes on Monday.
On the first day of water exchange, chlorine dioxide was added at 5.0 ppm, the activator was added at 0.4 ppm, and the active sustaining agent was set at 0.4 ppm, and the next day, only the activator was added at 0.4 ppm.
The transition of general bacteria, Escherichia coli (s), and Legionella spp. Were examined as detection bacteria in the bath.
The transition of general bacteria in bath water is shown in FIG. The number of bacteria detected was about 5.0 × 10 2 cfu / ml even though many people took a bath, and when the isolate was examined, it was almost spore bacteria. At that time, the number of bacteria in Comparative Example 2 was about 1.0 × 10 5 cfu / ml.
On the other hand, Legionella spp. And Escherichia coli are not detected in the bath at all (FIGS. 10 and 11), and by introducing these new bactericidal chemical compositions, Legionella spp. Permitted to be sterilized.

実験例7Experimental Example 7

新規殺菌剤組成液によるヒト皮膚に対する刺激性試験を表3に示す。

Figure 0003992198
Figure 0003992198
二酸化塩素400ppm、賦活剤MK(0.2、2.0、20ppm)、活性持続剤SX(0.2、2.0、20ppm)からなる含浸液のヒト皮膚に対する刺激試験を単回貼付(実施例2〜4)で検討し、その際の対照例として水を用いた(対照例2)。更に、一週間の累積貼付試験(実施例5〜6)及びその対照例として水を用いて(対照例3)検討した。評価方法は日皮学会標準法に準拠した。
この結果を表3に示す。二酸化塩素400ppm、賦活剤MK20ppm活性持続剤SX20ppmからなる含浸液の1週間累積貼付(実施例6)でも、ヒトの年齢差に係らず、対照例と比較して全く変化は認められず、この含浸液が安全なものであることを確認した。Table 3 shows the irritation test for human skin with the novel fungicide composition solution.
Figure 0003992198
Figure 0003992198
A single application of stimulation test on human skin with impregnating solution consisting of 400ppm chlorine dioxide, activator MK (0.2, 2.0, 20ppm) and active sustaining agent SX (0.2, 2.0, 20ppm) In Examples 2 to 4), water was used as a control example (Control Example 2). Furthermore, the cumulative pasting test for one week (Examples 5 to 6) and water as a control example (Control Example 3) were examined. The evaluation method was in accordance with the Japanese Society of Jerusalem Standards.
The results are shown in Table 3. Even with a one-week cumulative application (Example 6) of an impregnating liquid consisting of 400 ppm chlorine dioxide and activator MK20 ppm active sustaining agent SX20 ppm, no change was observed compared to the control example, regardless of human age difference. The liquid was confirmed to be safe.

浴用水の微生物、特に肺炎の起因菌であるレジオネラ属菌の除菌・殺菌方法として塩素系消毒剤添加法、銀イオン殺菌法、オゾン殺菌法、紫外線殺菌法及び上記殺菌法を併用する方法が試みられているが、好ましい除菌・殺菌効果が認められていない。
行政当局では浴用水の除菌・殺菌には塩素系消毒剤が第1次選択薬剤として指導されているが,次亜塩素酸ソーダは概ね浴槽や配湯管、砂濾過機に形成しているバイオフイルム(生体膜)に内在し、そこに棲息するレジオネラ属菌に対しては殆ど殺菌効力を示さない。次亜塩素酸ソーダは浴槽水のpHに著しく影響を受け多量の有機物の共存下ではその殺菌力は相殺され殆ど殺菌力を示さない。更には発癌物質であるトリハロメタンの副成、臭気、ヒト皮膚に対する刺激性が認められ、上述したように次亜塩素酸ソーダの規定使用濃度では殆ど殺菌効果が認められないのが一般的である。
本願明細書に記載する二酸化塩素を主成分とする新規殺菌液組成は配管、浴槽、濾過装置内壁の生体膜(バイオフイルム)の剥離と浮遊したレジオネラ属菌に対して強烈な除菌・殺菌作用をもたらし、管理された状況下ではヒトの皮膚に対する刺激性、臭気及び副生する物質による副作用は全く認められず、しかも除菌・殺菌効力の持続効果をもたらし、循環式風呂の衛生管理面に大いなる福音をもたらすものである。
As a method for disinfecting and disinfecting microorganisms for bath water, especially Legionella spp. Which is the causative agent of pneumonia, chlorine disinfectant addition method, silver ion disinfection method, ozone disinfection method, ultraviolet disinfection method and the above-mentioned disinfection method Attempts have been made, but no favorable disinfection / bactericidal effect has been observed.
The administrative authorities instruct chlorinated disinfectants as the first choice for disinfection and sterilization of bath water, but sodium hypochlorite is generally formed in bathtubs, hot water pipes and sand filters. It has little bactericidal effect against Legionella spp. That are inherent in biofilms and live there. Sodium hypochlorite is remarkably affected by the pH of the bath water, and in the presence of a large amount of organic matter, its bactericidal power is offset and hardly exhibits bactericidal power. Furthermore, byproduct of trihalomethane, which is a carcinogenic substance, odor, and irritation to human skin are recognized, and as described above, it is general that almost no bactericidal effect is observed at a prescribed use concentration of sodium hypochlorite.
The new sterilizing liquid composition mainly composed of chlorine dioxide described in the specification of the present application is a strong sterilization and sterilization action against peeling of biological membranes (biofilms) on the inner walls of pipes, bathtubs and filtration devices and floating Legionella spp. In a controlled situation, no irritation to human skin, no odor and no side effects due to by-product substances are observed, and the effect of sterilization and sterilization is sustained. It brings a great gospel.

浴槽水中の微生物の推移を示したものである。(対照例 1)It shows the transition of microorganisms in bath water. (Control 1) 浴槽水中における二酸化塩素処理後の一般細菌、レジオネラ属菌数及びpH、二酸化塩素残留濃度の推移を示したものである。(比較例1)It shows the transition of general bacteria, Legionella genus and pH, and chlorine dioxide residual concentration after treatment with chlorine dioxide in bath water. (Comparative Example 1) 閉鎖系浴槽水中での薬剤添加による一般細菌の推移を示したものである。(実験例1)It shows the transition of general bacteria due to the addition of chemicals in closed bath water. (Experimental example 1) 二酸化塩素の殺菌作用に対する賦活剤MKの濃度による影響を示したものである。(実験例2)The influence by the density | concentration of the activator MK with respect to the bactericidal action of chlorine dioxide is shown. (Experimental example 2) 鉄イオン類およびコバルトイオンの影響を示したものである。(実験例3)This shows the influence of iron ions and cobalt ions. (Experimental example 3) 二酸化塩素の殺菌・除菌効果に対する活性持続剤の濃度による影響を示したものである。(実験例3)This shows the effect of the concentration of the active sustaining agent on the bactericidal / sterilizing effect of chlorine dioxide. (Experimental example 3) 二酸化塩素、賦活剤MK及び活性持続剤SXとの組合せ実験の結果を示したものである。(実験例4)The result of the combination experiment with chlorine dioxide, activator MK, and active sustaining agent SX is shown. (Experimental example 4) 循環型小型浴槽における三剤併用による殺菌・除菌効力の確認結果である。(実験例6)It is a confirmation result of the bactericidal and sterilizing effect by triple combination use in a circulation type small bathtub. (Experimental example 6) 二酸化塩素を主体にした新除菌システムによる浴槽水の除菌の説明である。(実施例1)It is explanation of the sterilization of bathtub water by the new sterilization system mainly composed of chlorine dioxide. Example 1 二酸化塩素を主体にした新除菌システムによる浴槽水のレジオネラ属菌の除菌を説明したものである。(実施例1)It explains the sterilization of Legionella genus bacteria in bath water by a new sterilization system mainly composed of chlorine dioxide. Example 1 二酸化塩素を主体にした新除菌システムによる浴槽水の大腸菌(群)の除菌を説明したものである。(実施例1)It explains the sterilization of Escherichia coli (s) in bath water by a new sterilization system mainly composed of chlorine dioxide. Example 1

Claims (4)

循環風呂の浴用水の除菌・殺菌法であって、
二酸化塩素剤と、次亜塩素酸塩と、塩化第一鉄又は硫酸第一鉄とを初日に浴用水に添加し、
その後、次亜塩素酸を浴用水に毎日添加することを特徴とする浴用水の除菌・殺菌法。
A method of disinfecting and disinfecting water for circulating baths,
Add chlorine dioxide, hypochlorite and ferrous chloride or ferrous sulfate to the bath water on the first day,
Then, sterilization and sterilization methods bath water which comprises adding daily hypochlorite salt bath water.
前記二酸化塩素剤が、亜塩素酸をNaCO・3H、NaHCO及びNaBOからなる群から選択される安定化剤により安定化された安定化二酸化塩素剤である請求項1に記載の浴用水の殺菌・除菌法。 The chlorine dioxide agent according to claim 1 chlorite is Na 2 CO 3 · 3H 2 O 2, NaHCO 3 and stabilized chlorine dioxide agent stabilized by a stabilizer selected from the group consisting of NaBO 3 The sterilization / sterilization method for bath water described in 1. 前記浴用水中の二酸化塩素の濃度が0.5ppm〜20ppmである請求項1又は2に記載の浴用水の殺菌・除菌法。 The method for sterilizing and disinfecting bath water according to claim 1 or 2, wherein the concentration of chlorine dioxide in the bath water is 0.5 ppm to 20 ppm. 前記浴用水中の次亜塩素酸塩の濃度と、塩化第一鉄又は硫酸第一鉄の濃度とが、それぞれ0.01ppm〜1.0ppmである請求項1乃至3のいずれか1項に記載の浴用水の殺菌・除菌法。 4. The concentration of hypochlorite in the bath water and the concentration of ferrous chloride or ferrous sulfate are 0.01 ppm to 1.0 ppm, respectively. 5. Disinfection and disinfection method for bath water.
JP2004113671A 2004-03-10 2004-03-10 Disinfecting and disinfecting bath water with a new disinfectant composition based on chlorine dioxide Expired - Lifetime JP3992198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004113671A JP3992198B2 (en) 2004-03-10 2004-03-10 Disinfecting and disinfecting bath water with a new disinfectant composition based on chlorine dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004113671A JP3992198B2 (en) 2004-03-10 2004-03-10 Disinfecting and disinfecting bath water with a new disinfectant composition based on chlorine dioxide

Publications (2)

Publication Number Publication Date
JP2005254223A JP2005254223A (en) 2005-09-22
JP3992198B2 true JP3992198B2 (en) 2007-10-17

Family

ID=35080479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004113671A Expired - Lifetime JP3992198B2 (en) 2004-03-10 2004-03-10 Disinfecting and disinfecting bath water with a new disinfectant composition based on chlorine dioxide

Country Status (1)

Country Link
JP (1) JP3992198B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103125521A (en) * 2011-11-30 2013-06-05 安徽省蓝天化工有限公司 Preparation method of oxidability germicide and algicide agent
CN107441928A (en) * 2017-07-21 2017-12-08 珠海金弘环境科技有限公司 A kind of automobile-used disinfection deodorizer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5879596B1 (en) * 2015-04-15 2016-03-08 三菱瓦斯化学株式会社 Method for preventing adhesion of marine organisms and adhesion preventive agent used therefor
WO2020044584A1 (en) * 2018-08-29 2020-03-05 株式会社日吉 Disinfectant for legionella bacteria, water treatment method, bathwater additive, and additive for air-conditioning cooling tower water
JP6574035B1 (en) * 2018-08-30 2019-09-11 内外化学製品株式会社 Water treatment system
CN112369430A (en) * 2020-11-04 2021-02-19 青岛翼科新程生物科技有限公司 Chlorine dioxide nano zinc disinfection and bacteriostasis solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103125521A (en) * 2011-11-30 2013-06-05 安徽省蓝天化工有限公司 Preparation method of oxidability germicide and algicide agent
CN107441928A (en) * 2017-07-21 2017-12-08 珠海金弘环境科技有限公司 A kind of automobile-used disinfection deodorizer

Also Published As

Publication number Publication date
JP2005254223A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
Rutala et al. Uses of inorganic hypochlorite (bleach) in health-care facilities
CA2382569C (en) Super-oxidized water, preparation and use therefor as sterilizers and medicaments
JP2006505516A5 (en)
Vizcaino-Alcaide et al. Comparison of the disinfectant efficacy of Perasafe® and 2% glutaraldehyde in in vitro tests
JP3992198B2 (en) Disinfecting and disinfecting bath water with a new disinfectant composition based on chlorine dioxide
Farah et al. Electrolyzed water generated on-site as a promising disinfectant in the dental office during the COVID-19 pandemic
KR101297712B1 (en) Biocide/disinfection agent containing hypochlorous acid water and soy protein
KR101229740B1 (en) Apparatus for sterilizing and disinfecting water on-time and method using same
JP2011019857A (en) Air sterilizer
JP3786663B2 (en) Disinfection and sterilization method of wet wiper using aqueous solution containing chlorine dioxide, hypochlorite and ferrous sulfate
US6331514B1 (en) Sterilizing and disinfecting compound
CN117062780A (en) Electro-active super-oxidized water and synthesis method thereof
CN108926492A (en) A kind of preparation method of acidic oxidized electric potential water pasteurization towelette
JPWO2002030830A1 (en) Water circulation method for circulation type water tank system and sterilizing / disinfecting liquid composition for circulation type water tank system
Urata et al. Comparison of the microbicidal activities of superoxidized and ozonated water in the disinfection of endoscopes
US20050106259A1 (en) GRAS two acid low pH compound consisting of citric and hydrochloric or phosphoric acids
JP2004224788A (en) Method of disinfection/sterilization of bath water and hot water-distributing pipe with activated chlorine dioxide
Bakhir et al. Efficiency and safety of chemicals for disinfection, pre-sterilization cleaning and sterilization
JPH07155770A (en) Infection preventing method, device therefor and production of sterilized drinking water and sterilized air-conditioning cooling water utilizing the device
JP3650309B2 (en) Water purification system
Yan et al. New Clinical Applications of Electrolyzed Water: A Review. Microorganisms 2021, 9, 136
KR20190005554A (en) Sterilization and deodorization device by dilute hydrogen peroxide solution with zinc electrode
JP2008119330A (en) Method of disinfecting bed rock bathroom
Brown et al. Observations on halogens as bathing water disinfectants
Kamalakanth et al. American Journal of Chemical and Biochemical Engineering

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050526

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

R150 Certificate of patent or registration of utility model

Ref document number: 3992198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term