JP5469513B2 - Reinforcement method for raising the tower for transmission lines - Google Patents

Reinforcement method for raising the tower for transmission lines Download PDF

Info

Publication number
JP5469513B2
JP5469513B2 JP2010086064A JP2010086064A JP5469513B2 JP 5469513 B2 JP5469513 B2 JP 5469513B2 JP 2010086064 A JP2010086064 A JP 2010086064A JP 2010086064 A JP2010086064 A JP 2010086064A JP 5469513 B2 JP5469513 B2 JP 5469513B2
Authority
JP
Japan
Prior art keywords
column
reinforcing
reinforcement
main
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010086064A
Other languages
Japanese (ja)
Other versions
JP2011214374A (en
Inventor
浩和 中筋
泰昌 岸本
幸男 森村
洋一 市岡
信雄 竹内
明 浦崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Kanden Engineering Corp
Original Assignee
Kansai Electric Power Co Inc
Kanden Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Kanden Engineering Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2010086064A priority Critical patent/JP5469513B2/en
Publication of JP2011214374A publication Critical patent/JP2011214374A/en
Application granted granted Critical
Publication of JP5469513B2 publication Critical patent/JP5469513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Cable Installation (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)

Description

本発明は、送電線用鉄塔の嵩上げのための補強工法に関するものである。   The present invention relates to a reinforcing method for raising a power transmission tower.

従来、送電線を架け渡すための送電線用鉄塔が知られている。この送電線用鉄塔では、設置場所の周囲の樹木の成長や、周囲に高層の建造物の建設が計画される等の要因により、送電線と樹木又は建造物との間の離隔距離の不足が生じる虞がある。このため、既設の送電線用鉄塔を嵩上げして送電線が設置される高さ位置を上げることが行われている。しかし、既設の鉄塔の嵩上げを行うと、当該鉄塔の倒れを防止するために何らかの補強を行う必要性が出てくる。下記特許文献1には、このような嵩上げした鉄塔の倒れを防止するための補強構造の一例が開示されている。具体的には、この特許文献1では、既設の鉄塔の両外側の地面にそれぞれ新たな補強基礎を設けるとともに、その各補強基礎から鉄塔側へ斜め上方に延びるように補強脚を設置している。この補強脚の先端は、鉄塔の所定の高さ位置の部位に対して接続され、それによって嵩上げされた鉄塔の倒れの防止が図られている。   2. Description of the Related Art Conventionally, a transmission line tower for connecting a transmission line is known. In this transmission line tower, there is a shortage of separation distance between the transmission line and the trees or buildings due to factors such as the growth of trees around the installation site and the planned construction of high-rise buildings around them. May occur. For this reason, raising the height position where a transmission line is installed by raising the existing transmission line tower. However, when the existing steel tower is raised, it becomes necessary to perform some reinforcement to prevent the steel tower from falling over. Patent Document 1 below discloses an example of a reinforcing structure for preventing such a raised steel tower from collapsing. Specifically, in this Patent Document 1, new reinforcement foundations are provided on both outer grounds of an existing steel tower, and reinforcement legs are installed so as to extend obliquely upward from the respective reinforcement foundations to the steel tower side. . The tip of the reinforcing leg is connected to a portion of the steel tower at a predetermined height position, thereby preventing the tower that has been raised from falling down.

特開2004−300872号公報Japanese Patent Laid-Open No. 2004-300872

しかしながら、上記特許文献1の技術では、既設の鉄塔の外側に新たに補強基礎を設けるため、必要となる土地面積が増大するという問題点がある。また、上記特許文献1の技術では、嵩上げに伴って生じる鉄塔の風圧に対する強度不足を補うことは難しい。すなわち、上記送電線用鉄塔は、この鉄塔自身及び当該鉄塔が支持する送電線が受ける風圧によって水平方向の力を受けるため、その力に十分に耐えることが可能な強度を必要とする。そして、嵩上げされた鉄塔では、前記水平方向の力に対して既設の鉄塔で必要な強度よりも大きな強度が必要とされるため、その強度不足を補うことが求められる。しかし、上記特許文献1のように鉄塔の外側の基礎から斜めに延びる補助脚で鉄塔の基礎近傍の部分を支える補強構造では、鉄塔のうちの下端近傍のごく僅かな領域でしか補強できないので、嵩上げ後の鉄塔の前記水平方向の力に対する強度不足を鉄塔の上部までに亘って解消することは困難である。   However, the technique disclosed in Patent Document 1 has a problem in that the required land area increases because a new reinforcing foundation is provided outside the existing steel tower. Moreover, with the technique of the said patent document 1, it is difficult to compensate for the strength shortage with respect to the wind pressure of the steel tower which arises with raising. That is, the power transmission line tower receives a horizontal force due to the wind pressure received by the steel tower itself and the power transmission line supported by the steel tower, and therefore requires a strength that can sufficiently withstand the force. And since the raised steel tower requires a strength greater than that required by the existing steel tower with respect to the horizontal force, it is required to compensate for the lack of strength. However, in the reinforcement structure that supports the portion in the vicinity of the foundation of the tower with the auxiliary legs extending obliquely from the foundation outside the tower as in the above-mentioned Patent Document 1, it can be reinforced only in a very small region near the lower end of the tower, It is difficult to eliminate the insufficient strength of the steel tower after raising the height against the horizontal force up to the top of the steel tower.

この発明は、上記の課題を解決するためになされたものであり、その目的は、必要となる土地面積の増大を防ぎつつ、風圧によって受ける力に対する嵩上げ後の送電線用鉄塔の強度不足を鉄塔の下部から上部までに亘って解消することである。   The present invention has been made to solve the above-mentioned problems, and its purpose is to prevent the transmission line tower from being insufficiently strong against the force received by wind pressure while preventing an increase in the required land area. It is to eliminate from the lower part to the upper part.

上記目的を達成するために、本発明による送電線用鉄塔の嵩上げのための補強工法は、設置場所において四角形の各頂点に相当する位置にそれぞれ立設され、隣り合うもの同士が互いに連結された主柱を備え、送電線を前記四角形の一辺と略平行な方向に延びるように支持する既設の送電線用鉄塔の嵩上げに伴って、その送電線用鉄塔を補強するための送電線用鉄塔の嵩上げのための補強工法であって、隣接する前記主柱同士を結んで形成される四角形の領域内において、所定長さの複数の支柱構成部材を上下方向に繋ぎ合わせることにより前記送電線の延びる方向と交差する方向に並ぶ第1補強支柱と第2補強支柱を立設する支柱立設工程と、前記第1補強支柱と前記第2補強支柱とを高さ方向における複数の箇所で第1連結材によってそれぞれ連結する第1連結工程と、前記第1補強支柱と前記第2補強支柱とが並ぶ方向において一方側に位置する2本の前記主柱と前記第1補強支柱とを高さ方向における複数の箇所で第2連結材によってそれぞれ連結する第2連結工程と、前記第1補強支柱と前記第2補強支柱とが並ぶ方向において他方側に位置する2本の前記主柱と前記第2補強支柱とを高さ方向における複数の箇所で第3連結材によってそれぞれ連結する第3連結工程とを備えている。   In order to achieve the above object, the reinforcement method for raising a transmission line tower according to the present invention is erected at a position corresponding to each vertex of a quadrilateral at an installation place, and adjacent ones are connected to each other. A transmission line tower for reinforcing the transmission line tower as the existing transmission line tower is raised with a main pillar and supporting the transmission line so as to extend in a direction substantially parallel to one side of the square. A reinforcing method for raising the height of the power transmission line by connecting a plurality of strut members having a predetermined length in a vertical direction in a quadrangular region formed by connecting adjacent main pillars. A column erecting step of erecting a first reinforcing column and a second reinforcing column arranged in a direction crossing the direction, and a first connection of the first reinforcing column and the second reinforcing column at a plurality of locations in the height direction Depending on the material A plurality of first pillars and a plurality of first pillars that are positioned on one side in the direction in which the first reinforcement pillar and the second reinforcement pillar are aligned, respectively, in the height direction. A second connecting step in which the second connecting members are connected to each other at the point, and the two main pillars and the second reinforcing pillars located on the other side in the direction in which the first reinforcing pillars and the second reinforcing pillars are arranged. And a third connecting step for connecting the two at a plurality of locations in the height direction with a third connecting material.

この送電線用鉄塔の嵩上げのための補強工法では、支柱立設工程において第1補強支柱と第2補強支柱を送電線用鉄塔のうち隣接する主柱同士を結んで形成される四角形の領域内に立設するので、その設置によって必要となる土地面積が増大することがない。さらに、この補強工法では、隣接する主柱同士を結んで形成される四角形の領域内において第1補強支柱と第2補強支柱とが立設されるとともに、その両補強支柱同士及び各補強支柱とその外側に位置する主柱とが高さ方向における複数の箇所で連結されるため、鉄塔の基礎近傍の部分を両外側から斜めに延びる補強脚で支えるような補強を行うものと異なり、高さ方向について補強領域の制限を受けにくく、例えば嵩上げ後の鉄塔の上部までその強度を鉄塔内部からの補強によって高めることができる。しかも、この補強工法では、第1補強支柱と第2補強支柱とが送電線の延びる方向と交差する方向に並ぶように立設されるので、特に送電線が受ける風圧に対する嵩上げ後の鉄塔の強度を高めることができる。その結果、この補強工法では、風圧によって受ける力に対する嵩上げ後の送電線用鉄塔の強度不足を鉄塔の下部から上部までに亘って解消することができる。従って、この補強工法では、必要となる土地面積の増大を防ぎつつ、風圧によって受ける力に対する嵩上げ後の送電線用鉄塔の強度不足を鉄塔の下部から上部までに亘って解消することができる。   In this reinforcing method for raising the transmission line tower, the first reinforcement pillar and the second reinforcement pillar are connected in the quadrangular region formed by connecting the adjacent main pillars of the transmission line tower in the pillar standing step. Therefore, the required land area will not increase. Further, in this reinforcing method, the first reinforcing column and the second reinforcing column are erected in a quadrangular region formed by connecting adjacent main columns, and both the reinforcing columns and each reinforcing column are Since the main pillar located on the outside of the tower is connected at multiple points in the height direction, the height of the tower is different from that in which reinforcement is performed by supporting the part near the foundation of the tower with reinforcement legs diagonally extending from both outsides. It is difficult to be restricted by the reinforcing region in the direction, and the strength can be increased by reinforcing from the inside of the steel tower, for example, up to the top of the steel tower after being raised. In addition, in this reinforcing method, the first reinforcing column and the second reinforcing column are erected so as to be aligned in a direction intersecting with the direction in which the transmission line extends. Can be increased. As a result, with this reinforcing method, it is possible to eliminate the lack of strength of the transmission line tower from the lower part to the upper part of the tower after raising the floor against the force received by the wind pressure. Therefore, in this reinforcement construction method, it is possible to eliminate the lack of strength of the transmission line tower after raising the height against the force received by the wind pressure from the lower part to the upper part of the tower while preventing the required land area from increasing.

上記送電線用鉄塔の嵩上げのための補強工法において、前記第2連結工程は、前記支柱立設工程において前記第1補強支柱を構成する複数の前記支柱構成部材を上方へ繋いでいく途中に行われ、下側の支柱構成部材の上に繋いだ支柱構成部材を前記第2連結材によって前記一方側に位置する前記2本の主柱に連結する工程を含み、前記第3連結工程は、前記支柱立設工程において前記第2補強支柱を構成する複数の前記支柱構成部材を上方へ繋いでいく途中に行われ、下側の支柱構成部材の上に繋いだ支柱構成部材を前記第3連結材によって前記他方側に位置する前記2本の主柱に連結する工程を含むことが好ましい。   In the reinforcing method for raising the transmission line tower, the second connecting step is performed in the middle of connecting the plurality of strut constituent members constituting the first reinforcing strut upward in the strut standing step. Including a step of connecting a strut constituent member connected on a lower strut constituent member to the two main pillars located on the one side by the second connecting member, and the third connecting step includes the step of In the column erecting step, the column component member that is connected to the lower column component member is connected to the third connecting member, while the plurality of column component members constituting the second reinforcing column are connected upward. It is preferable to include a step of connecting to the two main pillars located on the other side.

この構成によれば、第1補強支柱及び第2補強支柱を形成するために複数の支柱構成部材を上方へ繋ぎつつ、その繋いだ支柱構成部材を連結材によって主柱に連結して支えることができるので、各主柱に囲まれた領域内において補強支柱を倒れないように支えながら長大な補強支柱を形成することができる。   According to this structure, in order to form a 1st reinforcement support | pillar and a 2nd reinforcement support | pillar, a plurality of support | pillar structure members are connected upward, and the connected support | pillar structure member can be connected and supported with a main pillar by a connection material. Therefore, it is possible to form a long reinforcing column while supporting the reinforcing column so as not to fall within the area surrounded by the main columns.

上記送電線用鉄塔の嵩上げのための補強工法において、前記第1連結工程は、前記第1補強支柱と前記第2補強支柱との間で水平方向に延びる前記第1連結材によって前記第1補強支柱と前記第2補強支柱とを互いに連結する水平連結工程を含んでいてもよい。   In the reinforcement method for raising the transmission line tower, the first connection step includes the first reinforcement by the first connection member extending in the horizontal direction between the first reinforcement column and the second reinforcement column. A horizontal connecting step of connecting the strut and the second reinforcing strut to each other may be included.

この構成によれば、風圧に起因する水平方向への応力に対する鉄塔の強度を有効に高めることができる。   According to this structure, the intensity | strength of the steel tower with respect to the stress to the horizontal direction resulting from a wind pressure can be raised effectively.

この場合において、前記第1連結工程は、前記水平連結工程に加えて、前記第1補強支柱と前記第2補強支柱との間で高さ方向に対して斜めに延び、互いに交差する複数の前記第1連結材によって前記第1補強支柱と前記第2補強支柱とを互いに連結する斜め連結工程を含むことが好ましい。   In this case, in addition to the horizontal connection step, the first connection step includes a plurality of the intersections extending obliquely with respect to the height direction between the first reinforcement column and the second reinforcement column and intersecting each other. It is preferable to include an oblique connection step of connecting the first reinforcing column and the second reinforcing column to each other by the first connecting member.

この構成によれば、両補強支柱間にトラス構造を形成することができ、鉄塔の強度をより高めることができる。   According to this configuration, a truss structure can be formed between both reinforcing columns, and the strength of the steel tower can be further increased.

上記送電線用鉄塔の嵩上げのための補強工法において、前記各第1連結材と前記各主柱とを第4連結材によってそれぞれ連結する第4連結工程を備えていることが好ましい。   In the reinforcing method for raising the transmission line tower, it is preferable to include a fourth connecting step of connecting the first connecting members and the main pillars with the fourth connecting members.

この構成によれば、前記各補強支柱が第2連結材又は第3連結材を介して対応する主柱に連結されるのに加えて、それら各補強支柱が第1連結材と第4連結材とを介して各主柱に連結される。このため、各補強支柱と主柱との連結によって構成される構造がより強固なものとなり、その結果、嵩上げ後の鉄塔の強度をより高めることができる。   According to this configuration, in addition to the reinforcement struts being connected to the corresponding main pillars via the second connection member or the third connection member, the reinforcement struts are connected to the first connection member and the fourth connection member. It is connected to each main pillar via. For this reason, the structure comprised by connection with each reinforcement support | pillar and a main pillar becomes stronger, As a result, the intensity | strength of the steel tower after raising can be raised more.

上記送電線用鉄塔の嵩上げのための補強工法において、前記送電線用鉄塔には、複数の送電線が高さ方向に間隔をおいて架けられ、前記支柱立設工程では、前記第1補強支柱と前記第2補強支柱とを嵩上げ後の送電線用鉄塔において前記複数の送電線が架けられる各部位のうち最も低い位置に位置する部位よりも高い位置まで延びるように立設することが好ましい。   In the reinforcing method for raising the transmission line tower, a plurality of transmission lines are spanned at an interval in the height direction on the transmission line tower, and in the column erecting step, the first reinforcement column It is preferable that the second reinforcing column is erected so as to extend to a position higher than a position located at the lowest position among the portions where the plurality of power transmission lines are laid in the tower for transmission lines after raising.

このように構成すれば、嵩上げ後の鉄塔において風圧を受ける各送電線のうち最も低い位置に位置する送電線の位置よりも高い位置まで前記両補強支柱を延ばしてその両補強支柱で鉄塔を支えることができる。このため、嵩上げ後の鉄塔において送電線が架けられる部位よりも低い位置までしか補強支柱が延びていない場合に比べて、送電線が受ける風圧に対する嵩上げ後の鉄塔の強度をより有効に確保することができる。   If comprised in this way, the said reinforcement support | pillar will be extended to the position higher than the position of the power transmission line located in the lowest position among each transmission line which receives wind pressure in the steel tower after raising, and a steel tower will be supported by the both reinforcement support | pillars be able to. For this reason, as compared with the case where the reinforcing column extends only to a position lower than the part where the transmission line is built in the raised tower, the strength of the raised tower against the wind pressure received by the transmission line is more effectively secured. Can do.

上記送電線用鉄塔の嵩上げのための補強工法において、前記第2連結工程では、前記四角形の各頂点に相当する位置に立設された前記各主柱のうち前記第2補強支柱よりも前記第1補強支柱に近い2本の主柱と前記第1補強支柱とを前記第2連結材によって連結し、前記第3連結工程では、前記四角形の各頂点に相当する位置に立設された前記各主柱のうち前記第1補強支柱よりも前記第2補強支柱に近い2本の主柱と前記第2補強支柱とを前記第3連結材によって連結することが好ましい。   In the reinforcing method for raising the power transmission line tower, in the second connection step, the second reinforcing column out of the second reinforcing columns out of the main columns erected at positions corresponding to the vertices of the squares. The two main pillars close to one reinforcing column and the first reinforcing column are connected by the second connecting member, and in the third connecting step, each of the above-mentioned standing columns is provided at a position corresponding to each vertex of the quadrangle. It is preferable that two main pillars closer to the second reinforcing pillar than the first reinforcing pillar among the main pillars are connected to the second reinforcing pillar by the third connecting member.

このように構成すれば、長さの小さい連結材で各補強支柱と近い主柱とを連結することができるので、補強支柱と主柱との連結強度を有効に高めることが可能となる。このため、補強支柱を含めた嵩上げ後の鉄塔全体の強度を良好に高めることができる。   If comprised in this way, since the main pillar close | similar to each reinforcement support | pillar can be connected with a connection material with small length, it becomes possible to raise effectively the connection strength of a reinforcement support | pillar and a main pillar. For this reason, the intensity | strength of the whole steel tower after raising including a reinforcement support | pillar can be improved favorably.

この場合において、前記補強工法は、前記四角形の各頂点に相当する位置に立設された前記各主柱のうち前記第1補強支柱よりも前記第2補強支柱に近い2本の主柱と前記第1補強支柱とを第5連結材によって連結する第5連結工程と、前記四角形の各頂点に相当する位置に立設された前記各主柱のうち前記第2補強支柱よりも前記第1補強支柱に近い2本の主柱と前記第2補強支柱とを第6連結材によって連結する第6連結工程とを備えることが好ましい。   In this case, the reinforcing method includes two main columns closer to the second reinforcing column than the first reinforcing column among the main columns erected at a position corresponding to each vertex of the quadrangle. A fifth connecting step of connecting the first reinforcing column with a fifth connecting member, and the first reinforcing member out of the second reinforcing column among the main columns erected at positions corresponding to the apexes of the quadrangle. It is preferable to include a sixth coupling step of coupling two main pillars close to the column and the second reinforcing column with a sixth coupling member.

この構成によれば、各補強支柱と遠い方の2本の主柱とをそれぞれ連結することができ、補強支柱と主柱との連結強度をより高めることができる。その結果、補強支柱を含めた嵩上げ後の鉄塔全体の強度をより高めることができる。   According to this configuration, each reinforcing column can be connected to the two distant main columns, and the strength of connection between the reinforcing column and the main column can be further increased. As a result, it is possible to further increase the strength of the entire steel tower including the reinforcing column after raising.

さらにこの場合において、前記送電線用鉄塔の嵩上げ時には、既設の送電線用鉄塔のうちその上端から下方へ所定の長さに亘る部位である撤去部位を撤去した後、その撤去部位を撤去した後の前記送電線用鉄塔の上端に前記撤去部位よりも高さの大きい新しい部位を接続し、前記支柱立設工程では、前記既設の送電線用鉄塔のうち少なくとも前記撤去部位の下端の高さ位置まで前記第1補強支柱及び前記第2補強支柱が延びるようにそれら両補強支柱を立設し、前記第1連結工程では、前記撤去部位の下端の高さ位置において、前記第1補強支柱と前記第2補強支柱とを前記第1連結材によって互いに連結し、前記第2連結工程では、前記撤去部位の下端の高さ位置において、前記第2補強支柱よりも前記第1補強支柱に近い2本の主柱と前記第1補強支柱とを前記第2連結材によって連結し、前記第5連結工程では、前記撤去部位の下端の高さ位置において、前記第1補強支柱よりも前記第2補強支柱に近い2本の主柱と前記第1補強支柱とを前記第5連結材によって連結し、前記第3連結工程では、前記撤去部位の下端の高さ位置において、前記第1補強支柱よりも前記第2補強支柱に近い2本の主柱と前記第2補強支柱とを前記第3連結材によって連結し、前記第6連結工程では、前記撤去部位の下端の高さ位置において、前記第2補強支柱よりも前記第1補強支柱に近い2本の主柱と前記第2補強支柱とを前記第6連結材によって連結することが好ましい。   Furthermore, in this case, after raising the transmission line tower, after removing the removal part, which is a part extending over a predetermined length from the upper end of the existing transmission line tower, after removing the removal part A new part having a height higher than that of the removal part is connected to the upper end of the transmission line tower, and in the column erecting step, at least the height position of the lower end of the removal part of the existing transmission line tower Both the reinforcing struts are erected so that the first reinforcing strut and the second reinforcing strut extend until the first reinforcing strut and the first reinforcing strut at the height position of the lower end of the removal site in the first connecting step. The second reinforcing struts are connected to each other by the first connecting member. In the second connecting step, the two reinforcing struts are closer to the first reinforcing struts than the second reinforcing struts at the height position of the lower end of the removal site. The main pillar and front The first reinforcing column is connected to the first reinforcing column by the second connecting member, and in the fifth connecting step, two lower reinforcing columns are closer to the second reinforcing column than the first reinforcing column at the height position of the lower end of the removal site. The main pillar and the first reinforcing column are connected by the fifth connecting member, and in the third connecting step, the second reinforcing column is more than the first reinforcing column in the height position of the lower end of the removal site. The two main pillars close to each other and the second reinforcing column are connected by the third connecting member, and in the sixth connecting step, the second reinforcing column is higher than the second reinforcing column at the height position of the lower end of the removal site. It is preferable that two main pillars close to one reinforcing column and the second reinforcing column are connected by the sixth connecting member.

この構成によれば、撤去部位を撤去した後、その代わりに新設した部位と鉄塔の既設の部位との接続部において、上記各連結材によって対応する各補強支柱と主柱又は両補強支柱同士を連結することができる。これにより、その接続部位において新設部位から各補強支柱への応力の伝達が良好となる構造を構成することができる。これにより、新設部位の重量や新設部位及びその新設部位が支持する送電線が受ける風圧等を各主柱及び各補強支柱で良好に支えることが可能となる。   According to this configuration, after removing the removal site, instead of connecting the newly installed site and the existing site of the steel tower, the corresponding reinforcement struts and the main columns or both reinforcement support columns are connected by the connecting members. Can be linked. Thereby, the structure which becomes favorable in the transmission of the stress from a newly installed site | part to each reinforcement support | pillar in the connection site | part can be comprised. Accordingly, it is possible to favorably support the weight of the newly installed site, the wind pressure received by the newly installed site and the power transmission line supported by the newly installed site, and the like with each main column and each reinforcing column.

上記第5連結工程及び第6連結工程を備える構成において、前記第1連結工程では、前記送電線用鉄塔のうち前記送電線が架けられる部位である架線部位が設けられた高さ位置において、前記第1補強支柱と前記第2補強支柱とを前記第1連結材によって互いに連結し、前記第2連結工程では、前記架線部位が設けられた高さ位置において、前記第2補強支柱よりも前記第1補強支柱に近い2本の主柱と前記第1補強支柱とを前記第2連結材によって連結し、前記第5連結工程では、前記架線部位が設けられた高さ位置において、前記第1補強支柱よりも前記第2補強支柱に近い2本の主柱と前記第1補強支柱とを前記第5連結材によって連結し、前記第3連結工程では、前記架線部位が設けられた高さ位置において、前記第1補強支柱よりも前記第2補強支柱に近い2本の主柱と前記第2補強支柱とを前記第3連結材によって連結し、前記第6連結工程では、前記架線部位が設けられた高さ位置において、前記第2補強支柱よりも前記第1補強支柱に近い2本の主柱と前記第2補強支柱とを前記第6連結材によって連結することが好ましい。   In the configuration including the fifth connection step and the sixth connection step, in the first connection step, in the height position where the overhead wire portion, which is the portion where the transmission line is built, is provided in the transmission line tower. The first reinforcing column and the second reinforcing column are connected to each other by the first connecting member, and in the second connecting step, the first reinforcing column and the second reinforcing column are higher than the second reinforcing column at the height position where the overhead wire portion is provided. Two main pillars close to one reinforcing column and the first reinforcing column are connected by the second connecting member, and in the fifth connecting step, the first reinforcing member is provided at a height position where the overhead wire portion is provided. Two main columns closer to the second reinforcing column than the column are connected to the first reinforcing column by the fifth connecting member, and in the third connecting step, at the height position where the overhead wire portion is provided. From the first reinforcing column The two main pillars close to the second reinforcing column and the second reinforcing column are connected by the third connecting member, and in the sixth connecting step, at the height position where the overhead line portion is provided, It is preferable that the two main pillars closer to the first reinforcement pillar than the two reinforcement pillars are connected to the second reinforcement pillar by the sixth connecting member.

送電線用鉄塔のうち前記架線部位が設けられた箇所では、送電線が受ける風圧に起因する応力が加えられる。そこで、この構成によれば、架線部位が設けられた高さ位置で、上記各連結材によって対応する各補強支柱と主柱又は両補強支柱同士を連結することができるため、前記送電線が受ける風圧に起因する応力を架線部位から各補強支柱へ良好に伝達することができる。その結果、送電線が受ける風圧に起因する応力を良好に支えることが可能となる。   In the power transmission tower, the stress due to the wind pressure received by the power transmission line is applied at the location where the overhead wire portion is provided. Therefore, according to this configuration, the corresponding reinforcing strut and the main pillar or both reinforcing struts can be connected to each other by the connecting members at the height position where the overhead wire portion is provided. The stress resulting from the wind pressure can be satisfactorily transmitted from the overhead line portion to each reinforcing column. As a result, it is possible to satisfactorily support the stress caused by the wind pressure received by the transmission line.

以上説明したように、本発明によれば、必要となる土地面積の増大を防ぎつつ、風圧によって受ける力に対する嵩上げ後の送電線用鉄塔の強度不足を鉄塔の下部から上部までに亘って解消することができる。   As described above, according to the present invention, while preventing an increase in the required land area, the lack of strength of the transmission line tower after the increase in the force received by wind pressure is resolved from the lower part to the upper part of the tower. be able to.

既設の送電線用鉄塔を送電線の延びる方向に見た概略図である。It is the schematic which looked at the existing steel tower for power transmission lines in the direction where a power transmission line extends. 図1に示した既設の送電線用鉄塔の基礎の構造を示す平面図である。It is a top view which shows the structure of the foundation of the existing steel tower for power transmission lines shown in FIG. 図2に示した基礎の地中に埋設された状態を送電線の延びる方向に見た図である。It is the figure which looked at the state embed | buried in the ground of the foundation shown in FIG. 2 in the direction where a power transmission line is extended. 嵩上げのための補強を行った後の送電線用鉄塔の基礎の前記図2に対応する平面図である。It is a top view corresponding to the said FIG. 2 of the foundation of the tower for power transmission lines after reinforcing for raising. 図4に示した基礎の前記図3に対応する状態を示す図である。It is a figure which shows the state corresponding to the said FIG. 3 of the foundation shown in FIG. 嵩上げのための補強を行った後の送電線用鉄塔の最下節の構造を示す水平断面図である。It is a horizontal sectional view which shows the structure of the lowest node of the steel tower for power transmission lines after performing the reinforcement for raising. 嵩上げのための補強を行った後の送電線用鉄塔のベンド点の節の構造を示す水平断面図である。It is a horizontal sectional view which shows the structure of the node of the bend point of the steel tower for power transmission lines after reinforcing for raising. 嵩上げのための補強を行った後の送電線用鉄塔の第1アームの下辺の位置の節の構造を示す水平断面図である。It is a horizontal sectional view which shows the structure of the node of the position of the lower side of the 1st arm of the steel tower for power transmission lines after performing the reinforcement for raising. 本発明の一実施形態による送電線用鉄塔の嵩上げのための補強工法のプロセスを説明するための図である。It is a figure for demonstrating the process of the reinforcement construction method for raising the tower for power transmission lines by one Embodiment of this invention. 本発明の一実施形態による送電線用鉄塔の嵩上げのための補強工法のプロセスを説明するための図である。It is a figure for demonstrating the process of the reinforcement construction method for raising the tower for power transmission lines by one Embodiment of this invention. 既設の鉄塔に対する新設部位の接続部における各主柱間、各主柱と各補強支柱との間及び補強支柱間の連結構造を示す水平断面図である。It is a horizontal sectional view which shows the connection structure between each main pillar in the connection part of the newly installed site | part with respect to the existing steel tower, between each main pillar, and each reinforcement support | pillar, and between reinforcement support | pillars. 本発明の一実施形態による送電線用鉄塔の嵩上げのための補強工法のプロセスを説明するための図である。It is a figure for demonstrating the process of the reinforcement construction method for raising the tower for power transmission lines by one Embodiment of this invention. 本発明の一実施形態による送電線用鉄塔の嵩上げのための補強工法のプロセスを説明するための図である。It is a figure for demonstrating the process of the reinforcement construction method for raising the tower for power transmission lines by one Embodiment of this invention. 本発明の一実施形態による送電線用鉄塔の嵩上げのための補強工法のプロセスを説明するための図である。It is a figure for demonstrating the process of the reinforcement construction method for raising the tower for power transmission lines by one Embodiment of this invention. 嵩上げ及び補強を行った後の送電線用鉄塔を送電線の延びる方向に見た概略図である。It is the schematic which looked at the tower for power transmission lines after raising and reinforcing in the direction where a power transmission line extends. 本発明の一実施形態の変形例による補強工法において嵩上げのための補強を行った後の送電線用鉄塔の送電線アームが設けられた節の構造を示す水平断面図である。It is a horizontal sectional view showing the structure of the node provided with the transmission line arm of the transmission line tower after reinforcing for raising in the reinforcement method according to the modification of the embodiment of the present invention.

以下、本発明の実施形態を図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、図1〜図3及び図6〜図8を参照して本発明の一実施形態による送電線用鉄塔の嵩上げのための補強工法を適用する既設の送電線用鉄塔の構造について説明する。   First, the structure of an existing transmission line tower to which a reinforcing method for raising the transmission line tower according to an embodiment of the present invention is applied will be described with reference to FIGS.

この既設の送電線用鉄塔(以下、既設鉄塔という)は、3相1組で1回線となる送電線102を2回線分、すなわち合計6相の送電線102と、落雷を誘導して送電線102への雷の直撃を防止する等の機能を有する2本の架空地線104とを空中で支持している。なお、各相の送電線102には、1本の電線のみが含まれる場合や、複数本の電線が含まれる場合がある。そして、既設鉄塔は、鉄塔本体2と、地線アーム4と、第1送電線アーム6と、第2送電線アーム8と、第3送電線アーム10とを備えている。   This existing power transmission tower (hereinafter referred to as an existing steel tower) is composed of two transmission lines 102, one set of three phases, ie, a total of six phases of transmission lines 102, and a transmission line that induces lightning strikes. Two aerial ground wires 104 having functions such as preventing direct lightning strikes 102 are supported in the air. Note that each phase of the power transmission line 102 may include only one electric wire or may include a plurality of electric wires. The existing steel tower includes a steel tower body 2, a ground arm 4, a first power transmission line arm 6, a second power transmission line arm 8, and a third power transmission line arm 10.

鉄塔本体2は、所定の設置場所に立設されている。この鉄塔本体2は、4本の主柱12と、多数の主柱連結材14とを有する。   The steel tower body 2 is erected at a predetermined installation location. The tower main body 2 includes four main pillars 12 and a large number of main pillar connecting members 14.

4本の主柱12は、既設鉄塔の設置場所において正方形の各頂点に相当する位置に立設されている。   The four main pillars 12 are erected at positions corresponding to the apexes of the square at the installation location of the existing steel tower.

具体的には、各主柱12は、設置場所において正方形の各頂点に相当する位置に埋設された基礎16(図2参照)上にそれぞれ立設されている。各基礎16は、正方形に形成された土台部16aと、その土台部16aの中心位置から上方へ延びる支持部16bとを有する。各基礎16の支持部16bは、土台部16aから上側へ向かうにつれて対角に位置する他の基礎16側へ徐々に接近するように傾斜している。そして、各基礎16は、その設置場所の地面の図2及び図3中の領域Aで示す部分が掘削されて形成された穴内に設置されるとともに、その穴を埋め戻すことによって埋設されている。この際、図3に示すように各基礎16の支持部16bの上端部が地面から突出するように各基礎16が埋設されている。   Specifically, each main pillar 12 is erected on a foundation 16 (see FIG. 2) embedded in a position corresponding to each vertex of a square at the installation location. Each foundation 16 has a base portion 16a formed in a square shape, and a support portion 16b extending upward from the center position of the base portion 16a. The support portion 16b of each foundation 16 is inclined so as to gradually approach the other foundation 16 side located diagonally as it goes upward from the base portion 16a. Each foundation 16 is installed in a hole formed by excavating a portion indicated by a region A in FIGS. 2 and 3 on the ground of the installation location, and is embedded by refilling the hole. . At this time, as shown in FIG. 3, each foundation 16 is embedded so that the upper end portion of the support portion 16 b of each foundation 16 protrudes from the ground.

各主柱12は、所定長さの複数の構成材12aを長手方向に繋ぎ合せることによって形成されている。具体的には、図1において符号Jで示している部位及びその部位と同様の形状の各部位で構成材12aの端部同士が接合されている。各構成材12aは、円筒状の鋼管からなる。なお、各構成部材12aは、内部にコンクリートを充填したコンクリート充填鋼管からなっていてもよい。そして、各主柱12は、上方へ向かうにつれて対角に位置する他の主柱12側へ接近するように傾斜している。この各主柱12の傾斜角度は、地面から所定の高さの地点(ベンド点)で変化している。すなわち、各主柱12のうち地面から前記ベンド点までの部位の傾斜角度に比べて、そのベンド点から上の部位の傾斜角度が小さくなっている。これにより、各主柱12は、ベンド点において僅かに屈曲している。   Each main pillar 12 is formed by joining a plurality of constituent members 12a having a predetermined length in the longitudinal direction. Specifically, the end portions of the constituent material 12a are joined to each other at the site indicated by the symbol J in FIG. 1 and each site having the same shape as the site. Each component 12a consists of a cylindrical steel pipe. Each constituent member 12a may be made of a concrete-filled steel pipe filled with concrete. And each main pillar 12 inclines so that it may approach the other main pillar 12 side located diagonally as it goes upwards. The inclination angle of each main pillar 12 changes at a point (bend point) at a predetermined height from the ground. That is, the inclination angle of the upper part from the bend point is smaller than the inclination angle of the part from the ground to the bend point in each main pillar 12. Thereby, each main pillar 12 is slightly bent at the bend point.

そして、4本の主柱12のうち隣り合う2本の主柱12同士は、多数の主柱連結材14によって互いに連結されている。この主柱連結材14は、隣り合う主柱12同士を繋ぐトラス構造を構成している。すなわち、鉄塔本体2の4つの側面は、全てトラス構造となっている。さらに、図1において鉄塔本体2内の水平線で示す各部位は鉄塔本体2の節となっており、この各節では、隣り合う主柱12同士が水平方向に延びる連結材で連結されていたり、その連結材同士がさらに連結されていたりする。   Two adjacent main pillars 12 among the four main pillars 12 are connected to each other by a large number of main pillar connecting members 14. This main pillar connecting material 14 constitutes a truss structure that connects adjacent main pillars 12 to each other. That is, the four side surfaces of the steel tower body 2 have truss structures. Furthermore, each part shown by the horizontal line in the tower main body 2 in FIG. 1 is a node of the tower main body 2, and in each node, adjacent main pillars 12 are connected by a connecting material extending in the horizontal direction, The connecting materials may be further connected.

例えば、鉄塔本体2の各節のうち最も下に位置する節18a(以下、最下節18aという)では、図6に示すように、隣り合う主柱12同士がそれらを直線的に結ぶように延びるとともに水平に延びる主柱水平連結材19によって連結されている。具体的には、各主柱12の外面には、2つのリブ12dが突設されており、各リブ12dは、隣接する主柱12側へ向かって突出するように配設されている。この各リブ12dに主柱水平連結材19の端部が結合されることにより、隣り合う主柱12同士が主柱水平連結材19によって連結されている。   For example, at the node 18a located at the bottom of the nodes of the tower main body 2 (hereinafter referred to as the lowest node 18a), as shown in FIG. 6, the adjacent main pillars 12 connect them linearly. It is connected by a main pillar horizontal connecting member 19 that extends and extends horizontally. Specifically, two ribs 12d protrude from the outer surface of each main pillar 12, and each rib 12d is disposed so as to protrude toward the adjacent main pillar 12 side. Adjacent main pillars 12 are connected to each other by the main pillar horizontal connecting members 19 by joining the end portions of the main pillar horizontal connecting members 19 to the ribs 12d.

また、各主柱水平連結材19の長手方向の中間部分には、4本の主柱12によって形成される正方形の内側へ向かって突出するように取付部19aがそれぞれ設けられている。そして、隣り合う主柱水平連結材19の取付部19a同士が、水平面においてそれら隣り合う主柱水平連結材19に対して斜めに延びる第1連結桟21aにより連結されている。さらに、隣り合う第1連結桟21a同士が、水平面において対応する主柱水平連結材19と平行に延びる第2連結桟21bによって連結されている。そして、送電線102の延びる方向に分かれて配置されている2つの主柱水平連結材19の取付部19aと、対応する第2連結桟21bとが、水平面においてその第2連結桟21bに対して垂直に延びる第3連結桟21cによってそれぞれ連結されている。   Further, a mounting portion 19 a is provided at an intermediate portion in the longitudinal direction of each main pillar horizontal connecting member 19 so as to protrude toward the inside of a square formed by the four main pillars 12. And the attaching parts 19a of the adjacent main pillar horizontal connecting members 19 are connected to each other by the first connecting bars 21a extending obliquely with respect to the adjacent main pillar horizontal connecting members 19 in the horizontal plane. Further, the adjacent first connecting bars 21a are connected by a second connecting bar 21b extending in parallel with the corresponding main column horizontal connecting member 19 in the horizontal plane. And the attaching part 19a of the two main pillar horizontal connection members 19 arranged separately in the extending direction of the power transmission line 102 and the corresponding second connection bar 21b with respect to the second connection bar 21b in the horizontal plane They are connected by a third connecting bar 21c extending vertically.

また、鉄塔本体2のベンド点に位置する節18bでは、隣り合う主柱12同士が主柱水平連結材19によって連結されているとともに、隣り合う主柱水平連結材19同士が第1連結桟21aによって連結されている。詳細には、このベンド点の節18bでは、各主柱12にブラケット12bが外嵌されて固定されており、そのブラケット12bに対して主柱水平連結材19の対応する端部が結合されることによって、隣り合う主柱12同士が水平方向に連結されている。なお、主柱水平連結材19の配置は、前記最下節18aにおける主柱水平連結材19の配置と同様である。また、各主柱水平連結材19には、前記最下節18aと同様に取付部19aが設けられており、隣り合う主柱水平連結材19の取付部19a同士が第1連結桟21aによって連結されている。この第1連結桟21aの配置は、前記最下節18aにおける第1連結桟21aの配置と同様である。   Moreover, in the node 18b located at the bend point of the tower main body 2, the adjacent main pillars 12 are connected to each other by the main pillar horizontal connecting member 19, and the adjacent main pillar horizontal connecting members 19 are connected to the first connecting bar 21a. Are connected by Specifically, at the node 18b of the bend point, a bracket 12b is externally fitted and fixed to each main pillar 12, and a corresponding end portion of the main pillar horizontal coupling member 19 is coupled to the bracket 12b. Thus, the adjacent main pillars 12 are connected in the horizontal direction. The arrangement of the main column horizontal connecting members 19 is the same as the arrangement of the main column horizontal connecting members 19 in the lowermost node 18a. Further, each main pillar horizontal connecting member 19 is provided with a mounting portion 19a similarly to the lowermost node 18a, and the mounting portions 19a of the adjacent main pillar horizontal connecting members 19 are connected by the first connecting bar 21a. Has been. The arrangement of the first connecting bars 21a is the same as the arrangement of the first connecting bars 21a in the lowermost node 18a.

また、鉄塔本体2のうち第1送電線アーム6の下辺に相当する高さ位置の節18cでは、隣り合う主柱12同士が主柱水平連結材19によって連結されている。詳細には、この第1送電線アーム6の下辺に相当する節18cでは、各主柱12にブラケット12bが外嵌されて固定されており、隣り合う主柱12にそれぞれ固定されたブラケット12b同士が主柱水平連結材19によって連結されている。この第1送電線アーム6の下辺に相当する節18cにおける主柱水平連結材19の構成は、前記ベンド点の節18bの対応する部分の構成と同様である。   Further, in the node 18 c at a height position corresponding to the lower side of the first power transmission line arm 6 in the tower main body 2, the adjacent main pillars 12 are connected by the main pillar horizontal connecting member 19. Specifically, in a node 18c corresponding to the lower side of the first power transmission line arm 6, brackets 12b are externally fitted and fixed to the main pillars 12, and the brackets 12b fixed to adjacent main pillars 12 are fixed to each other. Are connected by a main pillar horizontal connecting member 19. The configuration of the main column horizontal coupling member 19 at the node 18c corresponding to the lower side of the first transmission line arm 6 is the same as the configuration of the corresponding portion of the node 18b at the bend point.

地線アーム4は、図1に示すように、鉄塔本体2の最上部に取り付けられており、鉄塔本体2の最上部の両側にそれぞれ配置される架空地線104を前記隣り合う主柱12同士を結んで形成される正方形の一辺と略平行な方向に延びるように支持する。この地線アーム4は、鉄塔本体2の最上部のうち一方側の架空地線104に対向する側面と、鉄塔本体2の最上部のうち他方側の架空地線104に対向する側面とからそれぞれ張り出すように設けられている。すなわち、一対の地線アーム4が鉄塔本体2の最上部から両側に張り出している。そして、各地線アーム4は、その先端部で対応する架空地線104を支持する。   As shown in FIG. 1, the ground arm 4 is attached to the uppermost part of the tower main body 2, and the aerial ground wires 104 arranged on both sides of the uppermost part of the tower main body 2 are connected to the adjacent main pillars 12. Is supported so as to extend in a direction substantially parallel to one side of a square formed by connecting the two. The ground arm 4 includes a side surface facing the overhead ground wire 104 on one side of the uppermost part of the tower body 2 and a side surface facing the overhead ground wire 104 on the other side of the uppermost part of the tower body 2. It is provided to overhang. That is, a pair of ground wire arms 4 protrudes from the uppermost part of the tower main body 2 to both sides. The local arm 4 supports the corresponding overhead ground wire 104 at its tip.

第1送電線アーム6(以下、第1アーム6という)は、各送電線102のうち最も高い位置に位置する送電線102a(以下、上送電線102aという)を前記隣り合う主柱12同士を結んで形成される正方形の一辺と略平行な方向(前記架空地線104と同方向)に延びるように支持するものである。上送電線102aは、架空地線104の下方に離間した位置で鉄塔本体2の両側にそれぞれ配置されている。第1アーム6は、地線アーム4から下方に離間した位置で、鉄塔本体2のうち一方側の上送電線102aに対向する側面と、鉄塔本体2のうち他方側の上送電線102aに対向する側面とからそれぞれ張り出すように設けられている。すなわち、一対の第1アーム6が、地線アーム4から下方に離間した位置で鉄塔本体2から地線アーム4と同じ両側に張り出している。そして、各第1アーム6は、その先端部で対応する上送電線102aを支持する。   The first power transmission line arm 6 (hereinafter referred to as the first arm 6) is configured such that the power transmission line 102a (hereinafter referred to as the upper power transmission line 102a) positioned at the highest position among the power transmission lines 102 is connected to the adjacent main pillars 12. It supports so that it may extend in the direction (same direction as the said imaginary ground wire 104) substantially parallel to one side of the square formed by connecting. The upper power transmission line 102 a is disposed on both sides of the tower main body 2 at positions spaced below the overhead ground line 104. The first arm 6 faces the upper power transmission line 102a on one side of the tower main body 2 and faces the upper power transmission line 102a on the other side of the tower main body 2 at a position spaced downward from the ground arm 4. It is provided so that it may overhang from each side. That is, the pair of first arms 6 protrudes from the tower main body 2 on the same side as the ground arm 4 at a position spaced downward from the ground arm 4. Each first arm 6 supports the corresponding upper power transmission line 102a at its tip.

第2送電線アーム8(以下、第2アーム8という)は、各送電線102のうち2番目に高い位置に位置する送電線102b(以下、中送電線102bという)を前記上送電線102aと同方向に延びるように支持するものである。中送電線102bは、上送電線102aの下方に離間した位置で鉄塔本体2の両側にそれぞれ配置されている。第2アーム8の構成は、第1アーム6の構成と同様である。すなわち、一対の第2アーム8が、第1アーム6から下方に離間した位置で鉄塔本体2から第1アーム6と同じ両側に張り出しており、各第2アーム8は、先端部で対応する中送電線102bを支持する。   The second power transmission line arm 8 (hereinafter referred to as the second arm 8) is configured such that the power transmission line 102b (hereinafter referred to as the middle power transmission line 102b) located at the second highest position among the power transmission lines 102 is referred to as the upper power transmission line 102a. It is supported so as to extend in the same direction. The middle power transmission line 102b is disposed on both sides of the tower main body 2 at positions spaced below the upper power transmission line 102a. The configuration of the second arm 8 is the same as the configuration of the first arm 6. That is, the pair of second arms 8 protrudes from the tower body 2 to the same both sides as the first arm 6 at a position spaced downward from the first arm 6, and each second arm 8 has a corresponding middle at the tip. The power transmission line 102b is supported.

第3送電線アーム10(以下、第3アーム10という)は、各送電線102のうち最も低い位置に位置する送電線102c(以下、下送電線102cという)を前記中送電線102bと同方向に延びるように支持するものである。下送電線102cは、中送電線102bの下方に離間した位置で鉄塔本体2の両側にそれぞれ配置されている。第3アーム10の構成は、第2アーム8の構成と同様である。すなわち、一対の第3アーム10が、第2アーム8から下方に離間した位置で鉄塔本体2から第2アーム8と同じ両側に張り出しており、各第3アーム10は、先端部で対応する下送電線102cを支持する。   The third power transmission line arm 10 (hereinafter referred to as the third arm 10) has a power transmission line 102c (hereinafter referred to as the lower power transmission line 102c) located at the lowest position among the power transmission lines 102 in the same direction as the middle power transmission line 102b. It supports so that it may extend. The lower power transmission line 102c is disposed on each side of the tower main body 2 at a position spaced below the middle power transmission line 102b. The configuration of the third arm 10 is the same as the configuration of the second arm 8. That is, the pair of third arms 10 protrudes from the tower body 2 to the same both sides as the second arm 8 at a position spaced downward from the second arm 8, and each third arm 10 has a corresponding lower end at the tip. The power transmission line 102c is supported.

次に、本発明の一実施形態による送電線鉄塔の嵩上げのための補強工法のプロセスについて説明する。   Next, the process of the reinforcement construction method for raising the transmission line tower according to one embodiment of the present invention will be described.

本実施形態の補強工法では、まず、補強基礎24を設置するための基礎工事を行う。この基礎工事では、図4に示すように補強基礎24を既設鉄塔の隣り合う基礎16の間に設置する。   In the reinforcement method of the present embodiment, first, foundation work for installing the reinforcement foundation 24 is performed. In this foundation work, as shown in FIG. 4, the reinforcement foundation 24 is installed between the adjacent foundations 16 of an existing steel tower.

具体的には、送電線102が延びる方向と略平行な方向において隣り合う基礎16の間に補強基礎24を設置する。この補強基礎24の設置時には、設置場所の地面のうち図4及び図5中の符号Bで示す領域を掘削して形成した穴内に補強基礎24を設置し、その後、当該穴を埋め戻すことによって補強基礎24を埋設する。補強基礎24は、送電線102が延びる方向と略直交する方向に延びる長方形に形成する。そして、前記領域Bを掘削したことによって地盤による既設鉄塔の基礎16を押さえる力が不足するような場合には、図4に示すように、各基礎16が埋設された領域の上に土嚢17を設置することがある。   Specifically, the reinforcement foundation 24 is installed between the foundations 16 adjacent in a direction substantially parallel to the direction in which the power transmission line 102 extends. At the time of installing the reinforcing foundation 24, the reinforcing foundation 24 is installed in a hole formed by excavating the area indicated by the symbol B in FIGS. 4 and 5 in the ground of the installation location, and then the hole is backfilled. The reinforcing foundation 24 is embedded. The reinforcing foundation 24 is formed in a rectangular shape extending in a direction substantially orthogonal to the direction in which the power transmission line 102 extends. And when excavating the said area | region B, and the force which presses down the foundation 16 of the existing steel tower by the ground is insufficient, as shown in FIG. 4, the sandbag 17 is put on the area | region where each foundation 16 was embed | buried. May be installed.

次に、補強基礎24の上に第1補強支柱22と第2補強支柱23を立設する支柱立設工程を行う。この支柱立設工程では、既設鉄塔のうち隣接する主柱12同士を結んで形成される略正方形の領域内において、所定長さの複数の支柱構成部材を上下方向に繋ぎ合わせることにより送電線102の延びる方向と略直交する方向に並ぶ第1補強支柱22と第2補強支柱23を立設する。   Next, a column erecting step for erecting the first reinforcement column 22 and the second reinforcement column 23 on the reinforcement foundation 24 is performed. In this column erection step, the transmission line 102 is formed by connecting a plurality of column members having a predetermined length in the vertical direction in a substantially square region formed by connecting adjacent main columns 12 of the existing tower. The first reinforcing column 22 and the second reinforcing column 23 are erected in a direction substantially orthogonal to the extending direction of the first column.

当該支柱立設工程では、各送電線102に通電したまま、各補強支柱22,23の立設作業を行う。なお、鉄塔の幅が小さい場合には、左右の回線のうち少なくとも一方の回線側の送電線102への通電を停止してから補強支柱22,23の立設作業を行う場合もある。   In the column erection process, the reinforcement columns 22 and 23 are erected while the power transmission lines 102 are energized. When the width of the steel tower is small, the reinforcing columns 22 and 23 may be erected after stopping energization of the power transmission line 102 on at least one of the left and right lines.

この支柱立設構成では、具体的には、前記略正方形の領域内で、かつ、送電線102の延びる方向と略直交する方向において一方側(左回線側)に位置する2本の主柱12同士を繋ぐ辺に隣接した位置P1(図4参照)で、第1補強支柱22を構成する支柱構成部材の下部を補強基礎24中に埋め込み、その支柱構成部材の上部が補強基礎24の上面から上方に突出するように当該支柱構成部材を設置する。また、前記略正方形の領域内で、かつ、送電線102の延びる方向と略直交する方向において他方側(右回線側)に位置する2本の主柱12同士を繋ぐ辺に隣接した位置P2(図4参照)で、第2補強支柱23を構成する支柱構成部材を前記第1補強支柱22の支柱構成部材と同様に補強基礎24に設置する。なお、第1補強支柱22の全ての支柱構成部材及び第2補強支柱23の全ての支柱構成部材は、コンクリート充填鋼管からなる。このコンクリート充填鋼管は、円筒状の鋼管内にコンクリートを充填したものである。そして、補強基礎24に設置した2本の支柱構成部材の上端に同様の支柱構成部材をそれぞれ繋ぎ、その後、同様に複数の支柱構成部材を上へ繋いでいくことによって第1補強支柱22と第2補強支柱23を形成する。なお、両補強支柱22,23の上端部を構成する支柱構成部材には、その上端に予め後述のブラケット27aを外嵌させて固定しておき、そのブラケット27a付きの支柱構成部材を両補強支柱22,23の最上部に配設する。   Specifically, in this strut-standing configuration, the two main pillars 12 located on one side (left line side) in the substantially square area and in a direction substantially orthogonal to the direction in which the power transmission line 102 extends. At a position P1 (see FIG. 4) adjacent to the side connecting the two, the lower part of the strut constituent member constituting the first reinforcing strut 22 is embedded in the reinforcing base 24, and the upper part of the strut constituent member is from the upper surface of the reinforcing base 24. The said support | pillar structural member is installed so that it may protrude upwards. Further, a position P2 (adjacent to the side connecting the two main pillars 12 positioned on the other side (right line side) in the substantially square area and in the direction substantially orthogonal to the direction in which the power transmission line 102 extends) In FIG. 4), the strut constituting member constituting the second reinforcing strut 23 is installed on the reinforcing foundation 24 in the same manner as the strut constituting member of the first reinforcing strut 22. Note that all the strut constituent members of the first reinforcing struts 22 and all the strut constituent members of the second reinforcing struts 23 are made of concrete-filled steel pipes. This concrete-filled steel pipe is obtained by filling concrete into a cylindrical steel pipe. And the same support | pillar structure member is connected to the upper end of the two support | pillar structure members installed in the reinforcement foundation 24, respectively, and the 1st reinforcement support | pillar 22 and 1st are connected by connecting a several support | pillar structure member similarly after that. 2 Reinforcing struts 23 are formed. In addition, the below-mentioned bracket 27a is previously fitted and fixed to the upper end of the column constituting member constituting the upper ends of both reinforcing columns 22 and 23, and the column constituting member with the bracket 27a is fixed to the both reinforcing columns. Arranged at the top of 22 and 23.

また、両補強支柱22,23は、鉄塔本体2のうち後述する撤去部位の下端の位置、すなわち、主柱12の最上部の構成材12aとその下側の構成材12aとの接合部の高さ位置まで延びるように形成する(図9参照)。この両補強支柱の上端の高さ位置は、第1アーム6よりも高い位置であり、後述する嵩上げ後の鉄塔において下から2番目の第2アーム8aよりも高い位置である。また、第1補強支柱22が当該第1補強支柱22に近い方の2本の主柱12同士を結んで形成される面と概ね同じ傾斜角度で延びるように当該第1補強支柱22を形成するとともに、第2補強支柱23が当該第2補強支柱23に近い方の2本の主柱12同士を結んで形成される面と概ね同じ傾斜角度で延びるように当該第2補強支柱23を形成する。すなわち、両補強支柱22,23のうち地面から前記ベンド点の高さまでの部位の傾斜角度に比べて両補強支柱22,23のうち前記ベンド点よりも上の部位の傾斜角度が小さくなるように両補強支柱22,23を形成する。   Moreover, both the reinforcement support | pillars 22 and 23 are the position of the lower end of the removal site | part mentioned later among the tower main bodies 2, ie, the height of the junction part of the uppermost component material 12a of the main pillar 12, and the component material 12a of the lower side. It is formed so as to extend to the vertical position (see FIG. 9). The height positions of the upper ends of the two reinforcing struts are higher than the first arm 6 and higher than the second arm 8a that is second from the bottom in the raised steel tower described later. Further, the first reinforcing column 22 is formed so that the first reinforcing column 22 extends at substantially the same inclination angle as the surface formed by connecting the two main columns 12 closer to the first reinforcing column 22. At the same time, the second reinforcing column 23 is formed so that the second reinforcing column 23 extends at substantially the same inclination angle as the surface formed by connecting the two main columns 12 closer to the second reinforcing column 23. . That is, the inclination angle of the portion of the reinforcing struts 22 and 23 above the bend point is smaller than the inclination angle of the portion of the reinforcing struts 22 and 23 from the ground to the height of the bend point. Both reinforcing columns 22 and 23 are formed.

そして、本実施形態では、前記支柱立設工程中に、補強支柱間連結工程と、第1補強支柱−主柱間連結工程と、第2補強支柱−主柱間連結工程と、連結材−主柱間連結工程とを行う。   And in this embodiment, during the said support | pillar standing-up process, the connection process between reinforcement struts, a 1st reinforcement support | pillar-main pillar connection process, a 2nd reinforcement support | pillar-main pillar connection process, a connection material-main The column connecting process is performed.

補強支柱間連結工程では、第1補強支柱22と第2補強支柱23とを高さ方向における複数の箇所で第1連結材25によって連結する。この補強支柱間連結工程は、本発明の第1連結工程の概念に含まれるものである。そして、前記第1連結材25は、第1斜め連結材26と第1水平連結材27とからなり、補強支柱間連結工程は、第1斜め連結材26によって第1補強支柱22と第2補強支柱23とを互いに連結する補強支柱間斜め連結工程と、第1水平連結材27によって第1補強支柱22と第2補強支柱23とを互いに連結する補強支柱間水平連結工程とからなる。補強支柱間斜め連結工程は、本発明の斜め連結工程の概念に含まれるものであり、補強支柱間水平連結工程は、本発明の水平連結工程の概念に含まれるものである。   In the reinforcing strut connecting step, the first reinforcing strut 22 and the second reinforcing strut 23 are connected by the first connecting member 25 at a plurality of locations in the height direction. This reinforcing strut connecting step is included in the concept of the first connecting step of the present invention. The first connecting member 25 includes a first diagonal connecting member 26 and a first horizontal connecting member 27. In the connecting step between the reinforcing struts, the first reinforcing connecting member 22 and the second reinforcing struts are connected by the first oblique connecting member 26. It consists of the diagonal connection process between the reinforcement struts which mutually connects the support pillars 23, and the horizontal connection process between the reinforcement struts which connects the first reinforcement support pillars 22 and the second reinforcement support pillars 23 with each other by the first horizontal connection member 27. The diagonal connection process between reinforcement columns is included in the concept of the diagonal connection process of the present invention, and the horizontal connection process between reinforcement columns is included in the concept of the horizontal connection process of the present invention.

補強支柱間斜め連結工程では、図9に示すように、第1補強支柱22と第2補強支柱23との間で高さ方向に対して斜めに延び、互いに交差する複数の第1斜め連結材26によって第1補強支柱22と第2補強支柱23とを互いに連結する。なお、図9、図10及び図12〜図15では、第1斜め連結材26を分かりやすくするために破線で第1斜め連結材26を示している。そして、補強支柱間斜め連結工程における具体的な手順としては、上記支柱立設工程において両補強支柱22,23の最下部を構成する2本の支柱構成部材を補強基礎24に立設した後、その2本の支柱構成部材同士をそれらの間で互いに交差する2本の第1斜め連結材26によって連結する。さらに、上記支柱立設工程において両補強支柱22,23の下側の支柱構成部材の上に別の支柱構成部材を繋ぐ毎にその繋いだ2本の支柱構成部材同士を互いに交差する第1斜め連結材26によって連結する。このようにして、第1補強支柱22と第2補強支柱23との間に多数の第1斜め連結材26によってトラス構造を形成する。第1斜め連結材26としては、直線的に延びるパイプ(円筒管)の両端にそれぞれ補強支柱22,23への取り付け用のプレートを溶接したものを用いる。そして、補強支柱22,23の各支柱構成部材には、その外面のうち鉄塔の左右方向の内側に面する位置に取り付け用のプレートを溶接しておき、その支柱構成部材のプレートと第1斜め連結材26の端部のプレートとをボルト・ナットで締結することにより、第1斜め連結材26の端部を補強支柱22,23に固定する。なお、以下の各連結工程においても部材同士の結合は、同様の締結によって行う。   In the diagonal connecting step between the reinforcing columns, as shown in FIG. 9, a plurality of first diagonal connecting members that extend obliquely with respect to the height direction between the first reinforcing column 22 and the second reinforcing column 23 and intersect each other. The first reinforcing column 22 and the second reinforcing column 23 are connected to each other by 26. In FIGS. 9, 10, and 12 to 15, the first oblique coupling member 26 is indicated by a broken line in order to make the first oblique coupling member 26 easy to understand. And, as a specific procedure in the step of diagonally connecting the reinforcing struts, after standing the two strut constituent members constituting the lowermost part of the both reinforcing struts 22 and 23 on the reinforcing foundation 24 in the strut standing step, The two support | pillar structural members are connected by the two 1st diagonal connection materials 26 which mutually cross | intersect between them. Furthermore, every time another strut component is connected to the lower strut component on the lower side of the reinforcing struts 22 and 23 in the strut erection step, the two diagonal strut members that intersect with each other are crossed with each other. They are connected by a connecting material 26. In this way, a truss structure is formed between the first reinforcing column 22 and the second reinforcing column 23 by the large number of first oblique connecting members 26. As the 1st diagonal connection material 26, what welded the plate for attachment to the reinforcement support | pillars 22 and 23 to the both ends of the pipe (cylindrical pipe) extended linearly, respectively is used. And the plate for attachment is welded to the position which faces the inner side of the left-right direction of a steel tower among the outer surface of each support | pillar structure member of the reinforcement support | pillars 22 and 23, and the plate of the support | pillar structure member and 1st diagonal The end portion of the first diagonal connecting member 26 is fixed to the reinforcing columns 22 and 23 by fastening the end plate of the connecting member 26 with bolts and nuts. In addition, also in each following connection process, the coupling | bonding of members is performed by the same fastening.

また、補強支柱間水平連結工程では、前記支柱立設工程中に、第1補強支柱22と第2補強支柱23との間で水平方向に延びる第1水平連結材27によって第1補強支柱22と第2補強支柱23とを互いに連結する。具体的には、この補強支柱間水平連結工程では、最下節18a(図6参照)と、ベンド点の節18b(図7参照)と、第1アーム6の下辺の位置の節18c(図8参照)とにおいてそれぞれ第1水平連結材27によって両補強支柱22,23同士を連結する。   In the horizontal connecting step between the reinforcing columns, the first reinforcing column 22 and the first reinforcing column 22 are extended by the first horizontal connecting member 27 extending in the horizontal direction between the first reinforcing column 22 and the second reinforcing column 23 during the column setting step. The 2nd reinforcement support | pillar 23 is mutually connected. Specifically, in the horizontal connecting step between the reinforcing struts, the lowest joint 18a (see FIG. 6), the bend point joint 18b (see FIG. 7), and the joint 18c (see FIG. 8), the reinforcing struts 22 and 23 are connected to each other by the first horizontal connecting member 27.

最下節18aでは、第1水平連結材27は一対のブラケット27aと、アングル材等からなる第1補強連結材27bとを有する。この最下節18aでは、両補強支柱22,23にそれぞれブラケット27aを外嵌させて固定し、そのブラケット27a同士を送電線102に対して略直交する方向へ水平に延びる第1補強連結材27bによって連結することにより、両補強支柱22,23同士を連結する。   In the lowermost node 18a, the first horizontal connecting member 27 has a pair of brackets 27a and a first reinforcing connecting member 27b made of an angle member or the like. In the lowermost node 18a, brackets 27a are externally fitted and fixed to both the reinforcing struts 22 and 23, and the first reinforcing connecting members 27b extending horizontally in a direction substantially orthogonal to the power transmission line 102 between the brackets 27a. The two reinforcing struts 22 and 23 are connected to each other by connecting with each other.

また、ベンド点の節18bでも、前記第1水平連結材27は一対のブラケット27aと、アングル材等からなる第1補強連結材27bとを有する。そして、このベンド点の節18bでは、最下節18aの場合と同様、両補強支柱22,23にそれぞれブラケット27aを外嵌させて固定し、そのブラケット27a同士を送電線102に対して略直交する方向へ水平に延びる第1補強連結材27bによって連結することにより、両補強支柱22,23同士を連結する。   Also at the node 18b of the bend point, the first horizontal connecting member 27 has a pair of brackets 27a and a first reinforcing connecting member 27b made of an angle member or the like. At the bend point node 18b, as in the case of the lowermost node 18a, brackets 27a are externally fitted and fixed to the reinforcing struts 22 and 23, respectively, and the brackets 27a are substantially orthogonal to the power transmission line 102. The two reinforcing struts 22 and 23 are connected to each other by being connected by the first reinforcing connecting member 27b extending horizontally in the direction in which they are to be connected.

また、第1アーム6の下辺の位置の節18cでは、第1水平連結材27はアングル材等からなる第1補強連結材27bである。そして、当該節18cでは、各補強支柱22,23の外面の互いに対向する部位に突設されたリブ22a,23aに対して第1補強連結材27bの対応する端部を締結することによって両補強支柱22,23同士を連結する。当該節18cにおいて、第1補強連結材27bは、前記ベンド点の節18bにおける第1補強連結材27bと平行に延びるように配置する。   In the node 18c at the lower side of the first arm 6, the first horizontal connecting member 27 is a first reinforcing connecting member 27b made of an angle member or the like. And in the said node 18c, both reinforcement is carried out by fastening the corresponding edge part of the 1st reinforcement connection material 27b with respect to rib 22a, 23a protrudingly provided in the mutually opposing site | part of the outer surface of each reinforcement support | pillar 22,23. The support columns 22 and 23 are connected to each other. In the node 18c, the first reinforcing connecting member 27b is arranged to extend in parallel with the first reinforcing connecting member 27b in the node 18b at the bend point.

第1補強支柱−主柱間連結工程では、前記支柱立設工程中に、第1補強支柱22と左回線側に位置する2本の主柱12、すなわち各主柱12のうち第1補強支柱22に近い方の2本の主柱12とを高さ方向における複数の箇所で第2連結材28によってそれぞれ連結する。なお、この第1補強支柱−主柱間連結工程は、本発明の第2連結工程の概念に含まれるものである。   In the first reinforcing column-main column connecting step, the first reinforcing column 22 among the two main columns 12 positioned on the left line side with the first reinforcing column 22, that is, the first reinforcing column 12 during the column erecting step. The two main pillars 12 closer to 22 are connected by a second connecting member 28 at a plurality of locations in the height direction. In addition, this 1st reinforcement support | pillar-main-pillar connection process is included in the concept of the 2nd connection process of this invention.

具体的には、第1補強支柱−主柱間連結工程では、第1補強支柱22の立設工程において複数の支柱構成部材を上方へ繋いでいく途中に、下側の支柱構成部材の上に繋いだ支柱構成部材を第2連結材28によって左回線側の2本の主柱12と連結する。   Specifically, in the first reinforcing strut-main pillar connecting step, on the way of connecting the plurality of strut constituent members upward in the standing step of the first reinforcing strut 22, on the lower strut constituent member. The connected strut constituent members are connected to the two main pillars 12 on the left line side by the second connecting member 28.

そして、第1補強支柱−主柱間連結工程では、ベンド点の節18bと、第1アーム6の下辺の位置の節18cとにおいてそれぞれ第2連結材28によって第1補強支柱22と左回線側に位置する2本の主柱12とを連結する。   In the first reinforcing column-main column connecting step, the first reinforcing column 22 and the left line side are connected by the second connecting member 28 at the node 18b at the bend point and the node 18c at the lower side of the first arm 6, respectively. The two main pillars 12 located in the are connected.

ベンド点の節18bでは、第2連結材28は、第1補強支柱22に外嵌されて固定されたブラケット27aと、主柱12に外嵌されて固定されたブラケット12bと、アングル材からなる第2補強連結材28aとによって構成される。そして、このベンド点の節18bでは、第1補強支柱22に固定されたブラケット27aと、前記2本の主柱12のうち一方の主柱12に固定されたブラケット12bとを、水平面においてその第1補強支柱22と一方の主柱12とを直線的に結ぶ方向に延びる第2補強連結材28aによって連結する。また、第1補強支柱22に固定されたブラケット27aと、他方の主柱12に固定されたブラケット12bとを、水平面においてその第1補強支柱22と他方の主柱12とを直線的に結ぶ方向に延びる第2補強連結材28aによって連結する。   In the node 18b at the bend point, the second connecting member 28 includes a bracket 27a that is externally fitted and fixed to the first reinforcing column 22, a bracket 12b that is externally fitted and fixed to the main column 12, and an angle member. It is comprised by the 2nd reinforcement connection material 28a. At the bend point node 18b, the bracket 27a fixed to the first reinforcing column 22 and the bracket 12b fixed to one main column 12 of the two main columns 12 are arranged in the horizontal plane. The first reinforcing column 22 and the one main pillar 12 are connected by a second reinforcing connecting member 28a extending in a direction linearly connecting. In addition, the bracket 27a fixed to the first reinforcing column 22 and the bracket 12b fixed to the other main column 12 are linearly connected to the first reinforcing column 22 and the other main column 12 in the horizontal plane. It connects by the 2nd reinforcement connection material 28a extended in this.

また、第1アーム6の下辺の位置の節18cでは、第2連結材28は、主柱12に外嵌されて固定されたブラケット12bと、アングル材からなる第2補強連結材28aによって構成される。そして、当該節18cでは、第1補強支柱22の外面から隣接する2本の主柱12側へ向かってそれぞれリブ22bが突設されており、その各リブ22bと対応する主柱12に固定されたブラケット12bとを第2補強連結材28aによって連結する。この際、第2補強連結材28aは、前記ベンド点の節18bにおける第2補強連結材28aと平行に延びるように配置する。   In the node 18c at the lower side of the first arm 6, the second connecting member 28 is constituted by a bracket 12b that is externally fitted and fixed to the main pillar 12, and a second reinforcing connecting member 28a made of an angle member. The In the node 18c, ribs 22b project from the outer surface of the first reinforcing column 22 toward the adjacent two main columns 12 and are fixed to the main columns 12 corresponding to the ribs 22b. The bracket 12b is connected by the second reinforcing connecting member 28a. At this time, the second reinforcing connecting member 28a is disposed so as to extend in parallel with the second reinforcing connecting member 28a at the node 18b at the bend point.

また、第2補強支柱−主柱間連結工程では、前記支柱立設工程中に、第2補強支柱23と右回線側に位置する2本の主柱12、すなわち各主柱12のうち第2補強支柱23に近い方の2本の主柱12とを高さ方向における複数の箇所で第3連結材30によってそれぞれ連結する。なお、この第2補強支柱−主柱間連結工程は、本発明の第3連結工程の概念に含まれるものである。   Further, in the second reinforcing column-main column connecting step, the second reinforcing column 23 and the two main columns 12 positioned on the right line side, that is, the second of the main columns 12 during the column erecting step. The two main pillars 12 closer to the reinforcing column 23 are connected to each other by a third connecting member 30 at a plurality of locations in the height direction. In addition, this 2nd reinforcement strut-main pillar connection process is included in the concept of the 3rd connection process of this invention.

具体的には、第2補強支柱−主柱間連結工程では、前記第1補強支柱−主柱間連結工程と同様、第2補強支柱23の立設工程において複数の支柱構成部材を上方へ繋いでいく途中に、下側の支柱構成部材の上に繋いだ支柱構成部材を第3連結材30によって右回線側の2本の主柱12と連結する。   Specifically, in the second reinforcing strut-main pillar connecting step, a plurality of strut constituent members are connected upward in the standing step of the second reinforcing strut 23 as in the first reinforcing strut-main pillar connecting step. On the way, the strut component connected on the lower strut component is connected to the two main pillars 12 on the right line side by the third connecting member 30.

そして、第2補強支柱−主柱間連結工程では、ベンド点の節18bと、第1アーム6の下辺の位置の節18cとにおいてそれぞれ第3連結材30によって第2補強支柱23と右回線側に位置する2本の主柱12とを連結する。この第2補強支柱−主柱間連結工程における第2補強支柱23と主柱12との連結方法及び連結構造は、前記第1補強支柱−主柱間連結工程における第1補強支柱22と主柱12との連結方法及び連結構造と同様である。   In the second reinforcing column-main column connecting step, the second reinforcing column 23 and the right line side are connected by the third connecting member 30 at the node 18b at the bend point and the node 18c at the lower side of the first arm 6, respectively. The two main pillars 12 located in the are connected. The connection method and the connection structure between the second reinforcing column 23 and the main column 12 in the second reinforcing column-main column connecting step are the first reinforcing column 22 and the main column in the first reinforcing column-main column connecting step. 12 is the same as the connection method and connection structure.

すなわち、ベンド点の節18bでは、第3連結材30は、第2補強支柱23に外嵌されて固定されたブラケット27aと、主柱12に外嵌されて固定されたブラケット12bと、アングル材からなる第3補強連結材30aとによって構成される。そして、その両ブラケット27a,12b同士を前記第2連結材28の場合と同様にして第3補強連結材30aによって連結する。この際、2本の第3補強連結材30aを送電線102の延びる方向に略直交する方向において2本の前記第2補強連結材28aと対称的に配置する。   That is, at the node 18b at the bend point, the third connecting member 30 includes a bracket 27a that is externally fitted and fixed to the second reinforcing column 23, a bracket 12b that is externally fitted and fixed to the main column 12, and an angle member. And a third reinforcing connecting member 30a. The brackets 27a and 12b are connected to each other by the third reinforcing connecting member 30a in the same manner as the second connecting member 28. At this time, the two third reinforcing connecting members 30a are arranged symmetrically with the two second reinforcing connecting members 28a in a direction substantially orthogonal to the direction in which the power transmission line 102 extends.

また、第1アーム6の下辺の位置の節18cでは、第3連結材30は、主柱12に外嵌されて固定されたブラケット12bと、アングル材からなる第3補強連結材30aによって構成される。そして、そのブラケット12bと、第2補強支柱23に設けられたリブ23bとを、前記第2連結材28の場合と同様にして第3補強連結材30aにより連結する。この際、2本の第3補強連結材30aを送電線102の延びる方向に略直交する方向において2本の前記第2補強連結材28aと対称的に配置する。   In the node 18c at the lower side of the first arm 6, the third connecting member 30 is constituted by a bracket 12b that is externally fitted and fixed to the main pillar 12, and a third reinforcing connecting member 30a made of an angle member. The And the bracket 12b and the rib 23b provided in the 2nd reinforcement support | pillar 23 are connected by the 3rd reinforcement connection material 30a similarly to the case of the said 2nd connection material 28. FIG. At this time, the two third reinforcing connecting members 30a are arranged symmetrically with the two second reinforcing connecting members 28a in a direction substantially orthogonal to the direction in which the power transmission line 102 extends.

また、連結材−主柱間連結工程では、最下節18aと、ベンド点の節18bと、第1アーム6の下辺の位置の節18cとにおいて、それぞれ、第1補強連結材27bと各主柱12とを第4連結材32によって連結する。この連結材−主柱間連結工程は、本発明の第4連結工程の概念に含まれるものである。   Further, in the connecting member-main column connecting step, the first reinforcing connecting member 27b and each of the main joints are provided at the lowermost node 18a, the bend point node 18b, and the node 18c at the lower side of the first arm 6, respectively. The column 12 is connected to the fourth connecting member 32. This connecting material-main pillar connecting step is included in the concept of the fourth connecting step of the present invention.

まず、最下節18aでは、第4連結材32は、略八角形の固定板32aと、アングル材からなる4本の第4補強連結材32bと、端部結合材32cとを有する。この最下節18aでは、第1補強連結材27bの長手方向の中心位置の上に固定板32aを重ね合せて結合する。そして、4本の第4補強連結材32bの一端部に端部結合材32cを結合させる。そして、各第4補強連結材32bを固定板32aから正方形の各頂点に位置する主柱12側へその正方形の対角線に沿って直線的に延びるように配置し、その各第4補強連結材32bの一端部に結合された端部結合材32cを対応する主柱12に設けられたリブ12dに結合させるとともに、各第4補強連結材32bの他端部を固定板32aの下に重ねて結合させる。また、各第4補強連結材32bは、その長手方向の中心位置近傍の部位で第1連結桟21aと交差するので、その部位を対応する第1連結桟21aに結合させる。   First, in the lowest joint 18a, the fourth connecting member 32 includes a substantially octagonal fixing plate 32a, four fourth reinforcing connecting members 32b made of an angle member, and an end joint member 32c. In the lowermost node 18a, the fixing plate 32a is overlapped and coupled on the center position in the longitudinal direction of the first reinforcing connecting member 27b. Then, the end joint member 32c is joined to one end portion of the four fourth reinforcing connecting members 32b. And each 4th reinforcement connection material 32b is arrange | positioned so that it may extend linearly along the diagonal of the square from the fixed board 32a to the main pillar 12 side located in each vertex of a square, The each 4th reinforcement connection material 32b The end coupling member 32c coupled to one end of each of the first reinforcing coupling members 32b is coupled to the rib 12d provided on the corresponding main pillar 12, and the other end of each fourth reinforcing coupling member 32b is coupled under the fixing plate 32a. Let In addition, each fourth reinforcing connecting member 32b intersects the first connecting bar 21a at a part near the center position in the longitudinal direction, so that the part is coupled to the corresponding first connecting bar 21a.

また、ベンド点の節18bでは、第4連結材32は、固定板32aと、アングル材からなる4本の第4補強連結材32bと、各主柱12に外嵌されて固定されたブラケット12bとによって構成される。このベンド点の節18bでは、各第4補強連結材32bの一端部を対応する主柱12に固定されたブラケット12b上に載せてそのブラケット12bに結合させること以外は、前記最下節18aの場合と同様にして第1補強連結材27bと各主柱12とを連結する。   Further, at the node 18b at the bend point, the fourth connecting member 32 includes a fixing plate 32a, four fourth reinforcing connecting members 32b made of angle members, and a bracket 12b that is externally fitted and fixed to each main pillar 12. It is comprised by. In the node 18b at the bend point, one end portion of each fourth reinforcing connecting member 32b is placed on the bracket 12b fixed to the corresponding main pillar 12 and coupled to the bracket 12b. Similarly to the case, the first reinforcing connecting member 27b and each main pillar 12 are connected.

また、第1アーム6の下辺の位置の節18cでは、第4連結材32は、固定板32dと、アングル材からなる2種類の第4補強連結材32e,32fと、各主柱12に外嵌されて固定されたブラケット12bとによって構成される。当該節18cでは、固定板32dを第1補強連結材27bの長手方向の中心位置の上に設置し、当該固定板32dを第1補強連結材27bに結合させる。   Further, at the node 18c at the lower side of the first arm 6, the fourth connecting member 32 is fixed to the fixing plate 32d, two types of fourth reinforcing connecting members 32e and 32f made of angle members, and the main pillars 12 to the outside. The bracket 12b is fitted and fixed. In the node 18c, the fixing plate 32d is installed on the longitudinal center position of the first reinforcing connecting member 27b, and the fixing plate 32d is coupled to the first reinforcing connecting member 27b.

また、前記2種類の第4補強連結材32e,32fのうち一方の第4補強連結材32eは、対角に位置する2本の主柱12間の距離にほぼ等しい長さを有しており、もう一方の第4補強連結材32fは、前記一方の第4補強連結材32eの約半分の長さを有している。そして、長さの短い方の第4補強連結材32fを固定板32dから一方の主柱12(図8中の左上側の主柱12)に固定されたブラケット12bに跨るようにそれら固定板32d及びブラケット12bの上に配置し、第4補強連結材32fの一端部と固定板32d及び第4補強連結材32eの他端部とブラケット12bをそれぞれ結合させる。同様に、もう1つの長さの短い方の第4補強連結材32fを固定板32dから他方の主柱12(図8中の右下側の主柱12)に固定されたブラケット12bに跨るように配置し、それら固定板32d及びブラケット12bに結合させる。なお、これら2本の第4補強連結材32fは、一直線上に位置するように配置する。また、長さの大きい方の第4補強連結材32eを前記長さの小さい方の第4補強連結材32fが配置された対角線と直交する対角線上に配置し、当該第4補強連結材32eの両端部を対応する主柱12(図8中の右上側の主柱12と左下側の主柱12)に固定されたブラケット12b上にそれぞれ重ねて結合させるとともに、当該第4補強連結材32eの長手方向の中心位置近傍の部位を固定板32d上に重ねて結合させる。なお、この長さの大きい方の第4補強連結材32eの代わりに2本の前記長さの小さい方の第4補強連結材32eと同様のものを用いてもよい。   One of the two types of fourth reinforcing connecting members 32e, 32f has a length substantially equal to the distance between the two main pillars 12 positioned diagonally. The other fourth reinforcing connecting member 32f has about half the length of the fourth reinforcing connecting member 32e. Then, the shorter fourth reinforcing connecting member 32f is fixed to the fixing plate 32d so as to straddle the bracket 12b fixed to one main pillar 12 (the upper left main pillar 12 in FIG. 8). And the other end of the fourth reinforcing connecting member 32d and the other end of the fourth reinforcing connecting member 32e and the bracket 12b are coupled to each other. Similarly, the other shorter fourth reinforcing connecting member 32f extends over the bracket 12b fixed to the other main pillar 12 (the lower right main pillar 12 in FIG. 8) from the fixing plate 32d. And are coupled to the fixing plate 32d and the bracket 12b. In addition, these two 4th reinforcement connection materials 32f are arrange | positioned so that it may be located on a straight line. Further, the fourth reinforcing connecting member 32e having the longer length is arranged on a diagonal line orthogonal to the diagonal line on which the fourth reinforcing connecting member 32f having the shorter length is arranged, and the fourth reinforcing connecting member 32e of the fourth reinforcing connecting member 32e is arranged. Both ends are overlapped and coupled to brackets 12b fixed to corresponding main pillars 12 (upper right main pillar 12 and lower left main pillar 12 in FIG. 8), and the fourth reinforcing connecting member 32e A portion in the vicinity of the center position in the longitudinal direction is overlapped and joined on the fixing plate 32d. Instead of the fourth reinforcing connecting member 32e having a longer length, the same two reinforcing reinforcing members 32e having the smaller length may be used.

そして、上記各連結工程の後、地線アーム4及び鉄塔本体2の上端から1つ目の構成材12aの下端までの部位からなる撤去部位を撤去する撤去工程を行う(図9及び図10参照)。この撤去工程では、まず、2本の架空地線104をそれぞれ対応する地線アーム4から外し、第1アーム6の上部に仮支持させる。その後、2つの地線アーム4を撤去し、さらに、鉄塔本体2の各主柱12の最上部を構成している構成材12aをその下側の構成材12aから取り外すことにより既設鉄塔から撤去部位を撤去する。   And after each said connection process, the removal process which removes the removal site | part which consists of a site | part from the upper end of the ground wire arm 4 and the tower main body 2 to the lower end of the 1st component 12a is performed (refer FIG.9 and FIG.10). ). In this removal step, first, the two aerial ground wires 104 are removed from the corresponding ground wire arms 4 and temporarily supported on the upper portions of the first arms 6. Thereafter, the two ground arms 4 are removed, and further, the component 12a constituting the uppermost part of each main pillar 12 of the tower main body 2 is removed from the component 12a on the lower side, thereby removing the existing steel tower from the existing tower. Remove.

この後、前記撤去部位の下端の高さ位置、すなわち、前記撤去部位を撤去後の既設鉄塔の上端の位置において、図11に示すように、主柱間連結工程により隣り合う主柱12の上端同士を連結するとともに、補強支柱上端間連結工程、第1補強支柱−近方主柱間連結工程、第1補強支柱−遠方主柱間連結工程、第2補強支柱−近方主柱間連結工程及び第2補強支柱−遠方主柱間連結工程により補強支柱22,23に係る連結構造を形成する。   Thereafter, at the height position of the lower end of the removal site, that is, the position of the upper end of the existing steel tower after removing the removal site, as shown in FIG. While connecting each other, the connecting step between the upper ends of the reinforcing columns, the connecting step between the first reinforcing column and the near main column, the connecting step between the first reinforcing column and the distant main column, the connecting step between the second reinforcing column and the near main column, and the second reinforcement. The connection structure related to the reinforcing columns 22 and 23 is formed by the column-distant main column coupling step.

具体的には、主柱間連結工程では、各主柱12の上端にそれぞれブラケット12bを外嵌させて固定し、隣り合う主柱12に取り付けられたブラケット12b同士を主柱水平連結材19によって連結する。   Specifically, in the connecting step between the main pillars, the brackets 12b are externally fitted and fixed to the upper ends of the main pillars 12, and the brackets 12b attached to the adjacent main pillars 12 are connected to each other by the main pillar horizontal connecting member 19. Link.

また、補強支柱上端間連結工程では、前記撤去部位を撤去した後の既設鉄塔の上端の位置において、第1補強支柱22の上端と第2補強支柱23の上端とを第1水平連結材27によって互いに連結する。この補強支柱上端間連結工程は、本発明の第1連結工程及び水平連結工程の概念に含まれる。具体的には、この補強支柱上端間連結工程で用いる第1水平連結材27は、一対のブラケット27aと、アングル材等からなる2本の第1補強連結材27bとを有する。そして、この補強支柱上端間連結工程では、両補強支柱22,23の上端に予め取り付けられたブラケット27a同士を送電線102に対して略直交する方向へ水平に延びる2本の第1補強連結材27bによって連結することにより、両補強支柱22,23同士を連結する。2本の第1補強連結材27bは、互いに平行かつ接触するように配置し、ブラケット27aの下面に対して固定する。   Further, in the connection step between the upper ends of the reinforcing columns, the upper end of the first reinforcing column 22 and the upper end of the second reinforcing column 23 are connected by the first horizontal connecting member 27 at the position of the upper end of the existing steel tower after the removal site is removed. Connect to each other. This connection step between the upper ends of the reinforcing struts is included in the concept of the first connection step and the horizontal connection step of the present invention. Specifically, the first horizontal connecting member 27 used in the connecting step between the upper ends of the reinforcing struts has a pair of brackets 27a and two first reinforcing connecting members 27b made of an angle member or the like. And in this reinforcement strut upper end connection process, the two 1st reinforcement connection materials which extend horizontally in the direction in which brackets 27a previously attached to the upper ends of both reinforcement struts 22 and 23 are almost orthogonal to transmission line 102 By connecting by 27b, both the reinforcement support | pillars 22 and 23 are connected. The two first reinforcing connecting members 27b are arranged so as to be parallel and in contact with each other, and are fixed to the lower surface of the bracket 27a.

また、第1補強支柱−近方主柱間連結工程では、前記撤去部位を撤去した後の既設鉄塔の上端の位置において、4本の主柱12のうち第2補強支柱23よりも第1補強支柱22に近い2本の主柱12の上端と第1補強支柱22の上端とを第2連結材28によって連結する。この第1補強支柱−近方主柱間連結工程は、本発明の第2連結工程の概念に含まれる。具体的には、この第1補強支柱−近方主柱間連結工程で用いる第2連結材28は、第1補強支柱22の上端に取り付けたブラケット27aと、アングル材からなる2本の第2補強連結材28aと、第1補強支柱22に近い方の2本の主柱12の上端に取り付けられたブラケット12bとからなる。そして、この第1補強支柱−近方主柱間連結工程では、第1補強支柱22の上端に予め取り付けられたブラケット27aと、第1補強支柱22に近い方の2本の主柱12のうち一方の主柱12(図11で左上側の主柱12)の上端に外嵌させて固定したブラケット12bとの上に一方の第2補強連結材28aを跨るように配置し、その第2補強連結材28aの各端部を対応するブラケット27a又は12bに結合させる。また、第1補強支柱22の上端に取り付けられたブラケット27aと、第1補強支柱22に近い方の2本の主柱12のうち他方の主柱12(図11で左下側の主柱12)の上端に外嵌させて固定したブラケット12bとの上にもう一方の第5補強連結材42aを跨るように配置し、その第5補強連結材42aの各端部を対応するブラケット27a又は12bに結合させる。   Further, in the first reinforcing column-near main column connecting step, the first reinforcing column 22 is more than the second reinforcing column 23 among the four main columns 12 at the position of the upper end of the existing steel tower after the removal site is removed. The upper ends of the two main pillars 12 close to each other and the upper ends of the first reinforcing columns 22 are connected by a second connecting member 28. This first reinforcing column-near main column connecting step is included in the concept of the second connecting step of the present invention. Specifically, the second connecting member 28 used in the first reinforcing column-near main column connecting step includes a bracket 27a attached to the upper end of the first reinforcing column 22 and two second reinforcing members made of angle members. It consists of a material 28a and a bracket 12b attached to the upper ends of the two main pillars 12 closer to the first reinforcing pillars 22. In the first reinforcing column-near main column connecting step, one of the bracket 27a attached in advance to the upper end of the first reinforcing column 22 and the two main columns 12 closer to the first reinforcing column 22 is provided. The second reinforcing connecting member is disposed so as to straddle the second reinforcing connecting member 28a on the bracket 12b that is externally fitted and fixed to the upper end of the main pillar 12 (the upper left main pillar 12 in FIG. 11). Each end of 28a is coupled to a corresponding bracket 27a or 12b. Also, the bracket 27a attached to the upper end of the first reinforcing column 22 and the other main column 12 of the two main columns 12 closer to the first reinforcing column 22 (the main column 12 on the lower left side in FIG. 11). It is arranged so as to straddle the other fifth reinforcing connecting member 42a on the bracket 12b that is externally fitted and fixed to the upper end of the upper end of each of the fifth reinforcing connecting members 42a. Combine.

また、第1補強支柱−遠方主柱間連結工程では、前記撤去部位を撤去した後の既設鉄塔の上端の位置において、4本の主柱12のうち第1補強支柱22よりも第2補強支柱23に近い2本の主柱12(第1補強支柱22から遠い方の2本の主柱12)の上端と第1補強支柱22の上端とを第5連結材42によって連結する。この第1補強支柱−遠方主柱間連結工程は、本発明の第5連結工程の概念に含まれる。具体的には、この第1補強支柱−遠方主柱間連結工程で用いる第5連結材42は、第1補強支柱22の上端に取り付けたブラケット27aと、アングル材からなる2本の第5補強連結材42aと、第1補強支柱22から遠い方の2本の主柱12の上端に取り付けられたブラケット12bとからなる。そして、この第1補強支柱−遠方主柱間連結工程では、第1補強支柱22の上端に予め取り付けられたブラケット27aと、第1補強支柱22から遠い方の2本の主柱12のうち一方の主柱12(図11で右上側の主柱12)の上端に外嵌させて固定したブラケット12bとの上に一方の第5補強連結材42aを跨るように配置し、その第5補強連結材42aの各端部を対応するブラケット27a又は12bに結合させる。また、第1補強支柱22の上端に取り付けられたブラケット27aと、第1補強支柱22から遠い方の2本の主柱12のうち他方の主柱12(図11で右下側の主柱12)の上端に外嵌させて固定したブラケット12bとの下にもう一方の第5補強連結材42aを跨るように配置し、その第5補強連結材42aの各端部を対応するブラケット27a又は12bに結合させる。   In the first reinforcing column-distant main column connecting step, the second reinforcing column than the first reinforcing column 22 among the four main columns 12 at the position of the upper end of the existing steel tower after the removal site is removed. The upper ends of the two main pillars 12 (two main pillars 12 far from the first reinforcing pillars 22) near 23 and the upper ends of the first reinforcing pillars 22 are connected by a fifth connecting member 42. This first reinforcing column-distant main column connecting step is included in the concept of the fifth connecting step of the present invention. Specifically, the fifth connecting member 42 used in the first reinforcing column-distant main column connecting step includes a bracket 27a attached to the upper end of the first reinforcing column 22 and two fifth reinforcing members made of angle members. The connecting member 42 a and the bracket 12 b attached to the upper ends of the two main pillars 12 far from the first reinforcing column 22. In the first reinforcing column-distant main column connecting step, one of the bracket 27a attached in advance to the upper end of the first reinforcing column 22 and the two main columns 12 far from the first reinforcing column 22 is used. The fifth reinforcing connection member 42a is disposed so as to straddle the bracket 12b that is externally fitted and fixed to the upper end of the main pillar 12 (the upper right main pillar 12 in FIG. 11). Each end of the material 42a is coupled to the corresponding bracket 27a or 12b. Further, the bracket 27a attached to the upper end of the first reinforcing column 22 and the other main column 12 (the main column 12 on the lower right side in FIG. 11) of the two main columns 12 far from the first reinforcing column 22 ) Is placed so as to straddle the other fifth reinforcing connecting member 42a under the bracket 12b that is externally fitted and fixed to the upper end, and each end of the fifth reinforcing connecting member 42a is set to the corresponding bracket 27a or 12b. To join.

また、第2補強支柱−近方主柱間連結工程では、前記撤去部位を撤去した後の既設鉄塔の上端の位置において、4本の主柱12のうち第1補強支柱22よりも第2補強支柱23に近い2本の主柱12の上端と第2補強支柱23の上端とを第3連結材30によって連結する。この第2補強支柱−近方主柱間連結工程は、本発明の第3連結工程の概念に含まれる。この第2補強支柱−近方主柱間連結工程で用いる第3連結材30は、第2補強支柱23の上端に取り付けたブラケット27aと、アングル材からなる2本の第3補強連結材30aと、第2補強支柱23に近い方の2本の主柱12の上端に取り付けられたブラケット12bとからなる。そして、この第2補強支柱−近方主柱間連結工程では、上記第1補強支柱−近方主柱間連結工程において第2連結材28により第1補強支柱22の上端と近い方の2本の主柱12の上端とを連結した連結構造と左右対称となる連結構造で、第3連結材30により第2補強支柱23の上端と近い方の2本の主柱12の上端とを連結する。すなわち、この連結工程では、第3補強連結材30aを第2補強連結材28aと左右対称となるように配置する。   Further, in the second reinforcing column-near main column connecting step, the second reinforcing column 23 is more than the first reinforcing column 22 among the four main columns 12 at the position of the upper end of the existing steel tower after the removal site is removed. The upper ends of the two main pillars 12 that are close to each other and the upper ends of the second reinforcing columns 23 are connected by a third connecting member 30. This second reinforcing column-near main column connecting step is included in the concept of the third connecting step of the present invention. The third connecting member 30 used in the second reinforcing column-near main column connecting step includes a bracket 27a attached to the upper end of the second reinforcing column 23, two third reinforcing connecting members 30a made of an angle member, 2 It consists of the bracket 12b attached to the upper end of the two main pillars 12 closer to the reinforcing support 23. In the second reinforcing column-near main column connecting step, the two main columns 12 closer to the upper end of the first reinforcing column 22 by the second connecting material 28 in the first reinforcing column-near main column connecting step. The upper end of the two main pillars 12 that are closer to the upper end of the second reinforcing column 23 are connected by the third connecting member 30 in a connection structure that is symmetrical to the connection structure that connects the upper ends of the two reinforcing columns. That is, in this connection step, the third reinforcing connecting member 30a is arranged so as to be bilaterally symmetrical with the second reinforcing connecting member 28a.

また、第2補強支柱−遠方主柱間連結工程では、前記撤去部位を撤去した後の既設鉄塔の上端の位置において、4本の主柱12のうち第2補強支柱23よりも第1補強支柱22に近い2本の主柱12(第2補強支柱23から遠い方の2本の主柱12)の上端と第2補強支柱23の上端とを第6連結材44によって連結する。この第2補強支柱−遠方主柱間連結工程は、本発明の第6連結工程の概念に含まれるものである。この第2補強支柱−遠方主柱間連結工程で用いる第6連結材44は、第2補強支柱23の上端に取り付けたブラケット27aと、アングル材からなる2本の第6補強連結材44aと、第2補強支柱23から遠い方の2本の主柱12の上端に取り付けられたブラケット12bとからなる。そして、この第2補強支柱−遠方主柱間連結工程では、上記第1補強支柱−遠方主柱間連結工程において第5連結材42により第1補強支柱22と遠い方の2本の主柱12の上端と第1補強支柱22の上端とを連結した連結構造と左右対称となる連結構造で、第6連結材44により第2補強支柱23の上端と遠い方の2本の主柱12の上端とを連結する。すなわち、この連結工程では、第6補強連結材44aを第5補強連結材42aと左右対称となるように配置する。そして、この連結工程では、図11中において上側に位置する第6補強連結材44aを同図で上側に位置する第5補強連結材42aの下方でその第5補強連結材42aと交差するように配置するとともに、当該第6補強連結材44aの各端部をブラケット12b又は27aの下面に対して固定する。また、この連結工程では、図11中において下側に位置する第6補強連結材44aを同図で下側に位置する第5補強連結材42aの上方でその第5補強連結材42aと交差するように配置するとともに、当該第6補強連結材44aの各端部をブラケット12b又は27aの上面に対して固定する。   Further, in the second reinforcing column-distant main column connecting step, the first reinforcing column is more than the second reinforcing column 23 among the four main columns 12 at the position of the upper end of the existing steel tower after the removal site is removed. The upper ends of the two main pillars 12 (two main pillars 12 far from the second reinforcing pillars 23) close to 22 and the upper ends of the second reinforcing pillars 23 are connected by a sixth connecting member 44. This second reinforcing column-distant main column connecting step is included in the concept of the sixth connecting step of the present invention. The sixth connecting member 44 used in the second reinforcing column-distant main column connecting step includes a bracket 27a attached to the upper end of the second reinforcing column 23, two sixth reinforcing connecting members 44a made of angle members, The bracket 12b is attached to the upper ends of the two main pillars 12 far from the second reinforcing column 23. In the second reinforcing column-distant main column connecting step, the first reinforcing column 22 and the two distant main columns 12 are separated by the fifth connecting member 42 in the first reinforcing column-distant main column connecting step. The upper end of the two main pillars 12 far from the upper end of the second reinforcing support 23 by the sixth connecting member 44 is a connecting structure that is bilaterally symmetrical to the connection structure that connects the upper end of the first reinforcing support 22 and the upper end of the first reinforcing support 22. And That is, in this connecting step, the sixth reinforcing connecting member 44a is arranged so as to be bilaterally symmetric with the fifth reinforcing connecting member 42a. In this connecting step, the sixth reinforcing connecting member 44a positioned on the upper side in FIG. 11 intersects the fifth reinforcing connecting member 42a below the fifth reinforcing connecting member 42a positioned on the upper side in FIG. While arrange | positioning, each edge part of the said 6th reinforcement connection material 44a is fixed with respect to the lower surface of the bracket 12b or 27a. In this connecting step, the sixth reinforcing connecting member 44a located on the lower side in FIG. 11 intersects the fifth reinforcing connecting member 42a above the fifth reinforcing connecting member 42a located on the lower side in FIG. The end portions of the sixth reinforcing connecting member 44a are fixed to the upper surface of the bracket 12b or 27a.

次に、右回線側の各送電線102への通電を停止してから、図12に示すように、右回線側の3相の送電線102を対応する各アーム6,8,10から取り外してそれぞれ鉄塔本体2の主柱12に仮支持させる右回線仮支持工程を行う。   Next, after energization of each power transmission line 102 on the right line side is stopped, as shown in FIG. 12, the three-phase power transmission line 102 on the right line side is detached from the corresponding arms 6, 8, and 10. The right line temporary support process of temporarily supporting the main pillar 12 of the tower main body 2 is performed.

その後、既設鉄塔(鉄塔本体2)を嵩上げする嵩上げ工程を行う。この嵩上げ工程では、図13に示すように、前記撤去工程で撤去部位が撤去された後の主柱12の上端部に新たに設置する新設部位2aの各主柱部12cの下端部を結合させる。新設部位2aは、前記撤去部位の高さよりも大きな高さを有する。   Then, the raising process which raises the existing steel tower (steel tower main body 2) is performed. In this raising process, as shown in FIG. 13, the lower end part of each main pillar part 12c of the new installation part 2a newly installed in the upper end part of the main pillar 12 after a removal site | part was removed by the said removal process is combined. . The new site 2a has a height greater than the height of the removal site.

そして、新設部位2aの上端部から右回線側に張り出すように新しい地線アーム4aを設置する。また、新設部位2aのうち上端部と元の右回線側の第1アーム6の設置箇所との間の中間の箇所に新たな第1アーム6aを右回線側に張り出すように設置する。これにより、右回線側において、既設鉄塔における元の第1アーム6は、嵩上げ後の鉄塔の第2アーム8aとなり、既設鉄塔における元の第2アーム8は、嵩上げ後の鉄塔の第3アーム10aとなる。   And the new ground arm 4a is installed so that it may protrude from the upper end part of the newly provided site | part 2a to the right line side. In addition, a new first arm 6a is installed so as to project to the right line side at an intermediate position between the upper end portion of the newly installed part 2a and the installation position of the first arm 6 on the original right line side. Thereby, on the right line side, the original first arm 6 in the existing steel tower becomes the second arm 8a of the raised steel tower, and the original second arm 8 in the existing steel tower becomes the third arm 10a of the steel tower after raising. It becomes.

次に、右回線側の元の第1アーム6の上部に仮支持させていた右回線側の架空地線104を新しい地線アーム4aに支持させるとともに、鉄塔本体2の主柱12に仮支持させていた右回線側の3相の送電線102を対応するアーム6a,8a,10aにそれぞれ支持させる。すなわち、上送電線102aを新たな第1アーム6aに支持させ、中送電線102bを新たな第2アーム8aに支持させ、下送電線102cを新たな第3アーム10aに支持させる。この後、右回線側の元の第3アーム10を撤去する。   Next, the overhead ground wire 104 on the right line side temporarily supported on the upper part of the original first arm 6 on the right line side is supported by the new ground arm 4a and temporarily supported on the main pillar 12 of the tower main body 2. The three-phase power transmission line 102 on the right line side that has been made to support is supported by the corresponding arms 6a, 8a, and 10a, respectively. That is, the upper power transmission line 102a is supported by the new first arm 6a, the middle power transmission line 102b is supported by the new second arm 8a, and the lower power transmission line 102c is supported by the new third arm 10a. Thereafter, the original third arm 10 on the right line side is removed.

次に、右回線側の各送電線102への通電を再開し、その後、左回線側の各送電線102への通電を停止してから、図14に示すように、左回線側において、新たな地線アーム4aと新たな第1アーム6aとを前記右回線側と同様に前記新設部位2aに設置する。これにより、左回線側においても、既設鉄塔における元の第1アーム6は、嵩上げ後の鉄塔の第2アーム8aとなり、既設鉄塔における元の第2アーム8は、嵩上げ後の鉄塔の第3アーム10aとなる。   Next, energization of each power transmission line 102 on the right line side is resumed, and then power supply to each power transmission line 102 on the left line side is stopped. Then, as shown in FIG. A simple ground arm 4a and a new first arm 6a are installed in the newly installed part 2a in the same manner as the right line side. Thereby, also on the left line side, the original first arm 6 in the existing tower becomes the second arm 8a of the raised tower, and the original second arm 8 in the existing tower is the third arm of the raised tower. 10a.

この後、前記右回線側の場合と同様にして、左回線側の元の第1アーム6の上部に仮支持させていた左回線側の架空地線104を新しい地線アーム4aに支持させるとともに、鉄塔本体2の主柱12に仮支持させていた左回線側の3相の送電線102を対応するアーム6a,8a,10aにそれぞれ支持させる。そして、最後に、左回線側の元の第3アーム10を撤去する。   Thereafter, as in the case of the right line side, the left ground side overhead ground wire 104 temporarily supported on the upper portion of the original first arm 6 on the left line side is supported by the new ground arm 4a. The left line side three-phase power transmission line 102 temporarily supported by the main pillar 12 of the tower main body 2 is supported by the corresponding arms 6a, 8a, and 10a, respectively. Finally, the original third arm 10 on the left line side is removed.

このようにして、嵩上げされるとともに補強が行われた図15の鉄塔が形成される。   In this way, the steel tower of FIG. 15 which is raised and reinforced is formed.

以上説明したように、本実施形態では、支柱立設工程において第1補強支柱22と第2補強支柱23を鉄塔のうち隣接する主柱12同士を結んで形成される四角形の領域内に立設するので、その設置によって必要となる土地面積が増大することがない。さらに、本実施形態では、隣接する主柱12同士を結んで形成される四角形の領域内において第1補強支柱22と第2補強支柱23とが立設されるとともに、その両補強支柱22,23同士及び各補強支柱22,23とその外側に位置する主柱12とが高さ方向における複数の箇所で連結されるため、鉄塔の基礎近傍の部分を両外側から斜めに延びる補強脚で支えるような補強を行うものと異なり、高さ方向について補強領域の制限を受けにくく、嵩上げ後の鉄塔の上部までその強度を鉄塔内部からの補強によって高めることができる。しかも、本実施形態では、第1補強支柱22と第2補強支柱23とが送電線102の延びる方向と略直交する方向に並ぶように立設されるので、特に送電線102が受ける風圧に対する嵩上げ後の鉄塔の強度(水平方向の外力に対する強度)を高めることができる。その結果、本実施形態では、風圧によって受ける力に対する嵩上げ後の鉄塔の強度不足を鉄塔の下部から上部までに亘って解消することができる。従って、本実施形態では、必要となる土地面積の増大を防ぎつつ、風圧によって受ける力に対する嵩上げ後の送電線用鉄塔の強度不足を鉄塔の下部から上部までに亘って解消することができる。   As described above, in this embodiment, in the column erecting step, the first reinforcement column 22 and the second reinforcement column 23 are erected in a rectangular area formed by connecting adjacent main columns 12 of the steel tower. Therefore, the required land area does not increase by the installation. Further, in the present embodiment, the first reinforcing column 22 and the second reinforcing column 23 are erected in a rectangular area formed by connecting the adjacent main columns 12 to each other, and both the reinforcing columns 22 and 23 are provided. Since the reinforcing posts 22 and 23 and the main pillar 12 positioned outside thereof are connected to each other at a plurality of locations in the height direction, the portions near the foundation of the steel tower are supported by reinforcing legs extending obliquely from both outsides. Unlike the case where the reinforcement is performed, the reinforcement region is hardly limited in the height direction, and the strength can be increased by the reinforcement from the inside of the steel tower up to the upper part of the steel tower after being raised. In addition, in the present embodiment, the first reinforcing column 22 and the second reinforcing column 23 are erected so as to be aligned in a direction substantially orthogonal to the direction in which the power transmission line 102 extends. The strength (strength against external force in the horizontal direction) of the later steel tower can be increased. As a result, in this embodiment, the lack of strength of the steel tower after raising against the force received by the wind pressure can be solved from the lower part to the upper part of the steel tower. Therefore, in this embodiment, while preventing an increase in the required land area, it is possible to eliminate the lack of strength of the transmission line tower from the lower part to the upper part of the tower after raising the floor against the force received by the wind pressure.

ところで、鉄塔の外側の基礎から斜めに延びる補強脚で鉄塔を補強するような補強方法では、上下方向に補強脚を継ぎ足していくことは難しい。このため、このような補強方法では、鉄塔の低い領域の補強に限定される。これに対して、本実施形態では、送電線用鉄塔のうち隣接する主柱12同士を結んで形成される四角形の領域の内側で支柱構成部材を上下方向に繋ぎ合わせて補強支柱22,23を形成するので、高さ方向の広い範囲にわたって鉄塔を補強することができる。   By the way, in the reinforcing method in which the steel tower is reinforced with the reinforcing legs extending obliquely from the foundation outside the steel tower, it is difficult to add the reinforcing legs in the vertical direction. For this reason, in such a reinforcement method, it is limited to reinforcement of the low area | region of a steel tower. On the other hand, in the present embodiment, the reinforcing columns 22 and 23 are connected by vertically connecting the column-constituting members inside the quadrangular region formed by connecting adjacent main columns 12 of the power transmission tower. Since it forms, a steel tower can be reinforced over the wide range of a height direction.

また、本実施形態では、第1補強支柱−主柱間連結工程は第1補強支柱22の立設工程中に行われ、第2補強支柱−主柱間連結工程は第2補強支柱23の立設工程中に行われるので、補強支柱22,23を形成するために複数の支柱構成部材を上方へ繋ぎつつ、その繋いだ支柱構成部材を連結材28,30によって主柱に連結して支えることができる。このため、各主柱12に囲まれた領域内において補強支柱22,23を倒れないように支えながら長大な補強支柱22,23を形成することができる。   In the present embodiment, the first reinforcing column-main column connecting step is performed during the first reinforcing column 22 erecting step, and the second reinforcing column-main column connecting step is the second reinforcing column 23 standing. Since it is carried out during the installation process, a plurality of strut constituent members are connected upward to form the reinforcing struts 22 and 23, and the connected strut constituent members are connected to and supported by the main pillars by the connecting members 28 and 30. Can do. Therefore, the long reinforcing struts 22 and 23 can be formed while supporting the reinforcing struts 22 and 23 so as not to fall within the area surrounded by the main pillars 12.

また、本実施形態では、補強支柱間水平連結工程において第1補強支柱22と第2補強支柱23とをそれらの間で水平方向に延びる第1水平連結材27によって互いに連結するため、風圧に起因する水平方向への応力に対する鉄塔の強度を有効に高めることができる。   In the present embodiment, the first reinforcing strut 22 and the second reinforcing strut 23 are connected to each other by the first horizontal connecting member 27 extending in the horizontal direction between them in the horizontal connecting step between the reinforcing struts. The strength of the steel tower against the stress in the horizontal direction can be effectively increased.

また、本実施形態では、補強支柱間斜め連結工程において第1補強支柱22と第2補強支柱23との間で高さ方向に対して斜めに延び、互いに交差する複数の第1斜め連結材26によって第1補強支柱22と第2補強支柱23とを互いに連結するため、両補強支柱22,23間にトラス構造を形成することができ、鉄塔の強度をより高めることができる。   Further, in the present embodiment, a plurality of first oblique connection members 26 that extend obliquely with respect to the height direction between the first reinforcement support 22 and the second reinforcement support 23 and intersect each other in the reinforcement connection support oblique connection step. Since the first reinforcing column 22 and the second reinforcing column 23 are connected to each other, a truss structure can be formed between the two reinforcing columns 22 and 23, and the strength of the steel tower can be further increased.

また、本実施形態では、各補強支柱22,23を第2連結材28又は第3連結材30を介して対応する主柱12に連結するのに加えて、それら各補強支柱22,23を第1水平連結材27と第4連結材32とを介して各主柱12に連結する。このため、各補強支柱22,23と主柱12との連結によって構成される構造がより強固なものとなり、その結果、嵩上げ後の鉄塔の強度をより高めることができる。   Further, in the present embodiment, in addition to connecting each reinforcing column 22, 23 to the corresponding main pillar 12 via the second connecting member 28 or the third connecting member 30, the reinforcing column 22, 23 is connected to the first column. Each main pillar 12 is connected via a horizontal connecting member 27 and a fourth connecting member 32. For this reason, the structure comprised by connection with each reinforcement support | pillars 22 and 23 and the main pillar 12 becomes stronger, As a result, the intensity | strength of the steel tower after raising can be raised more.

また、本実施形態では、第1補強支柱22と第2補強支柱23とを嵩上げ後の送電線用鉄塔において複数の送電線102が架けられる各アーム6a,8a,10aのうち最も低い位置に位置する第3アーム10aよりも高い位置まで延びるように立設する。このため、嵩上げ後の鉄塔において風圧を受ける各送電線102のうち最も低い位置に位置する送電線102cの位置よりも高い位置まで両補強支柱22,23を延ばしてその両補強支柱22,23で鉄塔を支えることができる。このため、嵩上げ後の鉄塔において第3アーム10aよりも低い位置までしか補強支柱が延びていない場合に比べて、送電線102が受ける風圧に対する嵩上げ後の鉄塔の強度をより有効に確保することができる。   In the present embodiment, the first reinforcing column 22 and the second reinforcing column 23 are positioned at the lowest position among the arms 6a, 8a, and 10a on which the plurality of transmission lines 102 are laid on the transmission line tower after raising the first reinforcement column 22 and the second reinforcement column 23. It is erected so as to extend to a position higher than the third arm 10a. For this reason, both the reinforcing struts 22 and 23 are extended to a position higher than the position of the power transmission line 102c located at the lowest position among the transmission lines 102 that receive wind pressure in the steel tower after raising the height. Can support steel towers. For this reason, compared with the case where the reinforcing column extends only to a position lower than the third arm 10a in the raised steel tower, it is possible to more effectively ensure the strength of the raised steel tower against the wind pressure received by the transmission line 102. it can.

また、本実施形態では、各主柱12のうち第2補強支柱23よりも第1補強支柱22に近い2本の主柱12と第1補強支柱22とを第2連結材28によって連結し、各主柱12のうち第1補強支柱22よりも第2補強支柱23に近い2本の主柱12と第2補強支柱23とを第3連結材30によって連結する。このため、第1補強支柱22と当該第1補強支柱22から遠い方の2本の主柱12とを第2連結材によって連結するとともに、第2補強支柱23と当該第2補強支柱23から遠い方の2本の主柱12とを第3連結材によって連結する場合と比べて、第2連結材28及び第3連結材30に長さの小さいものを用いることができる。このため、材料費を節減することができるとともに、嵩上げ後の鉄塔の重量を軽減することができる。また、本実施形態では、長さの小さい連結材で各補強支柱22,23と近い主柱12とを連結するので、補強支柱22,23と主柱12との連結強度を有効に高めることが可能となる。このため、補強支柱22,23を含めた嵩上げ後の鉄塔全体の強度を有効に高めることができる。   Moreover, in this embodiment, the two main pillars 12 and the first reinforcement pillars 22 that are closer to the first reinforcement pillars 22 than the second reinforcement pillars 23 among the main pillars 12 are coupled by the second coupling members 28, Of the main pillars 12, the two main pillars 12 closer to the second reinforcing pillars 23 than the first reinforcing pillars 22 are connected to the second reinforcing pillars 23 by the third connecting members 30. For this reason, while connecting the 1st reinforcement support | pillar 22 and the two main pillars 12 far from the said 1st reinforcement support | pillar 22 with a 2nd connection material, it is far from the 2nd reinforcement support | pillar 23 and the said 2nd reinforcement support | pillar 23. Compared with the case where the two main pillars 12 are connected to each other by the third connecting material, the second connecting material 28 and the third connecting material 30 having a smaller length can be used. For this reason, material costs can be reduced and the weight of the steel tower after raising can be reduced. Moreover, in this embodiment, since the main pillar 12 close | similar to each reinforcement support | pillar 22 and 23 is connected with the connection material with small length, it can raise the connection intensity | strength of the reinforcement support | pillars 22 and 23 and the main pillar 12 effectively. It becomes possible. For this reason, the intensity | strength of the whole steel tower after raising including the reinforcement support | pillars 22 and 23 can be raised effectively.

また、本実施形態では、既設鉄塔の撤去部位を撤去した後、その代わりに新設した新設部位2aと鉄塔の既設の部位との接続部において、第1水平連結材27によって両補強支柱22,23同士を連結するとともに、第2連結材28と第5連結材42によって第1補強支柱22と各主柱12とを連結し、第3連結材30と第6連結材44によって第2補強支柱23と各主柱12とを連結するため、前記接続部において新設部位2aから各補強支柱22,23への応力の伝達が良好となる構造を構成することができる。これにより、新設部位2aの重量や新設部位2a及びその新設部位2aに設けられたアーム6a,4aが支持する送電線102又は架空地線104が受ける風圧等を各主柱12及び各補強支柱22,23で良好に支えることが可能となる。   Moreover, in this embodiment, after removing the removal site | part of an existing steel tower, in the connection part of the newly installed site | part 2a newly installed and the existing site | part of a steel tower instead, it is both reinforcement struts 22 and 23 by the 1st horizontal connection material 27. The first reinforcing column 22 and each main column 12 are connected by the second connecting member 28 and the fifth connecting member 42, and the second reinforcing column 23 is connected by the third connecting member 30 and the sixth connecting member 44. In order to connect the main pillars 12 to each other, it is possible to configure a structure in which the stress is transmitted from the newly installed portion 2a to the reinforcing struts 22 and 23 in the connection portion. As a result, the weight of the new site 2a, the wind pressure received by the power transmission line 102 or the overhead ground wire 104 supported by the new site 2a and the arms 6a, 4a provided in the new site 2a, and the like are received by each main column 12 and each reinforcement column 22. , 23 can be supported well.

なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes meanings equivalent to the scope of claims for patent and all modifications within the scope.

例えば、送電線用鉄塔のうち送電線102が架けられる各送電線アーム6a,8a,10aが設けられた高さ位置において、前記撤去部位を撤去した後の既設鉄塔の上端に形成した連結構造を形成してもよい。この場合において送電線アーム6a,8a,10aは、本発明の架線部位の概念に含まれる。図16には、送電線用鉄塔のうち第3送電線アーム10aの下辺の節にこの連結構造を形成した例が示されている。なお、送電線用鉄塔のうち他の送電線アーム6a,8aの下辺の節においても同様の連結構造を形成してもよい。   For example, a connecting structure formed at the upper end of the existing steel tower after removing the removal site at the height position where each power transmission line arm 6a, 8a, 10a is provided on the power transmission line tower. It may be formed. In this case, the power transmission line arms 6a, 8a and 10a are included in the concept of the overhead line part of the present invention. FIG. 16 shows an example in which this connection structure is formed at a node on the lower side of the third power transmission line arm 10a in the power transmission line tower. In addition, you may form the same connection structure also in the node of the lower side of the other power transmission line arm 6a, 8a among the power transmission towers.

送電線用鉄塔のうち送電線アームが設けられた箇所では、送電線102が受ける風圧に起因する応力が加えられる。この変形例の構成では、送電線アームが設けられた高さ位置で、各連結材によって対応する各補強支柱22,23と各主柱12又は両補強支柱22,23同士を連結するため、送電線102が受ける風圧に起因する応力を送電線アームから各補強支柱22,23へ良好に伝達することができる。その結果、送電線102が受ける風圧に起因する応力を良好に支えることが可能となる。   In a portion of the transmission line tower where the transmission line arm is provided, stress due to the wind pressure received by the transmission line 102 is applied. In the configuration of this modified example, at the height position where the transmission line arm is provided, the corresponding reinforcing struts 22 and 23 and the main pillars 12 or the two reinforcing struts 22 and 23 are connected to each other by the connecting members. The stress resulting from the wind pressure received by the electric wire 102 can be satisfactorily transmitted from the power transmission line arm to each of the reinforcing columns 22 and 23. As a result, it is possible to satisfactorily support the stress caused by the wind pressure that the power transmission line 102 receives.

また、補強支柱22,23と遠い方の主柱12との連結工程を行う箇所では、第2補強連結材28aを用いて第1補強支柱22と近い方の主柱12とを連結する第1補強支柱−主柱間連結工程及び第3補強連結材30aを用いて第2補強支柱23と近い方の主柱12とを連結する第2補強支柱−主柱間連結工程を省略してもよい。   Moreover, in the place which performs the connection process of the reinforcement pillars 22 and 23 and the distant main pillar 12, the 1st reinforcement pillar 22 and the near main pillar 12 are connected using the 2nd reinforcement connection material 28a. The second reinforcing column-main column connecting step of connecting the second reinforcing column 23 and the main column 12 closer to the second reinforcing column 23 using the reinforcing column-main column connecting step and the third reinforcing connecting member 30a may be omitted. .

また、鉄塔本体2の最下節18a,ベンド点の節18b、第1アーム6の下辺の位置の節18c以外の節において、補強支柱22,23同士を連結したり、補強支柱22,23と主柱12とを連結したりしてもよい。   Further, at the nodes other than the lowermost node 18a of the tower body 2, the node 18b of the bend point, and the node 18c at the lower side of the first arm 6, the reinforcing columns 22, 23 are connected to each other, The main pillar 12 may be connected.

また、第4連結材32による第1水平連結材27と主柱12との連結は、省略してもよい。   Further, the connection between the first horizontal connecting member 27 and the main pillar 12 by the fourth connecting member 32 may be omitted.

また、上記実施形態では、コンクリート充填鋼管からなる支柱構成部材によって補強支柱22,23を構成したが、それ以外の材料からなる支柱構成部材によって補強支柱22,23を構成してもよい。例えば、支柱構成部材は、コンクリートが充填されていない鋼管や、中実の棒材、L形鋼、H形鋼等からなっていてもよい。また、支柱構成部材の鋼管の形状は、円筒状以外の形状であってもよい。例えば、支柱構成部材の鋼管は、角筒状の鋼管であってもよい。   Moreover, in the said embodiment, although the reinforcement support | pillars 22 and 23 were comprised by the support | pillar structure member which consists of a concrete filling steel pipe, you may comprise the reinforcement support | pillars 22 and 23 by the support | pillar structure member which consists of other materials. For example, the strut component may be made of a steel pipe not filled with concrete, a solid bar, L-shaped steel, H-shaped steel, or the like. Further, the shape of the steel pipe of the support member may be other than a cylindrical shape. For example, the steel pipe of the column constituting member may be a square tubular steel pipe.

また、上記実施形態では、第1斜め連結材26として本体部がパイプからなるものを用いたが、それ以外の構造の第1斜め連結材を用いてもよい。例えば、アングル材や、L形鋼、H形鋼等によって本体部が構成された第1斜め連結材を用いてもよい。   Moreover, in the said embodiment, although the main-body part used what consists of a pipe as the 1st diagonal connection material 26, you may use the 1st diagonal connection material of the structure of other than that. For example, you may use the 1st diagonal connection material by which the main-body part was comprised by angle material, L-shaped steel, H-shaped steel, etc.

6a、8a、10a 送電線アーム(架線部位)
12 主柱
22 第1補強支柱
23 第2補強支柱
25 第1連結材
28 第2連結材
30 第3連結材
32 第4連結材
42 第5連結材
44 第6連結材
102 送電線
6a, 8a, 10a Transmission line arm (overhead part)
12 main pillar 22 first reinforcing support 23 second reinforcing support 25 first connecting member 28 second connecting member 30 third connecting member 32 fourth connecting member 42 fifth connecting member 44 sixth connecting member 102 power transmission line

Claims (10)

設置場所において四角形の各頂点に相当する位置にそれぞれ立設され、隣り合うもの同士が互いに連結された主柱を備え、送電線を前記四角形の一辺と略平行な方向に延びるように支持する既設の送電線用鉄塔の嵩上げに伴って、その送電線用鉄塔を補強するための送電線用鉄塔の嵩上げのための補強工法であって、
隣接する前記主柱同士を結んで形成される四角形の領域内において、所定長さの複数の支柱構成部材を上下方向に繋ぎ合わせることにより前記送電線の延びる方向と交差する方向に並ぶ第1補強支柱と第2補強支柱を立設する支柱立設工程と、
前記第1補強支柱と前記第2補強支柱とを高さ方向における複数の箇所で第1連結材によってそれぞれ連結する第1連結工程と、
前記第1補強支柱と前記第2補強支柱とが並ぶ方向において一方側に位置する2本の前記主柱と前記第1補強支柱とを高さ方向における複数の箇所で第2連結材によってそれぞれ連結する第2連結工程と、
前記第1補強支柱と前記第2補強支柱とが並ぶ方向において他方側に位置する2本の前記主柱と前記第2補強支柱とを高さ方向における複数の箇所で第3連結材によってそれぞれ連結する第3連結工程とを備えた、送電線用鉄塔の嵩上げのための補強工法。
An existing installation that is provided with a main pillar that is erected at a position corresponding to each vertex of a quadrilateral at the installation location, and that is adjacent to each other, and that supports a power transmission line extending in a direction substantially parallel to one side of the quadrilateral. With the raising of the transmission line tower, the reinforcement construction method for raising the transmission line tower for reinforcing the transmission line tower,
A first reinforcement lined up in a direction intersecting with the direction in which the power transmission line extends by connecting a plurality of strut members of a predetermined length in the vertical direction within a quadrangular region formed by connecting adjacent main pillars. A column erecting step for erecting the column and the second reinforcing column;
A first connecting step of connecting the first reinforcing strut and the second reinforcing strut by a first connecting member at a plurality of locations in the height direction, respectively;
The two main pillars located on one side in the direction in which the first reinforcement pillars and the second reinforcement pillars are arranged and the first reinforcement pillars are connected to each other at a plurality of positions in the height direction by the second connecting members. A second connecting step,
The two main pillars and the second reinforcement pillars that are located on the other side in the direction in which the first reinforcement pillars and the second reinforcement pillars are arranged are coupled to each other at a plurality of positions in the height direction by a third coupling member. A reinforcing method for raising the power transmission tower, comprising a third connecting step.
前記第2連結工程は、前記支柱立設工程において前記第1補強支柱を構成する複数の前記支柱構成部材を上方へ繋いでいく途中に行われ、下側の支柱構成部材の上に繋いだ支柱構成部材を前記第2連結材によって前記一方側に位置する前記2本の主柱に連結する工程を含み、
前記第3連結工程は、前記支柱立設工程において前記第2補強支柱を構成する複数の前記支柱構成部材を上方へ繋いでいく途中に行われ、下側の支柱構成部材の上に繋いだ支柱構成部材を前記第3連結材によって前記他方側に位置する前記2本の主柱に連結する工程を含む、請求項1に記載の送電線用鉄塔の嵩上げのための補強工法。
The second connecting step is performed in the middle of connecting the plurality of column constituting members constituting the first reinforcing column in the column erecting step, and the column connected on the lower column constituting member. Connecting the component member to the two main pillars located on the one side by the second connecting member;
The third connecting step is performed in the middle of connecting the plurality of column constituting members constituting the second reinforcing column in the column erecting step, and the column connected on the lower column constituting member. The reinforcing method for raising the transmission line tower according to claim 1, comprising a step of connecting a component member to the two main pillars located on the other side by the third connecting member.
前記第1連結工程は、前記第1補強支柱と前記第2補強支柱との間で水平方向に延びる前記第1連結材によって前記第1補強支柱と前記第2補強支柱とを互いに連結する水平連結工程を含む、請求項1又は2に記載の送電線用鉄塔の嵩上げのための補強工法。   The first connection step includes a horizontal connection in which the first reinforcement column and the second reinforcement column are connected to each other by the first connection member extending in the horizontal direction between the first reinforcement column and the second reinforcement column. The reinforcement construction method for raising the tower for power transmission lines according to claim 1 or 2 including a process. 前記第1連結工程は、前記水平連結工程に加えて、前記第1補強支柱と前記第2補強支柱との間で高さ方向に対して斜めに延び、互いに交差する複数の前記第1連結材によって前記第1補強支柱と前記第2補強支柱とを互いに連結する斜め連結工程を含む、請求項3に記載の送電線用鉄塔の嵩上げのための補強工法。   In the first connection step, in addition to the horizontal connection step, a plurality of the first connection members that extend obliquely with respect to the height direction between the first reinforcement column and the second reinforcement column and intersect each other. The reinforcement construction method for raising the transmission line tower according to claim 3, comprising an oblique connection step of connecting the first reinforcement column and the second reinforcement column to each other. 前記各第1連結材と前記各主柱とを第4連結材によってそれぞれ連結する第4連結工程を備えた、請求項1〜4のいずれか1項に記載の送電線用鉄塔の嵩上げのための補強工法。   5. For raising the transmission line tower according to claim 1, further comprising a fourth connecting step of connecting each first connecting member and each main pillar by a fourth connecting member. Reinforcement construction method. 前記送電線用鉄塔には、複数の送電線が高さ方向に間隔をおいて架けられ、
前記支柱立設工程では、前記第1補強支柱と前記第2補強支柱とを嵩上げ後の送電線用鉄塔において前記複数の送電線が架けられる各部位のうち最も低い位置に位置する部位よりも高い位置まで延びるように立設する、請求項1〜5のいずれか1項に記載の送電線用鉄塔の嵩上げのための補強工法。
In the transmission line tower, a plurality of transmission lines are spanned at intervals in the height direction,
In the column erecting step, the first reinforcement column and the second reinforcement column are higher than the region located at the lowest position among the regions where the plurality of transmission lines are installed in the transmission line tower after raising the first reinforcement column and the second reinforcement column. The reinforcement construction method for raising the tower for transmission lines according to any one of claims 1 to 5, wherein the reinforcement tower is erected so as to extend to a position.
前記第2連結工程では、前記四角形の各頂点に相当する位置に立設された前記各主柱のうち前記第2補強支柱よりも前記第1補強支柱に近い2本の主柱と前記第1補強支柱とを前記第2連結材によって連結し、
前記第3連結工程では、前記四角形の各頂点に相当する位置に立設された前記各主柱のうち前記第1補強支柱よりも前記第2補強支柱に近い2本の主柱と前記第2補強支柱とを前記第3連結材によって連結する、請求項1〜6のいずれか1項に記載の送電線用鉄塔の嵩上げのための補強工法。
In the second connecting step, two main columns closer to the first reinforcing column than the second reinforcing column out of the main columns standing at a position corresponding to each vertex of the square and the first Reinforcing struts are connected by the second connecting material,
In the third connecting step, two main columns closer to the second reinforcing column than the first reinforcing column out of the main columns standing at a position corresponding to each vertex of the quadrangle and the second column The reinforcement construction method for raising the tower for power transmission lines according to any one of claims 1 to 6, wherein a reinforcing support is connected by the third connecting member.
前記四角形の各頂点に相当する位置に立設された前記各主柱のうち前記第1補強支柱よりも前記第2補強支柱に近い2本の主柱と前記第1補強支柱とを第5連結材によって連結する第5連結工程と、
前記四角形の各頂点に相当する位置に立設された前記各主柱のうち前記第2補強支柱よりも前記第1補強支柱に近い2本の主柱と前記第2補強支柱とを第6連結材によって連結する第6連結工程とを備える、請求項7に記載の送電線用鉄塔の嵩上げのための補強工法。
Of the main pillars erected at positions corresponding to the apexes of the square, two main pillars closer to the second reinforcement pillars than the first reinforcement pillars and the first reinforcement pillars are connected in a fifth manner. A fifth connecting step of connecting with a material;
Among the main pillars erected at positions corresponding to the apexes of the square, two main pillars closer to the first reinforcement pillars than the second reinforcement pillars and the second reinforcement pillars are connected in a sixth manner. The reinforcement construction method for raising the tower for transmission lines according to claim 7 provided with the 6th connection process connected with material.
前記送電線用鉄塔の嵩上げ時には、既設の送電線用鉄塔のうちその上端から下方へ所定の長さに亘る部位である撤去部位を撤去した後、その撤去部位を撤去した後の前記送電線用鉄塔の上端に前記撤去部位よりも高さの大きい新しい部位を接続し、
前記支柱立設工程では、前記既設の送電線用鉄塔のうち少なくとも前記撤去部位の下端の高さ位置まで前記第1補強支柱及び前記第2補強支柱が延びるようにそれら両補強支柱を立設し、
前記第1連結工程では、前記撤去部位の下端の高さ位置において、前記第1補強支柱と前記第2補強支柱とを前記第1連結材によって互いに連結し、
前記第2連結工程では、前記撤去部位の下端の高さ位置において、前記第2補強支柱よりも前記第1補強支柱に近い2本の主柱と前記第1補強支柱とを前記第2連結材によって連結し、
前記第5連結工程では、前記撤去部位の下端の高さ位置において、前記第1補強支柱よりも前記第2補強支柱に近い2本の主柱と前記第1補強支柱とを前記第5連結材によって連結し、
前記第3連結工程では、前記撤去部位の下端の高さ位置において、前記第1補強支柱よりも前記第2補強支柱に近い2本の主柱と前記第2補強支柱とを前記第3連結材によって連結し、
前記第6連結工程では、前記撤去部位の下端の高さ位置において、前記第2補強支柱よりも前記第1補強支柱に近い2本の主柱と前記第2補強支柱とを前記第6連結材によって連結する、請求項8に記載の送電線用鉄塔の嵩上げのための補強工法。
At the time of raising the transmission line tower, after removing the removal site, which is a site extending a predetermined length downward from the upper end of the existing transmission line tower, for the transmission line after removing the removal site Connect a new part with a height higher than the removal part to the upper end of the steel tower,
In the column erecting step, both the reinforcement columns are erected so that the first reinforcement column and the second reinforcement column extend to at least the height of the lower end of the removal site in the existing transmission line tower. ,
In the first connecting step, at the height position of the lower end of the removal site, the first reinforcing column and the second reinforcing column are connected to each other by the first connecting member,
In the second connection step, at the height position of the lower end of the removal site, two main columns closer to the first reinforcement column than the second reinforcement column and the first reinforcement column are connected to the second connection member. Connected by
In the fifth connecting step, at the height position of the lower end of the removal site, two main columns closer to the second reinforcing column than the first reinforcing column and the first reinforcing column are connected to the fifth connecting member. Connected by
In the third connecting step, at the height position of the lower end of the removal site, the two main columns closer to the second reinforcing column than the first reinforcing column and the second reinforcing column are connected to the third connecting member. Connected by
In the sixth connecting step, at the height position of the lower end of the removal site, two main columns closer to the first reinforcing column than the second reinforcing column and the second reinforcing column are connected to the sixth connecting member. The reinforcement construction method for raising the steel tower for power transmission lines according to claim 8, wherein the steel towers are connected together.
前記第1連結工程では、前記送電線用鉄塔のうち前記送電線が架けられる部位である架線部位が設けられた高さ位置において、前記第1補強支柱と前記第2補強支柱とを前記第1連結材によって互いに連結し、
前記第2連結工程では、前記架線部位が設けられた高さ位置において、前記第2補強支柱よりも前記第1補強支柱に近い2本の主柱と前記第1補強支柱とを前記第2連結材によって連結し、
前記第5連結工程では、前記架線部位が設けられた高さ位置において、前記第1補強支柱よりも前記第2補強支柱に近い2本の主柱と前記第1補強支柱とを前記第5連結材によって連結し、
前記第3連結工程では、前記架線部位が設けられた高さ位置において、前記第1補強支柱よりも前記第2補強支柱に近い2本の主柱と前記第2補強支柱とを前記第3連結材によって連結し、
前記第6連結工程では、前記架線部位が設けられた高さ位置において、前記第2補強支柱よりも前記第1補強支柱に近い2本の主柱と前記第2補強支柱とを前記第6連結材によって連結する、請求項8又は9に記載の送電線用鉄塔の嵩上げのための補強工法。
In the first connecting step, the first reinforcing column and the second reinforcing column are connected to the first reinforcing column at the height position where the overhead line portion, which is a portion where the transmission line is built, is provided in the transmission line tower. Connected to each other by a connecting material,
In the second connecting step, the two main columns closer to the first reinforcing column than the second reinforcing column and the first reinforcing column are connected to the second connecting column at a height position where the overhead wire portion is provided. Connected by material,
In the fifth connecting step, at the height position at which the overhead wire portion is provided, two main columns closer to the second reinforcing column than the first reinforcing column and the first reinforcing column are connected to the fifth connecting column. Connected by material,
In the third connection step, the two main columns closer to the second reinforcement column than the first reinforcement column and the second reinforcement column are connected to the third connection column at a height position where the overhead wire portion is provided. Connected by material,
In the sixth connecting step, at the height position where the overhead wire portion is provided, two main columns closer to the first reinforcing column than the second reinforcing column and the second reinforcing column are connected to the sixth connecting column. The reinforcement construction method for raising the tower for power transmission lines according to claim 8 or 9, which is connected by a material.
JP2010086064A 2010-04-02 2010-04-02 Reinforcement method for raising the tower for transmission lines Active JP5469513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010086064A JP5469513B2 (en) 2010-04-02 2010-04-02 Reinforcement method for raising the tower for transmission lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010086064A JP5469513B2 (en) 2010-04-02 2010-04-02 Reinforcement method for raising the tower for transmission lines

Publications (2)

Publication Number Publication Date
JP2011214374A JP2011214374A (en) 2011-10-27
JP5469513B2 true JP5469513B2 (en) 2014-04-16

Family

ID=44944385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010086064A Active JP5469513B2 (en) 2010-04-02 2010-04-02 Reinforcement method for raising the tower for transmission lines

Country Status (1)

Country Link
JP (1) JP5469513B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104358465A (en) * 2014-10-22 2015-02-18 国家电网公司 Tower head capable of preventing windage yaw

Also Published As

Publication number Publication date
JP2011214374A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
CN105804241A (en) Single-layer prefabricated assembly type reinforced concrete beam-column joint
KR100860478B1 (en) Beam of steel frame construction
JP5050228B2 (en) Ramen bridge construction method with cane member
JP2008025125A (en) Column unit and construction method for building using it
JP5033726B2 (en) Formwork support and horizontal force processing member for formwork support
TWI761079B (en) Assembly of a jacket structure
CN105442839A (en) Erecting method of cantilever structure formwork bent
KR101713141B1 (en) Hybrid bridge connecting structure and method for constructing thereof
CN201053123Y (en) Deep foundation ditch tower crane platform base frame
JP5927599B2 (en) Temporary steel tower unit and temporary steel tower
CN109424072B (en) Connecting joint for supporting reinforced concrete columns on steel beams and construction method
JP2013133662A (en) Suspension type steel-framed roof frame, and method for constructing steel-framed roof
JP5469513B2 (en) Reinforcement method for raising the tower for transmission lines
KR100856723B1 (en) System and method for underground downward construction using cantilever type steel frame
JP6030274B1 (en) Frame structure and its construction method
CN104018521A (en) Metro double-column elevated station steel reinforced concrete transformation structure reinforcing bar and construction method thereof
JP4996370B2 (en) Frame assembly method and building frame
JP5607384B2 (en) Construction method for beam-column joints
CN203924115U (en) A kind of subway twin columns overhead station steel reinforced concrete transformational structure reinforcing bar
CN216194062U (en) Temporary support structure
JP2020084686A (en) Independent footing foundation structure and its construction method
JP6849491B2 (en) Exposed column base structure of steel columns and its construction method
CN212270687U (en) Steel pipe support temporary pier for inclined main and auxiliary arch cross section
JP2018091056A (en) Prefabrication structure
CN216515138U (en) Box girder assembling support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140131

R150 Certificate of patent or registration of utility model

Ref document number: 5469513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250