JP3990975B2 - Composite structure transmission tower and assembly method by raising method - Google Patents

Composite structure transmission tower and assembly method by raising method Download PDF

Info

Publication number
JP3990975B2
JP3990975B2 JP2002350005A JP2002350005A JP3990975B2 JP 3990975 B2 JP3990975 B2 JP 3990975B2 JP 2002350005 A JP2002350005 A JP 2002350005A JP 2002350005 A JP2002350005 A JP 2002350005A JP 3990975 B2 JP3990975 B2 JP 3990975B2
Authority
JP
Japan
Prior art keywords
tower
steel
power transmission
steel pipe
pillar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002350005A
Other languages
Japanese (ja)
Other versions
JP2003232142A (en
Inventor
栄次郎 本郷
健 飯田
崇 福岡
章夫 河原
晴嗣 戸辺
洋 片岡
淳 青木
仁 白井
泰幸 梶山
宏 伊藤
隆 深沢
広 和泉
一弘 吉田
和義 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Tokyo Electric Power Services Co Ltd
Original Assignee
Tokyo Electric Power Co Inc
Tokyo Electric Power Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Tokyo Electric Power Services Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2002350005A priority Critical patent/JP3990975B2/en
Publication of JP2003232142A publication Critical patent/JP2003232142A/en
Application granted granted Critical
Publication of JP3990975B2 publication Critical patent/JP3990975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、送電用山形鋼鉄塔の上部に送電用鋼管単柱鉄塔を繋ぎあわせた送電用鉄塔及び嵩上げ工法によるその組立て工法に関するものである。
【0002】
【従来の技術】
従来の鉄塔構造は、送電用山形鋼鉄塔、送電用鋼管鉄塔、送電用鋼管単柱鉄塔等、鉄塔上部から地際まで単一の構造形式が採られている。
【0003】
【発明が解決しようとする課題】
上記送電用山形鋼鉄塔は鉄塔製作費が安価であることから、比較的規模の小さい(電圧の低い)鉄塔に用いられるものの、風力係数が比較的大きいため、他の構造形式よりも基礎応力が大きくなる。即ち、鉄塔基礎を大きくしなければならない。送電用鋼管鉄塔は、部材強度が大きく、風圧係数が送電用山形鋼鉄塔よりも小さいため、大型鉄塔に用いられる。送電用鋼管単柱鉄塔は、小規模の鉄塔で景観性が求められる箇所に用いられる。風力係数が他の構成材の中で最も小さいものの、柱が一本であるため、地際部の転倒モーメントが大きくなり、下部の鋼管径が大口径となって鉄塔重量増となる欠点がある。
また、図22及び23に示す従来の嵩上げ工法は、元位置に新規の鉄塔を建て替える必要があり、費用及び工期が多大であった。なお、図22は既設鉄塔の上に新規鉄塔を接続したものであり、図23は既設鉄塔を上方に上げ、その下部に新規鉄塔を接続したものである。また、既設鉄塔の回りを包込んで嵩上げする工法もあるが、鉄塔風圧荷重等の増大により、既設の基礎では強度不足となり、基礎の改良工事に伴う費用増が大きい。
【0004】
この発明は、これらの点に鑑みてなされたものであり、上部に風力係数の小さい送電用鋼管単柱鉄塔部を用い、下部に鉄塔製作費の安価な送電用山形鋼鉄塔部を用いることで、鉄塔の風圧荷重を小さくして基礎応力を低減できる鉄塔を提供するとともに、既設の送電用山形鋼鉄塔の嵩上げ工事に用いる場合は、鉄塔風圧荷重の小さな送電用単柱鉄塔を上部部材に用いることで、既設の送電用山形鋼鉄塔とその基礎の補強量を従来よりも少なくして有効利用を可能にし、費用の低減を図れるとともに工事も容易で工期を短縮できる嵩上げ工法による鉄塔の組立て工法を提供し、上記課題を解決するものである。
【0005】
請求項1の発明は、 基礎を有する送電用山形鋼鉄塔部の上部に、複数段の腕金を有する送電用鋼管単柱鉄塔部を繋ぎあわせ、これらの接続は、送電用山形鋼鉄塔部の上部において上下の間隔を開けた二箇所以上の主柱材間に、水平プレートを夫々わたして設け、最下部以外の上記水平プレートは中央に孔を有し、半分に割れた二つ割り片から成り、当該水平プレートに設けた孔に上記送電用鋼管単柱鉄塔部の下部を通し、予め上記送電用鋼管単柱鉄塔部の外周に設けたリブ付きプレートを上記水平プレートに重ねてボルト止めし、最下部の上記水平プレートに上記送電用鋼管単柱鉄塔部の下端部を載せ、予め上記送電用鋼管単柱鉄塔部の下端外周に設けたリブ付きプレートを上記最下部の水平プレートに重ね合わせてボルト止めして固定した複合構造送電用鉄塔とした。
【0006】
また、請求項2の発明は、基礎を有する送電用山形鋼鉄塔部の上部に、複数段の腕金を有する送電用鋼管単柱鉄塔部を繋ぎあわせ、これらの接続は、送電用山形鋼鉄塔部の上部において上下の間隔を開けた二箇所以上の主柱材間に、最下部以外は複数の形鋼をわたして繋ぎ、これらの形鋼の間に上記鋼管単柱鉄塔部の下部を通して当該箇所を固定し、最下部については形鋼で構成された略網目状枠体をわたして設け、当該略網目状枠体に上記鋼管単柱鉄塔部の下端部を載せ、予め上記送電用鋼管単柱鉄塔部の下端外周に設けたリブ付きプレートを上記略網目状枠体の上に重ねてボルト止めして固定し、さらに、上記送電用山形鋼鉄塔部の複数の主柱材から吊り材を設けて上記送電用鋼管単柱鉄塔下端部を吊り下げ固定した複合構造送電用鉄塔とした。
【0007】
また、請求項3の発明は、既設の送電用山形鋼鉄塔の上端部及び腕金を取外し、この上に複数段の腕金を有する送電用鋼管単柱鉄塔を繋ぎあわせるものであって、これらの接続は、上記送電用鋼管単柱鉄塔を吊り上げて送電用山形鋼鉄塔の上端から当該送電用山形鋼鉄塔内に上記送電用鋼管単柱鉄塔の下部を挿入し、当該送電用山形鋼鉄塔の上部に設けた、最下部の水平プレートにその下端部を載せ、予め上記送電用鋼管単柱鉄塔の下端外周に設けたリブ付きプレートを上記最下部の水平プレートに重ね合わせてボルト止めし、その後、上記最下部の水平プレートより上方に間隔を開けた主柱材間に、上記送電用鋼管単柱鉄塔を自体の孔内に入れて二つ割りの水平プレートを取り付け、予め上記送電用鋼管単柱鉄塔の外周に設けたリブ付きプレートを上記二つ割りの水平プレートに重ねてボルト止めする複合構造送電用鉄塔の嵩上げ工法による組立て工法とした。
【0008】
請求項4の発明は、既設の送電用山形鋼鉄塔の上端部及び腕金を取外し、この上に複数段の腕金を有する送電用鋼管単柱鉄塔を繋ぎあわせるものであって、これらの接続は、送電用山形鋼鉄塔の上部において上下の間隔を開けた二箇所以上の主柱材間に、最下部以外は複数の形鋼をわたして繋ぎ、最下部については形鋼で構成された略網目状枠体を設け、上記送電用鋼管単柱鉄塔を吊り上げて送電用山形鋼鉄塔の上端から当該送電用山形鋼鉄塔内に上記送電用鋼管単柱鉄塔の下部を挿入し、最下部以外の上記形鋼間に上記送電用鋼管単柱鉄塔の下部を通して固定し、最下部の上記略網目状枠体にその下端部を載せ、予め上記送電用鋼管単柱鉄塔の下端外周に設けたリブ付きプレートを上記略網目状枠体の上に重ねてボルト止めし、さらに、送電用山形鋼鉄塔の複数の主柱材から吊り材を設けて上記送電用鋼管単柱鉄塔下端部を吊り下げ固定する複合構造送電用鉄塔の嵩上げ工法による組立て工法とした。
【0010】
【発明の実施の形態】
以下この発明の実施の形態例を図に基づいて説明する。
まず、この発明の第1の実施の形態例の鉄塔構造について説明すると、図1に示すように、送電用山形鋼鉄塔部1の上部に送電用鋼管単柱鉄塔部2を繋ぎあわせたものである。この送電用鋼管単柱鉄塔部2は、鋼管をフランジ継手、或いは現場溶接継手によって接続した1本の柱構造であり、これに、電線を架線する腕金3が複数段取り付けられている。また下部の送電用山形鋼鉄塔部1は通常の送電用鉄塔(図12参照)と同様の構造である。
【0011】
上記送電用鋼管単柱鉄塔部2は、張出梁として設計され、送電用山形鋼鉄塔部1と二箇所で接続、固定されている。この接続は、送電用山形鋼鉄塔部1の上部において、4本の主柱材1a間に下部の水平プレート4及びこの水平プレート4の上方の4本の主柱材1a間に上部の水平プレート5を夫れ夫れ設け、上部の水平プレート5に設けた孔に上記鋼管単柱鉄塔部2の下部を通して、下部の水平プレート4にその下端部を載せて固定している。そして上記送電用山形鋼鉄塔部1は送電用鋼管単柱鉄塔部2からの水平反力と重量、及び送電用山形鋼鉄塔部1自身の鉄塔風圧と自重を外力とし、トラス構造として設計されている。
【0012】
図2乃至図5は上記下部の水平プレート4の接続箇所を示すもので、4本の主材1aに水平材6をわたし、この四本の水平材6に囲まれる様にその外周を嵌めて上記水平プレート4を各水平材6にボルトによって取り付けたものである。そして上記鋼管単柱鉄塔部2の下端部をこの水平プレート4の上面に載せ、鋼管単柱鉄塔部2の下端部に、外周に多数のリブを設けたリブ付きプレート7を溶接し、このプレート7を水平プレート4に重ねて、ボルト止めされている。
【0013】
図6乃至図11は上記上部の水平プレート5の接続箇所を示すもので、4本の主材1aに水平材8をわたし、この四本の水平材8に囲まれる様にその外周を嵌めて上記水平プレート5を各水平材8にボルトによって取り付けたものである。この水平プレート5は、中央に上記鋼管単柱鉄塔部2が挿入される孔(図示省略)を有し、半分に割れた二つ割り片から成っており、上記鋼管単柱鉄塔部2を送電用山形鋼鉄塔部1上部内に挿入後に、孔に鋼管単柱鉄塔部2を通して設置する構成と成っている。またこの水平プレート5に当接する箇所の鋼管単柱鉄塔部2の外周にリブ付きプレート9が溶接されており、このプレート9を水平プレート5に重ね合わせてボルト止めされている。
【0014】
次に、既設の送電用山形鋼鉄塔の嵩上げ工法によるこの発明の鉄塔について説明する。図13の(A)に示すように、既設の送電用山形鋼鉄塔1´の地線を塔体に移線し、図12における既設の送電用山形鋼鉄塔1´の上端部の地線腕金1bを撤去する。また、図13の(B)に示すように、鉄塔内の対角材(図示省略)を撤去する。そして上から三段目の腕金3の主柱材位置に下部の水平プレート4を上述のように取り付ける。また、既設補強、取替え部材(図示省略)を取り付ける。次に図13の(C)に示すように、片回線停止の状態で、新規な鋼管単柱鉄塔部2をクレーンで吊り上げて、送電用山形鋼鉄塔1´の上端から塔内に挿入し、上記下部の水平プレート4にその下端部を取り付け、またこの水平プレート4の上方の主柱材1a間に、鋼管単柱鉄塔部2を自体の孔内に入れて二つ割の上部の水平プレート5を取り付ける。そして図13(D)に示すように、腕金3を取り付ける等して鋼管単柱鉄塔部2の組立てを完了し、電線、地線を片回線づつ移線する。そして最後に既設の送電用山形鋼鉄塔1´の腕金3´を取外す。
【0015】
次に、この発明の嵩上げ工法と比較するため、既設の送電用山形鋼鉄塔の上部に新規な山形鋼鉄塔を取り付ける従来型の嵩上げ工法について、図14を基にして説明する。図14の(A)に示すように、既設の送電用山形鋼鉄塔1´に既設補強を施し、取替部材を設置する。この既設部材の補強は、腹材は取替え、主柱材は組立て十字断面補強とした。次に図14の(B)に示すように、片回線を停止し、停止側の新規主柱材及び腹材を取り付ける。そのとき正面、背面腹材は交点でプレート付きとし、停止側のみ組み立てる。また、補強のため、腹材交点同士を垂直材でつなげる。そして図14の(C)に示すように、もう一方の回線を停止し、新規鉄塔10の組立てを完了する。そして図14の(D)に示すように、電線、地線を片回線づつ移線し、既設の送電用山形鋼鉄塔1´を撤去する。この工法においては、新規な山形鉄塔を既設の山形鉄塔のどの位置で接続するかは、コストに大きく影響するが、ここでは、新規鉄塔10の塔体幅と電線クリアランスを考慮して、上から第3段目の腕金の下4パネル目のブライヒ交点水平位置とした。また、新規山形鉄塔のパネル割は、既設鉄塔の腕金がその間から通るようにした。
【0016】
上記図13のこの発明の鉄塔と、図14の鉄塔について、概略設計を平面解析によって行った。鉄塔の概算重量及び概算基礎反力(C,T)を表1に示す。
【0017】
【表1】

Figure 0003990975
【0018】
以上のように、この発明の鉄塔と、従来の嵩上げ工法を比べると、概算重量においてはこの発明の鉄塔の値がやや高いが、基礎反力においては、明確に値が低く、この発明では、基礎の補強がほとんど不要であるのに対し、従来の嵩上げ工法では、基礎の補強が必要である。
なお、上記実施の形態例では、水平プレートを送電用山形鋼鉄塔部の上部の、上下の間隔を開けた二箇所の主柱材間に設けたが、この水平プレートは、二箇所以上に多段に設ける場合もある。
【0019】
次に、この発明の第2の実施の形態例を図15乃至図20に基づいて説明する。
この第2の実施の形態例では、上記第1の実施の形態例の下部の水平プレート4及び上部の水平プレート5のみが異なり、他の構成は略同一である。従って、相違する箇所のみ説明する。
送電用山形鋼鉄塔部1の上部において、4本の主柱材1a間に下部の水平井桁状枠体20を設け、またこの水平井桁状枠体20の上方の4本の主柱材1a間に上部の水平支持材21を設け、この上部の水平支持材21で囲まれた内側に、送電用鋼管単柱鉄塔部2の下部を通して、下部の水平井桁状枠体20にその下端を載せて固定している。
【0020】
上記下部の水平井桁状枠体20は、図16及び17に示すように、溝形鋼などの形鋼から成る四本の水平材22に、溝形鋼などの形鋼から成る井桁23を組んで形成され、その中央の四辺の枠23aの内周角部に設けた角部プレート23bに、上記鋼管単柱鉄塔部2の下端外周に設けたリブ付きプレート24を重ね、これらのプレートはボルト止めされている。更に図18に示すように、送電用山形鋼鉄塔部1の主柱材1aから上記鋼管単柱鉄塔部2の下端部に吊り材25を設けて吊っている。
また、上部の水平支持材21は、図19及び図20に示すように、主柱材1a間にわたした、山形鋼から成る四本の水平材26の内周角部から、中心に向けて四本の山形鋼から成る連結材27を設け、これらの各連結材27の内端に支持されたリングプレート28を設けている。上記4本の主柱材1aの中央に位置するこのリングプレート28の孔に、上記鋼管単柱鉄塔部2の下部を挿通しているものである。
【0021】
このようにして、第2の実施の形態例においても、送電用山形鋼鉄塔部1と送電用鋼管単柱鉄塔部2とは接続されている。
なお、上記下部の水平井桁状枠体20及び上部の水平支持材21は、これらの構成に限るものではなく、略網目状枠体でよく、上部の略網目状枠体の網目の一つの孔に送電用鋼管単柱鉄塔部2を挿通し、下部の略網目状枠体で、上記鋼管単柱鉄塔部2の下端部を固定しても良い。また、上記実施の形態例では、水平井桁状枠体20を送電用山形鋼鉄塔部の下部に、水平支持材21を上部に、上下の間隔を開けて、二箇所の主柱材間に設けたが、これらは、二箇所以上に多段に設ける場合もある。
【0022】
また、上記実施の形態例の複合構造送電用鉄塔では、既設基礎の補強を必要とする場合、及び、既設鉄塔の補強が大規模となり、現実的でなくなる場合がある。そのような場合は、図21に示すような構造の複合鉄塔とする。この図21に示す複合鉄塔はこの発明の第3の実施の形態例である。即ち、基礎を有する送電用山形鋼鉄塔部1の上部に、複数段の腕金3を有する送電用鋼管単柱鉄塔部2を繋ぎあわせ、これらの接続は、送電用山形鋼鉄塔部1の上部において上下の間隔を開けた二箇所以上の主柱材間に、水平プレート5を夫々わたして設け、これらの水平プレート5に設けた孔(図示省略)に上記鋼管単柱鉄塔部2を通して固定し、この鋼管単柱鉄塔部2の下端部2aを地表面まで伸ばし、その下端部2aを新たに地表面に設けた基礎11´に埋設、固定したものである。なお、この構造のものは、既設の鉄塔を嵩上げする場合は勿論のこと、新設の場合も適用できる。さらに、上記水平プレート5に替えて、山形鋼を主柱材間にわたして設け、これらの山形鋼に上記鋼管単柱鉄塔部2を固定する場合もある。
【0023】
なお、上記実施の形態例では、いずれも基礎を有する送電用山形鋼鉄塔部1の上部に、複数段の腕金3を有する送電用鋼管単柱鉄塔部2を繋ぎあわせているが、この送電用単柱鉄塔部又は送電用単柱鉄塔の単柱は、鋼管に限らず、コンクリート充填鋼管、H形鋼等、適宜の単柱であれば同様の効果を有する。
【0024】
【発明の効果】
請求項1及び2の発明の鉄塔は、上部に風力係数の小さい送電用鋼管単柱鉄塔部を設け、下部に鉄塔製作費が安価な送電用山形鋼鉄塔構造を用いることで、鉄塔風圧荷重を小さくして、基礎応力を低減できる。
【0025】
また、請求項3及び4の発明は、鉄塔風圧荷重の小さい送電用鋼管単柱鉄塔を上部部材に用いることで、既設の送電用山形鋼鉄塔とその基礎の補強量を従来よりも少なくして有効利用を可能とし、費用の削減が図れるとともに、既設鉄塔の上から送電用鋼管単柱鉄塔をクレーンを用いて挿入することにより、従来の工法に比べて工期の短縮が可能である。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態例の鉄塔の概略構成正面図である。
【図2】この発明の第1の実施の形態例の鉄塔接続の下部プレート箇所の正面図である。
【図3】この発明の第1の実施の形態例の鉄塔接続の下部プレート箇所の、鋼管単柱を除いた状態における側面図である。
【図4】この発明の第1の実施の形態例の鉄塔接続の下部プレート箇所の平面であって、図2のA−A線断面図である。
【図5】この発明の第1の実施の形態例の鉄塔接続の下部プレート箇所の縦断面であって、図4のB−B線断面図である。
【図6】この発明の第1の実施の形態例の鉄塔接続の上部プレート箇所の正面図である。
【図7】この発明の第1の実施の形態例の鉄塔接続の上部プレート箇所の、鋼管単柱を除いた状態における正面図である。
【図8】この発明の第1の実施の形態例の鉄塔接続の上部プレート箇所の、鋼管単柱を除いた状態における側面図である。
【図9】この発明の第1の実施の形態例の鉄塔接続の上部プレート箇所の平面であって、図6のD−D線断面図である。
【図10】この発明の第1の実施の形態例の鉄塔接続の上部プレート箇所の縦断面であって、図9のE−E線断面図である。
【図11】この発明の第1の実施の形態例の鉄塔接続の上部プレート箇所の縦断面であって、図9のF−F線断面図である。
【図12】従来の送電用山形鋼鉄塔の正面図である。
【図13】この発明の第1の実施の形態例の鉄塔の嵩上げ工法の工程(A)乃至(D)を示す概略説明図である。
【図14】従来の鉄塔の嵩上げ工法の工程(A)乃至(D)を示す概略説明図である。
【図15】この発明の第2の実施に形態例の鉄塔の接続箇所の概略構成正面図である。
【図16】この発明の第2の実施に形態例の鉄塔の接続箇所の下部の水平井桁状枠体箇所の、鋼管単柱を除いた状態における平面であって、図15のJ−J線断面図である。
【図17】 この発明の第2の実施に形態例の鉄塔の接続箇所の下部の水平井桁状枠体箇所の、鋼管単柱を除いた状態における側面図である。
【図18】この発明の第2の実施に形態例の鉄塔の接続箇所の、鋼管単柱鉄塔部の下部の吊り下げ常態を示す側面図である。
【図19】この発明の第2の実施に形態例の鉄塔の接続箇所の上部の水平支持材箇所の、鋼管単柱を除いた状態における平面であって、図15のK−K線断面図ある。
【図20】この発明の第2の実施に形態例の鉄塔の接続箇所の上部の水平支持材箇所の側面図である。
【図21】この発明の第3の実施に形態例の鉄塔の概略構成正面図である。
【図22】従来の嵩上げ工法による鉄塔の概略正面図である。
【図23】従来の嵩上げ工法による鉄塔の概略正面図である。
【符号の説明】
1 送電用山形鋼鉄塔部 2 送電用鋼管単柱鉄塔部
3 腕金 4 下部の水平プレート
5 上部の水平プレート 6 水平材
7 リブ付きプレート 8 水平材
9 リブ付きプレート 10 新規鉄塔
11 基礎 11´ 基礎
20 水平井桁状枠体 21 水平支持材
22 水平材 23 井桁
24 リブ付きプレート 25 吊り材
26 水平材 27 連結材
28 リングプレート[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power transmission steel tower in which a power transmission steel pipe single pillar steel tower is connected to an upper part of a power transmission angle steel tower, and an assembling method thereof by a raising method.
[0002]
[Prior art]
The conventional steel tower structure has a single structural form from the top of the steel tower to the ground, such as a mountain steel tower for power transmission, a steel tower for power transmission, and a single pillar steel tower for power transmission.
[0003]
[Problems to be solved by the invention]
Although the above steel tower for power transmission is cheap to manufacture steel towers, it is used for steel towers with relatively small scale (low voltage), but because of its relatively large wind coefficient, it has a higher basic stress than other structural types. growing. That is, the steel tower foundation must be enlarged. The steel pipe tower for power transmission has a large member strength and a wind pressure coefficient smaller than that of the mountain steel tower for power transmission, so that it is used for a large steel tower. Steel pipe single-column towers for power transmission are used in places where small-scale towers are required for landscape. Although the wind power coefficient is the smallest among the other components, there is a drawback that the tipping moment at the ground becomes large due to the single pillar, and the steel pipe diameter at the bottom becomes large and the steel tower weight increases. .
In addition, the conventional raising method shown in FIGS. 22 and 23 requires rebuilding a new steel tower at the original position, and the cost and construction period are great. FIG. 22 shows a new steel tower connected to an existing steel tower, and FIG. 23 shows a new steel tower connected to the lower part of the existing steel tower raised upward. In addition, there is a construction method that encloses the surrounding steel tower and raises it, but due to an increase in the tower wind pressure load, etc., the existing foundation becomes insufficient in strength, and the cost associated with the foundation improvement work is large.
[0004]
The present invention has been made in view of these points. By using a steel pipe single-column tower with a small wind power coefficient at the upper part and using an angled steel tower for transmission with low steel tower production costs at the lower part. In addition to providing a steel tower that can reduce the foundation stress by reducing the wind pressure load of the tower, use a single tower for power transmission with a small tower wind pressure load as the upper member when used for raising the existing steel tower for power transmission As a result, the existing steel tower for power transmission and its foundation can be used less effectively than before, enabling effective use, reducing costs, making construction easier, and shortening the construction period. To solve the above-mentioned problems.
[0005]
The invention of claim 1 connects a steel pipe single column tower having a plurality of armatures to an upper part of a mountain tower for power transmission having a foundation, and these connections are connected to the steel tower for transmission. A horizontal plate is provided between each of two or more main pillars spaced at the top and bottom in the upper part, the horizontal plate other than the lowermost part has a hole in the center, and consists of a split piece that is split in half. Pass the lower part of the steel pipe single column tower for power transmission through the hole provided in the horizontal plate, pile the ribbed plate provided in advance on the outer periphery of the steel pipe single column tower for power transmission with bolts, Mount the bottom end of the steel pipe single column tower for power transmission on the lower horizontal plate, and overlay the ribbed plate provided on the outer periphery of the bottom end of the steel pipe single column tower for power transmission with the bottom horizontal plate. Stopped and fixed It was a steel tower for composite structure transmission.
[0006]
Moreover, the invention of claim 2 connects the steel pipe single pillar tower part having a plurality of stages to the upper part of the mountain part steel tower for power transmission having the foundation, and these connections are connected to the angle steel tower for power transmission. At the top of the section, two or more main pillars spaced apart from each other are connected to each other, and a plurality of sections other than the bottom are connected to each other through the bottom of the steel pipe single column tower section. The lower part of the steel pipe single-column tower is placed on the substantially mesh-shaped frame body, and the steel pipe unit for power transmission is previously installed. A plate with ribs provided on the outer periphery of the lower end of the pillar tower is overlaid on the substantially mesh frame and fixed with bolts, and a suspension material is attached from a plurality of main pillar members of the mountain tower for power transmission. A steel tower for composite power transmission in which the lower end of the steel pipe single pillar tower for power transmission is suspended and fixed It was.
[0007]
Further, the invention of claim 3 is to remove the upper end of the existing steel tower for power transmission and the arm bracket, and connect the steel pipe single-column steel tower for transmission having a plurality of arm brackets on the steel tower. For the connection, the above-mentioned single steel tower for power transmission is lifted, the lower part of the single pillar steel tower for power transmission is inserted into the steel tower for power transmission from the upper end of the steel tower for power transmission, Place the lower end on the lowermost horizontal plate provided at the top, superimpose the ribbed plate provided on the outer periphery of the lower end of the steel pipe single column tower in advance on the lowermost horizontal plate and bolt it, then The steel pipe single column tower for power transmission is placed in its own hole between the main pillar members spaced above the lowermost horizontal plate, and the horizontal plate is divided in two, and the steel pipe single column tower for power transmission is attached in advance. Ribbed plug provided on the outer periphery of the The chromatography bets was assembled method according raising method of a composite structure Transmission Tower bolting superimposed on the horizontal plate of the split.
[0008]
The invention of claim 4 is to remove an upper end portion of an existing steel tower for power transmission and a metal arm and connect a single steel tower for power transmission pipe having a plurality of metal arms on the steel metal tower. This is an abbreviation consisting of two or more main pillars that are spaced apart at the top and bottom of the steel tower for power transmission, and a plurality of sections are connected to each other except for the bottom. Provide a mesh frame, lift the steel pipe single pillar tower for power transmission and insert the lower part of the steel pillar single pillar tower for power transmission into the mountain tower for power transmission from the upper end of the steel tower for power transmission. The steel pipe single column tower is fixed through the lower part of the steel pipe, and the lower end is placed on the lower part of the substantially mesh-like frame, and the rib is provided on the outer periphery of the lower end of the steel pipe single column tower in advance. The plate is piled on the substantially mesh-shaped frame and bolted, and further fed. Use chevron plurality of steel tower hanging member provided from the main column member was assembled method according raising method of a composite structure Transmission Tower for fixing hanging the power transmission steel single pole tower lower portion.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
First, the steel tower structure according to the first embodiment of the present invention will be described. As shown in FIG. 1, a power transmission steel pipe single-column steel tower section 2 is connected to an upper part of a power transmission mountain steel tower section 1. is there. The steel pipe single column tower 2 for power transmission has a single pillar structure in which steel pipes are connected by flange joints or field weld joints, and a plurality of arm brackets 3 for attaching electric wires are attached thereto. The lower steel mountain tower 1 for power transmission has the same structure as a normal power transmission tower (see FIG. 12).
[0011]
The steel pipe single pillar tower 2 for power transmission is designed as an overhanging beam and is connected and fixed to the mountain steel tower 1 for power transmission at two locations. In this connection, in the upper part of the power transmission angle steel tower 1, the lower horizontal plate 4 between the four main pillars 1 a and the upper horizontal plate between the four main pillars 1 a above the horizontal plate 4. The lower end of the steel pipe single column tower 2 is passed through the hole provided in the upper horizontal plate 5 and the lower end thereof is placed on the lower horizontal plate 4 and fixed. The power transmission angle steel tower 1 is designed as a truss structure with the horizontal reaction force and weight from the power transmission steel pipe single pillar tower 2 and the steel tower wind pressure and weight of the power transmission steel tower 1 itself as external forces. Yes.
[0012]
FIGS. 2 to 5 show the connection positions of the lower horizontal plate 4. The horizontal member 6 is attached to the four main members 1a, and the outer periphery is fitted so as to be surrounded by the four horizontal members 6. FIG. The horizontal plate 4 is attached to each horizontal member 6 with bolts. And the lower end part of the said steel pipe single pillar tower part 2 is mounted on the upper surface of this horizontal plate 4, and the plate 7 with a rib which provided many ribs on the outer periphery is welded to the lower end part of the steel pipe single pillar tower part 2, and this plate 7 is placed on the horizontal plate 4 and bolted.
[0013]
FIGS. 6 to 11 show the connection points of the upper horizontal plate 5. The horizontal member 8 is attached to the four main members 1a, and the outer periphery is fitted so as to be surrounded by the four horizontal members 8. FIG. The horizontal plate 5 is attached to each horizontal member 8 with bolts. The horizontal plate 5 has a hole (not shown) into which the steel pipe single column tower 2 is inserted in the center, and is composed of a half piece that is split in half. After insertion into the upper part of the steel tower 1, the steel pipe single pillar tower 2 is installed in the hole. Further, a ribbed plate 9 is welded to the outer periphery of the steel pipe single-column tower portion 2 in contact with the horizontal plate 5, and the plate 9 is overlapped with the horizontal plate 5 and bolted.
[0014]
Next, the steel tower of this invention by the raising method of the existing steel tower for power transmission will be described. As shown in FIG. 13 (A), the ground wire of the existing steel tower 1 ′ for power transmission is transferred to the tower body, and the ground arm at the upper end of the steel tower 1 ′ for power transmission in FIG. Remove gold 1b. Moreover, as shown to (B) of FIG. 13, the diagonal material (illustration omitted) in a steel tower is removed. Then, the lower horizontal plate 4 is attached to the position of the main pillar material of the third-stage armrest 3 from above as described above. Also, existing reinforcement and replacement members (not shown) are attached. Next, as shown in FIG. 13C, in a state where one line is stopped, the new steel pipe single column tower 2 is lifted with a crane and inserted into the tower from the upper end of the power transmission angle steel tower 1 ′. A lower end is attached to the lower horizontal plate 4, and the steel pipe single column tower 2 is placed in its own hole between the main pillars 1 a above the horizontal plate 4 to divide the upper horizontal plate into two parts. 5 is attached. And as shown in FIG.13 (D), the assembly of the steel pipe single-column tower part 2 is completed by attaching the arm bracket 3, etc., and an electric wire and a ground wire are transferred for each one line. Finally, the brace 3 'of the existing steel tower 1' for power transmission is removed.
[0015]
Next, for comparison with the raising method of the present invention, a conventional raising method in which a new angle steel tower is attached to the upper part of an existing power transmission angle steel tower will be described with reference to FIG. As shown to (A) of FIG. 14, the existing reinforcement is given to the existing steel mountain tower 1 'for power transmission, and a replacement member is installed. As for the reinforcement of the existing members, the abdominal material was replaced, and the main pillar material was assembled to reinforce the cross section. Next, as shown in FIG. 14B, the single line is stopped, and the new main pillar material and the abdomen on the stop side are attached. At that time, the front and rear abdominal materials are fitted with plates at the intersections, and only the stop side is assembled. In addition, the abdomen intersections are connected with vertical members for reinforcement. Then, as shown in FIG. 14C, the other line is stopped and the assembly of the new tower 10 is completed. And as shown to (D) of FIG. 14, an electric wire and a ground wire are moved for every one line, and the existing Yamagata steel tower 1 'for electric power transmission is removed. In this construction method, the position at which the new Yamagata tower is connected to the existing Yamagata tower greatly affects the cost, but here, considering the tower width of the new tower 10 and the wire clearance, The horizontal position of the Breich intersection of the fourth panel below the third-stage brace was used. In addition, the panel division of the new Yamagata steel tower allows the arm of the existing steel tower to pass between them.
[0016]
About the steel tower of this invention of the said FIG. 13 and the steel tower of FIG. 14, schematic design was performed by plane analysis. Table 1 shows the approximate weight of the steel tower and the approximate basic reaction force (C, T).
[0017]
[Table 1]
Figure 0003990975
[0018]
As described above, when the steel tower of the present invention is compared with the conventional raising method, the value of the steel tower of the present invention is slightly high in the approximate weight, but in the basic reaction force, the value is clearly low. While the foundation reinforcement is almost unnecessary, the conventional raising method requires reinforcement of the foundation.
In the above embodiment, the horizontal plate is provided between the two main pillars at the top and bottom of the power transmission angle steel tower, but the horizontal plate is multi-staged at two or more locations. In some cases, it is provided.
[0019]
Next, a second embodiment of the present invention will be described with reference to FIGS.
In the second embodiment, only the lower horizontal plate 4 and the upper horizontal plate 5 of the first embodiment are different, and the other configurations are substantially the same. Therefore, only different parts will be described.
A lower horizontal girder frame 20 is provided between the four main pillars 1a in the upper part of the power transmission angle steel tower 1 and between the four main pillars 1a above the horizontal girder frame 20 is provided. An upper horizontal support member 21 is provided on the inner side of the upper horizontal support member 21, and the lower end is placed on the lower horizontal girder-like frame body 20 through the lower part of the steel pipe single column tower 2 for power transmission. It is fixed.
[0020]
As shown in FIGS. 16 and 17, the lower horizontal girder-shaped frame body 20 includes four horizontal members 22 made of a shape steel such as a grooved steel and a cross girder 23 made of a shape steel such as a grooved steel. The ribbed plate 24 provided on the outer periphery of the lower end of the steel pipe single-column tower portion 2 is overlapped with the corner plate 23b provided at the inner peripheral corner of the central four-side frame 23a. It has been stopped. Further, as shown in FIG. 18, a suspension member 25 is provided and suspended from the main pillar 1 a of the power transmission mountain steel tower 1 to the lower end of the steel pipe single pillar tower 2.
Further, as shown in FIGS. 19 and 20, the upper horizontal support member 21 is directed from the inner peripheral corners of the four horizontal members 26 made of angle steel between the main column members 1a toward the center. A connecting member 27 made of four angle steels is provided, and a ring plate 28 supported at the inner end of each connecting member 27 is provided. The lower part of the steel pipe single column tower 2 is inserted into the hole of the ring plate 28 located at the center of the four main column members 1a.
[0021]
Thus, also in the second embodiment, the power transmission mountain-shaped steel tower 1 and the power transmission steel pipe single-column steel tower 2 are connected.
The lower horizontal girder-shaped frame body 20 and the upper horizontal support member 21 are not limited to these configurations, and may be a substantially mesh-like frame body, and one hole of the mesh of the upper substantially mesh-like frame body. The steel pipe single column tower 2 for power transmission may be inserted through the lower end of the steel pipe single column tower 2 with a substantially net-like frame at the bottom. Further, in the above embodiment, the horizontal girder-shaped frame body 20 is provided at the lower part of the power transmission mountain steel tower part, the horizontal support member 21 is provided at the upper part, and the upper and lower intervals are provided between the two main pillar members. However, these may be provided in multiple stages at two or more locations.
[0022]
Moreover, in the composite structure transmission tower according to the above-described embodiment, the reinforcement of the existing foundation may be required, and the reinforcement of the existing tower may be large and may not be realistic. In such a case, a composite steel tower having a structure as shown in FIG. The composite steel tower shown in FIG. 21 is a third embodiment of the present invention. In other words, a steel pipe single-column tower 2 having a plurality of armrests 3 is connected to an upper part of a mountain tower 1 for power transmission having a foundation, and these connections are connected to the upper part of the steel tower 1 for power transmission. In FIG. 2, horizontal plates 5 are provided between two or more main pillars spaced apart vertically, and are fixed through holes (not shown) provided in these horizontal plates 5 through the steel pipe single column tower 2. The lower end 2a of the steel pipe single column tower 2 is extended to the ground surface, and the lower end 2a is newly embedded and fixed in a foundation 11 'newly provided on the ground surface. In addition, the thing of this structure is applicable not only when raising the existing steel tower but also when newly installing. Furthermore, instead of the horizontal plate 5, angle steel may be provided between the main column members, and the steel pipe single column tower 2 may be fixed to these angle steels.
[0023]
In each of the above embodiments, the power transmission steel pipe single-pillar tower portion 2 having a plurality of armrests 3 is connected to the upper portion of the power-transmitting mountain steel tower portion 1 having the foundation. The single column of the single column tower for power transmission or the single column tower for power transmission is not limited to a steel pipe, but has the same effect as long as it is an appropriate single column such as a concrete-filled steel pipe or H-shaped steel.
[0024]
【The invention's effect】
The steel towers of the inventions of claims 1 and 2 are provided with a steel pipe single-column steel tower part with a small wind coefficient at the upper part and a steel tower structure for power transmission with a low steel tower production cost at the lower part, so that the tower wind pressure load is reduced. The basic stress can be reduced by reducing the size.
[0025]
Further, the inventions of claims 3 and 4 use a power transmission steel pipe single column steel tower with a small tower wind pressure load as an upper member, thereby reducing the amount of reinforcement of the existing power transmission angle steel tower and its foundation compared to the conventional one. Effective use is possible, and the cost can be reduced, and the construction period can be shortened compared with the conventional method by inserting the steel pipe single pillar tower for power transmission from above the existing tower using a crane.
[Brief description of the drawings]
FIG. 1 is a schematic front view of a steel tower according to a first embodiment of the present invention.
FIG. 2 is a front view of the lower plate portion of the tower connection according to the first embodiment of the present invention.
FIG. 3 is a side view of the lower plate portion of the steel tower connection according to the first embodiment of the present invention in a state where a single steel pipe column is removed.
4 is a plan view of the lower plate portion of the steel tower connection according to the first embodiment of the present invention, and is a cross-sectional view taken along the line AA in FIG. 2. FIG.
5 is a longitudinal cross-sectional view of the lower plate portion of the steel tower connection according to the first embodiment of the present invention, and is a cross-sectional view taken along the line BB of FIG.
FIG. 6 is a front view of the upper plate portion of the steel tower connection according to the first embodiment of the present invention.
FIG. 7 is a front view of a steel plate connection upper plate portion according to the first embodiment of the present invention in a state where a steel pipe single column is removed.
FIG. 8 is a side view of the steel plate connection upper plate portion of the first embodiment of the present invention, excluding a single steel pipe column.
9 is a plan view of the upper plate portion of the steel tower connection according to the first embodiment of the present invention, and is a cross-sectional view taken along the line DD of FIG. 6. FIG.
10 is a longitudinal cross-sectional view of the upper plate portion of the tower connection according to the first embodiment of the present invention, and is a cross-sectional view taken along the line EE of FIG. 9. FIG.
11 is a vertical cross-sectional view of the upper plate portion of the steel tower connection according to the first embodiment of the present invention, and is a cross-sectional view taken along the line FF of FIG. 9. FIG.
FIG. 12 is a front view of a conventional angle steel tower for power transmission.
FIG. 13 is a schematic explanatory view showing steps (A) to (D) of the steel tower raising method according to the first embodiment of the present invention.
FIG. 14 is a schematic explanatory view showing steps (A) to (D) of a conventional steel tower raising method.
FIG. 15 is a schematic front view of a connection location of a steel tower according to a second embodiment of the present invention.
FIG. 16 is a plan view of a horizontal well girder-like frame portion at the lower part of the connecting portion of the tower according to the second embodiment of the present invention in a state excluding a single steel pipe, and is a line JJ in FIG. 15; It is sectional drawing.
FIG. 17 is a side view of a horizontal well girder frame portion at a lower part of a connecting portion of a steel tower according to a second embodiment of the present invention in a state where a steel pipe single column is removed.
FIG. 18 is a side view showing a normal suspended state of a lower part of a steel pipe single-column tower section at a connecting portion of a tower according to a second embodiment of the present invention.
FIG. 19 is a plan view of the horizontal support material portion at the upper portion of the connecting portion of the tower according to the second embodiment of the present invention in a state excluding the steel pipe single column, and is a cross-sectional view taken along the line KK in FIG. 15; is there.
FIG. 20 is a side view of a horizontal support material portion at an upper portion of a connection portion of a steel tower according to a second embodiment of the present invention.
FIG. 21 is a front view of a schematic configuration of a steel tower according to a third embodiment of the present invention.
FIG. 22 is a schematic front view of a steel tower by a conventional raising method.
FIG. 23 is a schematic front view of a steel tower by a conventional raising method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Yamagata steel tower part for power transmission 2 Steel pipe single pillar steel tower part 3 Arm metal 4 Lower horizontal plate 5 Upper horizontal plate 6 Horizontal material 7 Plate with rib 8 Horizontal material 9 Plate with rib 10 New steel tower 11 Foundation 11 'foundation 20 horizontal well frame 21 horizontal support member 22 horizontal member 23 cross beam 24 plate with rib 25 suspension member 26 horizontal member 27 connecting member 28 ring plate

Claims (4)

基礎を有する送電用山形鋼鉄塔部の上部に、複数段の腕金を有する送電用鋼管単柱鉄塔部を繋ぎあわせ、これらの接続は、送電用山形鋼鉄塔部の上部において上下の間隔を開けた二箇所以上の主柱材間に、水平プレートを夫々わたして設け、最下部以外の上記水平プレートは中央に孔を有し、半分に割れた二つ割り片から成り、当該水平プレートに設けた孔に上記送電用鋼管単柱鉄塔部の下部を通し、予め上記送電用鋼管単柱鉄塔部の外周に設けたリブ付きプレートを上記水平プレートに重ねてボルト止めし、最下部の上記水平プレートに上記送電用鋼管単柱鉄塔部の下端部を載せ、予め上記送電用鋼管単柱鉄塔部の下端外周に設けたリブ付きプレートを上記最下部の水平プレートに重ね合わせてボルト止めして固定したことを特徴とする、複合構造送電用鉄塔。  A single-pipe steel tower with a multi-stage armor is connected to the top of the steel tower for power transmission with the foundation, and these connections are spaced apart at the top of the steel tower for power transmission. A horizontal plate is provided between two or more main pillars, and the horizontal plate other than the lowermost part has a hole in the center and is composed of a split piece that is split in half. Through the lower part of the steel pipe single pillar tower for power transmission, and a ribbed plate provided in advance on the outer periphery of the steel pillar single pillar tower for power transmission is overlaid on the horizontal plate and bolted, and the horizontal plate at the bottom is Put the lower end of the steel pipe single-column tower part for power transmission, and put the ribbed plate provided in advance on the outer periphery of the lower end of the steel pipe single-column tower part for transmission on the bottom horizontal plate and fix it with bolts. Features If structure for power transmission towers. 基礎を有する送電用山形鋼鉄塔部の上部に、複数段の腕金を有する送電用鋼管単柱鉄塔部を繋ぎあわせ、これらの接続は、送電用山形鋼鉄塔部の上部において上下の間隔を開けた二箇所以上の主柱材間に、最下部以外は複数の形鋼をわたして繋ぎ、これらの形鋼の間に上記鋼管単柱鉄塔部の下部を通して当該箇所を固定し、最下部については形鋼で構成された略網目状枠体をわたして設け、当該略網目状枠体に上記鋼管単柱鉄塔部の下端部を載せ、予め上記送電用鋼管単柱鉄塔部の下端外周に設けたリブ付きプレートを上記略網目状枠体の上に重ねてボルト止めして固定し、さらに、上記送電用山形鋼鉄塔部の複数の主柱材から吊り材を設けて上記送電用鋼管単柱鉄塔下端部を吊り下げ固定したことを特徴とする、複合構造送電用鉄塔。  A single-pipe steel tower with a multi-stage armor is connected to the top of the steel tower for power transmission with the foundation, and these connections are spaced apart at the top of the steel tower for power transmission. Two or more main pillar materials are connected to each other except for the lowermost part, and the relevant part is fixed between these structural steels through the lower part of the steel pipe single pillar tower. A substantially mesh frame made of section steel was provided, and the lower end of the steel pipe single column tower was placed on the substantially mesh frame, and was previously provided on the outer periphery of the lower end of the steel pipe single column tower for power transmission. The ribbed plate is overlaid on the substantially mesh frame and fixed with bolts, and the suspension steel pipe single-column tower is provided with suspension members from the plurality of main pillars of the mountain-shaped steel tower for power transmission. A power transmission tower with a composite structure, characterized in that the lower end portion is suspended and fixed. 既設の送電用山形鋼鉄塔の上端部及び腕金を取外し、この上に複数段の腕金を有する送電用鋼管単柱鉄塔を繋ぎあわせるものであって、これらの接続は、上記送電用鋼管単柱鉄塔を吊り上げて送電用山形鋼鉄塔の上端から当該送電用山形鋼鉄塔内に上記送電用鋼管単柱鉄塔の下部を挿入し、当該送電用山形鋼鉄塔の上部に設けた、最下部の水平プレートにその下端部を載せ、予め上記送電用鋼管単柱鉄塔の下端外周に設けたリブ付きプレートを上記最下部の水平プレートに重ね合わせてボルト止めし、その後、上記最下部の水平プレートより上方に間隔を開けた主柱材間に、上記送電用鋼管単柱鉄塔を自体の孔内に入れて二つ割りの水平プレートを取り付け、予め上記送電用鋼管単柱鉄塔の外周に設けたリブ付きプレートを上記二つ割りの水平プレートに重ねてボルト止めすることを特徴とする、複合構造送電用鉄塔の嵩上げ工法による組立て工法。  The upper end of the existing steel tower for power transmission and the metal arm are removed, and a single steel tower for power transmission steel pipe having a plurality of stages of metal arms is connected to the steel steel tower. Lift the pillar tower and insert the lower part of the steel pipe single pillar steel tower into the mountain tower for power transmission from the upper end of the steel tower for power transmission, and install the bottom horizontal tower at the top of the mountain tower for power transmission. Place the lower end of the plate on the plate, preliminarily place the ribbed plate on the outer periphery of the lower end of the steel pipe single column tower for power transmission and bolt it on the lowermost horizontal plate, and then above the lowermost horizontal plate Between the main pillar members spaced apart from each other, put the steel pipe single column tower for power transmission in its own hole and attach a split horizontal plate, and plate with ribs provided in advance on the outer circumference of the single column steel tower for power transmission The above split water Characterized by bolted to overlap the plate, the assembly method according to raising method of a composite structure Transmission Tower. 既設の送電用山形鋼鉄塔の上端部及び腕金を取外し、この上に複数段の腕金を有する送電用鋼管単柱鉄塔を繋ぎあわせるものであって、これらの接続は、送電用山形鋼鉄塔の上部において上下の間隔を開けた二箇所以上の主柱材間に、最下部以外は複数の形鋼をわたして繋ぎ、最下部については形鋼で構成された略網目状枠体を設け、上記送電用鋼管単柱鉄塔を吊り上げて送電用山形鋼鉄塔の上端から当該送電用山形鋼鉄塔内に上記送電用鋼管単柱鉄塔の下部を挿入し、最下部以外の上記形鋼間に上記送電用鋼管単柱鉄塔の下部を通して固定し、最下部の上記略網目状枠体にその下端部を載せ、予め上記送電用鋼管単柱鉄塔の下端外周に設けたリブ付きプレートを上記略網目状枠体の上に重ねてボルト止めし、さらに、送電用山形鋼鉄塔の複数の主柱材から吊り材を設けて上記送電用鋼管単柱鉄塔下端部を吊り下げ固定することを特徴とする、複合構造送電用鉄塔の嵩上げ工法による組立て工法。The upper end and arm of the existing steel tower for power transmission are removed, and the steel pipe single-column tower with multiple stages of metal is connected to the steel tower. These connections are connected to the steel tower for power transmission. Between the two or more main pillars that are spaced apart at the top and bottom of the upper part, connect a plurality of shape steel except me at the bottom, and provide a substantially mesh frame made of shape steel for the bottom, The steel pipe single pillar steel tower is lifted and the lower part of the steel pipe single pillar steel tower is inserted into the power transmission mountain steel tower from the upper end of the power transmission iron tower, and the power transmission is performed between the steel bars other than the lowermost part. The lower end of the steel pipe single column tower is fixed, the lower end is placed on the lowermost net-like frame body, and the ribbed plate previously provided on the outer periphery of the lower end of the steel pipe single column tower is installed in the substantially net frame. Bolt on top of the body, and then add a pile of angle steel towers for power transmission. The main pillar of provided hanging member, characterized in that securing hanging the power transmission steel single pole tower lower portion, the assembly method according to raising method of the composite power transmission pylons.
JP2002350005A 2001-12-04 2002-12-02 Composite structure transmission tower and assembly method by raising method Expired - Fee Related JP3990975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350005A JP3990975B2 (en) 2001-12-04 2002-12-02 Composite structure transmission tower and assembly method by raising method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001369518 2001-12-04
JP2001-369518 2001-12-04
JP2002350005A JP3990975B2 (en) 2001-12-04 2002-12-02 Composite structure transmission tower and assembly method by raising method

Publications (2)

Publication Number Publication Date
JP2003232142A JP2003232142A (en) 2003-08-22
JP3990975B2 true JP3990975B2 (en) 2007-10-17

Family

ID=27790442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350005A Expired - Fee Related JP3990975B2 (en) 2001-12-04 2002-12-02 Composite structure transmission tower and assembly method by raising method

Country Status (1)

Country Link
JP (1) JP3990975B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102609579A (en) * 2012-01-31 2012-07-25 浙江省电力设计院 Three-dimensional wind-resistant design method for power transmission tower
CN109029896A (en) * 2018-04-27 2018-12-18 国网浙江省电力有限公司经济技术研究院 A kind of determination method of lattice tower angle wind load distribution coefficient identification and pylon wind load

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555732B (en) * 2009-05-07 2011-07-13 中国电力科学研究院 Tension-compression main material type electric power pylon
CN102296871A (en) * 2011-05-06 2011-12-28 山西省电力公司太原供电分公司 High-voltage power transmission section length variable iron tower
KR101389995B1 (en) 2014-02-18 2014-04-30 (주)한국엔지니어링 Lifting device for power transmission steel tower
CN105735482B (en) * 2014-12-08 2017-03-08 国家电网公司 A kind of single double angle transition node
CN109339550B (en) * 2018-12-06 2023-06-27 江苏齐天铁塔制造有限公司 Preparation method suitable for extra-high voltage direct current transmission tower

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102609579A (en) * 2012-01-31 2012-07-25 浙江省电力设计院 Three-dimensional wind-resistant design method for power transmission tower
CN102609579B (en) * 2012-01-31 2014-04-23 浙江省电力设计院 Three-dimensional wind-resistant design method for power transmission tower
CN109029896A (en) * 2018-04-27 2018-12-18 国网浙江省电力有限公司经济技术研究院 A kind of determination method of lattice tower angle wind load distribution coefficient identification and pylon wind load

Also Published As

Publication number Publication date
JP2003232142A (en) 2003-08-22

Similar Documents

Publication Publication Date Title
CN103328820B (en) For the method assembling the shell segmentation of the tower section for forming mixing wind turbine tower
JP5187627B2 (en) Steel tower main column replacement method
CN103890387B (en) Transition structure for wind turbine tower
US10577820B2 (en) Tower section for automatically raising a wind turbine and automatic raising method for same
JP2007315732A (en) Installation method of boiler furnace wall
JP5033726B2 (en) Formwork support and horizontal force processing member for formwork support
JP2018024984A (en) Method for constructing dome-like structure with linear member
JP3990975B2 (en) Composite structure transmission tower and assembly method by raising method
JP2014148856A (en) Installation method of solar panel installing stand
JP4691431B2 (en) Roof structure and construction method thereof
JP6865550B2 (en) How to build silo roof and silo roof structure
JP5499194B1 (en) Solar panel mounting base
CN217651804U (en) Device for improving steel support stability by utilizing concrete support
JP2005188102A (en) Structure of building and construction method
JP2005351047A (en) Reinforcing structure of guard fence
JP5688827B2 (en) Reconstruction method of existing steel tower
KR100235117B1 (en) Ready-made steel net for r.c column and the executing method with it
CN219240563U (en) Lattice column and structural column integrated structure
CN114032752B (en) Main tower grating suitable for separated catwalk and main tower side anchoring method
CN216515138U (en) Box girder assembling support
JP7277320B2 (en) Strut fire receiving structure
JP5469513B2 (en) Reinforcement method for raising the tower for transmission lines
JPH08240035A (en) Builtup pole
CN218030231U (en) Geotechnical engineering excavates and uses protective structure
CN219639802U (en) Integrated bracket for foundation and superstructure of electric power engineering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140727

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees