JP3991523B2 - Yarn fluid processing equipment - Google Patents

Yarn fluid processing equipment Download PDF

Info

Publication number
JP3991523B2
JP3991523B2 JP24150099A JP24150099A JP3991523B2 JP 3991523 B2 JP3991523 B2 JP 3991523B2 JP 24150099 A JP24150099 A JP 24150099A JP 24150099 A JP24150099 A JP 24150099A JP 3991523 B2 JP3991523 B2 JP 3991523B2
Authority
JP
Japan
Prior art keywords
fluid
yarn
hole
axis
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24150099A
Other languages
Japanese (ja)
Other versions
JP2001073248A (en
Inventor
照章 西城
圭吾 吉本
浩司 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP24150099A priority Critical patent/JP3991523B2/en
Publication of JP2001073248A publication Critical patent/JP2001073248A/en
Application granted granted Critical
Publication of JP3991523B2 publication Critical patent/JP3991523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は糸条の流体処理装置に関し、さらに詳しくは、流体使用量を少なくしながら高い交絡度を得るようにした糸条流体処理装置に関する。
【0002】
【従来の技術】
製糸工程において糸条に集束性を付与する手段としては、糸条をボビンに巻き取るとき同時に撚り掛けを行うようにする加撚法が一般的である。この加撚法は糸条巻取部に加撚機構を付設するため装置が大型になること、巻取速度が一定以上に高速になると加撚が難しくなり、生産性を上げることには限界がある等の問題があった。
【0003】
この加撚方法に対して、走行糸条に圧縮空気等の流体を噴射して糸条内のフィラメント相互を交絡させて集束性を与える交絡法がある。この交絡法は加撚機構に比べると装置が著しくコンパクトになり、また装置を巻取部に限定されることなく製糸工程の任意の箇所に取り付けができること、糸条が高速走行していても交絡を簡単に付与できること等の多くの利点を有している。
【0004】
しかしながら、この交絡法では、多量の圧縮空気等の流体を使用しなければならないため、エネルギー消費量が非常に多くなるという欠点があった。すなわち、交絡法については省エネルギーを達成することが課題であり、この省エネルギー効果を達成すれば、さらに生産性を向上できることがわかっている。
【0005】
【発明が解決しようとする課題】
本発明の目的は、少ない流体使用量で高い交絡度が得られるようにする省エネルギー効果に優れた糸条流体処理装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成する本発明は、糸道の方向と流体噴射孔の軸線とを交差させるように少なくとも1孔の前記流体噴射孔を設け前記流体噴射孔からの噴射流体により前記糸道を走行する糸条のフィラメント相互を交絡させる流体処理装置において、前記流体噴射孔の少なくとも1孔の軸線に垂直な断面の形状を、前記糸道の方向と平行な方向に短軸を向けた長孔に形成したことを特徴とするものである。
【0007】
流体噴射孔の軸線に垂直な断面での形状を、糸道と平行な方向に短軸を向けた配置の長孔に形成したため、その長軸を糸道に垂直な方向(走行糸条に直交する方向)に対して従来の円形噴射孔と同じ長さにするように設定することができるようになり、その結果として、走行糸条に垂直な方向に対する流体の圧力分布を従来装置の円形噴射孔と同じ分布にし、同じ交絡性能を得るようにすることができる。そして、そのように同じ交絡性能を得るようにしながら、流体噴射孔の断面積が従来装置の流体噴射孔よりも小さいので、流体使用量を少なくすることができ、高い省エネルギー効果を得ることができる。
【0008】
【発明の実施の形態】
図1および図2は、本発明の実施形態からなる流体処理装置を示す。
【0009】
図において、ノズル板1は下面側に設けられる底板2との間にスペーサ3を介在させて糸道10を形成し、その糸道10の長手方向ほぼ中間部には交絡処理部10kが形成されている。また、ノズル板1の上面側には、流体供給用の上蓋板4が設けられている。このように積層された上蓋板4、ノズル板1、スペーサ3および底板2は、その一方の端部をボルト5により一体に連結固定されている。また、他方の端部では、上蓋板4とノズル板1とがボルト6により一体に連結固定されている。
【0010】
上蓋板4の中央部には流体流入口7が設けられ、この流体流入口7にはコンプレッサ等の圧縮流体供給源(図示せず)が接続されるようになっている。この流体流入口7に対応するノズル板1の上面には、やや容積を大きくしたバッファ空間8が設けられ、このバッファ空間8から2本の流体噴射孔9,9が下側の交絡処理部10kに「逆ハの字」状に貫通している。
【0011】
流体噴射孔9は、図3に示すように、その軸線に対して垂直な断面での形状が長孔(具体的には楕円形)に形成されており、しかもその長孔の短軸を糸道10の方向(糸条Yの走行方向)に平行に向け、長軸を糸道10の方向と直交させるようにしている。この流体噴射孔9の横断面形状の長孔は、短軸長をLとし、長軸長をWとすると、短軸と長軸の長さ比L/Wが0.80〜0.95(0.80≦L/W≦0.95)の範囲になるようにしてある。
【0012】
上記構成からなる流体処理装置で糸条を交絡処理するときは、図1および図2(B)に示すように、その流体処理装置を前後の供給ローラ20と引取ローラ21との間に設置し、マルチフィラメント糸条Yを供給ローラ20で連続供給すると共に引取ローラ21で引き取りながら、流体処理装置の中の糸道10に走行させるようにする。また、このときの糸条Yは供給ローラ20と引取ローラ21の間で弛緩状態にする。
【0013】
他方、圧縮流体供給源から圧縮流体を流体処理装置の流体流入口7に供給し、バッファ空間8を経て流体噴射ノズル9から糸道10上の交絡処理部10kに噴射させる。圧縮流体の噴射により糸条Y内のフィラメントは相互に開繊されながら交絡し、所定の集束性が与えられた状態になる。
【0014】
このように糸条Yに交絡が与えられる交絡機能は、主として糸条Yの走行方向に直交する方向(横断方向)の圧力分布により大いに支配されることがわかっている。
【0015】
しかるに、本発明の流体処理装置では、流体噴射孔9の軸線に垂直な断面での形状が長孔であり、その短軸を糸条Yの走行方向と平行にしているから、その長軸は糸条Yの走行方向と直交する方向に向けられている。従来装置における円形流体噴射孔の直径を上記長孔の長軸長Wと同一とすると、糸条Yの走行方向に直交する方向の圧力分布は互いに同一になり、互いに同程度の交絡性能が得られることになる。しかし、本発明装置の流体噴射孔9の断面積は、長軸長がWの長孔であるから、従来装置の直径Wの円形流体噴射孔よりも小さくなり、流体使用量は少なくなる。
【0016】
すなわち、本発明の流体処理装置の場合には、従来の流体処理装置と糸条Yの走行方向に直交する方向の圧力分布を同一にし、同一の交絡性能を得るようにしながら、流体使用量を少なくする省エネルギー効果が得られるのである。
【0017】
本発明において、糸条の交絡処理に使用する流体は、従来の流体交絡処理に使用されている流体が何れも使用可能であり、特に限定されるものではない。例えば、圧縮空気、スチーム、ホットエア等の気体を使用することができる。
【0018】
流体噴射孔は軸線に垂直な横断面の形状を長孔とするものであるが、ここで長孔とは、短軸と長軸の長さが異なっている孔であれば特に限定されない。例えば、楕円形、長円形などを例示することができる。
【0019】
上記長孔は、その短軸を糸道方向(糸条走行方向)と平行にするように配置されることが必要である。さらに好ましくは、短軸長Lと長軸長Wとの長さ比L/Wを、0.80〜0.95(0.80≦L/W≦0.95)の範囲にするのがよい。短軸と長軸との長さ比L/Wが0.80よりも小さいと、圧縮流体の噴射エネルギーが小さくなり、糸条を開繊させることが難しくなるため所望の交絡度が得られ難くなる。また、長さ比L/Wが0.95よりも大きい場合には、所望の交絡度は得られるものの、従来装置に比べて流体使用量の低減による省エネルギー効果が不十分になる。
【0020】
流体噴射孔の数は1孔であっても、複数孔であってもよいが、好ましくは実施形態に例示したように2孔か、又はそれ以上にするのがよい。流体噴射孔が2孔の場合には、両噴射孔の流体噴射流が同時に糸条に向くように「逆ハの字」状にし、かつ両流体噴射孔の軸線がなす角度を60°以上にするとよい。両流体噴射孔の軸線の挟み角が60°よりも小さいと、二つの噴射流が接近して合流するため圧力分布を安定させることが難くなる。3孔以上にする場合にも、互いに隣接し合う流体噴射孔の軸線がなす角度は60°以上にするとよい。
【0021】
また、流体噴射孔の軸線が糸条の走行方向に対してなす角度としては、好ましくは30°〜150°、さらに好ましくは60°〜120°、一層好ましくは90°にするのがよい。
【0022】
糸道の内壁、特に交絡処理部の内壁は、耐摩耗性に優れた材料で形成することが望ましい。例えば、硬質金属、セラミック、硬質ガラスなどにするとよい。或いは、これら硬質材料をコーティングするようにしてもよい。
【0023】
交絡処理部の糸道に直交する断面における形状は特に限定するものではないが、図2(A)に示すような長方形にするほか、円形、半円形、楕円形、或いは三角形、四角形、六角形などの多角形にしてもよい。図4(A)〜(D)は、その一例を示したものであり、図4(A)は円形、図4(B)は半円形、図4(C)は三角形、図4(D)は六角形の場合を示す。
【0024】
【実施例】
実施例1
流体噴射孔を下記条件にした図1の構成からなる流体処理装置を使用し、75デニール、36フィラメントのポリエステルフィラメント糸条を、下記条件の圧縮空気を供給して交絡処理した。その結果、糸条に付えられた交絡度は、JIS1013に準じた交絡度計(R−2050:ロッシール社製)で50回測定した平均値にして28.0(個/m)であった。
【0025】
流体噴射孔:
長軸長さW=1.0mm、短軸長さL=0.9mm(L/W=0.9)
2本の流体噴射孔のなす角度=90°
糸条走行方向に対する角度=90°
圧縮空気:
圧力=0.5MPa
流量=90リットル/min(標準状態)
実施例2
実施例1の流体処理装置において、流体噴射孔の長軸長Wを1.0mm、短軸長Lを0.8mmにした以外は、実施例1と同一条件にして交絡処理した。
【0026】
その結果は、圧縮空気の流量が80リットル/min(標準状態)で、交絡度は27.5(個/m)であった。
【0027】
比較例1
実施例1の流体処理装置において、流体噴射孔を直径1.0mmの円形孔にした以外は、実施例1と同一条件にして交絡処理した。
【0028】
その結果は、圧縮空気の流量が100リットル/min(標準状態)で、交絡度は27.7(個/m)であった。
【0029】
比較例2
実施例1の流体処理装置において、流体噴射孔の長軸長Wを1.0mm、短軸長Lを0.7mmにした以外は、実施例1と同一条件にして交絡処理した。
【0030】
その結果は、圧縮空気の流量が70リットル/min(標準状態)であったが、交絡度は11.5(個/m)であった。
【0031】
【発明の効果】
上述したように本発明によれば、少ない流体使用量で高い交絡度を得ることができ、優れた省エネルギー効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の流体処理装置の一例を示す斜視図である。
【図2】(A)は図1におけるA−A矢視断面図、(B)は図1におけるB−B矢視断面図である。
【図3】図2(A)におけるC−C矢視断面図である。
【図4】(A)〜(D)は、それぞれ本発明の流体処理装置を構成する交絡処理部を例示する断面図である。
【符号の説明】
1 ノズル板
2 底板
3 スペーサ
4 上蓋板
7 流体流入口
8 バッファ空間
9 流体噴射孔
10 糸道
10k 交絡処理部
L 短軸の長さ
W 長軸の長さ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a yarn fluid treatment apparatus, and more particularly, to a yarn fluid treatment apparatus capable of obtaining a high degree of entanglement while reducing the amount of fluid used.
[0002]
[Prior art]
As a means for imparting converging properties to the yarn in the yarn making process, a twisting method is generally used in which twisting is performed simultaneously when the yarn is wound around a bobbin. In this twisting method, a twisting mechanism is attached to the yarn winding section, so that the apparatus becomes large, and when the winding speed becomes higher than a certain level, twisting becomes difficult, and there is a limit to increasing productivity. There were some problems.
[0003]
In contrast to this twisting method, there is an entanglement method in which a fluid such as compressed air is jetted onto a running yarn to entangle the filaments in the yarn to provide convergence. This entanglement method makes the device extremely compact compared to the twisting mechanism, allows the device to be attached to any part of the yarn production process without being limited to the winding part, and entangles even when the yarn is traveling at high speed. It has many advantages such as being able to be easily provided.
[0004]
However, this confounding method has a drawback in that the amount of energy consumption is very large because a large amount of fluid such as compressed air must be used. That is, it has been found that the confounding method has a problem of achieving energy saving, and if this energy saving effect is achieved, productivity can be further improved.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a yarn fluid processing apparatus that is excellent in energy saving effect so that a high degree of entanglement can be obtained with a small amount of fluid used.
[0006]
[Means for Solving the Problems]
The present invention to achieve the above object, so as to intersect the axis of the yarn path direction and the fluid injecting hole provided with the fluid injection hole of the at least one hole, traveling the yarn road by fluid jet from the fluid injecting hole a fluid processing apparatus for entangling filaments mutual yarn that, the vertical cross section of a shape to the axis of the at least one hole of the fluid injecting hole, a long hole with its minor axis in the direction parallel to the direction of the yarn path It is characterized in that it is formed.
[0007]
Since the shape of the cross section perpendicular to the axis of the fluid injection hole is formed in the long hole with the minor axis oriented in the direction parallel to the yarn path, the major axis is perpendicular to the yarn path (perpendicular to the running yarn) In the direction perpendicular to the traveling yarn, the pressure distribution of the fluid in the direction perpendicular to the running yarn can be set as a result. The distribution can be the same as the holes and the same entanglement performance can be obtained. And since the cross-sectional area of a fluid injection hole is smaller than the fluid injection hole of a conventional apparatus, obtaining the same entanglement performance, the amount of fluid used can be reduced and a high energy saving effect can be obtained. .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show a fluid processing apparatus according to an embodiment of the present invention.
[0009]
In the figure, the nozzle plate 1 forms a yarn path 10 with a spacer 3 interposed between the nozzle plate 1 and a bottom plate 2 provided on the lower surface side, and an entanglement processing portion 10k is formed at a substantially middle portion in the longitudinal direction of the yarn path 10. ing. An upper cover plate 4 for supplying fluid is provided on the upper surface side of the nozzle plate 1. The upper lid plate 4, the nozzle plate 1, the spacer 3 and the bottom plate 2 laminated in this manner are integrally connected and fixed by bolts 5 at one end thereof. At the other end, the upper cover plate 4 and the nozzle plate 1 are integrally connected and fixed by bolts 6.
[0010]
A fluid inlet 7 is provided at the center of the upper cover plate 4, and a compressed fluid supply source (not shown) such as a compressor is connected to the fluid inlet 7. A buffer space 8 having a slightly larger volume is provided on the upper surface of the nozzle plate 1 corresponding to the fluid inflow port 7, and two fluid ejection holes 9, 9 extend from the buffer space 8 to the lower entanglement processing unit 10 k. It penetrates in the shape of “reverse C”.
[0011]
As shown in FIG. 3, the fluid ejection hole 9 has a long hole (specifically, an elliptical shape) in a cross section perpendicular to its axis, and the short axis of the long hole is connected to the thread. The long axis is set to be orthogonal to the direction of the yarn path 10 so as to be parallel to the direction of the path 10 (traveling direction of the yarn Y). The long hole of the cross-sectional shape of the fluid injection hole 9 has a short axis length of L and a long axis length of W, and the length ratio L / W of the short axis to the long axis is 0.80 to 0.95 ( 0.80 ≦ L / W ≦ 0.95).
[0012]
When the yarn is entangled with the fluid processing apparatus having the above-described configuration, the fluid processing apparatus is installed between the front and rear supply rollers 20 and the take-up roller 21 as shown in FIGS. 1 and 2B. The multifilament yarn Y is continuously supplied by the supply roller 20 and is taken by the take-up roller 21 while traveling on the yarn path 10 in the fluid processing apparatus. At this time, the yarn Y is in a relaxed state between the supply roller 20 and the take-up roller 21.
[0013]
On the other hand, the compressed fluid is supplied from the compressed fluid supply source to the fluid inlet 7 of the fluid processing apparatus, and is injected from the fluid injection nozzle 9 to the entanglement processing unit 10 k on the yarn path 10 through the buffer space 8. The filaments in the yarn Y are entangled while being mutually opened by the injection of the compressed fluid, and a predetermined convergence is obtained.
[0014]
It has been found that the entanglement function in which the yarn Y is entangled in this way is largely governed mainly by the pressure distribution in the direction (transverse direction) perpendicular to the running direction of the yarn Y.
[0015]
However, in the fluid treatment apparatus of the present invention, the shape in a cross section perpendicular to the axis of the fluid injection hole 9 is a long hole, and its short axis is parallel to the running direction of the yarn Y. It is directed in a direction perpendicular to the running direction of the yarn Y. If the diameter of the circular fluid injection hole in the conventional apparatus is the same as the long axis length W of the long hole, the pressure distributions in the direction perpendicular to the running direction of the yarn Y are the same, and the same degree of entanglement performance is obtained. Will be. However, since the cross-sectional area of the fluid injection hole 9 of the device of the present invention is a long hole having a long axis length of W, it is smaller than the circular fluid injection hole of the diameter W of the conventional device, and the amount of fluid used is reduced.
[0016]
That is, in the case of the fluid processing apparatus of the present invention, the pressure distribution in the direction orthogonal to the traveling direction of the yarn Y is the same as that of the conventional fluid processing apparatus, and the same amount of fluid is used while obtaining the same entanglement performance. The energy saving effect to reduce is acquired.
[0017]
In the present invention, the fluid used for the yarn entanglement treatment can be any fluid used in the conventional fluid entanglement treatment, and is not particularly limited. For example, a gas such as compressed air, steam, or hot air can be used.
[0018]
The fluid ejection hole has a cross-sectional shape perpendicular to the axis as a long hole, but the long hole is not particularly limited as long as the short axis and the long axis have different lengths. For example, an ellipse, an ellipse, etc. can be illustrated.
[0019]
The long hole needs to be arranged so that its short axis is parallel to the yarn path direction (yarn running direction). More preferably, the length ratio L / W between the minor axis length L and the major axis length W is in the range of 0.80 to 0.95 (0.80 ≦ L / W ≦ 0.95). . If the length ratio L / W between the short axis and the long axis is smaller than 0.80, the jet energy of the compressed fluid becomes small, and it becomes difficult to open the yarn, so it is difficult to obtain a desired degree of entanglement. Become. Further, when the length ratio L / W is larger than 0.95, a desired degree of entanglement can be obtained, but the energy saving effect due to the reduction in the amount of fluid used is insufficient as compared with the conventional device.
[0020]
The number of fluid ejection holes may be one or a plurality of holes, but preferably two holes or more as illustrated in the embodiment. When there are two fluid injection holes, make the fluid injection flow of both injection holes “inverted C” at the same time toward the yarn, and make the angle formed by the axes of both fluid injection holes 60 ° or more. Good. When included angle of the axis of both the fluid injecting hole is smaller than 60 °, and the flame to stabilize the pressure distribution for the two jets merge close Kunar. Even when the number of holes is three or more, the angle formed by the axes of the fluid ejection holes adjacent to each other is preferably 60 ° or more.
[0021]
The angle formed by the axis of the fluid ejection hole with respect to the running direction of the yarn is preferably 30 ° to 150 °, more preferably 60 ° to 120 °, and still more preferably 90 °.
[0022]
It is desirable that the inner wall of the yarn path, particularly the inner wall of the entangled portion, be formed of a material having excellent wear resistance. For example, it may be hard metal, ceramic, hard glass, or the like. Alternatively, these hard materials may be coated.
[0023]
The shape of the cross section orthogonal to the yarn path of the entanglement processing part is not particularly limited, but in addition to a rectangle as shown in FIG. 2A, a circle, a semicircle, an ellipse, or a triangle, a rectangle, a hexagon It may be a polygon such as. 4 (A) to 4 (D) show an example, FIG. 4 (A) is a circle, FIG. 4 (B) is a semicircle, FIG. 4 (C) is a triangle, and FIG. 4 (D). Indicates a hexagonal case.
[0024]
【Example】
Example 1
Using the fluid treatment apparatus having the configuration shown in FIG. 1 with the fluid injection holes as the following conditions, 75 denier and 36 filament polyester filament yarns were entangled by supplying compressed air under the following conditions. As a result, the entanglement degree attached to the yarn was 28.0 (pieces / m) as an average value measured 50 times with an entanglement degree meter (R-2050: manufactured by Rosseal Co.) according to JIS1013. .
[0025]
Fluid injection hole:
Long axis length W = 1.0mm, short axis length L = 0.9mm (L / W = 0.9)
Angle formed by two fluid injection holes = 90 °
Angle with respect to yarn running direction = 90 °
Compressed air:
Pressure = 0.5 MPa
Flow rate = 90 liters / min (standard condition)
Example 2
In the fluid treatment apparatus of Example 1, the confounding process was performed under the same conditions as in Example 1 except that the major axis length W of the fluid injection hole was 1.0 mm and the minor axis length L was 0.8 mm.
[0026]
As a result, the flow rate of compressed air was 80 liters / min (standard state), and the degree of entanglement was 27.5 (pieces / m).
[0027]
Comparative Example 1
In the fluid treatment apparatus of Example 1, the confounding process was performed under the same conditions as in Example 1 except that the fluid ejection holes were circular holes with a diameter of 1.0 mm.
[0028]
As a result, the flow rate of compressed air was 100 liters / min (standard state), and the degree of entanglement was 27.7 (pieces / m).
[0029]
Comparative Example 2
In the fluid treatment apparatus of Example 1, the confounding process was performed under the same conditions as in Example 1 except that the major axis length W of the fluid injection hole was 1.0 mm and the minor axis length L was 0.7 mm.
[0030]
As a result, the flow rate of compressed air was 70 liters / min (standard state), but the degree of entanglement was 11.5 (pieces / m).
[0031]
【The invention's effect】
As described above, according to the present invention, a high degree of entanglement can be obtained with a small amount of fluid used, and an excellent energy saving effect can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of a fluid treatment apparatus of the present invention.
2A is a cross-sectional view taken along the line AA in FIG. 1, and FIG. 2B is a cross-sectional view taken along the line BB in FIG.
FIG. 3 is a cross-sectional view taken along the line CC in FIG.
FIGS. 4A to 4D are cross-sectional views illustrating the entanglement processing unit constituting the fluid processing apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Nozzle plate 2 Bottom plate 3 Spacer 4 Top cover plate 7 Fluid inflow port 8 Buffer space 9 Fluid injection hole 10 Yarn path 10k Entanglement processing part L Short axis length W Long axis length

Claims (5)

糸道の方向と流体噴射孔の軸線とを交差させるように少なくとも1孔の前記流体噴射孔を設け前記流体噴射孔からの噴射流体により前記糸道を走行する糸条のフィラメント相互を交絡させる流体処理装置において、前記流体噴射孔の少なくとも1孔の軸線に垂直な断面の形状を、前記糸道の方向と平行な方向に短軸を向けた長孔に形成した糸条流体処理装置。So as to intersect the axis of the yarn path direction and the fluid injecting hole provided with the fluid injection hole of the at least one hole, thereby entangling the filaments mutual yarn traveling on the yarn road by fluid jet from the fluid injecting hole a fluid processing apparatus, at least a hole section perpendicular shape the axis of, yarn fluid processing device which is formed in a long hole with its minor axis in the direction parallel to the direction of the yarn path of the fluid injecting hole. 前記長孔の短軸長Lと長軸長Wとの比L/Wが0.80〜0.95である請求項1に記載の糸条流体処理装置。The yarn fluid treatment device according to claim 1, wherein a ratio L / W of a short axis length L to a long axis length W of the long hole is 0.80 to 0.95. 前記流体噴射孔を2孔以上設けた請求項1または2に記載の糸条流体処理装置。The yarn fluid processing apparatus according to claim 1 or 2, wherein two or more fluid ejection holes are provided. 互いに隣接し合う二つの流体噴射孔の軸線がなす挟み角を60°以上にした請求項1,2または3に記載の糸条流体処理装置。The yarn fluid processing apparatus according to claim 1, 2 or 3, wherein a sandwiching angle formed by the axes of two fluid injection holes adjacent to each other is 60 ° or more. 前記流体噴射孔の軸線が前記糸道方向に対してなす角度を30°〜150°にした請求項1,2,3または4に記載の糸条流体処理装置。The yarn fluid processing apparatus according to claim 1, 2, 3, or 4, wherein an angle formed by an axis of the fluid ejection hole with respect to the yarn path direction is 30 ° to 150 °.
JP24150099A 1999-08-27 1999-08-27 Yarn fluid processing equipment Expired - Fee Related JP3991523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24150099A JP3991523B2 (en) 1999-08-27 1999-08-27 Yarn fluid processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24150099A JP3991523B2 (en) 1999-08-27 1999-08-27 Yarn fluid processing equipment

Publications (2)

Publication Number Publication Date
JP2001073248A JP2001073248A (en) 2001-03-21
JP3991523B2 true JP3991523B2 (en) 2007-10-17

Family

ID=17075260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24150099A Expired - Fee Related JP3991523B2 (en) 1999-08-27 1999-08-27 Yarn fluid processing equipment

Country Status (1)

Country Link
JP (1) JP3991523B2 (en)

Also Published As

Publication number Publication date
JP2001073248A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
JP4255984B2 (en) Method and entanglement nozzle for producing star yarn
JP5039546B2 (en) Apparatus and method for processing filament yarn and star yarn, migration processed yarn, false twisted yarn
US20050011061A1 (en) Method and device for producing a fancy knotted yarn
US7707699B2 (en) High-performance device for air interlacing of a yarn and corresponding method
JPH04263636A (en) Device for effecting blow textured processing of at least one multifilament yarn
JP2008516099A5 (en)
EP0947619B1 (en) Apparatus for fluid treatment of yarn and a yarn composed of entangled multifilament
US5325572A (en) Yarn treating jet
JP3991523B2 (en) Yarn fluid processing equipment
JPH0153366B2 (en)
JPS6039770B2 (en) Yarn processing equipment
US3460213A (en) Apparatus for convolution of thread or yarn filaments
JP2023537099A (en) Interlacing nozzle for producing knotted yarn and method for interlacing yarn
JPH05222640A (en) Yarn interlacer
JP3158709B2 (en) Nozzle for entanglement of yarn
TWI718091B (en) Nozzle and method for manufacturing knotted yarn
EP1207226B1 (en) Apparatus for fluid treatment of yarn and a yarn composed of entangled multifilament
JP3281863B2 (en) Interlace nozzle
JPH09250043A (en) Apparatus for treating many yarns with fluid
JP2001159044A (en) Apparatus for yarn interlacing treatment
JPH07138833A (en) Production of special yarn
JPS6215264Y2 (en)
JPH11256445A (en) Fluid treating apparatus for yarn and yarn comprising entangled filament
JPS62125037A (en) Apparatus for fluid treatment of yarn
JPH0816294B2 (en) Fancy yarn and its processing nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees