JP3991255B2 - Drop impact measuring method and drop impact measuring apparatus - Google Patents

Drop impact measuring method and drop impact measuring apparatus Download PDF

Info

Publication number
JP3991255B2
JP3991255B2 JP11544099A JP11544099A JP3991255B2 JP 3991255 B2 JP3991255 B2 JP 3991255B2 JP 11544099 A JP11544099 A JP 11544099A JP 11544099 A JP11544099 A JP 11544099A JP 3991255 B2 JP3991255 B2 JP 3991255B2
Authority
JP
Japan
Prior art keywords
drop impact
measurement object
amount
measurement
drop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11544099A
Other languages
Japanese (ja)
Other versions
JP2000304668A (en
Inventor
稔 宇治田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11544099A priority Critical patent/JP3991255B2/en
Publication of JP2000304668A publication Critical patent/JP2000304668A/en
Application granted granted Critical
Publication of JP3991255B2 publication Critical patent/JP3991255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【0001】
【発明の属する技術分野】
本願の発明は、測定対象物が落下によって受けた衝撃を測定する方法及び装置に関するものである。
【0002】
【従来の技術】
例えば、電子機器には、各種の部品がはんだ接合によって実装された基板が組み込まれており、電子機器が不慮の事故等による床面等への落下によって衝撃を受けると、基板自体の損傷や基板と部品とのはんだ接合部に発生するクラックによるはんだ接合部の抵抗値の増加によって、電子機器が動作不能になる場合がある。そこで、落下衝撃に対する基板等の信頼性を評価すると共に落下衝撃による基板等の損傷を防止するための対策を考えるために、落下衝撃試験が行われている。
【0003】
従来の一般的な落下衝撃試験では、部品が実装されている基板を実際の使用状態で電子機器に組み込んで製品とし、床面から所定の高さにある回転板上にこの製品としての電子機器を載置し、回転板を回転させて電子機器を床面に自由落下させ、落下衝撃を受けた電子機器の動作状態を確認していた。
【0004】
なお、落下衝撃試験としては、この他に、製品としての電子機器に加速度を与えて強制落下させ、落下衝撃を受けた電子機器の動作状態を確認する試験もある。しかし、この落下衝撃試験では製品としての電子機器の質量が落下衝撃に関係するのに対して、小型化してきている基板や部品のみでは質量が落下衝撃に及ぼす影響が非常に小さい。従って、強制落下を行わせるこの落下衝撃試験は、小型化してきている基板や部品のみについての試験としては適当ではない。
【0005】
【発明が解決しようとする課題】
ところが、自由落下による衝撃を受けた電子機器の動作状態を確認する上述の一従来例では、基板等が受けた落下衝撃による歪み量と撓み量とを定量的に測定することができなかった。しかも、製品としての電子機器に落下衝撃を与える上述の一従来例では、製品としての電子機器のコストが高いために多数の電子機器に対しては試験を行うことができず、基板等によるばらつきが少ない正確な試験結果を得ることが困難であった。このため、上述の一従来例では、基板等が受ける落下衝撃を緩和させてこの基板等の損傷を防止するための対策を考えにくかった。
【0006】
従って、本願の発明は、測定対象物が受けた落下衝撃による歪み量と撓み量とを定量的に測定することができ、しかも、測定対象物によるばらつきが少ない正確な落下衝撃による歪み量と撓み量とを測定することができるために、測定対象物が受ける落下衝撃を緩和させて測定対象物の損傷を防止するための対策を考え易い落下衝撃測定方法及び落下衝撃測定装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
請求項1に係る落下衝撃測定方法では、測定対象物に貼付されている歪みゲージと測定対象物に非接触の状態にあるレーザ変位計とで、測定対象物が落下衝撃を受けた際の歪み量と撓み量とを測定する工程を具備するので、測定対象物が受けた落下衝撃による歪み量と撓み量とを定量的に測定することができる。
【0008】
しかも、歪み量と撓み量とは測定対象物のみから直接的に測定することができるので、測定対象物が他の物品に組み込まれた状態で動作するものであっても、他の物品に組み込まれた状態の動作から間接的に落下衝撃による歪み量と撓み量とを測定する必要がない。このため、測定コストの増大を抑制しつつ多数の測定対象物に対して測定を行うことができ、測定対象物によるばらつきが少ない正確な落下衝撃による歪み量と撓み量とを測定することができる。
【0009】
また、歪みゲージは一般に小型であるので、測定対象物に対する歪みゲージの貼付位置を選択することによって、測定対象物における歪み量の測定位置を選択することができる。しかも、歪みゲージは一般に軽量であるので、測定対象物に貼付されている歪みゲージで測定対象物の歪み量を測定しても、測定対象物が受ける落下衝撃は殆ど変化しない。これらのために、測定対象物が落下衝撃を受けた際の歪み量を正確に測定することができる。
【0010】
また、落下衝撃を受けた際の測定対象物に対するレーザ光の照射位置を選択することによって、測定対象物における撓み量の測定位置を選択することができる。しかも、レーザ変位計は測定対象物に非接触の状態で測定対象物の撓み量を測定することができるので、レーザ変位計で測定対象物の撓み量を測定しても、測定対象物が受ける落下衝撃は全く変化しない。これらのために、測定対象物が落下衝撃を受けた際の撓み量を正確に測定することができる。
【0011】
請求項2に係る落下衝撃測定方法では、測定対象物が落下衝撃を受けた後に測定対象物におけるはんだ接合部の抵抗値を測定する工程を具備するので、落下衝撃によって測定対象物のはんだ接合部に発生するクラックによるはんだ接合部の抵抗値の増加分から、測定対象物が受けた落下衝撃による影響を更に詳しく測定することができる。また、同一の測定対象物に対する落下衝撃とはんだ接合部の抵抗値の測定とを繰り返すことによって、落下衝撃の回数と落下衝撃によって測定対象物のはんだ接合部に発生するクラックによるはんだ接合部の抵抗値の増加分との関係を知ることができる。
【0012】
請求項3に係る落下衝撃測定装置では、測定対象物に貼付されてこの測定対象物が落下衝撃を受けた際の歪み量を測定する歪みゲージ、測定対象物に非接触の状態にあってこの測定対象物が落下衝撃を受けた際の撓み量を測定するレーザ変位計とを具備するので、測定対象物が受けた落下衝撃による歪み量と撓み量とを定量的に測定することができる。
【0013】
しかも、歪み量と撓み量とは測定対象物のみから直接的に測定することができるので、測定対象物が他の物品に組み込まれた状態で動作するものであっても、他の物品に組み込まれた状態の動作から間接的に落下衝撃による歪み量と撓み量とを測定する必要がない。このため、測定コストの増大を抑制しつつ多数の測定対象物に対して測定を行うことができ、測定対象物によるばらつきが少ない正確な落下衝撃による歪み量と撓み量とを測定することができる。
【0014】
また、歪みゲージは一般に小型であるので、測定対象物に対する歪みゲージの貼付位置を選択することによって、測定対象物における歪み量の測定位置を選択することができる。しかも、歪みゲージは一般に軽量であるので、測定対象物に貼付されている歪みゲージで測定対象物の歪み量を測定しても、測定対象物が受ける落下衝撃は殆ど変化しない。これらのために、測定対象物が落下衝撃を受けた際の歪み量を正確に測定することができる。
【0015】
また、落下衝撃を受けた際の測定対象物に対するレーザ光の照射位置を選択することによって、測定対象物における撓み量の測定位置を選択することができる。しかも、レーザ変位計は測定対象物に非接触の状態で測定対象物の撓み量を測定することができるので、レーザ変位計で測定対象物の撓み量を測定しても、測定対象物が受ける落下衝撃は全く変化しない。これらのために、測定対象物が落下衝撃を受けた際の撓み量を正確に測定することができる。
【0016】
請求項に係る落下衝撃測定装置では、測定対象物におけるはんだ接合部の抵抗値を測定する抵抗計を具備するので、落下衝撃によって測定対象物のはんだ接合部に発生するクラックによるはんだ接合部の抵抗値の増加分から、測定対象物が受けた落下衝撃による影響を更に詳しく測定することができる。また、同一の測定対象物に対する落下衝撃とはんだ接合部の抵抗値の測定とを繰り返すことによって、落下衝撃の回数と落下衝撃によって測定対象物のはんだ接合部に発生するクラックによるはんだ接合部の抵抗値の増加分との関係を知ることができる
【0017】
【発明の実施の形態】
以下、部品が実装されていて電子機器に組み込まれるべき基板の落下衝撃測定方法及び落下衝撃測定装置に適用した本願の発明の一実施形態を、図1〜3を参照しながら説明する。図1が、本実施形態の落下衝撃測定装置の全体を示している。この落下衝撃測定装置11には鉛直板12が備えられており、鉛直板12の側面に一対の直線ガイド13が設けられている。直線ガイド13にはこの直線ガイド13にガイドされて移動可能な可動部14が取り付けられている。
【0018】
可動部14にはシリンダ15とこのシリンダ15による開閉によって基板16を解放及び保持するチャック17とが設けられており、可動部14を直線ガイド13の上端部近傍で停止させるためのレバー21と外部スイッチの操作に基づいてレバー21を動かすためのシリンダ22とが調整ネジ23によって鉛直板12に取り付けられている。調整ネジ23の調整によって、レバー21及びシリンダ22の高さを調整することができ、従って、直線ガイド13の上端部近傍における可動部14の停止位置を調整することができる。
【0019】
直線ガイド13の下端部近傍には落下してきた可動部14を停止させるためのストッパ24が取り付けられており、可動部14の通過を検知しシリンダ15を駆動させてチャック17を開放させる検知部25がストッパ24よりも直線ガイド13の上端部側に取り付けられている。可動部14にはこの可動部14と共に移動するケーブルガイド26が取り付けられており、後述する電線が基板16とケーブルガイド26との間に接続されている。
【0020】
鉛直板12にはケーブルガイド27が固定されており、ケーブルガイド26はケーブルガイド27に電気的に接続されている。鉛直板12の下端部には水平板31が固定されており、落下してきた基板16を衝突させるためのプレート32が水平板31の上面に取り付けられている。プレート32の両側の水平板31上にはレーザ変位計33が取り付けられており、このレーザ変位計33は平行なレーザ光34を物体に照射しその影の部分の大きさから物体の撓み量を測定する。水平板31の側方には測定アンプ35が備えられている。
【0021】
図2は、基板16及びレーザ変位計33と測定アンプ35との電気的接続関係を示している。基板16には部品36がはんだ接合部37によって実装されており、部品36の近傍の基板16には歪みゲージ38が接着によって貼付されている。歪みゲージ38に接続されている電線41は上述のケーブルガイド26、27及び歪みアンプ42を介して測定アンプ35に接続されている。
【0022】
はんだ接合部37からは基板16上の配線パターンである測定ランド43が延びており、測定ランド43に接続されている電線44が上述のケーブルガイド26、27、可変抵抗器45及び歪みアンプ46を介して測定アンプ35に接続されている。歪みアンプ46も本来は歪みアンプ42と同様に歪みゲージ38の抵抗値を測定するためのアンプであるが、可変抵抗器45の抵抗値を調整してはんだ接合部37と可変抵抗器45との合計の抵抗値を歪みゲージ38の初期抵抗値に等しくしておくことによって、歪みアンプ46ではんだ接合部37の抵抗値を測定することができる。
【0023】
レーザ変位計33に接続されている電線47は電圧出力アンプ48を介して測定アンプ35に接続されている。なお、図2では一対ずつの歪みゲージ38及び測定ランド43のうちの一方の歪みゲージ38及び測定ランド43についてしか測定アンプ35との電気的接続関係が示されていないが、他方の歪みゲージ38及び測定ランド43も測定アンプ35に対して同様に電気的に接続されている。
【0024】
以上の様な本実施形態の落下衝撃測定装置11を用いて、基板16が自由落下によって受けた衝撃を測定するためには、図2に示した様に電線41、44が接続されている基板16を、図1に示した様にチャック17によって可動部14に保持させ、この可動部14をレバー21によって直線ガイド13の上端部近傍に停止させる。そして、この状態から、外部スイッチの操作によるシリンダ22の駆動でレバー21を動かして、直線ガイド13にガイドさせつつ可動部14を自由落下させる。
【0025】
可動部14が直線ガイド13の下端部近傍まで落下してきてストッパ24に到達する直前に、検知部25が可動部14の通過を検知しシリンダ15を駆動させてチャック17を開放させる。この結果、基板16が可動部14から分離し単独で落下してプレート32に衝突する。このため、基板16が落下するプレート32上の位置及び落下衝撃を受ける際の基板16の姿勢が制御されており、複数回の落下衝撃を高い再現性で基板16に与えることができる。しかも、基板16がプレート32上に落下する際に、可動部14がストッパ24から受ける衝撃の影響を基板16は受けない。
【0026】
図3は、基板16がプレート32上に落下した瞬間の状態を示している。基板16がプレート32上に落下した瞬間には歪み及び撓みが基板16に生じており、歪みゲージ38及び歪みアンプ42によって歪み量が測定アンプ35に記録されると共にレーザ変位計33及び電圧出力アンプ48によって撓み量が測定アンプ35に記録される。レーザ変位計33からのレーザ光34は、基板16のうちで最も大きく撓む中央部分に照射される。また、落下衝撃によって基板16のはんだ接合部37に発生するクラックによってはんだ接合部37の抵抗値が増加するが、歪みアンプ46によってはんだ接合部37の抵抗値が測定アンプ35に記録される。
【0027】
以上の説明から明らかな様に、本実施形態では落下衝撃による基板16の歪み量、撓み量及びはんだ接合部37の抵抗値の増加分を測定することができるので、基板16が受けた落下衝撃を定量的に測定することができる。また、同一の基板16に対する落下衝撃とはんだ接合部37の抵抗値の測定とを繰り返すことによって、落下衝撃の回数とはんだ接合部37の抵抗値の増加分との関係を知って、落下衝撃によるはんだ接合部37の寿命を予測することができる。
【0028】
しかも、落下衝撃は基板16のみから直接的に測定することができ、基板16が組み込まれている製品としての電子機器に落下衝撃を与えてその動作から間接的に落下衝撃を測定する必要がない。このため、測定コストの増大を抑制しつつ多数の基板16に対して測定を行うことができ、基板16によるばらつきが少ない正確な落下衝撃を測定することができる。
【0029】
なお、以上の実施形態は部品が実装されていて電子機器に組み込まれるべき基板16の落下衝撃測定方法及び落下衝撃測定装置に本願の発明を適用したものであるが、本願の発明は製品としての携帯型電子機器や基板以外の物品を測定対象物にしてそれらの落下衝撃を測定することもできる。
【0030】
【発明の効果】
請求項1に係る落下衝撃測定方法では、測定対象物が受けた落下衝撃による歪み量と撓み量とを定量的に測定することができ、しかも、測定対象物によるばらつきが少ない正確な落下衝撃による歪み量と撓み量とを測定することができ、更に、測定対象物が落下衝撃を受けた際の歪み量と撓み量とを正確に測定することができるので、測定対象物が受ける落下衝撃を緩和させて測定対象物の損傷を防止するための対策を考え易い。
【0031】
請求項2に係る落下衝撃測定方法では、測定対象物が受けた落下衝撃による影響を更に詳しく測定することができるので、測定対象物が受ける落下衝撃を緩和させて測定対象物の損傷を防止するための対策を更に考え易い。また、落下衝撃の回数と落下衝撃によって測定対象物のはんだ接合部に発生するクラックによるはんだ接合部の抵抗値の増加分との関係を知ることができるので、落下衝撃によるはんだ接合部の寿命を予測することができる。
【0032】
請求項3に係る落下衝撃測定装置では、測定対象物が受けた落下衝撃による歪み量と撓み量とを定量的に測定することができ、しかも、測定対象物によるばらつきが少ない正確な落下衝撃による歪み量と撓み量とを測定することができ、更に、測定対象物が落下衝撃を受けた際の歪み量と撓み量とを正確に測定することができるので、測定対象物が受ける落下衝撃を緩和させて測定対象物の損傷を防止するための対策を考え易い。
【0033】
請求項に係る落下衝撃測定装置では、測定対象物が受けた落下衝撃による影響を更に詳しく測定することができるので、測定対象物が受ける落下衝撃を緩和させて測定対象物の損傷を防止するための対策を更に考え易い。また、落下衝撃の回数と落下衝撃によって測定対象物のはんだ接合部に発生するクラックによるはんだ接合部の抵抗値の増加分との関係を知ることができるので、落下衝撃によるはんだ接合部の寿命を予測することができる
【図面の簡単な説明】
【図1】本願の発明の一実施形態の全体的な斜視図である。
【図2】一実施形態の要部における電気的接続関係を示す平面図である。
【図3】測定対象物が落下した瞬間における一実施形態の要部の斜視図である。
【符号の説明】
11…落下衝撃測定装置、14…可動部、16…基板(測定対象物)、25…検知部、33…レーザ変位計(撓み計)、37…はんだ接合部、38…歪みゲージ(歪み計)、42…歪みアンプ(歪み計)、45…可変抵抗器(抵抗計)、46…歪みアンプ(抵抗計)、48…電圧出力アンプ(撓み計)
[0001]
BACKGROUND OF THE INVENTION
The invention of the present application relates to a method and an apparatus for measuring an impact received by a measurement object by dropping.
[0002]
[Prior art]
For example, a board on which various parts are mounted by soldering is incorporated in an electronic device, and if the electronic device receives an impact due to a fall on the floor or the like due to an unexpected accident, the board itself may be damaged or the board may be damaged. In some cases, the electronic device becomes inoperable due to an increase in the resistance value of the solder joint due to a crack generated in the solder joint between the component and the part. Therefore, a drop impact test is performed in order to evaluate the reliability of the substrate and the like against the drop impact and to consider measures for preventing damage to the substrate and the like due to the drop impact.
[0003]
In a conventional general drop impact test, a board on which a component is mounted is incorporated into an electronic device in actual use to make a product, and the electronic device as this product is placed on a rotating plate at a predetermined height from the floor. The electronic device was freely dropped on the floor surface by rotating the rotating plate, and the operating state of the electronic device that received the drop impact was confirmed.
[0004]
In addition, as a drop impact test, there is also a test for confirming the operating state of an electronic device that has received a drop impact by applying an acceleration to an electronic device as a product to forcibly drop it. However, in this drop impact test, the mass of the electronic device as a product is related to the drop impact, whereas the influence of the mass on the drop impact is very small only with a downsized board or component. Therefore, this drop impact test for performing a forced drop is not appropriate as a test only for substrates and parts that are becoming smaller.
[0005]
[Problems to be solved by the invention]
However, in the above-described conventional example that confirms the operating state of an electronic device that has received an impact due to free fall, it has not been possible to quantitatively measure the amount of distortion and the amount of deflection due to the drop impact received by the substrate or the like. In addition, in the above-described conventional example in which a drop impact is applied to an electronic device as a product, the cost of the electronic device as a product is high, so a large number of electronic devices cannot be tested, and variations due to substrates and the like. It was difficult to obtain accurate test results with a small amount. For this reason, in the above-described conventional example, it has been difficult to devise a measure for mitigating the drop impact received by the substrate or the like and preventing the substrate or the like from being damaged.
[0006]
Therefore, the invention of the present application can quantitatively measure the amount of distortion and the amount of deflection due to the drop impact received by the measurement object, and moreover, the amount of distortion and the deflection due to the accurate drop impact with little variation due to the measurement object. in order to be able to measure the amount, providing a likely drop impact measurement method and drop impact measuring device consider measures to prevent damage of the measurement object by mitigating drop impact of the measurement object is subjected It is aimed.
[0007]
[Means for Solving the Problems]
In the drop impact measurement method according to claim 1, the strain when the measurement object is subjected to the drop impact by the strain gauge attached to the measurement object and the laser displacement meter in a non-contact state with the measurement object. Since the step of measuring the amount and the amount of deflection is provided, it is possible to quantitatively measure the amount of distortion and the amount of deflection caused by the drop impact received by the measurement object.
[0008]
Moreover, since the amount of distortion and the amount of deflection can be measured directly only from the object to be measured, even if the object to be measured operates in a state where it is incorporated in another article, it is incorporated in another article. Therefore, it is not necessary to measure the amount of distortion and the amount of deflection due to the drop impact indirectly from the operation in the state where the movement is performed. For this reason, it is possible to measure a large number of measurement objects while suppressing an increase in measurement cost, and it is possible to measure the amount of distortion and the amount of deflection due to an accurate drop impact with little variation due to the measurement objects. .
[0009]
Further, since the strain gauge is generally small, the measurement position of the strain amount in the measurement object can be selected by selecting the position where the strain gauge is attached to the measurement object. In addition, since the strain gauge is generally light, even if the strain amount of the measurement object is measured with the strain gauge attached to the measurement object, the drop impact received by the measurement object hardly changes. For these reasons, it is possible to accurately measure the amount of distortion when the measurement object receives a drop impact.
[0010]
Moreover, the measurement position of the amount of deflection in the measurement object can be selected by selecting the irradiation position of the laser beam on the measurement object when subjected to the drop impact. In addition, since the laser displacement meter can measure the amount of deflection of the measurement object in a non-contact state with the measurement object, the measurement object receives even if the amount of deflection of the measurement object is measured by the laser displacement meter. Drop impact does not change at all. For these reasons, it is possible to accurately measure the amount of deflection when the measurement object receives a drop impact.
[0011]
In the drop impact measuring method according to claim 2, the method includes the step of measuring the resistance value of the solder joint portion in the measurement object after the measurement object receives the drop impact. From the increase in the resistance value of the solder joint due to cracks occurring in the metal, the influence of the drop impact received by the measurement object can be measured in more detail. Also, by repeating the drop impact on the same measurement object and measuring the resistance value of the solder joint, the resistance of the solder joint due to the number of drop impacts and cracks generated in the solder joint of the measurement object due to the drop impact You can know the relationship with the increase in value.
[0012]
In engaging Ru drop under shock measurement apparatus in claim 3, the strain gauge the measurement object is attached to the measurement object is measured strain amount at the time of receiving the drop impact, the measurement object in a non-contact state Since the measurement object is equipped with a laser displacement meter that measures the amount of deflection when it is subjected to a drop impact , the amount of distortion and the amount of deflection due to the drop impact received by the measurement object can be measured quantitatively. Can do.
[0013]
Moreover, since the amount of distortion and the amount of deflection can be measured directly only from the object to be measured, even if the object to be measured operates in a state where it is incorporated in another article, it is incorporated in another article. Therefore, it is not necessary to measure the amount of distortion and the amount of deflection due to the drop impact indirectly from the operation in the state where the movement is performed. For this reason, it is possible to measure a large number of measurement objects while suppressing an increase in measurement cost, and it is possible to measure the amount of distortion and the amount of deflection due to an accurate drop impact with little variation due to the measurement objects. .
[0014]
In addition , since the strain gauge is generally small, the measurement position of the strain amount on the measurement object can be selected by selecting the position where the strain gauge is attached to the measurement object. In addition, since the strain gauge is generally light, even if the strain amount of the measurement object is measured with the strain gauge attached to the measurement object, the drop impact received by the measurement object hardly changes. For these reasons, it is possible to accurately measure the amount of distortion when the measurement object receives a drop impact.
[0015]
Moreover , the measurement position of the amount of deflection in the measurement object can be selected by selecting the irradiation position of the laser beam on the measurement object when subjected to the drop impact. In addition, since the laser displacement meter can measure the amount of deflection of the measurement object in a non-contact state with the measurement object, the measurement object receives even if the amount of deflection of the measurement object is measured by the laser displacement meter. Drop impact does not change at all. For these reasons, it is possible to accurately measure the amount of deflection when the measurement object receives a drop impact.
[0016]
Since the drop impact measuring apparatus according to claim 4 includes a resistance meter for measuring the resistance value of the solder joint portion in the measurement object, the solder joint portion due to the crack generated in the solder joint portion of the measurement object due to the drop impact is provided. From the increase in the resistance value, it is possible to measure in more detail the influence of the drop impact received by the measurement object. Also, by repeating the drop impact on the same measurement object and measuring the resistance value of the solder joint, the resistance of the solder joint due to the number of drop impacts and cracks generated in the solder joint of the measurement object due to the drop impact You can know the relationship with the increase in value .
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention applied to a drop impact measuring method and a drop impact measuring apparatus for a substrate on which components are mounted and to be incorporated into an electronic device will be described with reference to FIGS. FIG. 1 shows the entire drop impact measuring apparatus of the present embodiment. The drop impact measuring device 11 is provided with a vertical plate 12, and a pair of linear guides 13 are provided on the side surface of the vertical plate 12. A movable portion 14 is attached to the linear guide 13 and is movable by being guided by the linear guide 13.
[0018]
The movable part 14 is provided with a cylinder 15 and a chuck 17 for releasing and holding the substrate 16 by opening and closing by the cylinder 15. A lever 21 for stopping the movable part 14 near the upper end of the linear guide 13 and an external part are provided. A cylinder 22 for moving the lever 21 based on the operation of the switch is attached to the vertical plate 12 by an adjusting screw 23. By adjusting the adjustment screw 23, the height of the lever 21 and the cylinder 22 can be adjusted. Therefore, the stop position of the movable portion 14 in the vicinity of the upper end portion of the linear guide 13 can be adjusted.
[0019]
A stopper 24 for stopping the movable part 14 that has fallen is attached in the vicinity of the lower end of the linear guide 13, and a detection part 25 that detects the passage of the movable part 14 and drives the cylinder 15 to release the chuck 17. Is attached to the upper end portion side of the linear guide 13 with respect to the stopper 24. A cable guide 26 that moves together with the movable portion 14 is attached to the movable portion 14, and an electric wire described later is connected between the substrate 16 and the cable guide 26.
[0020]
A cable guide 27 is fixed to the vertical plate 12, and the cable guide 26 is electrically connected to the cable guide 27. A horizontal plate 31 is fixed to the lower end portion of the vertical plate 12, and a plate 32 for causing the substrate 16 that has fallen to collide is attached to the upper surface of the horizontal plate 31. A laser displacement meter 33 is mounted on the horizontal plates 31 on both sides of the plate 32. The laser displacement meter 33 irradiates the object with a parallel laser beam 34, and calculates the amount of deflection of the object from the size of the shadow portion. taking measurement. A measurement amplifier 35 is provided on the side of the horizontal plate 31.
[0021]
FIG. 2 shows an electrical connection relationship between the substrate 16 and the laser displacement meter 33 and the measurement amplifier 35. A component 36 is mounted on the substrate 16 by a solder joint 37, and a strain gauge 38 is adhered to the substrate 16 in the vicinity of the component 36 by adhesion. The electric wire 41 connected to the strain gauge 38 is connected to the measurement amplifier 35 via the cable guides 26 and 27 and the strain amplifier 42 described above.
[0022]
A measurement land 43, which is a wiring pattern on the substrate 16, extends from the solder joint portion 37, and the electric wire 44 connected to the measurement land 43 connects the cable guides 26 and 27, the variable resistor 45 and the distortion amplifier 46 described above. To the measurement amplifier 35. The strain amplifier 46 is originally an amplifier for measuring the resistance value of the strain gauge 38 in the same manner as the strain amplifier 42. However, the resistance value of the variable resistor 45 is adjusted to adjust the resistance between the solder joint 37 and the variable resistor 45. By making the total resistance value equal to the initial resistance value of the strain gauge 38, the resistance value of the solder joint portion 37 can be measured by the strain amplifier 46.
[0023]
The electric wire 47 connected to the laser displacement meter 33 is connected to the measurement amplifier 35 via the voltage output amplifier 48. In FIG. 2, only one strain gauge 38 and measurement land 43 of the pair of strain gauges 38 and measurement lands 43 shows the electrical connection relationship with the measurement amplifier 35, but the other strain gauge 38 is shown. The measurement land 43 is also electrically connected to the measurement amplifier 35 in the same manner.
[0024]
In order to measure the impact received by the free fall of the substrate 16 using the drop impact measuring apparatus 11 of the present embodiment as described above, the substrate to which the electric wires 41 and 44 are connected as shown in FIG. 16 is held on the movable portion 14 by the chuck 17 as shown in FIG. 1, and the movable portion 14 is stopped near the upper end portion of the linear guide 13 by the lever 21. Then, from this state, the lever 21 is moved by driving the cylinder 22 by operating an external switch, and the movable portion 14 is freely dropped while being guided by the linear guide 13.
[0025]
Immediately before the movable part 14 drops to the vicinity of the lower end of the linear guide 13 and reaches the stopper 24, the detection part 25 detects the passage of the movable part 14 and drives the cylinder 15 to release the chuck 17. As a result, the substrate 16 is separated from the movable portion 14 and falls alone and collides with the plate 32. Therefore, the position on the plate 32 where the substrate 16 falls and the posture of the substrate 16 when receiving the drop impact are controlled, and a plurality of drop impacts can be given to the substrate 16 with high reproducibility. In addition, when the substrate 16 falls on the plate 32, the substrate 16 is not affected by the impact that the movable portion 14 receives from the stopper 24.
[0026]
FIG. 3 shows a state at the moment when the substrate 16 falls on the plate 32. At the moment when the substrate 16 falls on the plate 32, distortion and deflection are generated in the substrate 16, and the strain amount is recorded in the measurement amplifier 35 by the strain gauge 38 and the strain amplifier 42, and the laser displacement meter 33 and the voltage output amplifier. The amount of deflection is recorded in the measurement amplifier 35 by 48. The laser beam 34 from the laser displacement meter 33 is applied to the central portion of the substrate 16 that is most bent. Further, although the resistance value of the solder joint portion 37 is increased by a crack generated in the solder joint portion 37 of the substrate 16 due to the drop impact, the resistance value of the solder joint portion 37 is recorded in the measurement amplifier 35 by the strain amplifier 46.
[0027]
As is clear from the above description, in this embodiment, the amount of distortion and deflection of the substrate 16 due to the drop impact and the increment of the resistance value of the solder joint 37 can be measured. Can be measured quantitatively. Further, by repeating the drop impact on the same substrate 16 and the measurement of the resistance value of the solder joint portion 37, the relationship between the number of drop impacts and the increase in the resistance value of the solder joint portion 37 is known, and the drop impact is caused. The lifetime of the solder joint portion 37 can be predicted.
[0028]
Moreover, the drop impact can be measured directly only from the substrate 16, and it is not necessary to apply the drop impact to an electronic device as a product in which the substrate 16 is incorporated and indirectly measure the drop impact from the operation. . For this reason, it is possible to perform measurement on a large number of substrates 16 while suppressing an increase in measurement cost, and it is possible to measure an accurate drop impact with little variation due to the substrates 16.
[0029]
In the above embodiment, the invention of the present application is applied to the drop impact measuring method and the drop impact measuring apparatus for the substrate 16 on which components are mounted and to be incorporated in an electronic device. It is also possible to measure the drop impact of an article other than a portable electronic device or a substrate as a measurement object.
[0030]
【The invention's effect】
In the drop impact measuring method according to claim 1, it is possible to quantitatively measure the amount of distortion and the amount of deflection due to the drop impact received by the measurement object, and moreover, by the accurate drop impact with little variation due to the measurement object. it is possible to measure the strain amount and the bending amount, further, drop impact Runode can measure the object to accurately measure the amount of distortion and deflection amount at the time of receiving the drop impact, the measurement object receives It is easy to consider measures for relaxing the measurement object and preventing the measurement object from being damaged.
[0031]
In the drop impact measuring method according to claim 2, since the influence of the drop impact received by the measurement object can be measured in more detail, the drop impact received by the measurement object is mitigated to prevent the measurement object from being damaged. Therefore, it is easier to think about measures. In addition, it is possible to know the relationship between the number of drop impacts and the increase in the resistance value of the solder joints due to cracks generated in the solder joints of the measurement object due to the drop impacts, so the life of the solder joints due to drop impacts can be increased. Can be predicted.
[0032]
In engaging Ru drop under shock measurement apparatus in claim 3, the strain amount and the bending amount by the drop impact of the measurement object is received can be measured quantitatively, moreover, accurate drop is less variation due to the measurement object impact due can be measured and strain amount and the bending amount, further, Runode can measure the object to accurately measure the amount of distortion and deflection amount at the time of receiving the drop impact, the measurement object receives It is easy to think of measures to mitigate the drop impact and prevent damage to the measurement object.
[0033]
In the drop impact measuring device according to claim 4 , since the influence of the drop impact received by the measurement object can be measured in more detail, the drop impact received by the measurement object is mitigated to prevent the measurement object from being damaged. Therefore, it is easier to think about measures. In addition, it is possible to know the relationship between the number of drop impacts and the increase in the resistance value of the solder joints due to cracks generated in the solder joints of the measurement object due to the drop impacts, so the life of the solder joints due to drop impacts can be increased. Can be predicted .
[Brief description of the drawings]
FIG. 1 is an overall perspective view of an embodiment of the present invention.
FIG. 2 is a plan view showing an electrical connection relationship in a main part of one embodiment.
FIG. 3 is a perspective view of a main part of an embodiment at the moment when a measurement object falls.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Drop impact measuring apparatus, 14 ... Movable part, 16 ... Board | substrate (measurement object), 25 ... Detection part, 33 ... Laser displacement meter (deflection meter), 37 ... Solder junction part, 38 ... Strain gauge (strain meter) 42 ... Strain amplifier (strain meter), 45 ... Variable resistor (resistance meter), 46 ... Strain amplifier (resistance meter), 48 ... Voltage output amplifier (flexometer)

Claims (4)

測定対象物に貼付されている歪みゲージと前記測定対象物に非接触の状態にあるレーザ変位計とで、前記測定対象物が落下衝撃を受けた際の歪み量と撓み量とを夫々測定する工程を具備する落下衝撃測定方法。 To the object to be measured with strain gauge affixed to the measuring object with a laser displacement meter in a non-contact state, the measurement object is respectively measured and the strain amount and the amount of deflection when subjected to drop impact A drop impact measuring method comprising the steps. 前記測定対象物が前記落下衝撃を受けた後に前記測定対象物におけるはんだ接合部の抵抗値を測定する工程を具備する請求項1記載の落下衝撃測定方法。  The drop impact measuring method according to claim 1, further comprising a step of measuring a resistance value of a solder joint portion in the measurement object after the measurement object receives the drop impact. 測定対象物に貼付されてこの測定対象物が落下衝撃を受けた際の歪み量を測定する歪みゲージ
前記測定対象物に非接触の状態にあってこの測定対象物が前記落下衝撃を受けた際の撓み量を測定するレーザ変位計と
を具備する落下衝撃測定装置。
A strain gauge that is attached to a measurement object and measures the amount of distortion when the measurement object is subjected to a drop impact ;
A drop impact measuring device comprising: a laser displacement meter that measures the amount of deflection when the measurement subject is subjected to the drop impact in a non-contact state with the measurement subject .
前記測定対象物におけるはんだ接合部の抵抗値を測定する抵抗計を具備する請求項記載の落下衝撃測定装置。The drop impact measuring apparatus according to claim 3 , further comprising a resistance meter that measures a resistance value of a solder joint portion in the measurement object.
JP11544099A 1999-04-22 1999-04-22 Drop impact measuring method and drop impact measuring apparatus Expired - Fee Related JP3991255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11544099A JP3991255B2 (en) 1999-04-22 1999-04-22 Drop impact measuring method and drop impact measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11544099A JP3991255B2 (en) 1999-04-22 1999-04-22 Drop impact measuring method and drop impact measuring apparatus

Publications (2)

Publication Number Publication Date
JP2000304668A JP2000304668A (en) 2000-11-02
JP3991255B2 true JP3991255B2 (en) 2007-10-17

Family

ID=14662623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11544099A Expired - Fee Related JP3991255B2 (en) 1999-04-22 1999-04-22 Drop impact measuring method and drop impact measuring apparatus

Country Status (1)

Country Link
JP (1) JP3991255B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9739697B2 (en) 2014-08-14 2017-08-22 Samsung Display Co., Ltd. Drop impact tester and method for drop impact test

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4741272B2 (en) * 2005-04-05 2011-08-03 新日本製鐵株式会社 Dynamic load measuring device
JP4831670B2 (en) * 2006-02-24 2011-12-07 富士通株式会社 Sample resistance measuring device
JP5354287B2 (en) * 2009-09-10 2013-11-27 株式会社豊田中央研究所 Crack area ratio calculation method and apparatus
JP5497929B2 (en) * 2013-03-12 2014-05-21 株式会社メガチップス Impact detection device
KR101778711B1 (en) * 2016-07-18 2017-09-14 한국해양과학기술원 Measuring the impact force assistive device of water skin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9739697B2 (en) 2014-08-14 2017-08-22 Samsung Display Co., Ltd. Drop impact tester and method for drop impact test

Also Published As

Publication number Publication date
JP2000304668A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
US8130004B2 (en) Probe apparatus and method for correcting contact position by adjusting overdriving amount
EP2363701B1 (en) Improved clamping mechanism for shear testing apparatus
JP5563019B2 (en) Measurement method of tensile stress
US8375804B2 (en) Apparatus for testing bonding strength of electrical connections and frictionless calibration device for the same
US5532613A (en) Probe needle
US6758385B2 (en) Apparatus for performing a pull test
US20060114008A1 (en) Probe card for testing semiconductor element, and semiconductor device tested by the same
JP2007538242A (en) Test equipment
US7730790B2 (en) Shear test device
US20060231834A1 (en) Bonding strength testing device
JP3991255B2 (en) Drop impact measuring method and drop impact measuring apparatus
EP0772036A2 (en) Apparatus for testing bonds between an (electric) element and a support provided with conducting tracks
JP2009526987A (en) Shear test apparatus and method
US20140047898A1 (en) Machine For Testing Cushioning Material For Packaging
JP2003194690A (en) Impact test method, impact testing device and reliability evaluation method of semiconductor device
JP6721302B2 (en) Double-sided circuit board inspection device
KR101301741B1 (en) Probe bonding apparatus and method thereof
US7336087B2 (en) Circuit board test device comprising contact needles which are driven in diagonally protruding manner
US20110314925A1 (en) Deflection testing apparatus and method for using
US6956390B1 (en) Method and apparatus for verifying temperature during integrated circuit thermal testing
US20230304877A1 (en) Force measurement system and force measurement method
CN116847974A (en) Bonding test equipment
JPH10163215A (en) Bump leveling device and its method
JP2681913B2 (en) Indentation hardness test method and device
JP4395238B2 (en) Insulation film durability test equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees