JP3990410B2 - Superconducting magnet and magnetic resonance imaging apparatus - Google Patents

Superconducting magnet and magnetic resonance imaging apparatus Download PDF

Info

Publication number
JP3990410B2
JP3990410B2 JP2005149032A JP2005149032A JP3990410B2 JP 3990410 B2 JP3990410 B2 JP 3990410B2 JP 2005149032 A JP2005149032 A JP 2005149032A JP 2005149032 A JP2005149032 A JP 2005149032A JP 3990410 B2 JP3990410 B2 JP 3990410B2
Authority
JP
Japan
Prior art keywords
magnetic field
coil
superconducting
coils
superconducting magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005149032A
Other languages
Japanese (ja)
Other versions
JP2005324036A (en
Inventor
弘隆 竹島
川野  源
角川  滋
徳昭 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2005149032A priority Critical patent/JP3990410B2/en
Publication of JP2005324036A publication Critical patent/JP2005324036A/en
Application granted granted Critical
Publication of JP3990410B2 publication Critical patent/JP3990410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明は、磁気共鳴イメージング装置(以下MRI装置という)に適した超電導磁石装置に係り、特に、広い開口部を有することで被検者に解放感を与え、また、術者に対しては被検者へのアクセスを容易にする超電導磁石装置に関する。   The present invention relates to a superconducting magnet apparatus suitable for a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus), and in particular, to give a subject a sense of freedom by having a wide opening, and to an operator. The present invention relates to a superconducting magnet device that facilitates access to an examiner.

図7に従来のMRI装置用超電導磁石装置の一例を示す。
図7に示したものは、水平磁場方式の超電導磁石装置である。この超電導磁石は直径の小さな主コイル13,14,15,16,17,18と直径の大きなシールドコイル19,20とで構成されており、水平方向(Z軸方向)の磁場を発生させる。この例では、主コイル13〜18が磁石の中心軸22に沿った磁場を作り、シールドコイル19,20は周囲への磁場漏洩をシールドするために配置されている。このように磁石を構成することにより、磁場空間内に約10ppm 以下の磁場均一度を有する均一磁場領域21が形成される。磁気共鳴イメージング撮影はこの均一磁場領域21にて行われる。
FIG. 7 shows an example of a conventional superconducting magnet device for an MRI apparatus.
The one shown in FIG. 7 is a horizontal magnetic field superconducting magnet device. This superconducting magnet is composed of main coils 13, 14, 15, 16, 17, 18 having a small diameter and shield coils 19, 20 having a large diameter, and generates a magnetic field in the horizontal direction (Z-axis direction). In this example, the main coils 13 to 18 create a magnetic field along the central axis 22 of the magnet, and the shield coils 19 and 20 are arranged to shield magnetic field leakage to the surroundings. By configuring the magnet in this way, a uniform magnetic field region 21 having a magnetic field uniformity of about 10 ppm or less is formed in the magnetic field space. Magnetic resonance imaging is performed in the uniform magnetic field region 21.

これらのコイルは通常超電導線材を用いて作られるので、所定の温度(例えば、合金系超電導体の場合には液体ヘリウム温度(4.2K)とか、酸化物超電導体の場合には液体窒素温度(77K))にまで冷却する必要がある。そのため、コイルは、真空容器や熱シールド(図示せず)および冷媒容器(液体ヘリウムなどを収容)などから構成される冷却容器の中に保持される。   Since these coils are usually made using superconducting wire, the temperature is a predetermined temperature (e.g., liquid helium temperature (4.2K) in the case of alloy-based superconductors or liquid nitrogen temperature (77K in the case of oxide superconductors). )) To cool down. For this reason, the coil is held in a cooling container including a vacuum container, a heat shield (not shown), a refrigerant container (containing liquid helium, etc.), and the like.

図7の例では、コイル13〜20は液体ヘリウムなどの超電導用冷媒12を収容した冷媒容器11の中に支持体(図示なし)に支持されて配設されており、さらに冷媒容器11は真空容器10内に保持されている。
また、コイルの温度を低く保つために冷凍機(図示せず)を用いて、熱シールドの温度を一定に保ったり、超電導用冷媒12の蒸発量を低減させたりしている。最近では、冷凍機の性能が向上してきており、超電導体コイルを直接冷凍機で冷やすことによって、冷媒容器11を使用しない場合もある。
In the example of FIG. 7, the coils 13 to 20 are disposed in a refrigerant container 11 containing a superconducting refrigerant 12 such as liquid helium, supported by a support (not shown), and the refrigerant container 11 is a vacuum. It is held in the container 10.
Further, in order to keep the coil temperature low, a refrigerator (not shown) is used to keep the temperature of the heat shield constant or to reduce the evaporation amount of the superconducting refrigerant 12. Recently, the performance of the refrigerator has improved, and the refrigerant container 11 may not be used by directly cooling the superconductor coil with the refrigerator.

図7に示す超電導磁石装置の場合、撮影のために被検者が入る測定空間が狭く、周囲も囲まれているために被検者に閉塞感を与える。このため、ときどき、装置内に入ることを被検者に拒否される場合もあった。また、装置の外部から、術者が被検者へアクセスすることも困難であった。   In the case of the superconducting magnet device shown in FIG. 7, the measurement space in which the subject enters for imaging is narrow and the periphery is also surrounded, so that the subject has a feeling of blockage. For this reason, the subject sometimes refused to enter the apparatus. In addition, it is difficult for the surgeon to access the subject from the outside of the apparatus.

図8に従来のMRI装置用超電導磁石装置の他の例(オープン型水平磁場方式)を示す。この従来例は(特許文献1)に開示されたもので、図7の従来例の欠点であった装置の閉塞感、術者の被検者へのアクセスの困難性を改善したものである。
米国特許第5,410,287号
FIG. 8 shows another example (open type horizontal magnetic field method) of a conventional superconducting magnet device for an MRI apparatus. This conventional example is disclosed in (Patent Document 1), which improves the feeling of blockage of the device and the difficulty of access to the operator's subject, which were the disadvantages of the conventional example of FIG.
U.S. Pat.No. 5,410,287

図8(a)はその断面図を示したもの、 図8(b)は外観図を示したものである。
図8(a)において、3個ずつのコイル23A,24A,25Aと23B,24B,25Bが均一磁場領域21を挟んで、中心軸22と同軸に配置されている。各組のコイルは、支持体(図示せず)に支持されて、冷凍機で直接冷却されており、コイル全体は熱シールド9A,9Bで囲い、この熱シールド9A,9Bが真空容器10A,10Bに保持されている。
コイル23A,23B,24A,24Bは主コイルで同一方向の電流が流れており、コイル25A,25Bは補助コイルで、主コイルとは逆方向の電流が流れている。この構成の磁石では、主コイル23A,23B,24A,24Bで中心軸22に沿った方向の磁場を作り、補助コイル25A,25Bは均一磁場領域21の磁場均一度を向上するために配列されている。また、この磁石ではシールドコイルを使用せず、装置を設置した部屋に磁気シールドを施している。
FIG. 8 (a) shows a cross-sectional view, and FIG. 8 (b) shows an external view.
In FIG. 8 (a), three coils 23A, 24A, 25A and 23B, 24B, 25B are arranged coaxially with the central axis 22 with the uniform magnetic field region 21 in between. Each set of coils is supported by a support (not shown) and directly cooled by a refrigerator. The entire coil is surrounded by heat shields 9A and 9B, and these heat shields 9A and 9B are vacuum vessels 10A and 10B. Is held in.
The coils 23A, 23B, 24A, and 24B are main coils, and current in the same direction flows. The coils 25A and 25B are auxiliary coils, and current in the direction opposite to that of the main coils flows. In the magnet of this configuration, the main coils 23A, 23B, 24A, 24B create a magnetic field in the direction along the central axis 22, and the auxiliary coils 25A, 25B are arranged to improve the magnetic field uniformity of the uniform magnetic field region 21. Yes. In addition, this magnet does not use a shield coil, but provides a magnetic shield in the room where the apparatus is installed.

図8(a)において、対向する真空容器10A,10Bはドーナツ状をしており、両者の間を2本の支持棒26で支持されている。このため真空容器10Aと10Bの間は解放された空間になっている。被検者は、真空容器の中心穴を通って、中心軸22に沿って、均一磁場領域21に挿入され、そこで撮影が行われる。
この構成によれば、撮影領域(均一磁場領域21)の側面が解放されているために、被検者は閉塞感を受けずに済む。また、術者も側方から容易に被検者にアクセスすることができ、手術中のモニタに使用することができる。
In FIG. 8 (a), the opposing vacuum vessels 10A and 10B have a donut shape, and are supported by two support rods 26 therebetween. For this reason, the space between the vacuum vessels 10A and 10B is an open space. The subject is inserted into the uniform magnetic field region 21 along the central axis 22 through the central hole of the vacuum vessel, and imaging is performed there.
According to this configuration, since the side surface of the imaging region (homogeneous magnetic field region 21) is released, the subject does not need to feel a blockage. In addition, the surgeon can easily access the subject from the side and can be used for a monitor during surgery.

しかし、この構成では、被検者を挿入するためにドーナツ状の超電導コイルの組を使用しているために、このドーナツ状真空容器の中央部分の空間を磁場均一度を改善するための操作をする領域として使用できない。従って、広い空間にわたって、良好な磁場均一度を得ることは困難である。また、超電導コイルが発生する磁束は装置の外部空間を通って戻って来るために、漏洩磁場が広くなってしまう。このため、装置を設置するのに広い設置面積を必要としたり、あるいは手厚い磁場シールドを施すことが必要であった。   However, in this configuration, since a set of donut-shaped superconducting coils is used to insert the subject, an operation for improving the magnetic field uniformity in the space of the central portion of the donut-shaped vacuum vessel is performed. Cannot be used as an area Therefore, it is difficult to obtain good magnetic field uniformity over a wide space. Further, since the magnetic flux generated by the superconducting coil returns through the external space of the apparatus, the leakage magnetic field becomes wide. For this reason, it is necessary to install a device with a large installation area or to provide a thick magnetic field shield.

図9に従来のMRI装置用超電導磁石装置の第3の例(垂直磁場方式)を示す。この従来例は(特許文献2)に開示されている。この磁石は、上下方向に対向して配置した2組の超電導コイル31により磁場を発生させ、超電導コイル31の内側に良好な磁場均一度を得るための鉄によるシミング手段32を設けて、磁場均一領域21の磁場均一度を向上させている。さらに、上下の超電導コイル31が発生する磁場の帰路としての役割を兼ねた鉄ヨーク33で上下の磁場発生源間を機械的に支持する構造をとっている。
米国特許第5,194,810号
FIG. 9 shows a third example (vertical magnetic field method) of a conventional superconducting magnet device for an MRI apparatus. This conventional example is disclosed in (Patent Document 2). This magnet generates a magnetic field by two sets of superconducting coils 31 arranged facing each other in the vertical direction, and an iron shimming means 32 is provided inside the superconducting coil 31 to obtain a good magnetic field uniformity. The magnetic field uniformity in the region 21 is improved. Further, the upper and lower magnetic field generation sources are mechanically supported by the iron yoke 33 that also serves as a return path of the magnetic field generated by the upper and lower superconducting coils 31.
U.S. Patent No. 5,194,810

この従来例では、四方に開放されているので、被検者は閉塞感を受けずに済み、術者も容易に被検者にアクセスできる。また、鉄ヨーク33と鉄板34によって磁束の帰路を構成しているために、磁場漏洩を少なくすることができる。しかし、鉄ヨーク33や鉄板34を用いているために、磁石重量が重くなり、装置を設置する際に床の強化が必要になるという問題が生じる。また、鉄の飽和磁束密度はほぼ2テスラ程度であるので、あまり磁場強度を高くすることができないという制限もある。さらに、鉄は磁場に対してヒステリシス特性を持つために、傾斜磁場コイルが発生する磁場によって磁場分布に影響を与え、高精度の信号計測の妨げになる可能性があった。   In this conventional example, since it is opened in all directions, the subject does not need to feel a blockage, and the operator can easily access the subject. Further, since the return path of the magnetic flux is constituted by the iron yoke 33 and the iron plate 34, magnetic field leakage can be reduced. However, since the iron yoke 33 and the iron plate 34 are used, the magnet weight increases, and there is a problem that the floor needs to be strengthened when the apparatus is installed. Moreover, since the saturation magnetic flux density of iron is approximately 2 Tesla, there is a limitation that the magnetic field strength cannot be increased so much. Furthermore, since iron has hysteresis characteristics with respect to a magnetic field, the magnetic field generated by the gradient magnetic field coil affects the magnetic field distribution, which may hinder high-precision signal measurement.

上記の従来技術の説明で述べたように、これまでは被検者に解放感を与える広い開口を有する超電導磁石装置において、磁場漏洩が少なく、かつ、鉄を使用しないで装置重量の軽量化を図ったものはなかった。また、従来技術では、高い磁場強度で広い均一磁場領域を達成することも困難であった。
従って、本発明では上記課題を解決し、広い開口を備え、磁場漏洩が少なく、軽量で、かつ、高い磁場強度において広い均一磁場領域を達成できる超電導磁石装置を提供することを目的とする。
As described in the above description of the prior art, in a superconducting magnet device having a wide opening that gives a sense of release to the subject, there is little magnetic field leakage and the weight of the device can be reduced without using iron. There was nothing planned. In addition, in the prior art, it has been difficult to achieve a wide uniform magnetic field region with high magnetic field strength.
Accordingly, an object of the present invention is to provide a superconducting magnet device that solves the above-described problems, has a wide opening, has little magnetic field leakage, is lightweight, and can achieve a wide uniform magnetic field region at a high magnetic field strength.

本発明の目的は次の解決手段によって達成される。本発明の超電導磁石装置は、超電導用冷媒を充填した冷媒容器に中心軸を一致して収納された超電導コイル群と前記冷媒容器を収納する真空容器とを備えた磁場発生源を上下方向に対向して一対配置し、前記一対の磁場発生源を支持手段により所定距離だけ離して支持し、前記一対の磁場発生源の超電導コイルへ電流を流して前記一対の磁場発生源に挟まれた空間に前記対向方向の均一磁場を発生させ、前記超電導コイル群は、対向する磁場発生源同士において対向距離が近い位置に配置され前記空間に均一磁場を発生する第1のコイルと、前記第1のコイルより前記対向距離が大きい位置に配置されかつ前記第1のコイルよりも大きな径を有し前記第1のコイルとは逆向きの電流が流れる第2のコイルとを備え、前記真空容器は、外側外周略円形であり、且つ、前記第1のコイルの近傍と前記第2のコイルの近傍との間の外側外周が、前記空間から遠ざかるに従って径が大きくなるように形成されていることを特徴とする。
好ましくは、前記真空容器は、円錐台形状を有し、且つ、外側外周の径が、前記第2のコイルのある位置が前記第1のコイルのある位置よりも大きくされていることを特徴とする。
また、本発明の磁気共鳴イメージング装置は、上記超電導磁石装置を用いることを特徴とする。
The object of the present invention is achieved by the following means. The superconducting magnet device according to the present invention is directed vertically opposite to a magnetic field generation source including a superconducting coil group accommodated in a refrigerant container filled with a superconducting refrigerant and having a central axis aligned and a vacuum container containing the refrigerant container. The pair of magnetic field generation sources is supported by a support means spaced apart by a predetermined distance, and a current is passed through the superconducting coils of the pair of magnetic field generation sources so as to be sandwiched between the pair of magnetic field generation sources. The superconducting coil group is configured to generate a uniform magnetic field in the facing direction, and the superconducting coil group is disposed at a position where the facing distance is short between the facing magnetic field generation sources, and the first coil that generates the uniform magnetic field in the space, and the first coil A second coil disposed at a position where the facing distance is larger and having a diameter larger than that of the first coil and a current flowing in a direction opposite to that of the first coil, and the vacuum vessel has an outer side the outer periphery is substantially circular And a, and an outer periphery between the vicinity of said the vicinity of the first coil the second coil, characterized in that the diameter with increasing distance from said space is formed to be larger.
Preferably, the vacuum vessel has a frustoconical shape, and a diameter of an outer periphery is made larger at a position where the second coil is located than at a position where the first coil is located. To do.
The magnetic resonance imaging apparatus of the present invention is characterized by using the superconducting magnet device.

本発明によれば、超電導磁石装置において広い開口を備えることにより被検者に閉塞感を与えることなく、術者も容易に被検者にアクセスすることができる。また、磁場漏洩が少なく、軽量で、かつ、高い磁場強度においても広い均一磁場領域を実現できる超電導磁石装置を提供することができる。従って、超電導磁石装置の設置条件が緩和され、また、良好な画像を撮像することが可能となる。   According to the present invention, by providing a wide opening in the superconducting magnet device, the surgeon can easily access the subject without giving the subject a feeling of blockage. In addition, it is possible to provide a superconducting magnet device that has a small magnetic field leakage, is lightweight, and can realize a wide uniform magnetic field region even at a high magnetic field strength. Therefore, the installation conditions of the superconducting magnet device are relaxed, and a good image can be taken.

以下、本発明の実施例を図面に基づいて具体的に説明する。図1,図2,図6(a)に本発明の超電導磁石装置の第1の実施例を示す。
図1は装置の全体構成を示す断面図、 図2は装置の外観を示す図、 図6(a)は図1の断面図の右上の部分を他の実施例と比較できるように再掲したものである。
Embodiments of the present invention will be specifically described below with reference to the drawings. 1, 2 and 6 (a) show a first embodiment of the superconducting magnet apparatus of the present invention.
1 is a cross-sectional view showing the overall configuration of the apparatus, FIG. 2 is a view showing the external appearance of the apparatus, and FIG. 6 (a) is a reprint of the upper right portion of the cross-sectional view of FIG. It is.

図1において、超電導コイルを内包する円筒状の真空容器10A,10Bが上下方向に対向して配置され、上部の真空容器10Aは支柱26で下部真空容器10Bに対して所定の間隔をとって支持されている。真空容器10A,10Bの内部には超電導用冷媒12を充填した冷媒容器11A,11Bが保持され、その冷媒容器11A,11Bの中に超電導コイル41A,42A,43A,44A,45Aおよび41B,42B,43B,44B,45Bが支持体(図示せず)に支持されて配置されている。
超電導コイルには、通常よく使用されているNbTi線材が使用されている。超電導用冷媒としては液体ヘリウムが用いられる。冷媒容器11A,11Bの外側には熱の対流を防ぐために真空容器10A,10Bが配設され、さらに熱の輻射を防ぐための熱シールド(図示せず)などが配設される。
In FIG. 1, cylindrical vacuum vessels 10A and 10B containing superconducting coils are arranged facing each other in the vertical direction, and the upper vacuum vessel 10A is supported by a support column 26 at a predetermined interval from the lower vacuum vessel 10B. Has been. Refrigerant containers 11A, 11B filled with superconducting refrigerant 12 are held inside vacuum containers 10A, 10B, and superconducting coils 41A, 42A, 43A, 44A, 45A and 41B, 42B, 43B, 44B and 45B are supported and arranged on a support (not shown).
For the superconducting coil, a commonly used NbTi wire is used. Liquid helium is used as the superconducting refrigerant. Vacuum containers 10A and 10B are disposed outside the refrigerant containers 11A and 11B to prevent heat convection, and a heat shield (not shown) and the like are disposed to prevent heat radiation.

支柱26は上側の真空容器10Aを機械的に支持する働きをしているが、必要な場合には上下の冷媒容器11Aと11Bを熱的に接続させる働きを持たせてもよい。そうすることによって、冷凍機(図示せず)を上下の冷媒容器11A,11Bそれぞれに1台ずつ設ける必要がなくなり、装置全体に1台の冷凍機で間に合わせることができる。また、支柱26の本数も図示の2本に限定する必要はなく、3本または4本に増やすこともできるし、被検者の解放感を得るためには、片持ちの1本の支柱としてもよい。   The column 26 serves to mechanically support the upper vacuum vessel 10A, but may have a function to thermally connect the upper and lower refrigerant vessels 11A and 11B if necessary. By doing so, it is not necessary to provide one refrigerator (not shown) for each of the upper and lower refrigerant containers 11A, 11B, and the entire apparatus can be made in time with one refrigerator. In addition, the number of columns 26 need not be limited to the two illustrated, and can be increased to three or four, and in order to obtain a feeling of release from the subject, as a single cantilever column Also good.

図1では5組の超電導コイルが中心軸22Aと同軸に配置されて、均一磁場領域21に磁場均一度の高い磁場を形成している。これらの超電導コイルの働きは大きく分けて3つに分類される。先ず、超電導コイル41A,41B(主コイルに相当)は、均一磁場領域21に、磁場強度が高くかつ所定レベル以上の磁場均一度の磁場を発生させるためのものである。主コイルに関しては、一般に、対向するコイル間の距離を一定に保った状態で、コイルの直径を大きくすると、両コイルの間に発生する磁場の均一度が良くなる傾向にある。従って、良好な磁場均一度を得るためには、できるだけコイルの直径を大きくした方がよい。一方、主コイルの直径を大きくするほど磁場強度は低下するために、一定強度の磁場を得るために必要な主コイルの起磁力は増加し、装置の価格の増加につながる。また、被検者への圧迫感を低減するためには、装置の外径はできるだけ小さいことが望ましい。この両者のバランスから、主コイルである超電導コイル41A,41Bの直径は決定され、このコイルの直径によって真空容器10A,10Bの外径もほぼ決まることになる。   In FIG. 1, five sets of superconducting coils are arranged coaxially with the central axis 22A to form a magnetic field with high magnetic field uniformity in the uniform magnetic field region 21. The functions of these superconducting coils can be broadly classified into three. First, the superconducting coils 41A and 41B (corresponding to the main coil) are for generating a magnetic field having a high magnetic field strength and a magnetic field uniformity of a predetermined level or more in the uniform magnetic field region 21. Regarding the main coil, generally, when the diameter of the coil is increased while the distance between the opposing coils is kept constant, the uniformity of the magnetic field generated between the two coils tends to be improved. Therefore, in order to obtain good magnetic field uniformity, it is better to increase the diameter of the coil as much as possible. On the other hand, since the magnetic field strength decreases as the diameter of the main coil increases, the magnetomotive force of the main coil necessary to obtain a magnetic field with a constant strength increases, leading to an increase in the price of the apparatus. In order to reduce the feeling of pressure on the subject, it is desirable that the outer diameter of the apparatus be as small as possible. From the balance between the two, the diameters of the superconducting coils 41A and 41B, which are the main coils, are determined, and the outer diameters of the vacuum vessels 10A and 10B are substantially determined by the diameters of the coils.

次に、本実施例では装置外部への磁場漏洩を抑えるために、主コイル41A,41Bが発生する外部への磁場を打ち消すための打ち消しコイルを配置している。超電導コイル42A,42Bが打ち消しコイルで、このコイル42A,42Bは主コイル41A,41Bと同軸に配置される。その上で、主コイルとは逆方向の電流を流して、主コイル41A,41Bが装置外部に発生させるのと逆方向の磁場を発生させて、装置外部の磁場を打ち消すものである。装置外部の磁場を効率的に減少させるためには、打ち消しコイルの直径をできるだけ大きくすることが有効である。一方、打ち消しコイル42A,42Bによって均一磁場領域21の磁場強度を下げないためには、打ち消しコイル42A,42Bを主コイル41A,41Bからできるだけ遠ざけることが重要である。この結果、図1または図6(a)に示すように、打ち消しコイル42A,42Bは主コイル41A,41Bとほぼ同じ直径を有し、かつ、2つの打ち消しコイル42Aと42Bとの間の距離を、2つの主コイル41Aと41Bとの間の距離より大きくすることが適当な構成である。
Next, in this embodiment, a canceling coil for canceling the magnetic field to the outside generated by the main coils 41A and 41B is arranged in order to suppress leakage of the magnetic field to the outside of the apparatus. Superconducting coils 42A, 42B in the coil cancel each other, the coil 42A, 42 B are main coils 41A, is disposed 41B coaxially. In addition, a current in a direction opposite to that of the main coil is supplied to generate a magnetic field in a direction opposite to that generated by the main coils 41A and 41B outside the apparatus, thereby canceling the magnetic field outside the apparatus. In order to effectively reduce the magnetic field outside the apparatus, it is effective to make the diameter of the cancellation coil as large as possible. On the other hand, in order not to lower the magnetic field strength of the uniform magnetic field region 21 by the canceling coils 42A and 42B, it is important to keep the canceling coils 42A and 42B as far as possible from the main coils 41A and 41B. As a result, as shown in FIG. 1 or FIG. 6 (a), the canceling coils 42A and 42B have substantially the same diameter as the main coils 41A and 41B, and the distance between the two canceling coils 42A and 42B is reduced. It is appropriate to make the distance larger than the distance between the two main coils 41A and 41B.

さらに、本実施例では均一磁場領域21に発生させる磁場の均一度を向上させるために均一度補正用コイル43A,44A,45A,43B,44B,45Bを配置している。この均一度補正用コイルは、主コイルと打ち消しコイルによって形成される均一磁場領域21の磁場の不均一成分を補正するために設けられたコイルである。一般に、主コイル41A,41Bが十分大きな直径を持っていれば、上記の磁場不均一成分はそれほど大きくないので、均一度補正用コイルは、主コイル41A,41Bや打ち消しコイル42A,42Bほどの大きな起磁力は必要としない。また、その電流の向きは、主コイル41A,41Bによって発生する磁場の不均一成分に応じて各コイル毎に決定すればよく、一定方向に限定する必要はない。  Further, in this embodiment, in order to improve the uniformity of the magnetic field generated in the uniform magnetic field region 21, the uniformity correction coils 43A, 44A, 45A, 43B, 44B, and 45B are arranged. This uniformity correction coil is a coil provided for correcting a non-uniform component of the magnetic field in the uniform magnetic field region 21 formed by the main coil and the cancellation coil. In general, if the main coils 41A and 41B have a sufficiently large diameter, the above-mentioned magnetic field inhomogeneity component is not so large, so the uniformity correction coil is as large as the main coils 41A and 41B and the cancellation coils 42A and 42B. Magnetomotive force is not required. The direction of the current may be determined for each coil according to the non-uniform component of the magnetic field generated by the main coils 41A and 41B, and need not be limited to a certain direction.

図1においては、3組のコイルを配置しているが、この個数は磁場の不均一成分に応じて決定することができる。一般に、主コイル41A,41Bの直径が大きいほど磁場不均一成分は少なくなるので、均一度補正用コイルの個数も少なくすることができる。   In FIG. 1, three sets of coils are arranged, but this number can be determined according to the inhomogeneous component of the magnetic field. In general, the larger the diameters of the main coils 41A and 41B, the smaller the magnetic field inhomogeneity component, so the number of uniformity correction coils can be reduced.

本実施例の具体例として、主コイルの外径を1,600mm〜1,800mmとし、均一磁場領域の寸法と磁場強度をそれぞれ450mmφ、1テスラとしたとき、均一磁場領域において5ppm 以下の磁場均一度が達成されている。
超電導磁石装置を本実施例で述べた構成にすることにより、広い開口を備えていて、磁場漏洩も少ない装置を実現することができる。また、磁場漏洩を抑制するために鉄を使用していないので、装置重量を軽くすることができる。さらに、鉄を使用する場合に問題となる磁束飽和が生じないので、磁場強度が高くなっても、広い均一磁場領域にわたって良好な磁場均一度を達成することができる。
As a specific example of this embodiment, when the outer diameter of the main coil is 1,600 mm to 1,800 mm and the size and magnetic field strength of the uniform magnetic field region are 450 mmφ and 1 Tesla, respectively, a magnetic field uniformity of 5 ppm or less is obtained in the uniform magnetic field region. Has been achieved.
By configuring the superconducting magnet device as described in this embodiment, it is possible to realize a device having a wide opening and less magnetic field leakage. Moreover, since iron is not used to suppress magnetic field leakage, the weight of the apparatus can be reduced. Furthermore, magnetic flux saturation, which is a problem when iron is used, does not occur. Therefore, even when the magnetic field strength is increased, good magnetic field uniformity can be achieved over a wide uniform magnetic field region.

図3,図4に本発明の超電導磁石装置の第2の実施例を示す。
図3は装置の全体構成を示す断面図、図4は装置の外観を示す図である。
図3において、上下に配置された真空容器10A,10Bおよび冷媒容器11A,11Bはドーナツ形状をしており、中央部分51A,51Bが中空になっている。このような構成をとることにより、この中央部分51A,51Bに傾斜磁場や静磁場のシミング手段を設置することができる。従って、真空容器10A,10Bの対向する面の間にそれらを設置するだけのスペースを設ける必要がないので、装置としての開口をより広くとることができる。
3 and 4 show a second embodiment of the superconducting magnet device of the present invention.
FIG. 3 is a sectional view showing the overall configuration of the apparatus, and FIG. 4 is a view showing the appearance of the apparatus.
In FIG. 3, vacuum containers 10A and 10B and refrigerant containers 11A and 11B arranged above and below have a donut shape, and central portions 51A and 51B are hollow. By adopting such a configuration, it is possible to install gradient magnetic field or static magnetic field shimming means in the central portions 51A and 51B. Therefore, it is not necessary to provide a space for installing them between the opposing surfaces of the vacuum vessels 10A and 10B, so that the opening as a device can be made wider.

図5に本発明の超電導磁石装置の第3の実施例を示す。
図5においては、主コイル41Aと41Bとの間の対向距離を均一度補正用コイル43A,44A,45Aと43B,44B,45Bとの間の対向距離よりも小さくしている。このような構成にすることによって、主コイル41A,41Bの起磁力を増加させずに、均一磁場領域に発生させる磁場強度を高めることができる。また、上記と共に真空容器10A,10Bの対向する面側の中央部分に凹部52A,52Bを設け、この凹部52A,52Bに傾斜磁場コイル,高周波コイル,磁場シミング手段などを収納させることで、装置の実効的な開口を広くすることができる。
FIG. 5 shows a third embodiment of the superconducting magnet apparatus of the present invention.
In FIG. 5, the facing distance between the main coils 41A and 41B is made smaller than the facing distance between the uniformity correcting coils 43A, 44A, 45A and 43B, 44B, 45B. With such a configuration, the strength of the magnetic field generated in the uniform magnetic field region can be increased without increasing the magnetomotive force of the main coils 41A and 41B. In addition, the recesses 52A and 52B are provided in the central portions on the opposite sides of the vacuum vessels 10A and 10B, and the recesses 52A and 52B contain gradient magnetic field coils, high frequency coils, magnetic field shimming means, etc. The effective opening can be widened.

次に、本発明の第1の実施例に対する他の実施例を図6(b),(c),(d)に示す。これらの実施例は、図6(a)に示す第1の実施例に対し、主コイルまたは打ち消しコイルの配置を変えたものである。   Next, another embodiment of the first embodiment of the present invention is shown in FIGS. 6 (b), (c), and (d). These embodiments are different from the first embodiment shown in FIG. 6 (a) in the arrangement of the main coil or the cancellation coil.

図6(b)に示した実施例は、打ち消しコイル42A,42Bの直径を、主コイル41A,41Bの直径よりも大きくするとともに、冷媒容器11Aの外周形状を主コイル41A,41Bが位置する側で小さく、打ち消しコイル42A,42Bが位置する側では大きく、全体としての冷媒容器11A,11Bの形状を円錐台形状にしたものである。このような構成にすることにより、打ち消しコイル42A,42Bの効率を高めることができるので、装置外部への磁場漏洩をより効果的に減少させることができる。この場合さらに、打ち消しコイル42A,42Bの直径を大きくしても、冷媒容器11A,11Bが計測空間となる均一磁場領域21側の径が小さい円錐台形状に形成されているので、被検者が装置内部に入ったときに実質的な視界は損なわれず、被検者は図6(a)の場合と同程度の圧迫感しか感じない。   In the embodiment shown in FIG. 6 (b), the diameters of the canceling coils 42A and 42B are made larger than the diameters of the main coils 41A and 41B, and the outer peripheral shape of the refrigerant container 11A is on the side where the main coils 41A and 41B are located. The size of the refrigerant containers 11A and 11B as a whole is a truncated cone shape, which is small and large on the side where the cancellation coils 42A and 42B are located. By adopting such a configuration, the efficiency of the cancellation coils 42A and 42B can be increased, so that magnetic field leakage to the outside of the apparatus can be more effectively reduced. In this case, even if the diameter of the cancellation coils 42A and 42B is increased, the refrigerant containers 11A and 11B are formed in a truncated cone shape with a small diameter on the side of the uniform magnetic field region 21 serving as a measurement space. When entering the apparatus, the substantial field of view is not impaired, and the subject feels only a feeling of pressure similar to that in the case of FIG. 6 (a).

図6(c)に示した実施例は、図6(b)に示した実施例の打ち消しコイル42A,42Bを2つずつの打ち消しコイル42AA,42ABと42BA,42BBに分割した場合を示したものである。一般に、各コイルはそれぞれのコイルが発生する磁場の中に配置されており、かつ、各コイルには電流が流れているので、電磁力が働く。この電磁力は均一磁場領域21の磁場強度にも依存するが、100トンオーダーに及ぶために、超電導磁石装置を製造する上でこの電磁力を低減する工夫は重要な課題である。そこで、特に大きな電磁力が加わっている打ち消しコイル42A,42Bを図6(c)に示すように2つのコイルに分割することにより、各々のコイルに働く電磁力を低減することができ、超電導磁石装置の製造条件を緩和することができる。また、本実施例では2つのコイルに分割した場合を示したが、この手法はこれに限定されず、3つ以上のコイルに分割しても良いことは言うまでもない。   The embodiment shown in FIG. 6 (c) shows the case where the cancellation coils 42A and 42B of the embodiment shown in FIG. 6 (b) are divided into two cancellation coils 42AA, 42AB and 42BA, 42BB. It is. In general, each coil is arranged in a magnetic field generated by each coil, and an electric current flows through each coil, so that an electromagnetic force acts. Although this electromagnetic force depends on the magnetic field strength of the uniform magnetic field region 21, it reaches the order of 100 tons. Therefore, the idea of reducing this electromagnetic force is an important issue in manufacturing a superconducting magnet device. Therefore, by dividing the canceling coils 42A and 42B to which a particularly large electromagnetic force is applied into two coils as shown in FIG. 6 (c), the electromagnetic force acting on each coil can be reduced, and the superconducting magnet The manufacturing conditions of the apparatus can be relaxed. Moreover, although the case where it divided | segmented into two coils was shown in a present Example, it cannot be overemphasized that this method is not limited to this and may divide | segment into three or more coils.

図6(d)に示した実施例は、図6(b)の実施例の主コイル41A,41Bを2つずつの主コイル41AA,41ABと41BA,41BBに分割した場合を示したものである。この場合にも、主コイルを分割することで、分割された主コイルに加わる電磁力を低減することができる。また、本実施例の場合も、コイルの分割数は2つに限定されず、3つ以上にして良いことは言うまでもない。   The embodiment shown in FIG. 6 (d) shows a case where the main coils 41A and 41B of the embodiment of FIG. 6 (b) are divided into two main coils 41AA, 41AB and 41BA, 41BB. . Also in this case, by dividing the main coil, the electromagnetic force applied to the divided main coil can be reduced. Also in the present embodiment, the number of divided coils is not limited to two, and it goes without saying that it may be three or more.

以上の本発明の実施例の説明において、超電導材料の冷却手段としては、液体ヘリウム等の超電導用冷媒を用いる場合について説明したが、超電導材料に酸化物超電導体などを用いた場合には、液体窒素で冷却するとか、あるいは、直接冷凍機で冷やすことにより冷媒容器を使用しないで済む場合もある。   In the above description of the embodiments of the present invention, the case of using a superconducting refrigerant such as liquid helium as the cooling means of the superconducting material has been described. However, when an oxide superconductor or the like is used as the superconducting material, In some cases, it is not necessary to use the refrigerant container by cooling with nitrogen or by directly cooling with a refrigerator.

本発明の超電導磁石装置の第1の実施例を示す断面図。1 is a cross-sectional view showing a first embodiment of a superconducting magnet device of the present invention. 本発明の超電導磁石装置の第1の実施例の外観図。1 is an external view of a first embodiment of a superconducting magnet device according to the present invention. FIG. 本発明の超電導磁石装置の第2の実施例を示す断面図。Sectional drawing which shows the 2nd Example of the superconducting magnet apparatus of this invention. 本発明の超電導磁石装置の第2の実施例の外観図。FIG. 6 is an external view of a second embodiment of the superconducting magnet device of the present invention. 本発明の超電導磁石装置の第3の実施例を示す断面図。Sectional drawing which shows the 3rd Example of the superconducting magnet apparatus of this invention. 本発明の超電導磁石装置の他の実施例を示す部分断面図。The fragmentary sectional view which shows the other Example of the superconducting magnet apparatus of this invention. 従来のMRI装置用超電導磁石装置の一例(水平磁場方式)を示す図。The figure which shows an example (horizontal magnetic field system) of the conventional superconducting magnet apparatus for MRI apparatuses. 従来のMRI装置用超電導磁石装置の他の例(オープン型水平磁場方式)を示す図。The figure which shows the other example (open type horizontal magnetic field system) of the conventional superconducting magnet apparatus for MRI apparatuses. 従来のMRI装置用超電導磁石装置の第3の例(垂直磁場方式)を示す図。The figure which shows the 3rd example (vertical magnetic field system) of the conventional superconducting magnet apparatus for MRI apparatuses.

符号の説明Explanation of symbols

10,10A,10B 真空容器、11,11A,11B 冷媒容器、12 超電導用冷媒、13,14,15,16,17,18 主コイル、19,20 シールドコイル、21 均一磁場領域、22,22A 磁場中心軸、23A,23B,24A,24B 主コイル、25A,25B 補助コイル、26 支柱、31 主コイル、32 シミング手段、33 鉄ヨーク、34 鉄板、41A,41B,41AA,41AB,41BA,41BB 主コイル、42A,42B,42AA,42AB,42BA,42BB 打ち消しコイル、43A,43B,44A,44B,45A,45B 補助コイル、51A,51B 中央部分(中空)、52A,52B 凹部   10, 10A, 10B Vacuum container, 11, 11A, 11B Refrigerant container, 12 Superconducting refrigerant, 13, 14, 15, 16, 17, 18 Main coil, 19, 20 Shield coil, 21 Uniform magnetic field region, 22, 22A magnetic field Central shaft, 23A, 23B, 24A, 24B Main coil, 25A, 25B Auxiliary coil, 26 posts, 31 main coil, 32 shimming means, 33 Iron yoke, 34 Iron plate, 41A, 41B, 41AA, 41AB, 41BA, 41BB Main coil 42A, 42B, 42AA, 42AB, 42BA, 42BB Canceling coil, 43A, 43B, 44A, 44B, 45A, 45B Auxiliary coil, 51A, 51B Central part (hollow), 52A, 52B Concave

Claims (3)

超電導用冷媒を充填した冷媒容器に中心軸を一致して収納された超電導コイル群と前記冷媒容器を収納する真空容器とを備えた磁場発生源を上下方向に対向して一対配置し、前記一対の磁場発生源を支持手段により所定距離だけ離して支持し、前記一対の磁場発生源の超電導コイルへ電流を流して前記一対の磁場発生源に挟まれた空間に前記対向方向の均一磁場を発生させる超電導磁石装置において、
前記超電導コイル群は、対向する磁場発生源同士において対向距離が近い位置に配置され前記空間に均一磁場を発生する第1のコイルと、前記第1のコイルより前記対向距離が大きい位置に配置されかつ前記第1のコイルよりも大きな径を有し前記第1 のコイルとは逆向きの電流が流れる第2のコイルとを備え、
前記真空容器は、外側外周略円形であり、且つ、前記第1のコイルの近傍と前記第2のコイルの近傍との間の外側外周が、前記空間から遠ざかるに従って径が大きくなるように形成されていることを特徴とする超電導磁石装置。
A pair of magnetic field generation sources each including a superconducting coil group accommodated in a refrigerant container filled with a superconducting refrigerant so as to coincide with the central axis and a vacuum container accommodating the refrigerant container are vertically opposed to each other. The magnetic field generation source is supported at a predetermined distance by a support means, and a current is passed through the superconducting coils of the pair of magnetic field generation sources to generate a uniform magnetic field in the opposite direction in a space between the pair of magnetic field generation sources. In the superconducting magnet device to be
The superconducting coil group is disposed at a position where the facing distance is close between the opposing magnetic field generation sources and is disposed at a position where the facing distance is larger than that of the first coil, and a first coil that generates a uniform magnetic field in the space. And a second coil having a diameter larger than that of the first coil and a current flowing in a direction opposite to the first coil.
The vacuum vessel is formed so that the outer periphery is substantially circular, and the outer periphery between the vicinity of the first coil and the vicinity of the second coil increases in diameter as the distance from the space increases. A superconducting magnet device, characterized in that
請求項1記載の超電導磁石装置に置いて、In the superconducting magnet device according to claim 1,
前記真空容器は、円錐台形状を有し、且つ、外側外周の径が、前記第2のコイルのある位置が前記第1のコイルのある位置よりも大きくされていることを特徴とする超電導磁石装置。The superconducting magnet characterized in that the vacuum vessel has a truncated cone shape and the outer peripheral diameter is larger at a position where the second coil is located than at a position where the first coil is located. apparatus.
請求項1又は2記載の超電導磁石装置を用いた磁気共鳴イメージング装置。   A magnetic resonance imaging apparatus using the superconducting magnet apparatus according to claim 1.
JP2005149032A 2005-05-23 2005-05-23 Superconducting magnet and magnetic resonance imaging apparatus Expired - Fee Related JP3990410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005149032A JP3990410B2 (en) 2005-05-23 2005-05-23 Superconducting magnet and magnetic resonance imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005149032A JP3990410B2 (en) 2005-05-23 2005-05-23 Superconducting magnet and magnetic resonance imaging apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33602395A Division JP3731231B2 (en) 1995-11-30 1995-11-30 Superconducting magnet device

Publications (2)

Publication Number Publication Date
JP2005324036A JP2005324036A (en) 2005-11-24
JP3990410B2 true JP3990410B2 (en) 2007-10-10

Family

ID=35470815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005149032A Expired - Fee Related JP3990410B2 (en) 2005-05-23 2005-05-23 Superconducting magnet and magnetic resonance imaging apparatus

Country Status (1)

Country Link
JP (1) JP3990410B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293704A (en) * 1986-06-13 1987-12-21 Toshiba Corp Coil device for generating uniform magnetic field
JPS6343649A (en) * 1986-08-08 1988-02-24 株式会社日立メディコ Nuclear magnetic resonance imaging apparatus
JPS63272335A (en) * 1986-11-18 1988-11-09 Toshiba Corp Magnetic resonance imaging apparatus
US4924198A (en) * 1988-07-05 1990-05-08 General Electric Company Superconductive magnetic resonance magnet without cryogens
DE3907927A1 (en) * 1989-03-11 1990-09-20 Bruker Analytische Messtechnik MAGNETIC SYSTEM
US5307039A (en) * 1992-09-08 1994-04-26 General Electric Company Frustoconical magnet for magnetic resonance imaging

Also Published As

Publication number Publication date
JP2005324036A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP3731231B2 (en) Superconducting magnet device
EP0817211B1 (en) Superconducting magnet device and magnetic resonance imaging device using the same
US7126448B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus using the same
JP2888452B2 (en) Magnet device
JP3654463B2 (en) Magnetic resonance imaging system
EP0770881A1 (en) Shielded and open MRI magnet
US6198371B1 (en) Open magnet with floor mount
JP2002153439A (en) Magnetic resonance imaging device
WO1999021476A1 (en) Magnetic device and mri equipment using the same
US5521571A (en) Open MRI magnet with uniform imaging volume
JP3990410B2 (en) Superconducting magnet and magnetic resonance imaging apparatus
JP4886482B2 (en) Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus
JPH09276246A (en) Superconducting magnet device
JP2002065635A (en) Magnet for generating uniform magnetic field and magnetic resonance imaging apparatus using the same
JP2005144132A (en) Superconductive magnet device and magnetic resonance imaging device using the same
JPS63281410A (en) Electromagnet with magnetic shield
JP2008130947A (en) Superconducting magnet device and magnetic resonance imaging device using the same
JP4023703B2 (en) Magnetic resonance imaging system
JP5891063B2 (en) Magnetic resonance imaging system
JP2008125895A (en) Magnetic resonance imaging apparatus
JP2006326177A (en) Superconductive magnet device for mri
JP2005185318A (en) Magnetic device, and magnetic resonance imaging device
JP2010233736A (en) Electromagnetic device and magnetic resonance imaging apparatus
JPH07204174A (en) Magnetostatic field generator for magnetic resonance imaging system
JP2003052662A (en) Magnetic resonance imaging apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees