JP5354287B2 - Crack area ratio calculation method and apparatus - Google Patents

Crack area ratio calculation method and apparatus Download PDF

Info

Publication number
JP5354287B2
JP5354287B2 JP2009208854A JP2009208854A JP5354287B2 JP 5354287 B2 JP5354287 B2 JP 5354287B2 JP 2009208854 A JP2009208854 A JP 2009208854A JP 2009208854 A JP2009208854 A JP 2009208854A JP 5354287 B2 JP5354287 B2 JP 5354287B2
Authority
JP
Japan
Prior art keywords
crack
area ratio
resistance change
crack area
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009208854A
Other languages
Japanese (ja)
Other versions
JP2011058952A (en
Inventor
元 生野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2009208854A priority Critical patent/JP5354287B2/en
Publication of JP2011058952A publication Critical patent/JP2011058952A/en
Application granted granted Critical
Publication of JP5354287B2 publication Critical patent/JP5354287B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cracked area rate calculation method and device, which can quantitatively and continuously measure a cracked area rate of a conductive part having electric conductivity such as a joint. <P>SOLUTION: The cracked area rate calculation method for calculating the cracked area rate of the conductive part having electric conductivity includes: a relational expression setting step of setting a relational expression between a resistance change and the cracked area rate based on a specific resistance value of the conductive part determined beforehand; a resistance change measuring step of measuring a resistance change of the conductive part; and a cracked area rate calculation step of calculating the cracked area rate of the conductive part from the resistance change measured in the resistance change measuring step, based on the relational expression set in the relational expression setting step. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、はんだ等の導電部の亀裂面積率を測定する方法および装置に関するものである。   The present invention relates to a method and apparatus for measuring the crack area ratio of a conductive part such as solder.

従来、例えば回路におけるはんだ接合部の寿命に関する評価方法が種々提案されている。接合部とは、回路中で例えば素子と基板を接合する電気伝導性を有するものである。接合部は、熱疲労等により亀裂が発生し、破断する虞がある。この接合部について、温度サイクル試験や寿命評価などが行われる。   Conventionally, for example, various methods for evaluating the life of a solder joint in a circuit have been proposed. The joining portion has electrical conductivity for joining, for example, an element and a substrate in a circuit. The joint may crack due to thermal fatigue and break. A temperature cycle test, life evaluation, and the like are performed on the joint.

接合部の評価方法または評価装置として、例えば、特開2007−255925号公報(特許文献1)や特開2007−255926号公報(特許文献2)に開示されたものがある。これらの接合評価方法では、接合部の抵抗値を測定し、その抵抗値の著しい変化(変曲点)から破断に近い寿命を測定することができる。   As an evaluation method or an evaluation apparatus for a joint portion, for example, there are those disclosed in Japanese Unexamined Patent Application Publication No. 2007-255925 (Patent Document 1) and Japanese Unexamined Patent Application Publication No. 2007-255926 (Patent Document 2). In these joint evaluation methods, the resistance value of the joint can be measured, and the life close to fracture can be measured from a significant change (inflection point) of the resistance value.

特開2007−255925号公報JP 2007-255925 A 特開2007−255926号公報JP 2007-255926 A

しかしながら、上記評価方法では、変曲点以前の亀裂の進展特性を定量的に検知することができない。また、この亀裂の進展特性を調べるには、試験後に断面観察や破面観察により亀裂長さや亀裂面積を測定する事後評価(実測)を行う必要があり、その評価のたびに高度な技術や多大な労力および時間が必要であった。さらに、上記評価方法では、事後評価の結果得られるデータは特定のサイクル数の1点のデータに過ぎず、試験中の連続的な亀裂進展挙動を測定することは極めて困難であった。   However, the above evaluation method cannot quantitatively detect the crack growth characteristics before the inflection point. In addition, in order to investigate the growth characteristics of this crack, it is necessary to conduct post-evaluation (actual measurement) by measuring the crack length and crack area by cross-sectional observation and fracture surface observation after the test. Labor and time were required. Furthermore, in the above evaluation method, the data obtained as a result of the ex-post evaluation is only one point data of a specific number of cycles, and it is extremely difficult to measure the continuous crack propagation behavior during the test.

ここで、測定対象において亀裂は面状に進展し、亀裂の進展の度合いは、亀裂面積率(亀裂進展率)で表すことができる。亀裂面積率は、亀裂の経路に沿って切断した断面の全断面積のうち、亀裂面積の割合である。亀裂面積率が大きいほど、亀裂が進展していることになる。   Here, in the measurement object, the crack progresses in a planar shape, and the degree of progress of the crack can be represented by a crack area ratio (crack progress ratio). The crack area ratio is the ratio of the crack area to the total cross-sectional area of the cross section cut along the crack path. The larger the crack area ratio, the more the crack is developed.

本発明は、このような事情に鑑みて為されたものであり、はんだ接合部など電気伝導性を有する導電部の亀裂面積率を定量的且つ連続的に測定することができる亀裂面積率測定方法および装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and a crack area ratio measuring method capable of quantitatively and continuously measuring the crack area ratio of a conductive portion having electrical conductivity such as a solder joint. And an object to provide an apparatus.

本発明の亀裂面積率算出方法は、電気伝導性を有する測定対象物の亀裂面積率を算出する亀裂面積率算出方法であって、測定対象物の亀裂進展が予想される部位である亀裂進展部の亀裂がないときの固有抵抗値を求める固有抵抗値算出ステップと、亀裂進展部の亀裂がないときの固有抵抗値に基づいて、抵抗変化と亀裂面積率の関係式を設定する関係式設定ステップと、亀裂進展部の抵抗変化を測定する抵抗変化測定ステップと、関係式設定ステップで設定された関係式に基づいて、抵抗変化測定ステップで測定された抵抗変化から亀裂進展部の亀裂面積率を算出する亀裂面積率算出ステップと、を含むことを特徴とする。 The crack area ratio calculation method of the present invention is a crack area ratio calculation method for calculating the crack area ratio of a measurement object having electrical conductivity, and is a portion where a crack propagation of the measurement object is expected. A specific resistance value calculating step for obtaining a specific resistance value when there is no crack , and a relational equation setting step for setting a relational expression between the resistance change and the crack area ratio based on the specific resistance value when there is no crack in the crack propagation portion When the resistance change measurement step of measuring the resistance change of the crack growth unit, based on a relationship formula set in relation setting step, a crack area ratio of the crack propagation portion from the measured change in resistance resistance change measurement steps And calculating a crack area ratio calculation step.

抵抗変化と亀裂面積率の関係式を用いることにより、測定対象物の抵抗変化を実測するだけで、その時々の亀裂面積率を求めることができる。つまり、本方法によれば、測定対象物の亀裂面積率を定量的且つ連続的に測定することができる。なお、関係式に必要な亀裂進展部の固有抵抗値は、亀裂がない状態の亀裂進展部の初期抵抗値に相当する値であって、予備実験(関係式による計算や直接実測)や既知の値から計算により予め求められたものを用いる。 By using the relational expression between the resistance change and the crack area ratio, the crack area ratio from time to time can be obtained simply by actually measuring the resistance change of the measurement object . That is, according to this method, the crack area ratio of the measurement object can be measured quantitatively and continuously. It should be noted that the specific resistance value of the crack propagation part necessary for the relational expression is a value corresponding to the initial resistance value of the crack propagation part in a state where there is no crack, and is a preliminary experiment (calculation by the relational expression or direct measurement) A value obtained in advance by calculation from the value is used.

ここで、上記関係式は、亀裂面積率をF、抵抗変化をΔR、亀裂進展部の亀裂がないときの固有抵抗値をRoとすると、F=1/(1+Ro/ΔR)であることが好ましい。この式は、抵抗変化と亀裂面積率の関係を等価回路モデルによる理論計算と実験による裏づけにより定量的に明らかにした独自の計算式である。これにより、より正確に亀裂面積率を算出することが可能となる。 Here, the relational expression is preferably F = 1 / (1 + Ro / ΔR) where F is the crack area ratio, ΔR is the resistance change, and Ro is the specific resistance value when there is no crack in the crack propagation portion. . This formula is an original formula that quantitatively clarifies the relationship between the resistance change and the crack area ratio by theoretical calculation using an equivalent circuit model and experimental support. This makes it possible to calculate the crack area ratio more accurately.

ここで、1つの回路中で複数(n個:nは2以上の自然数)の測定対象物が電気的に直列接続されている場合、亀裂面積率として実効亀裂面積率を算出することが好ましい。実効亀裂面積率は、回路で直列接続されたすべての測定対象物を1つの仮想導電部と仮定して算出した亀裂面積率である。仮想導電部の抵抗は、直列接続された複数の測定対象物の抵抗を等価的に1つの抵抗で表した値、すなわち、測定対象物全抵抗の合計である。従って、この実効亀裂面積率を算出する場合、上記関係式において、ΔRは回路中に在る各測定対象物の抵抗変化の合計であり、Roは回路中に在る各亀裂進展部の亀裂がないときの固有抵抗値の合計である。なお、回路中に在る各亀裂進展部の亀裂がないときの固有抵抗値Roi(i=1〜n)の合計ΣRoiは、実効固有抵抗値Roeとも呼ばれる。上記方法において、実効固有抵抗値Roeは、各測定対象物の材料が同じか否かに関わらず、各亀裂進展部の亀裂がないときの固有抵抗値から求めることができる。本方法において、抵抗変化は、複数の測定対象物が直列接続されている場合、それらすべての測定対象物の抵抗変化の合計値を用いる。 Here, when a plurality of measurement objects (n: n is a natural number of 2 or more) are electrically connected in series in one circuit, it is preferable to calculate the effective crack area ratio as the crack area ratio. The effective crack area ratio is a crack area ratio calculated by assuming that all measurement objects connected in series in the circuit are one virtual conductive portion. The resistance of the virtual conductive portion is a value equivalently representing the resistance of a plurality of measurement objects connected in series with one resistance, that is, the total resistance of the measurement objects . Therefore, when calculating the effective crack area ratio, in the above relational expression, ΔR is the total resistance change of each measurement object in the circuit, and Ro is the crack of each crack propagation portion in the circuit. It is the sum of the specific resistance values when there is no. Note that the total ΣRoi of the specific resistance values Roi (i = 1 to n) when there is no crack in each crack propagation portion in the circuit is also referred to as an effective specific resistance value Roe. In the above method, the effective specific resistance value Roe can be obtained from the specific resistance value when there is no crack in each crack propagation portion , regardless of whether or not the materials of the respective measurement objects are the same. In this method, when a plurality of measurement objects are connected in series , the resistance change uses the total value of the resistance changes of all the measurement objects .

ここで、1つの亀裂進展部の亀裂がないときの固有抵抗値が求まっている場合、その測定対象物と同じ材料からなる他の亀裂進展部の亀裂がないときの固有抵抗値は、亀裂経路に沿った断面の断面積の比を用いて求めることが好ましい。すなわち、本方法は、第一の測定対象物の亀裂経路に沿った断面の断面積をA1、第一の測定対象物亀裂進展部の亀裂がないときの固有抵抗値をRo1、第一の測定対象物と同じ材料からなる第二の測定対象物の亀裂経路に沿った断面の断面積をA2とすると、固有抵抗値算出ステップにおいて、第二の測定対象物亀裂進展部の亀裂がないときの固有抵抗値Ro2は、Ro2=Ro1×(A1/A2)で算出されることが好ましい。これにより、既知の測定対象物と同じ材料の測定対象物に対しては、実測により亀裂進展部の亀裂がないときの固有抵抗値を求める必要がなく、作業労力および時間を大幅に削減することができる。 Here, when the specific resistance value when there is no crack of one crack progressing portion is obtained, the specific resistance value when there is no crack of another crack progressing portion made of the same material as the measurement object is the crack path It is preferable to obtain using the ratio of the cross-sectional area of the cross section along the line. That is, the present method, the cross-sectional area of the cross section along the crack path of the first measurement object A1, the resistivity of the absence crack crack growth of the first measurement object Ro1, first If the cross-sectional area of the cross section along the crack path of the second measurement object made of the same material as the measurement object is A2, there is no crack in the crack propagation portion of the second measurement object in the specific resistance value calculating step. The specific resistance value Ro2 at that time is preferably calculated as Ro2 = Ro1 × (A1 / A2). Thus, for the measurement object of the same material as the measuring object already known, we found there is no need to determine the specific resistance value when there is no crack crack growth unit by greatly reduces the work effort and time be able to.

ここで、回路中に複数の測定対象物が電気的に直列接続された状態で存在し、当該測定対象物がすべて同じ材料および同じ接続状態である場合を考える。同じ接続状態とは、例えば、複数の測定対象物が同一基板上で同一(同一種)のチップに対し、各測定対象物が接合面積を同じくして基板とチップとを接合している状態を意味する。この場合、先に各亀裂進展部の亀裂面積率が実測により求まっていれば、それを用いて実効亀裂面積率を求め、その実効亀裂面積率から実効固有抵抗値を算出することができる。 Here, a case is considered in which a plurality of measurement objects exist in a circuit in a state of being electrically connected in series, and the measurement objects are all of the same material and the same connection state. The same connection state means, for example, a state in which a plurality of measurement objects are bonded to the same (same type) chip on the same substrate, and each measurement object has the same bonding area to bond the substrate and the chip. means. In this case, if the crack area ratio of each crack propagation portion is obtained by actual measurement, the effective crack area ratio can be obtained using the crack area ratio, and the effective specific resistance value can be calculated from the effective crack area ratio.

すなわち、材料および接続状態が同じn個の測定対象物が回路中で電気的に直列接続されており、各亀裂進展部の亀裂面積率Fi(i=1〜n)が実測により求まっている場合、固有抵抗値算出ステップは、実効亀裂面積率Feを、n/(1−Fe)=Σ{1/(1−Fi)}、(i=1〜n)により算出する実効亀裂面積率算出ステップと、実効亀裂面積率算出ステップで算出された実効亀裂面積率Feと、前記回路における全前記亀裂進展部の抵抗変化の合計である抵抗変化ΔR(実測値)から実効固有抵抗値Roeを、Fe=1/(1+Roe/ΔR)を用いて算出する実効固有抵抗値算出ステップと、を含む。これにより、実測による亀裂面積率から実効固有抵抗値を算出することができる。 That is, wood charge and the measurement object in the same n number connection state are electrically connected in series in the circuit, the crack growth of the crack area ratio Fi (i = 1~n) are been determined by actual measurement In this case, the specific resistance value calculating step calculates the effective crack area ratio Fe by calculating the effective crack area ratio Fe by n / (1-Fe) = Σ {1 / (1-Fi)}, (i = 1 to n). From the effective crack area ratio Fe calculated in the step, the effective crack area ratio calculation step, and the resistance change ΔR (actually measured value) that is the sum of the resistance changes of all the crack propagation portions in the circuit, the effective specific resistance value Roe is And an effective specific resistance value calculating step of calculating using Fe = 1 / (1 + Roe / ΔR). Thereby, the effective specific resistance value can be calculated from the crack area ratio measured.

なお、測定対象物は、電気伝導性を有するものであればよく、本方法は、電気伝導性を有するあらゆるものの亀裂進展評価に用いることができる。測定対象物は、回路における接合部であってもよい。例えば、はんだにより半導体チップ等が装着された配線基板に対して、本方法ではんだの亀裂進展試験を行うこともできる。 In addition, the measurement object should just have an electrical conductivity, and this method can be used for the crack growth evaluation of everything which has an electrical conductivity. The measurement object may be a junction in a circuit. For example, a solder crack growth test can be performed by this method on a wiring board on which a semiconductor chip or the like is mounted by solder.

ところで、本発明は、上記した方法を用いて亀裂面積率を算出する装置としても記載できる。すなわち、本発明の亀裂面積率算出装置は、電気伝導性を有する測定対象物の亀裂面積率を算出する亀裂面積率算出装置であって、測定対象物の亀裂進展が予想される部位である亀裂進展部の抵抗変化を測定する抵抗変化測定部と、抵抗変化と亀裂面積率の関係式であって予め求めた亀裂進展部の亀裂がないときの固有抵抗値を用いて設定される関係式に基づいて、抵抗変化測定部で測定された抵抗変化から亀裂進展部の亀裂面積率を算出する亀裂面積率算出部と、を備えることを特徴とする。そして、上記関係式は、F=1/(1+Ro/ΔR)であることが好ましい。これによっても、上記同様の効果が発揮される。 By the way, this invention can be described also as an apparatus which calculates a crack area ratio using the above-mentioned method. That is, the crack area ratio calculation apparatus of the present invention is a crack area ratio calculation apparatus that calculates the crack area ratio of a measurement object having electrical conductivity, and is a crack that is a portion where crack propagation of the measurement object is expected. A resistance change measurement unit that measures the resistance change of the progressing part , and a relational expression between the resistance change and the crack area ratio, which is set using a specific resistance value obtained when there is no crack of the crack progressing part obtained in advance. And a crack area rate calculation unit that calculates a crack area rate of the crack propagation portion from the resistance change measured by the resistance change measurement unit. The relational expression is preferably F = 1 / (1 + Ro / ΔR). This also exhibits the same effect as described above.

また、本発明の亀裂面積率算出方法および装置は、電気抵抗の変化に基づき亀裂面積率(亀裂進展率)を算出するものであるが、電気抵抗の代わりに熱抵抗を用いてもよい。つまり、この場合、固有抵抗値は熱抵抗の固有抵抗値となり、抵抗変化は熱抵抗変化となる。これによれば、測定対象(亀裂発生部位、熱抵抗測定部位)は導電性を有するものに限られない。なお、熱抵抗の測定は一般的な方法が使用でき、例えば亀裂部位を挟む部位の温度変化から測定できる。ここでの関係式は、亀裂進展部の亀裂がないときの熱抵抗の固有抵抗値をRo、熱抵抗変化をΔRとして、F=1/(1+Ro/ΔR)であることが好ましい。 The crack area ratio calculation method and apparatus according to the present invention calculate a crack area ratio (crack progress rate) based on a change in electrical resistance, but thermal resistance may be used instead of electrical resistance. That is, in this case, the specific resistance value is the specific resistance value of the thermal resistance, and the resistance change is a thermal resistance change. According to this, the measurement object (crack generation site, thermal resistance measurement site) is not limited to having conductivity. In addition, a general method can be used for the measurement of the thermal resistance, and for example, it can be measured from a temperature change of a part sandwiching the crack part. The relational expression here is preferably F = 1 / (1 + Ro / ΔR), where Ro is the specific resistance value of the thermal resistance when there is no crack in the crack propagation portion, and ΔR is the change in thermal resistance.

本発明の亀裂面積率算出方法および装置によれば、接合部など電気伝導性を有する測定対象物の亀裂面積率を定量的且つ連続的に測定することができる。また、上記方法および装置において、電気抵抗に代えて熱抵抗を用いることで、あらゆる測定対象物の亀裂面積率を求めることができる。 According to the crack area ratio calculation method and apparatus of the present invention, the crack area ratio of a measurement object having electrical conductivity such as a joint can be quantitatively and continuously measured. Moreover, in the said method and apparatus, it can replace with an electrical resistance, and can determine the crack area ratio of all the measurement objects by using a thermal resistance.

接合面積率と抵抗変化の関係を示すグラフである。It is a graph which shows the relationship between a junction area ratio and resistance change. 亀裂面積率と抵抗変化の関係を示すグラフである。It is a graph which shows the relationship between a crack area ratio and resistance change. 亀裂面積率と抵抗変化(対数)の関係を示すグラフである。It is a graph which shows the relationship between a crack area ratio and resistance change (logarithm). 第一実施形態の亀裂面積率算出方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the crack area ratio calculation method of 1st embodiment. 第一実施形態の亀裂面積率算出装置を示す模式図である。It is a schematic diagram which shows the crack area ratio calculation apparatus of 1st embodiment. はんだ接合部品Zを示す模式図である。3 is a schematic diagram showing a solder joint component Z. FIG. 第二実施形態の亀裂面積率算出方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the crack area ratio calculation method of 2nd embodiment. 第二実施形態における亀裂面積率と抵抗変化の関係を示すグラフである。It is a graph which shows the relationship between the crack area ratio and resistance change in 2nd embodiment.

次に、実施形態を挙げ、本発明をより詳しく説明する。   Next, the present invention will be described in more detail with reference to embodiments.

まず、電気伝導性を有する導電部(「測定対象物」に相当する)としてはんだ接合部を例に、図1〜図3を参照して、抵抗変化と亀裂面積率の関係式について説明する。図1は、接合面積率と抵抗変化の関係を示すグラフである。図2は、亀裂面積率と抵抗変化の関係を示すグラフである。図3は、亀裂面積率と抵抗変化(対数)の関係を示すグラフである。 First, a relational expression between resistance change and crack area ratio will be described with reference to FIGS. 1 to 3, taking a solder joint as an example of a conductive part having electrical conductivity (corresponding to “measurement object”) . FIG. 1 is a graph showing the relationship between the junction area ratio and the resistance change. FIG. 2 is a graph showing the relationship between the crack area ratio and the resistance change. FIG. 3 is a graph showing the relationship between the crack area ratio and resistance change (logarithm).

一般に、抵抗Rは、電流経路の長さに比例し、断面積に反比例するとされている。この関係から、亀裂が生じると断面積がその分減少するため抵抗が大きくなると予想される。しかし、亀裂により遮断される電流経路の長さは、亀裂の幅が不明であるため求めることができない。また、亀裂の幅は通常、極めて小さいため、亀裂周辺の電気の流れは複雑であることが想定される。したがって、抵抗に関する上記一般的な関係が亀裂をもつ電流経路に対して適用できるかどうかは不明であった。   In general, the resistance R is proportional to the length of the current path and inversely proportional to the cross-sectional area. From this relationship, when a crack occurs, the resistance is expected to increase because the cross-sectional area decreases accordingly. However, the length of the current path interrupted by the crack cannot be obtained because the width of the crack is unknown. In addition, since the width of the crack is usually extremely small, it is assumed that the electric flow around the crack is complicated. Therefore, it was unclear whether the above general relationship regarding resistance could be applied to a current path having a crack.

そこで本発明では、導電部(亀裂進展部)の固有抵抗値という新たな概念を導入し、亀裂の幅が不明でも抵抗値が求められる次式(1)をまず構築した。   Therefore, in the present invention, a new concept of the specific resistance value of the conductive portion (crack propagation portion) is introduced, and the following equation (1) is obtained, in which the resistance value is obtained even if the width of the crack is unknown.

R=Ro×(Ao/A)・・・(1)
ここで、Roははんだ接合部の固有抵抗値であり、Aは亀裂経路に沿ったはんだ接合部の断面積であり、Aoは亀裂がない場合の上記亀裂経路に沿ったはんだ接合部の断面積である。Aは、亀裂が発生した場合、その亀裂部分の断面積の分だけ小さくなる。亀裂の経路は、はんだ接合部の接合状態や予備実験などによって予め想定することができる。
R = Ro × (Ao / A) (1)
Here, Ro is a specific resistance value of the solder joint, A is a cross-sectional area of the solder joint along the crack path, and Ao is a cross-sectional area of the solder joint along the crack path when there is no crack. It is. When a crack occurs, A becomes smaller by the cross-sectional area of the crack portion. The path of the crack can be assumed in advance by the joining state of the solder joint portion, a preliminary experiment, or the like.

そして、抵抗変化ΔRは、ΔR=R−Roであり、この式は、式(1)から、
ΔR=Ro/(A/Ao)−Ro・・・(2)
と変形できる。ここで、A/Aoは接合面積率を表しており、接合面積率と抵抗変化の関係を図示すると図1のようになる。
And resistance change (DELTA) R is (DELTA) R = R-Ro, This Formula is from Formula (1),
ΔR = Ro / (A / Ao) −Ro (2)
And can be transformed. Here, A / Ao represents the junction area ratio, and the relationship between the junction area ratio and the resistance change is illustrated in FIG.

ここで、亀裂面積率Fと各断面積A、Aoとの関係は、
F=1−A/Ao・・・(3)
となる。式(2)および(3)より、亀裂面積率Fと抵抗変化ΔRとの間には、
F=1/(1+Ro/ΔR)・・・(4)
の関係式が成立する。つまり、抵抗変化と亀裂面積率の関係式は式(4)で表すことができる。この関係を図示すると図2のようになる。なお、図1および図2において、Roは0.8mΩである。
Here, the relationship between the crack area ratio F and the cross-sectional areas A and Ao is as follows:
F = 1−A / Ao (3)
It becomes. From the equations (2) and (3), between the crack area ratio F and the resistance change ΔR,
F = 1 / (1 + Ro / ΔR) (4)
The following relational expression holds. That is, the relational expression between the resistance change and the crack area ratio can be expressed by Expression (4). This relationship is illustrated in FIG. In FIGS. 1 and 2, Ro is 0.8 mΩ.

また、図2における縦軸の抵抗変化を対数で表示し、種々の固有抵抗値Ro(0.8mΩ、0.2mΩ、0.05mΩ)について上記関係を図示すると図3のようになる。図3に示すように、微小な抵抗変化を示す抵抗変化の対数値(縦軸)と亀裂面積率(横軸)との間には、大部分においてほぼ直線的な関係があることが分かる。したがって、この微小な抵抗変化の測定値から亀裂面積率を求めることができる。なお、図3には固有抵抗値が16倍異なる場合が例示されている。ここから、抵抗変化と亀裂面積率の関係は固有抵抗値に依存するが、固有抵抗値の僅かな違いでは亀裂面積率の算出精度に大きな違いが出ないことが分かる。つまり、上記関係は、Roの僅かな違いには鈍感であり、高精度に測定した固有抵抗値を用いる必要はない。また、例えば、接合部の亀裂経路が変わってしまった場合でも亀裂面積率の誤差は小さい。   Also, the change in resistance on the vertical axis in FIG. 2 is expressed in logarithm, and the above relationship is illustrated for various specific resistance values Ro (0.8 mΩ, 0.2 mΩ, 0.05 mΩ) as shown in FIG. As shown in FIG. 3, it can be seen that there is almost a linear relationship between the logarithmic value (vertical axis) of the resistance change indicating a minute resistance change and the crack area ratio (horizontal axis). Therefore, the crack area ratio can be obtained from the measurement value of this minute resistance change. FIG. 3 illustrates a case where the specific resistance values differ by 16 times. From this, it can be seen that the relationship between the resistance change and the crack area ratio depends on the specific resistance value, but a slight difference in the specific resistance value does not make a large difference in the calculation accuracy of the crack area ratio. That is, the above relationship is insensitive to slight differences in Ro, and it is not necessary to use a specific resistance value measured with high accuracy. In addition, for example, even when the crack path of the joint has changed, the error of the crack area ratio is small.

はんだ接合部の固有抵抗値Roは、亀裂面積率Fと抵抗変化ΔRの実測データの関係から式(4)を用いて求めることができる。また、簡易的には、直接実測により求めることもできる。誤差の観点では、式(4)から求めることが好ましい。   The specific resistance value Ro of the solder joint can be obtained by using equation (4) from the relationship between the crack area ratio F and the measured data of the resistance change ΔR. For simplicity, it can also be obtained directly by actual measurement. From the viewpoint of error, it is preferable to obtain from equation (4).

また、複数のはんだ接合部を直列接続してそれらの抵抗を測定した場合、実効亀裂面積率Feは、
Fe=1/(1+Roe/ΔR)・・・(5)
となる。ここで、Roeは固有抵抗値の実効値(実効固有抵抗値)であり、直列接続であることから、
Roe=ΣRoi、(i=1〜n)・・・(6)
の関係が成り立つ。これらの実効値FeとRoeは、直列接続した複数の抵抗(接合部)を有する回路を1つの抵抗回路(仮想接合部)に置き換えた場合の値を意味する。式(5)で用いる接合部全体の実効固有抵抗値Roeは、式(6)に基づき、接合部の各固有抵抗値Roiから求めることができる。各固有抵抗値Roiは、直接実測により、または、亀裂面積率と抵抗変化の実測データの関係から式(4)を用いて求めることができる。
In addition, when measuring the resistance of a plurality of solder joints connected in series, the effective crack area ratio Fe,
Fe = 1 / (1 + Roe / ΔR) (5)
It becomes. Here, Roe is an effective value of the specific resistance value (effective specific resistance value), and since it is connected in series,
Roe = ΣRoi, (i = 1 to n) (6)
The relationship holds. These effective values Fe and Roe mean values when a circuit having a plurality of resistors (junction portions) connected in series is replaced with one resistance circuit (virtual junction portion). The effective specific resistance value Roe of the entire joint used in Expression (5) can be obtained from each specific resistance value Roi of the joint based on Expression (6). Each specific resistance value Roi can be obtained by direct measurement or by using equation (4) from the relationship between crack area ratio and measured data of resistance change.

また、材料および接合状態が同じ複数の接合部が直列接続されている場合、下記の式(7)を用いて各接合部の亀裂面積率Fi(実測値)から求められる実効固有抵抗値Feと、抵抗変化ΔRの実測値の関係(式(5))から、実効固有抵抗値Roeを求めてもよい。   In addition, when a plurality of joints having the same material and joint state are connected in series, the effective specific resistance value Fe obtained from the crack area ratio Fi (actually measured value) of each joint using the following formula (7): The effective specific resistance value Roe may be obtained from the relationship (equation (5)) of the actually measured value of the resistance change ΔR.

n/(1−Fe)=Σ{1/(1−Fi)}、(i=1〜n)・・・(7)
また、亀裂経路に沿った断面積のみ異なる同じ材料の接合部に対しては、その固有抵抗値Rojを実測ではなく、
Roj=Roi×(A1/A2)・・・(8)
を用いて算出することができる。
n / (1-Fe) = Σ {1 / (1-Fi)}, (i = 1 to n) (7)
In addition, for joints of the same material that differ only in cross-sectional area along the crack path, the specific resistance value Roj is not actually measured,
Roj = Roi × (A1 / A2) (8)
Can be used to calculate.

以上、上記の関係式により、接合部の亀裂面積率を定量的および連続的に算出することができる。なお、上記関係式は、接合部に限らず、電気伝導性を有するものに対して適用することができる。   As described above, the crack area ratio of the joint can be calculated quantitatively and continuously by the above relational expression. In addition, the said relational expression is applicable not only to a junction part but to what has electrical conductivity.

<第一実施形態>
ここで、本発明を試験片の亀裂進展試験に適用した場合について図4および図5を参照して説明する。図4は、第一実施形態の亀裂面積率算出方法の流れを示すフローチャートである。図5は、亀裂面積率算出装置1を示す模式図である。
<First embodiment>
Here, the case where this invention is applied to the crack growth test of a test piece is demonstrated with reference to FIG. 4 and FIG. FIG. 4 is a flowchart showing the flow of the crack area ratio calculation method of the first embodiment. FIG. 5 is a schematic diagram showing the crack area ratio calculation apparatus 1.

試験片(本発明における「測定対象物」に相当する)は、電気伝導性を有するものであって、ここではアルミニウムからなっている。試験片の亀裂面積率の算出方法は以下のとおりである。 The test piece (corresponding to the “ measurement object ” in the present invention) has electrical conductivity and is made of aluminum here. The calculation method of the crack area ratio of the test piece is as follows.

図4に示すように、まず、試験片の固有抵抗値Roを実測により予め求める(S401)。具体的に固有抵抗値は、予備試験により試験片の亀裂面積率と抵抗変化を実測して式(4)から求める。また、簡易的には、亀裂がない状態の試験片の亀裂進展が予想される部位の初期抵抗値を実測して固有抵抗値としてもよい。ここでは、亀裂面積率Fと抵抗変化ΔRの実測データの関係から式(4)を用いて求めている。   As shown in FIG. 4, first, the specific resistance value Ro of the test piece is obtained in advance by actual measurement (S401). Specifically, the specific resistance value is obtained from Equation (4) by actually measuring the crack area ratio and resistance change of the test piece by a preliminary test. In addition, for simplicity, the initial resistance value of a portion where crack growth of a test piece without a crack is expected may be actually measured to obtain a specific resistance value. Here, it calculates | requires using Formula (4) from the relationship between the measurement data of the crack area ratio F and resistance change (DELTA) R.

亀裂がない状態の試験片の初期抵抗値を測定してもよく、あるいは、予備試験により試験片の亀裂面積率と抵抗変化を実測して式(5)から算出してもよい。ここでは、試験片の一端から他端に電流を流した場合の抵抗を測定する。   The initial resistance value of the test piece without cracks may be measured, or the crack area ratio and resistance change of the test piece may be measured by a preliminary test and calculated from the equation (5). Here, the resistance when a current is passed from one end of the test piece to the other end is measured.

続いて、求まった固有抵抗値Roを式(4)に代入し、抵抗変化と亀裂面積率の関係式を設定る(S402)。続いて、試験片に冷熱サイクル試験を加え、試験片の抵抗変化ΔRを測定する(S403)。続いて、式(4)に基づいて、抵抗変化ΔRから亀裂面積率Fを算出する(S404)。そして、亀裂面積率の算出を続行する場合(S405:No)、引き続き抵抗変化をモニターし、抵抗変化から亀裂面積率を算出する。亀裂面積率は、例えば冷熱サイクル試験中であっても、実際に部品として使用している使用中であっても、試験片の抵抗変化さえ分かれば算出することができる。ただし、抵抗値に温度依存性がある場合、当然、同一温度下における抵抗変化を求めることが必要となる。 Subsequently, the Motoma' intrinsic resistance Ro into equation (4), to set the relationship of the resistance change and crack area ratio (S402). Subsequently, a thermal cycle test is applied to the test piece, and the resistance change ΔR of the test piece is measured (S403). Subsequently, the crack area ratio F is calculated from the resistance change ΔR based on the equation (4) (S404). When the calculation of the crack area ratio is continued (S405: No), the resistance change is continuously monitored, and the crack area ratio is calculated from the resistance change. The crack area ratio can be calculated as long as the resistance change of the test piece is known, for example, during a cooling cycle test or during actual use as a part. However, if the resistance value has temperature dependence, it is naturally necessary to obtain a resistance change under the same temperature.

本方法によれば、亀裂面積率を連続的且つ定量的に算出することができる。なお、1度固有抵抗値Roが求まれば、同じ試験片に対してその値を用いることができ、S401を行う必要はない。また、亀裂経路に沿った断面積のみ異なる場合、固有抵抗値は、式(8)を用いて算出することができる。   According to this method, the crack area ratio can be calculated continuously and quantitatively. Note that once the specific resistance value Ro is obtained, the value can be used for the same test piece, and it is not necessary to perform S401. Further, when only the cross-sectional areas along the crack path are different, the specific resistance value can be calculated using Expression (8).

また、亀裂面積率は、上記方法を用いた亀裂面積率算出装置で算出することができる。図5に示すように、亀裂面積率算出装置1は、抵抗変化測定部2と、亀裂面積率算出部3と、を備えている。抵抗変化測定部2は、測定対象(ここでは試験片)の抵抗変化を測定するものであって、公知の測定器である。亀裂面積率算出部3は、コンピュータ等の演算装置であって、上記関係式を演算するように設定されている。亀裂面積率算出装置1によれば、本方法を実行でき、上記同様の効果が発揮される。   The crack area ratio can be calculated by a crack area ratio calculation apparatus using the above method. As shown in FIG. 5, the crack area ratio calculation device 1 includes a resistance change measurement unit 2 and a crack area ratio calculation unit 3. The resistance change measuring unit 2 measures a resistance change of a measurement target (here, a test piece), and is a known measuring instrument. The crack area ratio calculation unit 3 is an arithmetic device such as a computer, and is set to calculate the above relational expression. According to the crack area ratio calculation apparatus 1, this method can be executed, and the same effect as described above is exhibited.

<第二実施形態>
次に、本発明について、図6〜図8を参照し、はんだ接合部の熱疲労による亀裂進展測定を例に説明する。図6は、はんだ接合部品Zを示す模式図である。図7は、第二実施形態の亀裂面積率算出方法の流れを示すフローチャートである。図8は、第二実施形態における亀裂面積率と抵抗変化の関係を示すグラフである。
<Second embodiment>
Next, the present invention will be described with reference to FIGS. 6 to 8 by taking an example of crack propagation measurement due to thermal fatigue of a solder joint. FIG. 6 is a schematic diagram showing the solder joint component Z. As shown in FIG. FIG. 7 is a flowchart showing the flow of the crack area ratio calculation method of the second embodiment. FIG. 8 is a graph showing the relationship between the crack area ratio and the resistance change in the second embodiment.

図6に示すように、はんだ接合部品Zは、基板4と、基板4上に配置された銅配線51、52と、はんだ接合部61、62と、チップ抵抗7と、を有している。   As shown in FIG. 6, the solder joint component Z includes a substrate 4, copper wirings 51 and 52 disposed on the substrate 4, solder joint portions 61 and 62, and a chip resistor 7.

はんだ接合部61は、はんだであって、銅配線51とチップ抵抗7とを接合している。はんだ接合部62は、はんだであって、銅配線52とチップ抵抗7とを接合している。つまり、はんだ接合部61、62は、同じ材料からなり、同じ接続状態となっている。具体的に、はんだ接合部61、62は、チップ抵抗7に対してはその端部下面と側面に接触し、銅配線51、52に対してはその上面に接触している。はんだ接合部61、62の他部材への接合面積は、ほぼ同じである。   The solder joint portion 61 is solder, and joins the copper wiring 51 and the chip resistor 7. The solder joint portion 62 is solder, and joins the copper wiring 52 and the chip resistor 7. That is, the solder joint portions 61 and 62 are made of the same material and are in the same connection state. Specifically, the solder joints 61 and 62 are in contact with the lower surface and side surfaces of the end of the chip resistor 7, and are in contact with the upper surface of the copper wirings 51 and 52. The joint areas of the solder joint portions 61 and 62 to the other members are substantially the same.

はんだ接合部61、62は、それぞれ同様に、チップ抵抗7の下にある部分と半山状のフィレット部分を有する形状となっている。また、はんだ接合部品Zにおいて、はんだ接合部61とはんだ接合部62とは電気的に直列接続されている。なお、例として、はんだ接合部61で想定される亀裂経路を破線で示す。   Similarly, each of the solder joint portions 61 and 62 has a shape having a portion under the chip resistor 7 and a half-mountain fillet portion. Further, in the solder joint component Z, the solder joint portion 61 and the solder joint portion 62 are electrically connected in series. As an example, a crack path assumed in the solder joint portion 61 is indicated by a broken line.

第二実施形態において、抵抗は、はんだ接合部61、62を直列接続した回路(はんだ接合部品Z)全体で測定する。はんだ接合部61、62以外には、亀裂が入らないため、配線経路にあるその他の抵抗成分は一定とみなされる。従って、回路全体の抵抗変化を測定することで、はんだ接合部61、62の抵抗変化の和を測定できる。   In the second embodiment, the resistance is measured over the entire circuit (solder joint component Z) in which the solder joint portions 61 and 62 are connected in series. Other than the solder joints 61 and 62, since no crack is generated, other resistance components in the wiring path are considered to be constant. Therefore, by measuring the resistance change of the entire circuit, the sum of the resistance changes of the solder joints 61 and 62 can be measured.

具体的に、銅配線51(52)の抵抗をRa(Rb)、はんだ接合部61(62)の抵抗をR1(R2)、チップ抵抗7の抵抗Rcとすると、はんだ接合部品Zの抵抗は、R=Ra+R1+Rc+R2+Rbとなる。そして、はんだ接合部61、62の抵抗変化ΔR1、ΔR2は、はんだ接合部品Zの抵抗変化ΔRで測定することができる(ΔR=ΔR1+ΔR2)。なお、はんだ接合部61、62以外の部位(例えば、銅配線)に亀裂が発生し、抵抗が変化する虞がある場合、はんだ接合部61、62の各両端で抵抗を測定し(すなわちR1、R2をそれぞれ測定し)、その抵抗変化を合計してもよい。   Specifically, assuming that the resistance of the copper wiring 51 (52) is Ra (Rb), the resistance of the solder joint 61 (62) is R1 (R2), and the resistance Rc of the chip resistor 7, the resistance of the solder joint component Z is R = Ra + R1 + Rc + R2 + Rb. The resistance changes ΔR1 and ΔR2 of the solder joint portions 61 and 62 can be measured by the resistance change ΔR of the solder joint component Z (ΔR = ΔR1 + ΔR2). In addition, when cracks may occur in parts other than the solder joints 61 and 62 (for example, copper wiring) and the resistance may change, the resistance is measured at both ends of the solder joints 61 and 62 (that is, R1, R2 may be measured) and the resistance changes may be summed.

第二実施形態では、冷熱サイクル試験を例に説明する。はんだ接合部品Zに冷熱サイクルを加えると、基板4とチップ抵抗7との熱膨張差によって、はんだ接合部61、62に熱疲労による亀裂が発生しうる。   In the second embodiment, a description will be given of a cooling / heating cycle test as an example. When a cooling cycle is applied to the solder joint component Z, cracks due to thermal fatigue may occur in the solder joint portions 61 and 62 due to the difference in thermal expansion between the substrate 4 and the chip resistor 7.

ここで、図7を参照して、本方法のフローを説明する。はんだ接合部品Zの亀裂面積率を求めるにあたり、まず、予備試験を行い、実効固有抵抗値Roeを以下のように求める。各はんだ接合部61、62の亀裂面積率Fiを破面観察により求める(S701)。   Here, the flow of this method will be described with reference to FIG. In obtaining the crack area ratio of the solder joint component Z, first, a preliminary test is performed, and the effective specific resistance value Roe is obtained as follows. The crack area ratio Fi of each of the solder joints 61 and 62 is obtained by observing the fracture surface (S701).

はんだ接合部61、62は、チップ下部分とフィレット部分からなるため、破面観察も両部位について行う。各はんだ接合部61、62について、当該両部位(チップ下部分とフィレット部分)を合わせたはんだ接合部全体に対する亀裂面積率F1、F2を求める。そして、これら実測値F1、F2を用いて、式(7)に基づき、実効亀裂面積率Feを求める(S702)。このときの式は、2/(1−Fe)=Σ{1/(1−Fi)}、(i=1、2)となる。   Since the solder joints 61 and 62 are composed of the lower part of the chip and the fillet part, the fracture surface is observed at both parts. For each of the solder joint portions 61 and 62, crack area ratios F1 and F2 with respect to the entire solder joint portion including the two portions (chip lower portion and fillet portion) are obtained. Then, using these measured values F1 and F2, an effective crack area ratio Fe is obtained based on Expression (7) (S702). The formula at this time is 2 / (1-Fe) = Σ {1 / (1-Fi)}, (i = 1, 2).

続いて、はんだ接合部品Zの抵抗変化ΔRを交流4端子法により求める(S703)。求められたFeとΔRの実測データから、式(5)に基づき、実効固有抵抗値Roeを算出する(S704)。このように、予備試験から、実効固有抵抗値Roeを求めることができる。図8に示すように、このRoeを用いた式(5)の関係(計算式)と、予備試験において実測されたFeの実測値は、ほぼ一致している。なお、ここでのRoeは0.09mΩである。   Subsequently, the resistance change ΔR of the solder joint component Z is obtained by the AC four-terminal method (S703). From the obtained actual measurement data of Fe and ΔR, an effective specific resistance value Roe is calculated based on the equation (5) (S704). Thus, the effective specific resistance value Roe can be obtained from the preliminary test. As shown in FIG. 8, the relationship (calculation formula) of Formula (5) using this Roe and the actual measurement value of Fe actually measured in the preliminary test are almost the same. Here, Roe is 0.09 mΩ.

以上の予備試験によって、まず、実効固有抵抗値Roeが求められる。そして、冷熱サイクル試験または実際の使用中において、はんだ接合部の実効亀裂面積率を算出する場合、以下のステップが行われる。   By the above preliminary test, first, the effective specific resistance value Roe is obtained. And the following steps are performed when calculating the effective crack area ratio of a solder joint part in a thermal cycle test or actual use.

はじめに、実行固有抵抗値Roeを用いて、抵抗変化ΔRと実効亀裂面積率Feの関係式を設定する(S705)。具体的には、式(5)に基づいて設定する。続いて、はんだ接合部品Zの抵抗変化ΔRを測定する(S706)。続いて、式(5)に基づいて、抵抗変化ΔRから実効亀裂面積率Feを算出する(S707)。これにより、はんだ接合部61、62の実効亀裂面積率Feを連続的且つ定量的に求めることができる。なお、S701〜S704については、1度実効固定抵抗値Roeが求められたものと同じもの(ここでは、はんだ接合部品)に対しては、同じ値Roeを用いることができるため省略できる。   First, a relational expression between the resistance change ΔR and the effective crack area ratio Fe is set using the effective specific resistance value Roe (S705). Specifically, it is set based on the formula (5). Subsequently, the resistance change ΔR of the solder joint component Z is measured (S706). Subsequently, the effective crack area ratio Fe is calculated from the resistance change ΔR based on the formula (5) (S707). Thereby, the effective crack area ratio Fe of the solder joint portions 61 and 62 can be obtained continuously and quantitatively. In addition, about S701-S704, since the same value Roe can be used with respect to the same thing (here soldering component) as what was calculated | required once effective fixed resistance value Roe, it can abbreviate | omit.

ところで、上記方法において、はんだ接合部の亀裂経路に沿った断面積のみが異なる場合、一方のはんだ接合部の固有抵抗値が求まっていれば、他方のはんだ接合部の固有抵抗値は式(8)を用いて計算により求めることができる。このように断面積を補正して換算した固有抵抗値を用いて算出した亀裂面積率と、破面観察により求めた亀裂面積率は、ほぼ一致した。   By the way, in the above method, when only the cross-sectional areas along the crack path of the solder joint portion are different, if the specific resistance value of one solder joint portion is obtained, the specific resistance value of the other solder joint portion is expressed by the equation (8). ) Can be obtained by calculation. Thus, the crack area ratio calculated using the specific resistance value converted by correcting the cross-sectional area and the crack area ratio obtained by the fracture surface observation were almost the same.

以上、第二実施形態によっても、測定対象の亀裂面積率を連続的且つ定量的に算出することができる。なお、回路における測定対象(接合部)は、はんだ接合部に限られず、亀裂が発生する虞がある導電部であればよく、例えば導電性の接着剤や銀ろう等でもよい。また、亀裂には界面剥離(界面亀裂)等も含まれる。また、電気抵抗に代えて熱抵抗を用いることで、電気伝導性がない物に対しても上記方法により亀裂面積率を算出することができる。   As described above, according to the second embodiment, the crack area ratio of the measurement target can be calculated continuously and quantitatively. Note that the measurement target (joint part) in the circuit is not limited to the solder joint part, and may be any conductive part that may cause a crack, such as a conductive adhesive or silver solder. The crack includes interfacial peeling (interface crack) and the like. Further, by using thermal resistance instead of electrical resistance, the crack area ratio can be calculated by the above method even for an object having no electrical conductivity.

1:亀裂面積率算出装置、 2:抵抗変化測定部、 3:亀裂面積率算出部、
4:基板、 51、52:銅配線、 61、62:はんだ接合部、 7:チップ抵抗、
Z:はんだ接合部品
1: crack area ratio calculation device, 2: resistance change measurement section, 3: crack area ratio calculation section,
4: Board, 51, 52: Copper wiring, 61, 62: Solder joint, 7: Chip resistance,
Z: Solder joint parts

Claims (10)

電気伝導性を有する測定対象物の亀裂面積率を算出する亀裂面積率算出方法であって、
前記測定対象物の亀裂進展が予想される部位である亀裂進展部の亀裂がないときの固有抵抗値を求める固有抵抗値算出ステップと、
前記亀裂進展部の亀裂がないときの固有抵抗値に基づいて、抵抗変化と亀裂面積率の関係式を設定する関係式設定ステップと、
前記亀裂進展部の抵抗変化を測定する抵抗変化測定ステップと、
前記関係式設定ステップで設定された前記関係式に基づいて、前記抵抗変化測定ステップで測定された抵抗変化から前記亀裂進展部の亀裂面積率を算出する亀裂面積率算出ステップと、
を含むことを特徴とする亀裂面積率算出方法。
A crack area ratio calculation method for calculating a crack area ratio of a measurement object having electrical conductivity,
A specific resistance value calculating step for obtaining a specific resistance value when there is no crack in a crack progressing portion which is a portion where crack progress of the measurement object is expected;
Based on the specific resistance value when there is no crack in the crack propagation part, a relational expression setting step for setting a relational expression between resistance change and crack area ratio;
A resistance change measuring step for measuring a resistance change of the crack propagation portion ;
Based on the relational expression set in the relational expression setting step, a crack area ratio calculating step for calculating a crack area ratio of the crack propagation portion from the resistance change measured in the resistance change measuring step;
The crack area ratio calculation method characterized by including.
前記亀裂面積率をF、前記抵抗変化をΔR、前記亀裂進展部の亀裂がないときの固有抵抗値をRoとすると、
前記関係式は、F=1/(1+Ro/ΔR)である請求項1に記載の亀裂面積率算出方法。
When the crack area ratio is F, the resistance change is ΔR, and the specific resistance value when there is no crack in the crack propagation portion is Ro,
The crack area ratio calculation method according to claim 1, wherein the relational expression is F = 1 / (1 + Ro / ΔR).
回路中で複数の前記測定対象物が電気的に直列接続されており、前記回路について、すべての前記測定対象物を1つの仮想導電部と仮定して求められる実効亀裂面積率を算出する場合、
前記関係式において、ΔRは前記回路に在る各前記亀裂進展部の抵抗変化の合計であり、Roは前記回路に在る各前記亀裂進展部の亀裂がないときの固有抵抗値の合計である請求項2に記載の亀裂面積率算出方法。
When a plurality of the measurement objects are electrically connected in series in a circuit, and the effective crack area ratio obtained by assuming that all the measurement objects are one virtual conductive part for the circuit,
In the equation, [Delta] R is the sum of the resistance change of each said crack growth portion located in said circuit, Ro is the sum of the specific resistance value when there are no cracks in the said crack growth portion located on the circuit The crack area ratio calculation method according to claim 2.
一の測定対象物の亀裂経路に沿った断面の断面積をA1、前記第一の測定対象物亀裂進展部の亀裂がないときの固有抵抗値をRo1、前記第一の測定対象物と同じ材料からなる第二の測定対象物の亀裂経路に沿った断面の断面積をA2とすると、
前記固有抵抗値算出ステップにおいて、前記第二の測定対象物亀裂進展部の亀裂がないときの固有抵抗値Ro2は、Ro2=Ro1×(A1/A2)で算出される請求項2または3に記載の亀裂面積算出方法。
The cross-sectional area of the cross section along the crack path of the first measurement object A1, the specific resistance value when there are no cracks crack growth portion of the first measurement object Ro1, said first measurement object When the cross-sectional area of the cross section along the crack path of the second measurement object made of the same material is A2,
In the specific resistance value calculating step, the specific resistance value Ro2 when there is no crack in the crack propagation portion of the second object to be measured is calculated by Ro2 = Ro1 × (A1 / A2). The crack area calculation method of description.
料および接続状態が同じn個(nは2以上の自然数)の前記測定対象物が回路中で電気的に直列接続されており、各前記亀裂進展部の亀裂面積率Fi(i=1〜n)が実測により求まっている場合、
前記固有抵抗値算出ステップは、
前記回路のすべての前記測定対象物を1つの仮想導電部と仮定して求められる実効亀裂面積率Feを、n/(1−Fe)=Σ{1/(1−Fi)}、(i=1〜n)により算出する実効亀裂面積率算出ステップと、
前記実効亀裂面積率算出ステップで算出された実効亀裂面積率Feと、前記回路における全前記亀裂進展部の抵抗変化の合計である抵抗変化ΔRから実効固有抵抗値Roeを、Fe=1/(1+Roe/ΔR)を用いて算出する実効固有抵抗値算出ステップと、
を含み、
前記関係式設定ステップは、前記実効固有抵抗値算出ステップで算出された実効固有抵抗値に基づいて、前記抵抗変化ΔRと前記実効亀裂面積率Feの関係式を設定し、
前記亀裂面積率算出ステップは、前記関係式設定ステップで設定された前記関係式に基づいて、前記抵抗変化測定ステップで測定された抵抗変化ΔRから前記実効亀裂面積率Feを算出する請求項2に記載の亀裂面積率算出方法。
The measurement object wood charge and the connection state is the same n (n is a natural number of 2 or more) are electrically connected in series in the circuit, each said crack growth of the crack area ratio Fi (i = 1~ n) is obtained by actual measurement,
The specific resistance value calculating step includes:
The effective crack area ratio Fe obtained on the assumption that all the measurement objects of the circuit are one virtual conductive part is n / (1-Fe) = Σ {1 / (1-Fi)}, (i = 1 to n), the effective crack area ratio calculating step,
From the effective crack area ratio Fe calculated in the effective crack area ratio calculating step and the resistance change ΔR that is the sum of the resistance changes of all the crack progressing portions in the circuit, an effective specific resistance value Roe is calculated as Fe = 1 / (1 + Roe). Effective specific resistance value calculating step using / ΔR),
Including
In the relational expression setting step, a relational expression between the resistance change ΔR and the effective crack area ratio Fe is set based on the effective specific resistance value calculated in the effective specific resistance value calculating step,
The crack area ratio calculation step calculates the effective crack area ratio Fe from the resistance change ΔR measured in the resistance change measurement step based on the relational expression set in the relational expression setting step. The crack area ratio calculation method of description.
前記測定対象物は、回路における接合部である請求項1〜5の何れか一項に記載の亀裂面積率算出方法。 The crack area ratio calculation method according to claim 1, wherein the measurement object is a joint in a circuit. 電気伝導性を有する測定対象物の亀裂面積率を算出する亀裂面積率算出装置であって、
前記測定対象物の亀裂進展が予想される部位である亀裂進展部の抵抗変化を測定する抵抗変化測定部と、
抵抗変化と亀裂面積率の関係式であって予め求めた前記亀裂進展部の亀裂がないときの固有抵抗値を用いて設定される前記関係式に基づいて、前記抵抗変化測定部で測定された抵抗変化から前記亀裂進展部の亀裂面積率を算出する亀裂面積率算出部と、
を備えることを特徴とする亀裂面積率算出装置。
A crack area ratio calculation device for calculating a crack area ratio of a measurement object having electrical conductivity,
A resistance change measuring unit for measuring a resistance change of a crack progressing portion which is a portion where crack progress of the measurement object is expected ;
It is a relational expression between the resistance change and the crack area ratio, and is measured by the resistance change measuring unit based on the relational expression set using a specific resistance value obtained when there is no crack of the crack progressing part obtained in advance. A crack area ratio calculation unit for calculating a crack area ratio of the crack propagation part from a resistance change;
A crack area ratio calculation device comprising:
前記亀裂面積率をF、前記抵抗変化をΔR、前記亀裂進展部の亀裂がないときの固有抵抗値をRとすると、
前記関係式は、F=1/(1+R/ΔR)である請求項7に記載の亀裂面積率算出装置。
When the crack area ratio is F, the resistance change is ΔR, and the specific resistance value when there is no crack in the crack propagation portion is R 0 ,
The crack area ratio calculation apparatus according to claim 7, wherein the relational expression is F = 1 / (1 + R 0 / ΔR).
測定対象物の亀裂面積率を算出する亀裂面積率算出方法であって、
前記測定対象物の亀裂進展が予想される部位である亀裂進展部の亀裂がないときの熱抵抗の固有抵抗値を求める固有抵抗値算出ステップと、
前記亀裂進展部の亀裂がないときの熱抵抗の固有抵抗値に基づいて、熱抵抗変化と亀裂面積率の関係式を設定する関係式設定ステップと、
前記測定対象物の熱抵抗変化を測定する熱抵抗変化測定ステップと、
前記関係式設定ステップで設定された前記関係式に基づいて、前記熱抵抗変化測定ステップで測定された熱抵抗変化から前記亀裂進展部の亀裂面積率を算出する亀裂面積率算出ステップと、
を含むことを特徴とする亀裂面積率算出方法。
A crack area ratio calculation method for calculating a crack area ratio of a measurement object,
A specific resistance value calculating step for obtaining a specific resistance value of a thermal resistance when there is no crack in a crack progressing portion which is a portion where crack progress of the measurement object is expected;
Based on the specific resistance value of the thermal resistance when there is no crack in the crack propagation part, a relational expression setting step for setting a relational expression between the thermal resistance change and the crack area ratio;
A thermal resistance change measuring step for measuring a thermal resistance change of the measurement object;
Based on the relational expression set in the relational expression setting step, a crack area ratio calculation step for calculating a crack area ratio of the crack propagation part from the thermal resistance change measured in the thermal resistance change measurement step;
The crack area ratio calculation method characterized by including.
前記亀裂面積率をF、前記熱抵抗変化をΔR、前記亀裂進展部の亀裂がないときの熱抵抗の固有抵抗値をRoとすると、
前記関係式は、F=1/(1+Ro/ΔR)である請求項9に記載の亀裂面積率算出方法。
When the crack area ratio is F, the thermal resistance change is ΔR, and the specific resistance value of the thermal resistance when there is no crack in the crack propagation portion is Ro,
The crack area ratio calculation method according to claim 9, wherein the relational expression is F = 1 / (1 + Ro / ΔR).
JP2009208854A 2009-09-10 2009-09-10 Crack area ratio calculation method and apparatus Expired - Fee Related JP5354287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009208854A JP5354287B2 (en) 2009-09-10 2009-09-10 Crack area ratio calculation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009208854A JP5354287B2 (en) 2009-09-10 2009-09-10 Crack area ratio calculation method and apparatus

Publications (2)

Publication Number Publication Date
JP2011058952A JP2011058952A (en) 2011-03-24
JP5354287B2 true JP5354287B2 (en) 2013-11-27

Family

ID=43946758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009208854A Expired - Fee Related JP5354287B2 (en) 2009-09-10 2009-09-10 Crack area ratio calculation method and apparatus

Country Status (1)

Country Link
JP (1) JP5354287B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5414070B2 (en) * 2010-11-24 2014-02-12 エスペック株式会社 Reliability test apparatus for solar cell module and reliability test method for solar cell module
KR102632609B1 (en) * 2021-12-09 2024-02-02 한국전력기술 주식회사 Detecting system and detecting method for defect of buried pipe

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850457A (en) * 1981-09-19 1983-03-24 Hitachi Ltd Detection of crack
JPH0610283Y2 (en) * 1986-08-12 1994-03-16 株式会社島津製作所 Crack length measuring device
JP3565970B2 (en) * 1995-02-23 2004-09-15 トヨタ自動車株式会社 Non-destructive inspection method of crack depth and non-destructive inspection method of crack number
JPH09264854A (en) * 1996-03-28 1997-10-07 Sony Corp Detection method for cracking
JP3991255B2 (en) * 1999-04-22 2007-10-17 ソニー株式会社 Drop impact measuring method and drop impact measuring apparatus
JP3553439B2 (en) * 1999-11-16 2004-08-11 三菱重工業株式会社 Crack monitoring method and crack monitoring device
JP2003009541A (en) * 2001-06-22 2003-01-10 Nissan Motor Co Ltd Inverter
JP4876241B2 (en) * 2005-10-31 2012-02-15 国立大学法人 岡山大学 Bonding strength measuring method, bonding strength measuring apparatus using the method, and bonding strength fluctuation detector
JP4831670B2 (en) * 2006-02-24 2011-12-07 富士通株式会社 Sample resistance measuring device
JP2008036691A (en) * 2006-08-09 2008-02-21 Toyota Motor Corp Lead-free solder material, its production method, joined structure and electronic component packaging structure

Also Published As

Publication number Publication date
JP2011058952A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
US8174276B2 (en) Coaxial four-point probe for low resistance measurements
Murakami et al. Recommended design parameters for thermal conductivity probes for nonfrozen food materials
CN108334695A (en) A kind of finite element setting method based on ground wire Yu preformed armor rods contact resistance
JP5354287B2 (en) Crack area ratio calculation method and apparatus
US8078438B2 (en) Method for simulating thermal resistance value of thermal test die
JP5581860B2 (en) Thermal fatigue life diagnosis method for solder joints
JP5328707B2 (en) Quality control method and quality control apparatus for solder joints
CN102082107B (en) Method for measuring temperature of chip
EP2811305A1 (en) Bus-bar electricity measuring arrangement
CN216670129U (en) Electromigration testing device
JP2004045343A (en) Life diagnostic method and device of solder joint part
US20110115508A1 (en) Determining critical current density for interconnect
Zhang et al. Advances in LED Solder Joint Reliability Testing and Prediction
JP2008002869A (en) Method for estimating life of solder
CN102455224B (en) Thermocouples with two tabs spaced apart along a transverse axis and methods
CN109975614B (en) Four-wire current sensing resistor and measuring method thereof
Shtennikov et al. Optimization of the required temperature of contact soldering of electronic devices
CN111722019A (en) Contact resistance testing device and method, electronic equipment and storage medium
JP2009528539A (en) Circuit lid with thermocouple
Kim et al. Numerical approach to joule heating analysis for electrical parts using MSC Marc
JP7411360B2 (en) Resistor thermal analysis device, thermal analysis program, and model generation program
CN113702794B (en) Power semiconductor device health state evaluation method based on thermal impedance characteristic frequency
Ionescu et al. Investigation on thermal properties of substrates for printed electronics
JP2022164071A (en) Junction Evaluation Method, Evaluation Resistor, and Junction Evaluation Device
JP4277451B2 (en) Contact connection life prediction method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130814

R151 Written notification of patent or utility model registration

Ref document number: 5354287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees