JP3988541B2 - Accumulated fuel injection system - Google Patents

Accumulated fuel injection system Download PDF

Info

Publication number
JP3988541B2
JP3988541B2 JP2002164361A JP2002164361A JP3988541B2 JP 3988541 B2 JP3988541 B2 JP 3988541B2 JP 2002164361 A JP2002164361 A JP 2002164361A JP 2002164361 A JP2002164361 A JP 2002164361A JP 3988541 B2 JP3988541 B2 JP 3988541B2
Authority
JP
Japan
Prior art keywords
pressure
fuel
internal combustion
discharge amount
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002164361A
Other languages
Japanese (ja)
Other versions
JP2003278620A (en
Inventor
倫明 中根
伸彦 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002164361A priority Critical patent/JP3988541B2/en
Priority to DE10301956A priority patent/DE10301956B4/en
Publication of JP2003278620A publication Critical patent/JP2003278620A/en
Application granted granted Critical
Publication of JP3988541B2 publication Critical patent/JP3988541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • F02D41/3854Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped with elements in the low pressure part, e.g. low pressure pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蓄圧式燃料噴射装置に関し、特に高圧ポンプから吐出される高圧燃料をコモンレールに蓄圧し、この蓄圧された高圧燃料を燃料噴射弁を介して内燃機関へ噴射供給するコモンレール式燃料噴射装置に係わる内燃機関始動性の改善に関する。
【0002】
【従来の技術】
蓄圧式燃料噴射装置としては、例えばディーゼル機関用燃料噴射システムとしてのコモンレール式燃料噴射装置において、ディーゼル機関のクランク軸の回転力によって駆動され、燃料タンクから汲み上げた燃料を高圧化して吐出する高圧ポンプと、この高圧ポンプから吐出された高圧燃料を、一種のサージタンクとして機能するコモンレールとを備えたものが知られている。
【0003】
この種の蓄圧式燃料噴射装置は、高圧ポンプに取付けられた調整用電磁弁が、制御装置としてのECUからの制御信号に基いて制御され、高圧ポンプから燃料配管を介してコモンレールへ圧送される高圧燃料の圧送量を調整する。そして、これにより、コモンレール圧力を所望の噴射圧力となるように変更する。
【0004】
【発明が解決しようとする課題】
従来の構成では、高圧ポンプの吐出量が調整用電磁弁の個体差によってバラツキが生じる。特に、始動する際には、この調整用電磁弁の個体差つまり高圧ポンプの個体差によって、燃料噴射弁からディーゼル機関すなわち内燃機関へ噴射される噴射量、噴射圧力のバラツキが生じ、結果としてエンジンの始動性のバラツキの一因となるという問題がある。
【0005】
本発明は、このような事情を考慮してなされたものであり、したがってその目的は、高圧ポンプの個体間のバラツキに関係なく、内燃機関の所定の始動性の確保ができる蓄圧式燃料噴射装置を提供することにある。
【0006】
【課題を解決するための手段】
本発明の請求項1によれば、燃料タンクから燃料を汲み上げる高圧ポンプと、高圧ポンプから吐出された高圧燃料を蓄圧するコモンレールと、内燃機関の各気筒毎に設けられ、コモンレールに蓄圧された高圧燃料をその気筒の燃焼室に噴射供給する複数の燃料噴射弁と、内燃機関の運転状態を検出する運転状態検出手段と、コモンレール内に蓄圧された高圧燃料の燃料圧力を検出する燃料圧力検出手段と、運転状態検出手段で検出された運転状態、および燃料圧力検出手段で検出された燃料圧力に応じて、高圧ポンプの吐出量を制御する吐出量制御手段とを備え、吐出量制御手段は、内燃機関の始動の際には運転状態検出手段によって所定の内燃機関回転数に到達する時間を検出し、かつ燃料圧力検出手段によって燃料圧力の昇圧特性を検出し、その到達時間が所定始動時間を超えるとき、昇圧特性に応じて次回始動時での吐出量を増減する。
【0007】
内燃機関の始動の際に、例えばアイドル回転等の所定回転数に到達するまでの到達時間と、コモンレール内の燃料圧力の昇圧特性を検出し、この到達時間が所望の所定始動時間を超える場合には、上記昇圧特性に基いて、次回始動時の吐出量を増減するので、高圧ポンプの個体差に関係なく所定の始動性の確保が可能である。
【0008】
本発明の請求項2によれば、高圧ポンプは、燃料タンクから汲み上げる燃料吸入量を調整する流量制御弁を備え、吐出量制御手段は、流量制御弁へ出力する駆動量を変える。
【0009】
これにより、高圧ポンプの個体差の要因である燃料吸入量を調整する流量制御弁の個体差を、吐出量制御手段から出力される流量制御弁の駆動量を調整することで、相殺することができる。
【0010】
本発明の請求項3によれば、流量制御弁は、リニアソレノイドである。始動時に、例えば流量制御弁の開口面積の全開状態と全閉状態との中間の所定の半開状態となるように、所定駆動量でリニアソレノイドを駆動する場合、上記駆動時間に基いて次回始動時の所定駆動量を増減させので、容易に所定の始動性確保のための学習制御ができる。
【0011】
上記流量制御弁へ出力する駆動量は、本発明の請求項4に記載のように、デューティ制御で行われている。
【0012】
これにより、デューティ比を変えることで例えば開閉期間の比率、つまり開弁期間と閉弁期間との比率を制御できるので、開弁期間に応じて燃料吸入量に調整でき、よって所望の始動性が確保できる。なお、デューティ比を変えることで流量制御弁の開口面積を所定の開口面積に制御してもよい。
【0013】
本発明の請求項5によれば、昇圧特性は、単位時間当たりの燃料圧力の上昇量であって、吐出量制御手段は、所定上限上昇値および所定下限上昇値を有しており、昇圧特性が所定上限上昇値以上であるときには駆動量を増加するように補正することで次回始動時での吐出量を減少させ、昇圧特性が所定下限上昇値以下であるときには駆動量を減少するように補正することで次回始動時での吐出量を増加させる
【0014】
これにより、実験等に基いて所定の始動性の確保ができる昇圧特性としての所定上限上昇値および所定下限上昇値を設定しておき、所定上限上昇値、所定下限上昇値と比較して駆動量を変更することで、所定始動時間以下に達するまですなわち所定の始動性が確保されるまで、毎回の始動時毎に継続して学習制御を行なうことができる。
【0029】
【発明の実施の形態】
本発明の蓄圧燃料噴射装置を、ディーゼル機関に搭載されるコモンレール式燃料噴射装置に適用して、具体化した実施形態を図面に従って説明する。
【0030】
(第1の実施形態)
(コモンレール式燃料噴射装置に適用する本実施形態の概略構成)
図1は、本発明の実施形態の蓄圧式燃料噴射装置を適用するコモンレール式燃料噴射装置のシステム概略構成を表す構成図である。図2は、図1中の制御系を表す概略構成図である。
【0031】
図1に示すように、コモンレール式燃料噴射装置は、燃料タンク6から燃料を汲み上げる高圧ポンプ7と、高圧ポンプ7から吐出された高圧燃料を蓄圧するサージタンクの一種であるコモンレール5と、多気筒(図1では4気筒)ディーゼル機関(以下、エンジンと呼ぶ)の各気筒毎に設けられ、コモンレール5に蓄圧された高圧燃料をその気筒の燃焼室に噴射供給する燃料噴射弁(以下、インジェクタと呼ぶ)1〜4と、エンジンの運転状態を検出する運転状態検出手段70と、コモンレール5内に蓄圧された高圧燃料の燃料圧力を検出する燃料圧力検出手段81と、運転状態検出手段70で検出された運転状態、および燃料圧力検出手段81で検出された燃料圧力に応じて、高圧ポンプの吐出量を制御する吐出量制御手段10とを備えている。なお、この制御手段10は、エンジンを制御する制御装置であって、高圧ポンプ7の制御に限らず、複数のインジェクタ1〜4等を電子制御する電子式コントロールユニット(以下、ECUと呼ぶ)である。
【0032】
ここで、エンジンは、バッテリーの電力で回転する図示しないスタータ(エンジン始動用モータ)によってエンジンのフライホイール(図示せず)が、エンジンを始動するのに必要な最低回転速度以上で回されることで始動する。スタータは、車両乗員がイグニッションスイッチをOFF位置からST位置に回すことで、ECU10により通電が開始される(スタータON信号がONされる)。
【0033】
複数個(本実施形態では4個)のインジェクタ1〜4は、エンジンの各気筒(シリンダー)の燃焼室に取り付けられて、エンジンの各燃焼室内に高圧燃料を噴射供給する。そして、各インジェクタ1〜4からエンジンへの燃料噴射量および燃料噴射時期等は、アクチュエータとしての噴射期間制御用電磁弁(噴射期間可変手段)11〜14への通電および通電停止をECU10で電子制御することにより決定される。
【0034】
コモンレール5は、比較的に高い(大気圧の100倍から1000倍以上の範囲)圧力(以下、コモンレール圧力と呼ぶ)の高圧燃料を蓄える一種のサージタンクで、高圧パイプ8を介して各インジェクタ1〜4に接続されている。なお、各インジェクタ1〜4、コモンレール5および高圧ポンプ7から燃料タンク6への燃料のリターン配管9は、コモンレール5内のコモンレール圧力が、限界蓄圧圧力を超えることがないようにプレッシャリミッタ15からも圧力を逃がせるように構成されている。
【0035】
高圧ポンプ7は、エンジンのクランク軸(図示せず)の回転に伴って回転することで、燃料タンク6内の燃料を燃料フィルター16を介在した燃料配管17を経て汲み上げるフィードポンプ(図示せず)を内蔵し、このフィードポンプにより吸い出された燃料を加圧して高圧燃料を圧送するサプライポンプよりなる。この高圧ポンプ7には、吐出量調整用電磁弁としての流量制御電磁弁19が取り付けられている。
【0036】
その流量制御電磁弁(以下、噴射圧力制御用電磁弁と呼ぶ)19は、ECU10からの制御信号により電子制御されることにより、高圧ポンプ7から燃料配管18を経てコモンレール5への高圧燃料の圧送量を調整することで、各インジェクタ1〜4からエンジンの燃焼室内に燃料噴射する噴射圧力を変更等をする噴射圧力可変手段である。
【0037】
ECU10は、制御処理、演算処理を行うCPU、各種の制御プログラムおよびデータを保存するROM、入力データを保存するRAM、入力回路、出力回路、電源回路およびインジェクタ駆動回路(以下、EDUと呼ぶ)20等より構成されている。このECU10は、後述の運転状態検出手段70で検出したエンジンの運転状態等に応じて高圧ポンプ7の噴射圧力制御用電磁弁19およびインジェクタ1〜4の噴射期間制御用電磁弁11〜14を制御する。
【0038】
EDU20は、ECU10より出力される制御信号(例えば制御パルス信号)を受けて、ECU10で算出された燃料噴射時期(開弁時期)、燃料噴射量(=噴射期間)に応じて開弁、閉弁させるように、図示しないバッテリーのバッテリー電圧を昇圧させ、各インジェクタ1〜4の各噴射期間制御用電磁弁11〜14へ供給(通電)または供給停止(通電停止)を制御する。
【0039】
ECU10にエンジンの運転状態を示す信号を入力する運転状態検出手段70としては、エンジンの回転速度を検出する回転速度センサ71、アクセルペダルの踏み込み量(アクセル開度)を検出するアクセル開度センサ72、エンジンが吸入する吸入空気の温度を検出する吸気温センサ73、エンジンの冷却水温を検出する冷却水温センサ75、エンジンのクランク軸の回転角度およびエンジン回転速度を検出するクランク角センサ77等がある。
【0040】
さらに、ECU10に入力する基本センサとしては、コモンレール5内に蓄圧された高圧燃料の燃料圧力(噴射圧力、コモンレール圧力)を検出する燃料圧センサ(燃料圧力検出手段)81、およびリターン配管9内の燃料の温度を検出する燃料温センサ(燃料温度検出手段)82等がある。
【0041】
ここで、ECU10は、エンジンの定常運転の運転状態においては、クランク角センサ77からの例えばクランク軸回転パルス、カム軸回転パルスの信号などの信号を基準にして、インジェクタ1〜4の燃料噴射時期(開弁時期)や、高圧ポンプ7の吐出量(燃料圧送期間)を算出することで、コモンレール圧力を最適な噴射圧力(=目標圧力)に保持するように高圧ポンプ7の噴射圧力制御用電磁弁19への通電タイミングを制御する。
【0042】
そして、回転速度センサ71とアクセル開度センサ72や、冷却水温センサ75または燃料温センサ82で測定した値から燃料噴射量を算出し、この算出した燃料噴射量を達成するために、運転状態毎にコモンレール5内の燃料圧力から算出されたインジェクタ通電時間指令(値)で各インジェクタ1〜4の噴射期間制御用電磁弁11〜14をそれぞれ駆動することで、エンジンが運転される。
【0043】
そして、ECU10は、エンジンを始動する目的で、車両乗員がスタータへの通電を開始してエンジンのクランク軸を必要最低回転速度以上でクランキングしている時に、例えば、冷却水温センサ25で検出されるエンジン冷却水温(TW)、あるいはエンジン冷却水温(TW)にスタータON継続時間を加味した補償量に応じてエンジン始動に最適な噴射開始圧力(始動時目標レール圧力=目標圧力)を算出し(噴射開始圧力決定手段)、燃料圧センサ81で検出されるコモンレール圧力(実レール圧力)がその目標圧力以上に上昇するまで、各インジェクタ1〜4へのインジェクタ通電時間指令(インジェクタ開弁指令)を禁止するように構成されている。なお、エンジンの所望の始動性を確保するための目標始動時間によっては、上記インジェクタ開弁指令を禁止する構成としなくてもよい。
【0044】
なお、本実施形態で説明するECUでは、以下、コモンレール圧力(実レール圧力)が所定圧力以上に上昇するまではインジェクタ開弁指令を禁止する構成とする。これにより、燃料噴射を開始してから有効な燃焼が行なえる(完爆する)までの時間を短縮できる。
【0045】
ここで、上述の構成のコモンレール式燃料噴射装置において、コモンレール圧が目標圧力となって以後、所定圧力を維持するのであれば、コモンレール式燃料噴射装置の個体差による始動時間のバラツキは生じない。しなしながら、始動時目標圧力は、定常運転時コモンレール圧より一般に低く設定されており、始動の際には、コモンレール圧が目標圧力となって以後、さらにコモンレール圧が上昇する過渡的な状態が存在する。このため、始動中のコモンレール圧の過渡特性は、コモンレール式燃料噴射装置の個体差、特に高圧燃料を圧送する高圧ポンプ7の個体差に影響され、エンジンの目標始動時間に対して実際の内燃機関ごと、つまりコモンレール式燃料噴射装置の個体間で始動時間がばらつきを生じて、目標時間を満足しない可能性がある。
【0046】
一方、始動目標圧力を定常運転時コモンレール圧までコモンレール圧力が上昇するまではインジェクタ開弁指令を禁止する手段もあるが、そもそもエンジンが完爆するまでのスタータの無駄時間が長くなる。車両乗員がスタータへの通電を開始してから完爆までのエンジンをクランキングする始動時間が長くなってしまって、所望の始動性の確保が困難となる。場合によっては、バッテリーの電力消費量が増加し、バッテリー上がりとなって始動できなくなる可能性がある。
【0047】
(本実施形態の要部およびその詳細説明)
そこで本実施形態では、以下の特徴を具備することで、高圧ポンプ7の個体間のバラツキに関係なく、内燃機関の所定の始動性の確保ができる蓄圧式燃料噴射装置を提供する。
【0048】
高圧ポンプ7の個体差によるコモンレール圧Pcの過渡特性のばらつき(図6(b)参照)、すなわち高圧ポンプ7の吐出量ばらつきに対して、吐出量補正を行なう始動時高圧ポンプ制御S600(図5、図6参照)を追加することで、解決した。
【0049】
この始動時高圧ポンプ制御S600は、高圧ポンプ7の吐出量調整用電磁弁としての流量制御弁19を駆動する駆動量の補正をECU10によって行なうものである。なお、後述の流量制御弁19の個体差によっても同一駆動量に対する吐出量のばらつきが生じるため、上記高圧ポンプ7の吐出量補正は、最初の始動時点で適性に行なえる補正ではなく、次回始動へ向けて吐出量の適性化を図る補正である。これにより、始動時毎に始動時高圧ポンプ制御S600を継続して行なうことで最適化が図れ、従って所定の始動性の確保ができる。
【0050】
以下、一実施例の始動時高圧ポンプ制御S600を、図5および図6に従って説明する。図5は、図1中のECUにて実行される始動時高圧ポンプ制御の前処理を示すフローチャートである。図6は、本発明の一実施例を示す始動時高圧ポンプ制御のフローチャートである。
【0051】
まず、エンジンを始動させる際には、車両乗員がイグニッションスイッチをOFF位置からST位置まで回すことにより、バッテリーからの電流でスタータモータが回転し、同時にオーバーランニングクラッチに押されたピニオンギヤがエンジンのクランク軸に直結したフライホイール外周のリングギヤと噛み合ってフライホイールを回転させる。これにより、クランク軸が回転するので、エンジンの気筒内をピストンが上下運動することで吸気管より気筒内に空気が吸入される。一方、高圧ポンプ7もエンジンのクランク軸の回転に伴って燃料タンク6から汲み上げた燃料を加圧することで、コモンレール5内の燃料圧力Pcが上昇する。
【0052】
このとき、図5に示すように、S501(Sはステップを表わす)にで、イグニッションスイッチをST位置まで回した際に、スタータの可動接点と固定接点とが当接することで発生するスタータON信号がON状態となっているか否かを判定する(スタータ通電開始検出手段)。スタータON信号がOFF状態であれば、当該処理を終了する。逆に、スタータON信号がON状態であれば、S600の始動時高圧ポンプ制御に移行する。
【0053】
なお、スタータ通電開始検出手段によってスタータON信号がON状態であると判定される始動時運転状態では、スタータによってエンジンが始動に必要な最低回転速度(例えば400rpm)以上でクランキングされるので、クランク軸の回転に伴って高圧ポンプ7が駆動されて噴射圧力制御用電磁弁19が通電されることにより、コモンレール5内の燃料圧力(=レール内燃料圧力)Pcが徐々に上昇する。
【0054】
次に、始動時高圧ポンプ制御S600では、S601からS607の制御処理を行なうことにより、エンジンが所定回転数(本実施形態ではアイドル回転)に到達する時間が目標始動時間を超える場合、次回始動時の噴射圧力制御用電磁弁19の所定駆動量を補正する。以下、図6に従って詳細説明する。
【0055】
図6に示すように、S601では、高圧ポンプ7の噴射圧力制御用電磁弁19の駆動量Dを所定値D1に設定する。なお、この所定値D1としては、最初の始動時では初期設定値すなわち工場出荷時の所定値であり、それ以後の始動時には、補正経歴によって、初期設定値(補正経歴なし)、補正により更新された値が用いられる。この所定駆動量D1に基いて、噴射圧力制御用電磁弁19は、ECU10によって駆動制御が行なわれ、高圧ポンプ7から吐出される高圧燃料の吐出量の調整がなされる。そして、この吐出量に応じてコモンレール5内の燃料圧力(コモンレール圧)Pcが徐々に上昇する。
【0056】
なお、説明の簡便のため、所定値D1として初期設定値が駆動量Dに入力されたものとして、以下、S602以降の制御処理の説明をする。
【0057】
S602では、運転状態検出手段70としての回転速度センサ71によって所定回転数(本実施形態では、アイドル回転)Nsに到達する到達時間Tsを検出する(図6中(a)参照)とともに、圧力検出手段としての燃料圧センサ81によってコモンレール5内のコモンレール圧Pcの昇圧特性を検出し、ECU10による単位時間当たりの燃料圧力の上昇量(ΔPc/ΔT)を算出する。なお、ここで、S602中に示す(a)は、始動時でのいわゆるエンジン吹き上がり特性を示す模式図であって、スタータの始動(例えばスタータON信号がON状態になった時点)からエンジン吹き上がり状態を経てアイドル回転Nsに戻るまでの到達時間Tsを表わすグラフである。S602中に示す(b)は、始動時でのコモンレール圧Pcの昇圧特性を示す模式図であって、破線および二点鎖線の特性は、実線の昇圧特性に対して、それぞれ、ΔPc/ΔTが大きい場合、ΔPc/ΔTが小さい場合を示す比較例を示す
ここで、コモンレール5に圧送する高圧燃料の吐出量を調整する噴射圧力制御用電磁弁19の個体差によるバラツキ要因について、以下図3および図4に従って説明する。図3は、図1中の高圧ポンプの流量制御弁を説明する模式図であって、図3(a)は流量制御弁の断面図、図3(b)は図3(a)のB方向からみた吸入ポートを示す拡大図である。図4は、図3の流量制御弁の一実施例の駆動特性を表わすグラフである。
【0058】
図3(a)に示すように、本実施形態の噴射圧力制御用電磁弁19は、周知の流量制御弁であって、可動子19a、可動子19aとともに磁気回路を構成する固定子鉄心19a、および通電により電磁力を発生する電磁コイル19cとを有する電磁駆動部と、弁ボディ19d、弁ボディ19d内に摺動自在に収容され、可動子と連動して往復移動可能な弁部材19e、および弁部材19eを可動子側に向かって付勢する付勢スプリング19fとを有する弁部からなる。なお、この電磁弁19は、ON−OFF制御により吸入ポート(図3(b)の開口面積Aを可変にするもの(以下、ON−OFF電磁弁と呼ぶ)でであっても、弁ボディ19d内を軸方向移動する弁部材19eの軸方向位置によって吸入ポートの開口面積Aが可変するリニアソレノイドであってもよい。ON−OFF電磁弁では、ECUによって開閉弁期間を可変とするデューティ制御によりこの開口面積Aを可変にでき、一方、リニアソレノイドにおいても、デューティ制御により平均駆動電流を変更することで開口面積Aを可変にできる(図4参照)。
【0059】
なお、本実勢形態で説明する噴射圧力制御用電磁弁19は、リニアソレノイドとして以下説明する。
【0060】
図4の横軸を駆動量D、縦軸を吸入ポートの開口面積Aで表わす噴射圧力制御用電磁弁19の駆動特性のように、噴射圧力制御用電磁弁19は、駆動量を大きくすると開口面積Aが減少しつまり吐出量が減少する。一方、駆動量を小さくすると噴射圧力制御用電磁弁19の開口面積Aが増加しつまり高圧ポンプ7の吐出量が増加する。
【0061】
噴射圧力制御用電磁弁19に係わる吐出量の変動要因としては、電磁駆動部では、電磁力を発生する電磁コイル19cの個体差による吸引力Fcの影響、弁部では、電磁コイル19に発生する電磁力に応じた吸引力と釣合うことで弁部材の軸方向位置を決定する付勢スプリングのばね定数Kの影響、およびそのセット荷重Fsの影響や、吸引力によって駆動される可動子と連動する弁部材の閉弁位置Hの影響等の設計公差内での製造上生じる影響因子がある。このため、ECU10から出力される駆動量が同一であったとしても、噴射圧力制御用電磁弁19の個体差による高圧ポンプ7の吐出量のばらつきが生じる。
【0062】
これに対して本発明の実施形態では、所定の始動性を確保できないもの、つまり始動に費やす到達時間Tsが目標時間Taを超えるものについて、以下の如く補正を実施する。
【0063】
S603では、S602で計測する到達時間Tsが目標時間(例えば、20秒)Ta以下であるか否かを判定する。到達時間Tsが目標時間Ta以内であれば、当該制御処理を終了する。逆に、到達時間Tsが目標時間Taを超えれば、S604に移行し、コモンレール圧Pcの昇圧特性に応じて補正を行なう。なお、後述するS604およびS606が昇圧特性を判定する昇圧特性判定手段である。
【0064】
S604では、S602で算出した昇圧特性ΔPc/ΔT(以下、実ΔPc/ΔT値と呼ぶ)が、予め実験等に基いて所定の始動性の確保ができることを確認した昇圧特性ΔPc/ΔTの範囲(以下、許容ΔPc/ΔT範囲と呼ぶ)のうち、上限側の所定上限上昇値(以下、上限値と呼ぶ)と比較して大きいか否かを判定する。実ΔPc/ΔT値が上限値以上であれば、S605にて駆動量(詳しくは、デューティ制御によるデューティ比)Dを増加させ(D1=D1+ΔD)、当該制御処理を終了する。逆に、実ΔPc/ΔT値が上限値より小さければ、S606に移行する。
【0065】
S606では、実ΔPc/ΔT値が、上記許容ΔPc/ΔT範囲のうち、下限側の所定下限上昇値(以下、下限値と呼ぶ)と比較して小さいか否かを判定する。実ΔPc/ΔT値が下限値以下であれば、S607にて駆動量(デューティ比)Dを減少させ(D1=D1−ΔD)、当該制御処理を終了する。逆に、実ΔPc/ΔT値が下限値より大きければ、当該制御処理を終了する。
【0066】
上記S604およびS606による昇圧特性(実ΔPc/ΔT値)と上、下限値との比較判定によって、実ΔPc/ΔT値が上限値以上の場合(例えば、図6S602中(b)の破線特性)には、吐出量を調整する噴射圧力制御用電磁弁19の駆動量Dが増加するように補正(D1=D1+ΔD)することで、次回始動時での吐出量を減少させることでき、一方、実ΔPc/ΔT値が下限値以下の場合(例えば、図6S602中の(b)の二点鎖線特性)には、駆動量Dが減少するように補正D1=D1−ΔD)することで、次回始動時での吐出量を増加させることできる。
【0067】
これにより、到達時間Tsが目標始動時間Ta以下に達するまですなわち所定の始動性が確保されるまで、毎回の始動時毎に継続して次回始動時への駆動量D補正、すなわち学習制御を行なうことができる。したがって、高圧ポンプ7の個体間のバラツキに関係なく、内燃機関の所定の始動性の確保ができる。
【0068】
(第2の実施形態)
以下、本発明を適用した他の実施形態を説明する。なお、以下の実施形態においては、第1の実施形態と同じもしくは均等の構成には同一の符号を付し、説明を繰返さない。
【0069】
第2の実施形態では、図7に示すように、所定の始動性を確保するための補正を行なう規準として、始動から所定の経過時間T1に達したときの到達回転数(以下、実内燃機関回転数と呼ぶ)N1が、目標内燃機関回転数Naに到達しているか否かを判断する。図7は、本実施形態に係わる始動時高圧ポンプ制御のフローチャートである。図7に示す始動時高圧ポンプ制御は、第1の実施形態で説明した構成(図1、図2)に適用される蓄圧式燃料噴射装置に係わる制御処理であって、この始動時高圧ポンプ制御の前処理として、第1の実施形態と同様に、スタータ通電開始検出手段による始動時を検出する制御処理(図5のS501参照)を行なう。
【0070】
図7に示すように、始動時高圧ポンプ制御700では、S601、およびS702からS706の制御処理を行なう。
【0071】
S601の制御処理(図6参照)により高圧ポンプ7の噴射圧力制御用電磁弁19の駆動量Dを所定値D1に設定後、S702では、スタータ通電開始検出手段によって検出した内燃機関の始動開始から、所定の経過時間T1に達したときの実内燃機関回転数N1の検出を行なう(図7中(a)参照)。さらに、燃料圧センサ81によって所定の経過時間T1に達したとき、コモンレール圧Pcの到達燃料圧力(以下、実燃料圧力)Pc1の検出を行なう。
【0072】
なお、ここで、スタータ通電開始検出手段は、内燃機関の始動指令を検出する機関始動検出手段を構成する。スタータ通電開始検出手段によって、スタータON信号がOFF状態からON状態へ切替わる時期、つまりスタータの駆動が開始され内燃機関の始動開始時点が検出される。
【0073】
S703では、S702で検出した実内燃機関回転数N1が所定の内燃機関回転数(以下、目標内燃機関回転数)Na(例えば、400rpm)を越えているか否かを判定する。実内燃機関回転数N1が目標内燃機関回転数Naを越えていれば、当該制御処理を終了する。逆に、実内燃機関回転数N1が目標内燃機関回転数Naに達していなければ、S704へ移行する。
【0074】
S704では、所定の始動性を確保するための補正を行なうため、所定の経過時間T1時点での内燃機関の始動性を示す実データとして、実内燃機関回転数N1と、実燃料圧力Pc1をECU10に記憶し、S705に移行する。
【0075】
S705およびS706では、実内燃機関回転数N1と実燃料圧力Pc1とを用い、予め記憶した補正のためのデータを参照して、駆動量Dの初期値D1を、その内燃機関に搭載された高圧ポンプ7に適した所定の初期値(目標駆動量)Daに補正する(D=D1をD=Daに置き換える)。S705では、実内燃機関回転数N1、実燃料圧力Pc1等を用いて、次回始動時に目標内燃機関回転数Naとなるように、目標燃料圧力Pcaを求め、S706では、その目標燃料圧力Pcaから、次回始動時の目標駆動量Daを決定する。
【0076】
詳しくは、S705では、始動時における燃料圧力Pcと内燃機関回転数Nの相関関係から、S705中のグラフに示すように、実内燃機関回転数N1に対応する目標燃料圧力Pcaを求める。なお、この目標燃料圧力Pcaを算出する方法としては、マップあるいは計算式により導き出す方法であればいずれでもよい。マップとしては、実内燃機関回転数N1の1次元マップ、実内燃機関回転数N1と燃料温センサ81により検出した燃料温の2次元マップ、実内燃機関回転数N1と実燃料圧力Pc1と燃料温の3次元マップ等のいずれでもよい。計算式としては、実内燃機関回転数N1を変数とする関数Pca=f(N1)、実内燃機関回転数N1および燃料温tを変数とする関数Pca=f(N1、t)、実内燃機関回転数N1、実燃料圧力Pc1および燃料温tを変数とする関数Pca=f(N1、Pc1、t)等のいずれでもよい。なお、単に実内燃機関回転数N1から目標燃料圧力Pcaを求める方法に比べて、燃料温の影響を考慮した目標燃料圧力Pcaの算出精度がよく、燃料温とその燃料温で生じた実燃料圧力Pc1とを考慮した目標燃料圧力Pcaの算出精度はさらによい。燃料温を考慮した目標燃料圧力Pcaの算出を行なうにより、低温始動時においても始動性の確保が可能となる。S706では、始動時における燃料圧力Pcと駆動量(デューティ比)Dの相関関係から、S706中のグラフに示すように、目標燃料圧力Pcaに対応する目標駆動量(目標デューティ比)Daを求める。なお、この目標駆動量Daを算出する方法としては、目標燃料圧力Pcaの1次元マップ、目標燃料圧力Pcaと燃料温の2次元マップ、目標燃料圧力Pcaと始動時での固定駆動量D1と燃料温の3次元マップ等のマップによる算出、あるいは目標燃料圧力Pcaを変数とする関数Da=f(Pca)、目標燃料圧力Pcaおよび燃料温tを変数とする関数Da=f(Pca、t)、目標燃料圧力Pca、固定駆動量D1および燃料温tを変数とする関数Da=f(Pca、D1、t)等の計算式であってもよい。
【0077】
これにより、次回始動時の高圧ポンプ7の吐出量を、高圧ポンプ7が搭載される内燃機関に適した吐出量に補正でき、よって高圧ポンプ7の個体差(詳しくは、噴射圧力制御用流量制御弁19に係わる吐出量の個体差)による始動性への影響を低減可能である。この結果、所定の始動性の確保が可能である。例えば始動毎に目標駆動量量Daの見直しを行い、始動時駆動量D1の補正が行なわれることで、所定の始動性の確保ができる。
【0078】
以上説明した始動時高圧ポンプ制御S700において、S702およびS703の制御処理は、内燃機関の始動を開始後、所定の経過時間T1に達すると、目標内燃機関Naに到達したか否かを判断する始動性判断手段を構成する。これにより、始動性の判断方法として、始動が完了した状態でなくとも、始動途中の過渡的状態、例えば始動開始直後の比較的低い機関回転数にある内燃機関の運転状態であっても判断が可能である。始動性判断手段は、所定の経過時間T1での実内燃機関回転数N1と目標内燃機関Naとを比較判定することで、所定の始動性の確保ができるか否かの判断あるいは所定の始動性が確保できるか否かの予測判断が可能である。
【0079】
なお、始動性判断手段は、運転状態検出手段70と機関始動指令検出手段とを備える。これにより、始動性判断手段は、内燃機関の始動開始の検出が容易となり、始動開始後の所定の経過時間T1を如何ように短くしても、実内燃機関回転数N1と目標内燃機関Naとを比較判定が確実にできる。したがって、始動性判断手段によって、始動開始直後の過渡状態であっても始動性の確保のための判断が可能である。
【0080】
S704からS706の制御処理は、所定の経過時間T1での実燃料圧力Pc1および実内燃機関回転数N1に応じて、次回始動時での吐出量D1を補正する吐出量補正手段を構成する。この吐出量補正手段によって、高圧ポンプ7の個体差に関係なく、始動性の向上が図れ、所定の始動性が確保できる。
【0081】
なお、吐出量補正手段による吐出量D1の補正は、始動性判断手段によって実内燃機関回転数N1が目標内燃機関回転数Naに達しなかったと判断された場合に、実行される。このため、実内燃機関回転数N1が目標内燃機関回転数Naに対して高い、低いに係わらず吐出量の補正を行なう場合に比べて、吐出量補正手段つまりECU10の負荷低減が可能である。
【0082】
なお、目標内燃機関回転数Naは、始動開始から始動が完了するまでの運転状態に発生する回転数範囲であれば、いずれの内燃機関回転数であってもよい。
【0083】
(第3の実施形態)
第3の実施形態では、図8に示すように、内燃機関の気筒を判別する気筒判別手段と、吐出量Dを気筒毎に制御可能なフィードバック制御手段を備える。図8は、実施形態に係わる高圧ポンプ制御のフローチャートである。以下の実施形態においては、第2の実施形態と同じもしくは均等の構成には同一の符号を付し、説明を繰返さない。
【0084】
気筒判別手段は、クランク角センサ77および回転速度センサ71(図2参照)を備える。例えば、高圧ポンプ7の1回転に1回信号がクランク角センサ77によって発信され、高圧ポンプ7の1回転に複数回信号(例えば、4気筒の場合、その倍数の60回)が回転速度71によって発信され、ECU10がそれら信号を受信することで、高圧ポンプ7の特定気筒に対応する特定カム位相(図示せず)を知る周知の手段である。
【0085】
フィードバック制御手段は、気筒判別手段によって判別された気筒に応じて、吐出量Dを制御する周知の手段である。
【0086】
図8に示すように、S801では、気筒判別手段によって気筒判別ができるか否かを判定する。詳しくは、クランク角センサ77および回転速度センサ71のうち少なくとも一方が所定の信号出力(以下、検出可能な閾値と呼ぶ)以上になったか否かを判定する。信号出力が検出可能な閾値以上であれば、気筒判別が可能と判断し、S802へ移行する。逆に、閾値以下であれば、S700へ移行する。なお、気筒別が可能か否かの判定の規準としては、上記閾値に限らず、それら信号が検出可能となる下限内燃機関回転数であってもよい。
【0087】
S802では、気筒判別手段によって検出した内燃機関の気筒とその気筒に対応する特定カム位相との関係から、その気筒に応じた吐出量Dを制御する。
【0088】
一方、S700では、第2の実施形態で説明した始動時高圧ポンプ制御を行なう。すなわち、始動時の駆動量Dとして、所定駆動量D1が入力され、この駆動量D1に応じた高圧ポンプ7の吐出量の調整が行なわれ、始動性判断手段および吐出量補正手段によって次回始動時の目標駆動量Daが求められる。その後、S802に移行する。
【0089】
言い換えると、始動性判断手段によって目標内燃機関回転数Naに到達したと判断される場合には、吐出量補正手段は実行されず、フィードバック制御手段が気筒に応じた吐出量の制御を実行する。これにより、始動性判断手段によって所定の始動性が確保されたと判断されるまでは、高圧ポンプ7の個体差による影響の補正を次回始動時に行なうための学習制御ができるとともに、目標内燃機関回転数Naに達し所定の始動性が確保されたと判断されると、次回の始動時のためではなく、始動途中において始動性向上のための補正をフィードバック制御によって行なうことが可能である。例えば、目標内燃機関回転数Naの設定値に応じて、その回転数Na以降の回転数域での始動性向上が効果的に図れる。なお、始動性判断手段によって所定の始動性が確保されたと判断されなかった場合でも、フィードバック制御によって、その回転数Na以降の回転数域での始動性向上が図れる。
【0090】
ここで、本実施形態では、目標内燃機関回転数Naが、気筒判別手段によって気筒の判別が可能な下限回転数Nj(図7のS702中(a)参照)より低く設定されている。これにより、次回始動時に行なうための学習制御と、始動途中において始動性向上のための補正をフィードバック制御とを効果的に実施でき、よって所定の始動性を効率的に確保可能である。なお、目標内燃機関回転数Naがこの下限回転数の近傍であることが望ましい。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の蓄圧式燃料噴射装置を適用するコモンレール式燃料噴射装置のシステム概略構成を表す構成図である。
【図2】図1中の制御系を表わす概略構成図である。
【図3】図1中の高圧ポンプの流量制御弁を説明する模式図であって、図3(a)は流量制御弁の断面図、図3(b)は図3(a)のB方向からみた吸入ポートを示す拡大図である。
【図4】図3の流量制御弁の一実施例の駆動特性を表わすグラフである。
【図5】図1中のECUにて実行される始動時高圧ポンプ制御の前処理を示すフローチャートである。
【図6】本発明の第1の実施形態に係わる始動時高圧ポンプ制御のフローチャートである。
【図7】本発明の第2の実施形態に係わる始動時高圧ポンプ制御のフローチャートである。
【図8】本発明の第3の実施形態に係わる高圧ポンプ制御のフローチャートである。
【符号の説明】
1〜4 インジェクタ(燃料噴射弁)
5 コモンレール
6 燃料タンク
7 高圧ポンプ
10 ECU(制御装置、吐出量制御手段)
11〜14 噴射期間制御用電磁弁(噴射期間可変手段)
19 噴射圧力制御用電磁弁(噴射圧可変手段、流量制御弁)
70 運転状態検出手段
71 回転数センサ(運転状態検出手段の一部)
81 燃料圧センサ(燃料圧力検出手段)
A 開口面積
D 駆動量
D1 所定値(所定駆動量)
Ns 所定内燃機関回転数
Na 目標内燃機関回転数
N1 (始動開始時から所定の経過時間T1に達したときの)実内燃機関回転数(到達内燃機関回転数)
Nj (気筒判別手段によって気筒の判別が可能な)下限回転数
Pc コモンレール圧(コモンレール5内の燃料圧力)
Pca 目標燃料圧力
P1 (始動開始時から所定の経過時間T1に達したときの)実燃料圧力(到達燃料圧力)
Ts 到達時間
Ta 目標始動時間(所定始動時間)
T1 所定の経過時間
ΔPc/ΔT (昇圧特性としての)単位時間当たりのコモンレール圧Pcの上昇値
S501 始動時高圧ポンプ制御の前処理(スタータ通電開始検出手段による始動時を検出する制御処理)
S600(S601〜S607) 第1の実施形態に係わる始動時高圧ポンプ制御処理
S700(S601およびS702〜S706) 第2の実施形態に係わる始動時高圧ポンプ制御処理
S800(S801、S802およびS700) 第3の実施形態に係わる高圧ポンプ制御処理
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pressure accumulation fuel injection device, and more particularly to a common rail fuel injection device that accumulates high pressure fuel discharged from a high pressure pump in a common rail and injects the accumulated high pressure fuel to an internal combustion engine via a fuel injection valve. The present invention relates to the improvement of startability of an internal combustion engine related to
[0002]
[Prior art]
As a pressure accumulation type fuel injection device, for example, in a common rail type fuel injection device as a fuel injection system for a diesel engine, a high pressure pump that is driven by the rotational force of the crankshaft of the diesel engine and discharges the fuel pumped from the fuel tank at a high pressure And a high-pressure fuel discharged from the high-pressure pump is known that includes a common rail that functions as a kind of surge tank.
[0003]
In this type of accumulator fuel injection device, an adjustment solenoid valve attached to a high-pressure pump is controlled based on a control signal from an ECU as a control device, and is pumped from a high-pressure pump to a common rail via a fuel pipe. Adjust the pumping amount of high-pressure fuel. Thereby, the common rail pressure is changed to a desired injection pressure.
[0004]
[Problems to be solved by the invention]
In the conventional configuration, the discharge amount of the high-pressure pump varies due to individual differences among the adjusting solenoid valves. In particular, at the time of starting, variation in the injection amount and injection pressure from the fuel injection valve to the diesel engine, that is, the internal combustion engine is caused by the individual difference of the adjusting solenoid valve, that is, the individual difference of the high-pressure pump. There is a problem that it contributes to variations in starting performance.
[0005]
The present invention has been made in consideration of such circumstances, and therefore the object thereof is a pressure accumulation type fuel injection device capable of ensuring a predetermined startability of an internal combustion engine regardless of variations among individual high-pressure pumps. Is to provide.
[0006]
[Means for Solving the Problems]
According to claim 1 of the present invention, a high-pressure pump that pumps fuel from a fuel tank, a common rail that accumulates high-pressure fuel discharged from the high-pressure pump, and a high-pressure that is provided for each cylinder of the internal combustion engine and accumulated in the common rail A plurality of fuel injection valves for supplying fuel to the combustion chamber of the cylinder, an operating state detecting means for detecting the operating state of the internal combustion engine, and a fuel pressure detecting means for detecting the fuel pressure of the high-pressure fuel accumulated in the common rail And a discharge amount control means for controlling the discharge amount of the high-pressure pump in accordance with the operation state detected by the operation state detection means and the fuel pressure detected by the fuel pressure detection means. When starting the internal combustion engine, the operating state detection means detects the time required to reach the predetermined internal combustion engine speed, and the fuel pressure detection means detects the fuel pressure boosting characteristic. , The arrival time when exceeding a predetermined start-up time, increases or decreases the discharge rate of the next startup in accordance with the pressure rise characteristics.
[0007]
When the internal combustion engine is started, for example, an arrival time until reaching a predetermined number of revolutions such as idle rotation and a pressure increase characteristic of the fuel pressure in the common rail are detected, and this arrival time exceeds a desired predetermined start time. Since the discharge amount at the next start is increased or decreased based on the above boosting characteristics, a predetermined startability can be ensured regardless of individual differences of the high pressure pumps.
[0008]
According to claim 2 of the present invention, the high-pressure pump includes a flow rate control valve that adjusts the amount of fuel drawn from the fuel tank, and the discharge amount control means changes the drive amount output to the flow rate control valve.
[0009]
As a result, the individual difference of the flow control valve that adjusts the fuel intake amount, which is the cause of the individual difference of the high-pressure pump, can be offset by adjusting the drive amount of the flow control valve output from the discharge amount control means. it can.
[0010]
According to claim 3 of the present invention, the flow control valve is a linear solenoid. When starting the linear solenoid with a predetermined drive amount so that the opening area of the flow control valve is in a predetermined half-open state between the fully open state and the fully closed state, for example, at the next start based on the above drive time Since the predetermined drive amount is increased or decreased, learning control for ensuring a predetermined startability can be easily performed.
[0011]
The drive amount output to the flow rate control valve is performed by duty control as described in claim 4 of the present invention.
[0012]
Thus, by changing the duty ratio, for example, the ratio of the opening / closing period, that is, the ratio between the valve opening period and the valve closing period can be controlled, so that the fuel intake amount can be adjusted according to the valve opening period, and thus the desired startability can be achieved. It can be secured. Note that the opening area of the flow control valve may be controlled to a predetermined opening area by changing the duty ratio.
[0013]
According to claim 5 of the present invention, Boost The characteristic is an increase amount of the fuel pressure per unit time, and the discharge amount control means has a predetermined upper limit increase value and a predetermined lower limit increase value, and when the boosting characteristic is not less than the predetermined upper limit increase value, the drive amount Increase By correcting so that the discharge amount is reduced at the next start When the boosting characteristic is below the predetermined lower limit increase value, the drive amount is decreased. The discharge amount at the next start is increased by correcting to .
[0014]
Thus, a predetermined upper limit increase value and a predetermined lower limit increase value are set as boosting characteristics that can ensure a predetermined startability based on experiments or the like, and the driving amount is compared with the predetermined upper limit increase value and the predetermined lower limit increase value. By changing the above, the learning control can be performed continuously at each starting time until the predetermined starting time or less is reached, that is, until a predetermined starting property is ensured.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment in which the pressure-accumulated fuel injection device of the present invention is applied to a common rail fuel injection device mounted on a diesel engine will be described with reference to the drawings.
[0030]
(First embodiment)
(Schematic configuration of this embodiment applied to a common rail fuel injection device)
FIG. 1 is a configuration diagram illustrating a system schematic configuration of a common rail fuel injection device to which an accumulator fuel injection device according to an embodiment of the present invention is applied. FIG. 2 is a schematic configuration diagram showing the control system in FIG.
[0031]
As shown in FIG. 1, the common rail fuel injection device includes a high pressure pump 7 that pumps fuel from a fuel tank 6, a common rail 5 that is a type of surge tank that accumulates high pressure fuel discharged from the high pressure pump 7, and a multi-cylinder. (4 cylinders in FIG. 1) A fuel injection valve (hereinafter referred to as an injector) that is provided for each cylinder of a diesel engine (hereinafter referred to as an engine) and that injects high-pressure fuel accumulated in a common rail 5 into a combustion chamber of the cylinder. 1) to 4), an operating state detecting means 70 for detecting the operating state of the engine, a fuel pressure detecting means 81 for detecting the fuel pressure of the high pressure fuel accumulated in the common rail 5, and an operating state detecting means 70. A discharge amount control means 10 for controlling the discharge amount of the high-pressure pump according to the operated state and the fuel pressure detected by the fuel pressure detection means 81. That. The control means 10 is a control device that controls the engine, and is not limited to the control of the high-pressure pump 7, but is an electronic control unit (hereinafter referred to as ECU) that electronically controls a plurality of injectors 1 to 4. is there.
[0032]
Here, the engine flywheel (not shown) is rotated at a speed higher than the minimum rotational speed necessary for starting the engine by a starter (engine starting motor) (not shown) that is rotated by battery power. Start with. The starter is energized by the ECU 10 when the vehicle occupant turns the ignition switch from the OFF position to the ST position (the starter ON signal is turned ON).
[0033]
A plurality (four in this embodiment) of injectors 1 to 4 are attached to the combustion chambers of the cylinders of the engine and inject and supply high-pressure fuel into the combustion chambers of the engine. The fuel injection amount and fuel injection timing from the injectors 1 to 4 to the engine are electronically controlled by the ECU 10 to energize and deenergize the injection period control solenoid valves (injection period varying means) 11 to 14 as actuators. To be determined.
[0034]
The common rail 5 is a kind of surge tank that stores high-pressure fuel having a relatively high pressure (in the range of 100 to 1000 times the atmospheric pressure) (hereinafter referred to as common rail pressure), and each injector 1 is connected via a high-pressure pipe 8. Connected to ~ 4. The fuel return pipes 9 from the injectors 1 to 4, the common rail 5, and the high pressure pump 7 to the fuel tank 6 are also connected from the pressure limiter 15 so that the common rail pressure in the common rail 5 does not exceed the limit accumulated pressure. It is configured to release pressure.
[0035]
The high-pressure pump 7 rotates with the rotation of the crankshaft (not shown) of the engine, thereby pumping up the fuel in the fuel tank 6 through the fuel pipe 17 with the fuel filter 16 interposed (not shown). And a supply pump that pressurizes fuel sucked out by the feed pump and pumps high-pressure fuel. The high-pressure pump 7 is provided with a flow control electromagnetic valve 19 as a discharge amount adjusting electromagnetic valve.
[0036]
The flow rate control solenoid valve (hereinafter referred to as an injection pressure control solenoid valve) 19 is electronically controlled by a control signal from the ECU 10, thereby pumping high pressure fuel from the high pressure pump 7 to the common rail 5 via the fuel pipe 18. It is an injection pressure variable means for changing the injection pressure at which fuel is injected from the injectors 1 to 4 into the combustion chamber of the engine by adjusting the amount.
[0037]
The ECU 10 includes a CPU that performs control processing and arithmetic processing, a ROM that stores various control programs and data, a RAM that stores input data, an input circuit, an output circuit, a power supply circuit, and an injector drive circuit (hereinafter referred to as EDU) 20. Etc. are comprised. The ECU 10 controls the injection pressure control solenoid valve 19 of the high-pressure pump 7 and the injection period control solenoid valves 11 to 14 of the injectors 1 to 4 according to the engine operation state detected by the operation state detection means 70 described later. To do.
[0038]
The EDU 20 receives a control signal (for example, a control pulse signal) output from the ECU 10, and opens and closes the fuel according to the fuel injection timing (valve opening timing) and the fuel injection amount (= injection period) calculated by the ECU 10. Thus, the battery voltage of the battery (not shown) is boosted, and the supply (energization) or supply stop (energization stop) to each injection period control electromagnetic valve 11 to 14 of each injector 1 to 4 is controlled.
[0039]
The operating state detecting means 70 for inputting a signal indicating the operating state of the engine to the ECU 10 includes a rotational speed sensor 71 that detects the rotational speed of the engine, and an accelerator opening sensor 72 that detects the amount of depression of the accelerator pedal (accelerator opening). There are an intake air temperature sensor 73 for detecting the temperature of intake air taken in by the engine, a cooling water temperature sensor 75 for detecting the cooling water temperature of the engine, a crank angle sensor 77 for detecting the rotation angle of the engine crankshaft and the engine rotation speed, and the like. .
[0040]
Further, as basic sensors to be input to the ECU 10, a fuel pressure sensor (fuel pressure detecting means) 81 for detecting the fuel pressure (injection pressure, common rail pressure) of the high-pressure fuel accumulated in the common rail 5, and a return pipe 9 There is a fuel temperature sensor (fuel temperature detecting means) 82 for detecting the temperature of the fuel.
[0041]
Here, the ECU 10 determines the fuel injection timings of the injectors 1 to 4 based on signals from the crank angle sensor 77 such as a crankshaft rotation pulse signal and a camshaft rotation pulse signal in the operating state of the steady operation of the engine. (Valve opening timing) and the discharge amount (fuel pumping period) of the high-pressure pump 7, and the electromagnetic pressure for controlling the injection pressure of the high-pressure pump 7 so as to maintain the common rail pressure at the optimum injection pressure (= target pressure). The energization timing to the valve 19 is controlled.
[0042]
Then, a fuel injection amount is calculated from values measured by the rotational speed sensor 71, the accelerator opening sensor 72, the cooling water temperature sensor 75, or the fuel temperature sensor 82. In order to achieve this calculated fuel injection amount, In addition, the engine is operated by driving the injection period control solenoid valves 11 to 14 of the injectors 1 to 4 respectively with the injector energization time command (value) calculated from the fuel pressure in the common rail 5.
[0043]
The ECU 10 detects, for example, the cooling water temperature sensor 25 when the vehicle occupant starts energizing the starter and cranks the crankshaft of the engine at the required minimum rotational speed or more for the purpose of starting the engine. The optimal injection start pressure (starting target rail pressure = target pressure) is calculated according to the engine cooling water temperature (TW) or the compensation amount of the engine cooling water temperature (TW) with the starter ON duration taken into account ( Injection start pressure determining means), until the common rail pressure (actual rail pressure) detected by the fuel pressure sensor 81 rises above its target pressure, injector energization time commands (injector valve opening commands) to the injectors 1 to 4 Configured to prohibit. Note that the injector valve opening command may not be prohibited depending on the target start time for ensuring the desired startability of the engine.
[0044]
The ECU described in the present embodiment is configured to prohibit the injector valve opening command until the common rail pressure (actual rail pressure) increases to a predetermined pressure or higher. Thereby, the time from the start of fuel injection until effective combustion can be performed (complete explosion) can be shortened.
[0045]
Here, in the common rail fuel injection device having the above-described configuration, if the predetermined pressure is maintained after the common rail pressure becomes the target pressure, the start time does not vary due to individual differences of the common rail fuel injection device. However, the starting target pressure is generally set lower than the common rail pressure during steady operation, and during starting, there is a transient state in which the common rail pressure further increases after the common rail pressure becomes the target pressure. Exists. For this reason, the transient characteristic of the common rail pressure during start-up is affected by the individual difference of the common rail fuel injection device, particularly the individual difference of the high-pressure pump 7 that pumps high-pressure fuel, and the actual internal combustion engine with respect to the target start time of the engine. In other words, there is a possibility that the start time varies among the individual common rail fuel injection devices and the target time is not satisfied.
[0046]
On the other hand, there is a means for prohibiting the injector valve opening command until the common rail pressure rises to the common rail pressure at the time of starting operation, but in the first place, the starter wasted time until the engine is completely exploded. The start time for cranking the engine from when the vehicle occupant starts energizing the starter to the complete explosion becomes long, and it becomes difficult to ensure the desired startability. In some cases, the power consumption of the battery increases, and the battery may run out and be unable to start.
[0047]
(The main part of this embodiment and its detailed description)
Therefore, the present embodiment provides a pressure accumulation type fuel injection device that can ensure a predetermined startability of the internal combustion engine regardless of variations among the individual high-pressure pumps 7 by having the following features.
[0048]
High-pressure pump control S600 at start-up for correcting the discharge amount with respect to variations in the transient characteristics of the common rail pressure Pc due to individual differences of the high-pressure pump 7 (see FIG. 6B), that is, variations in the discharge amount of the high-pressure pump 7. , See FIG. 6).
[0049]
The starting high-pressure pump control S600 is performed by the ECU 10 to correct the driving amount for driving the flow rate control valve 19 as a discharge amount adjusting electromagnetic valve of the high-pressure pump 7. Note that the discharge amount for the same drive amount also varies due to individual differences in the flow rate control valve 19 described later. Therefore, the discharge amount correction of the high-pressure pump 7 is not a correction that can be appropriately performed at the first start time, but the next start. This is a correction aimed at optimizing the discharge amount. As a result, the start-up high-pressure pump control S600 is continuously performed at each start-up so that optimization can be achieved, and therefore a predetermined startability can be ensured.
[0050]
Hereinafter, the start-up high-pressure pump control S600 of one embodiment will be described with reference to FIGS. FIG. 5 is a flowchart showing pre-processing of the start-time high-pressure pump control executed by the ECU in FIG. FIG. 6 is a flowchart of start-up high-pressure pump control showing one embodiment of the present invention.
[0051]
First, when starting the engine, the vehicle occupant turns the ignition switch from the OFF position to the ST position, so that the starter motor is rotated by the current from the battery, and at the same time, the pinion gear pushed by the overrunning clutch becomes the engine crank. The flywheel is rotated by meshing with a ring gear on the outer periphery of the flywheel directly connected to the shaft. As a result, the crankshaft rotates, and the piston moves up and down in the cylinder of the engine, so that air is sucked into the cylinder through the intake pipe. On the other hand, the high pressure pump 7 pressurizes the fuel pumped from the fuel tank 6 as the crankshaft of the engine rotates, so that the fuel pressure Pc in the common rail 5 increases.
[0052]
At this time, as shown in FIG. 5, in S501 (S represents a step), when the ignition switch is turned to the ST position, the starter ON signal generated when the movable contact and fixed contact of the starter come into contact with each other. Is determined to be ON (starter energization start detection means). If the starter ON signal is in the OFF state, the process ends. On the other hand, if the starter ON signal is in the ON state, the process proceeds to S600 for starting high-pressure pump control.
[0053]
In the starting operation state in which the starter ON signal is determined to be in the ON state by the starter energization start detecting means, the engine is cranked at a speed higher than the minimum rotational speed (for example, 400 rpm) required for starting by the starter. As the shaft rotates, the high pressure pump 7 is driven and the injection pressure control solenoid valve 19 is energized, whereby the fuel pressure (= rail fuel pressure) Pc in the common rail 5 gradually increases.
[0054]
Next, in the start-time high pressure pump control S600, when the control process from S601 to S607 is performed and the time for the engine to reach a predetermined rotation speed (idle rotation in this embodiment) exceeds the target start time, the next start time The predetermined driving amount of the injection pressure control electromagnetic valve 19 is corrected. Details will be described below with reference to FIG.
[0055]
As shown in FIG. 6, in S601, the drive amount D of the injection pressure control electromagnetic valve 19 of the high pressure pump 7 is set to a predetermined value D1. The predetermined value D1 is an initial set value at the time of initial start-up, that is, a predetermined value at the time of shipment from the factory, and at the subsequent start-up, an initial set value (no correction history) is updated by correction. Values are used. Based on the predetermined drive amount D1, the drive control of the injection pressure control solenoid valve 19 is performed by the ECU 10, and the discharge amount of the high-pressure fuel discharged from the high-pressure pump 7 is adjusted. Then, the fuel pressure (common rail pressure) Pc in the common rail 5 gradually increases according to the discharge amount.
[0056]
For the sake of simplicity of explanation, the control processing after S602 will be described below assuming that the initial setting value is input as the driving amount D as the predetermined value D1.
[0057]
In S602, an arrival time Ts for reaching a predetermined rotation speed (in this embodiment, idle rotation) Ns is detected by the rotation speed sensor 71 as the operation state detection means 70 (see (a) in FIG. 6), and pressure detection is performed. The fuel pressure sensor 81 as a means detects the boosting characteristic of the common rail pressure Pc in the common rail 5 and calculates the fuel pressure increase amount (ΔPc / ΔT) per unit time by the ECU 10. Here, (a) shown in S602 is a schematic diagram showing so-called engine blow-up characteristics at start-up, and the engine blow-off from the starter start-up (for example, when the starter ON signal is turned on). It is a graph showing arrival time Ts until it returns to idle rotation Ns through a rising state. (B) shown in S602 is a schematic diagram showing the boosting characteristic of the common rail pressure Pc at the start. The broken line and two-dot chain line characteristics are expressed by ΔPc / ΔT, respectively, with respect to the solid line boosting characteristic. Comparative example showing a case where ΔPc / ΔT is small when large
Here, variation factors due to individual differences in the injection pressure control solenoid valve 19 for adjusting the discharge amount of the high-pressure fuel pumped to the common rail 5 will be described with reference to FIGS. 3 is a schematic diagram for explaining the flow control valve of the high-pressure pump in FIG. 1. FIG. 3 (a) is a sectional view of the flow control valve, and FIG. 3 (b) is a B direction of FIG. 3 (a). It is an enlarged view which shows the suction port seen from. FIG. 4 is a graph showing drive characteristics of one embodiment of the flow control valve of FIG.
[0058]
As shown in FIG. 3 (a), the injection pressure control solenoid valve 19 of the present embodiment is a well-known flow control valve, and includes a mover 19a, a stator core 19a that constitutes a magnetic circuit together with the mover 19a, And an electromagnetic drive unit having an electromagnetic coil 19c that generates an electromagnetic force when energized, a valve body 19d, a valve member 19e that is slidably accommodated in the valve body 19d, and that can reciprocate in conjunction with the mover, and It comprises a valve portion having a biasing spring 19f that biases the valve member 19e toward the mover side. The solenoid valve 19 is a valve body 19d even if it is a suction port (hereinafter referred to as an ON-OFF solenoid valve) that makes the opening area A of FIG. 3B variable by ON-OFF control. It may be a linear solenoid in which the opening area A of the suction port varies depending on the axial position of the valve member 19e that moves in the axial direction.In the ON-OFF solenoid valve, duty control is performed so that the on-off valve period is variable by the ECU. The opening area A can be made variable. On the other hand, in the linear solenoid, the opening area A can be made variable by changing the average drive current by duty control (see FIG. 4).
[0059]
The injection pressure control solenoid valve 19 described in the present embodiment will be described below as a linear solenoid.
[0060]
As shown in the drive characteristic of the injection pressure control electromagnetic valve 19 in which the horizontal axis in FIG. 4 represents the drive amount D and the vertical axis represents the opening area A of the suction port, the injection pressure control electromagnetic valve 19 opens when the drive amount is increased. The area A decreases, that is, the discharge amount decreases. On the other hand, if the drive amount is reduced, the opening area A of the injection pressure control solenoid valve 19 increases, that is, the discharge amount of the high-pressure pump 7 increases.
[0061]
The fluctuation factors of the discharge amount related to the injection pressure control electromagnetic valve 19 are the influence of the attractive force Fc due to the individual difference of the electromagnetic coil 19c generating the electromagnetic force in the electromagnetic drive unit, and the electromagnetic coil 19 generated in the valve unit. The influence of the spring constant K of the biasing spring that determines the axial position of the valve member by balancing with the suction force according to the electromagnetic force, the influence of the set load Fs, and the mover driven by the suction force There are influential factors that arise in manufacturing within design tolerances such as the influence of the valve closing position H of the valve member to be operated. For this reason, even if the drive amount output from the ECU 10 is the same, the discharge amount of the high-pressure pump 7 varies due to individual differences in the injection pressure control electromagnetic valve 19.
[0062]
On the other hand, in the embodiment of the present invention, correction is performed as follows for a case where a predetermined startability cannot be ensured, that is, a case where the arrival time Ts spent for the start exceeds the target time Ta.
[0063]
In S603, it is determined whether or not the arrival time Ts measured in S602 is equal to or less than a target time (for example, 20 seconds) Ta. If the arrival time Ts is within the target time Ta, the control process ends. Conversely, if the arrival time Ts exceeds the target time Ta, the process proceeds to S604 and correction is performed according to the boosting characteristic of the common rail pressure Pc. Note that S604 and S606, which will be described later, are boosting characteristic determining means for determining the boosting characteristic.
[0064]
In S604, the boost characteristic ΔPc / ΔT calculated in S602 (hereinafter referred to as the actual ΔPc / ΔT value) is a range of the boost characteristic ΔPc / ΔT in which it has been confirmed in advance that a predetermined startability can be ensured based on experiments or the like ( Hereinafter, it is determined whether or not it is larger than a predetermined upper limit increase value on the upper limit side (hereinafter referred to as the upper limit value) in the allowable ΔPc / ΔT range). If the actual ΔPc / ΔT value is equal to or greater than the upper limit value, the drive amount (specifically, the duty ratio by duty control) D is increased (D1 = D1 + ΔD) in S605, and the control process is terminated. Conversely, if the actual ΔPc / ΔT value is smaller than the upper limit value, the process proceeds to S606.
[0065]
In S606, it is determined whether or not the actual ΔPc / ΔT value is smaller than a predetermined lower limit increase value (hereinafter referred to as a lower limit value) on the lower limit side in the allowable ΔPc / ΔT range. If the actual ΔPc / ΔT value is less than or equal to the lower limit value, the drive amount (duty ratio) D is decreased (D1 = D1−ΔD) in S607, and the control process ends. Conversely, if the actual ΔPc / ΔT value is greater than the lower limit value, the control process is terminated.
[0066]
When the actual ΔPc / ΔT value is greater than or equal to the upper limit value (for example, the broken line characteristic in (b) of FIG. 6S602) by comparing and determining the boosting characteristic (actual ΔPc / ΔT value) by S604 and S606 and the upper and lower limit values. Can be reduced (D1 = D1 + ΔD) so that the drive amount D of the injection pressure control solenoid valve 19 for adjusting the discharge amount is increased, thereby reducing the discharge amount at the next start, while the actual ΔPc When the / ΔT value is equal to or lower than the lower limit value (for example, the two-dot chain line characteristic of (b) in FIG. 6S602), the correction is performed so that the driving amount D is reduced. The amount of discharge can be increased.
[0067]
Thus, until the arrival time Ts reaches the target start time Ta or less, that is, until the predetermined startability is secured, the drive amount D correction at the next start, that is, the learning control is performed continuously at each start. be able to. Therefore, it is possible to ensure a predetermined startability of the internal combustion engine regardless of variations among the individual high-pressure pumps 7.
[0068]
(Second Embodiment)
Hereinafter, other embodiments to which the present invention is applied will be described. In the following embodiments, the same or equivalent components as those in the first embodiment are denoted by the same reference numerals, and description thereof will not be repeated.
[0069]
In the second embodiment, as shown in FIG. 7, as a standard for performing correction for ensuring a predetermined startability, the number of revolutions reached when a predetermined elapsed time T1 from the start (hereinafter referred to as an actual internal combustion engine) is reached. It is determined whether or not N1 has reached the target internal combustion engine speed Na. FIG. 7 is a flowchart of start-up high-pressure pump control according to this embodiment. The high-pressure pump control at the start shown in FIG. 7 is a control process related to the pressure accumulation type fuel injection device applied to the configuration (FIGS. 1 and 2) described in the first embodiment, and this high-pressure pump control at the start As the pre-processing, as in the first embodiment, a control process (see S501 in FIG. 5) for detecting the start time by the starter energization start detecting means is performed.
[0070]
As shown in FIG. 7, in the start-time high-pressure pump control 700, the control processing of S601 and S702 to S706 is performed.
[0071]
After the drive amount D of the injection pressure control solenoid valve 19 of the high-pressure pump 7 is set to the predetermined value D1 by the control process of S601 (see FIG. 6), in S702, the start of the internal combustion engine detected by the starter energization start detection means is detected. The actual internal combustion engine speed N1 when the predetermined elapsed time T1 is reached is detected (see (a) in FIG. 7). Further, when the predetermined elapsed time T1 is reached by the fuel pressure sensor 81, the reached fuel pressure (hereinafter, actual fuel pressure) Pc1 of the common rail pressure Pc is detected.
[0072]
Here, the starter energization start detecting means constitutes an engine start detecting means for detecting a start command for the internal combustion engine. The starter energization start detection means detects when the starter ON signal is switched from the OFF state to the ON state, that is, the starter driving is started and the start time of the internal combustion engine is detected.
[0073]
In S703, it is determined whether or not the actual internal combustion engine speed N1 detected in S702 exceeds a predetermined internal combustion engine speed (hereinafter, target internal combustion engine speed) Na (for example, 400 rpm). If the actual internal combustion engine speed N1 exceeds the target internal combustion engine speed Na, the control process ends. Conversely, if the actual internal combustion engine speed N1 has not reached the target internal combustion engine speed Na, the routine proceeds to S704.
[0074]
In S704, in order to perform a correction for ensuring a predetermined startability, the actual internal combustion engine speed N1 and the actual fuel pressure Pc1 are used as ECU 10 as actual data indicating the startability of the internal combustion engine at a predetermined elapsed time T1. And the process proceeds to S705.
[0075]
In S705 and S706, the actual internal combustion engine speed N1 and the actual fuel pressure Pc1 are used to refer to the data for correction stored in advance, and the initial value D1 of the drive amount D is set to the high pressure mounted on the internal combustion engine. It is corrected to a predetermined initial value (target drive amount) Da suitable for the pump 7 (D = D1 is replaced with D = Da). In S705, using the actual internal combustion engine speed N1, the actual fuel pressure Pc1, and the like, the target fuel pressure Pca is obtained so as to be the target internal combustion engine speed Na at the next start, and in S706, from the target fuel pressure Pca, The target drive amount Da at the next start is determined.
[0076]
Specifically, in S705, the target fuel pressure Pca corresponding to the actual internal combustion engine speed N1 is obtained from the correlation between the fuel pressure Pc at the time of start-up and the internal combustion engine speed N as shown in the graph in S705. The target fuel pressure Pca can be calculated by any method as long as it is derived from a map or a calculation formula. The map includes a one-dimensional map of the actual internal combustion engine speed N1, a two-dimensional map of the actual internal combustion engine speed N1 and the fuel temperature detected by the fuel temperature sensor 81, the actual internal combustion engine speed N1, the actual fuel pressure Pc1, and the fuel temperature. Any of the three-dimensional maps of FIG. The calculation formula includes a function Pca = f (N1) having the actual engine speed N1 as a variable, a function Pca = f (N1, t) having the actual engine speed N1 and the fuel temperature t as variables, and an actual engine. Any of a function Pca = f (N1, Pc1, t) using the rotational speed N1, the actual fuel pressure Pc1, and the fuel temperature t as variables may be used. Compared with the method of simply obtaining the target fuel pressure Pca from the actual internal combustion engine speed N1, the calculation accuracy of the target fuel pressure Pca considering the influence of the fuel temperature is better, and the fuel temperature and the actual fuel pressure generated at the fuel temperature are obtained. The calculation accuracy of the target fuel pressure Pca considering Pc1 is even better. By calculating the target fuel pressure Pca in consideration of the fuel temperature, it is possible to ensure startability even at a low temperature start. In S706, the target drive amount (target duty ratio) Da corresponding to the target fuel pressure Pca is obtained from the correlation between the fuel pressure Pc and the drive amount (duty ratio) D at the start, as shown in the graph in S706. As a method for calculating the target drive amount Da, a one-dimensional map of the target fuel pressure Pca, a two-dimensional map of the target fuel pressure Pca and the fuel temperature, the target fuel pressure Pca, the fixed drive amount D1 at the start and the fuel A calculation using a map such as a three-dimensional map of temperature, or a function Da = f (Pca) with the target fuel pressure Pca as a variable, a function Da = f (Pca, t) with the target fuel pressure Pca and the fuel temperature t as variables, A calculation formula such as a function Da = f (Pca, D1, t) using the target fuel pressure Pca, the fixed drive amount D1, and the fuel temperature t as variables may be used.
[0077]
As a result, the discharge amount of the high pressure pump 7 at the next start can be corrected to a discharge amount suitable for the internal combustion engine in which the high pressure pump 7 is mounted. It is possible to reduce the influence on the startability due to the individual difference of the discharge amount related to the valve 19). As a result, it is possible to ensure a predetermined startability. For example, the target drive amount Da is reviewed at each start, and the start-up drive amount D1 is corrected, whereby a predetermined startability can be ensured.
[0078]
In the starting high-pressure pump control S700 described above, the control processing of S702 and S703 is a start that determines whether or not the target internal combustion engine Na has been reached when a predetermined elapsed time T1 is reached after the start of the internal combustion engine. It constitutes sex determination means. Thus, as a method for determining startability, it is possible to determine whether the engine is in a transitional state during start-up, for example, an operating state of an internal combustion engine at a relatively low engine speed immediately after start-up, even if the start-up is not completed. Is possible. The startability determining means determines whether or not the predetermined startability can be ensured by comparing and determining the actual internal combustion engine speed N1 at the predetermined elapsed time T1 and the target internal combustion engine Na, or the predetermined startability. It is possible to make a prediction judgment as to whether or not
[0079]
The startability judging means includes an operating state detecting means 70 and an engine start command detecting means. As a result, the startability determination means can easily detect the start of the internal combustion engine, and no matter how short the predetermined elapsed time T1 after the start of the start is, the actual internal combustion engine speed N1 and the target internal combustion engine Na Can be reliably compared. Therefore, the startability determination means can make a determination for ensuring startability even in a transient state immediately after the start of the start.
[0080]
The control processing from S704 to S706 constitutes a discharge amount correcting means for correcting the discharge amount D1 at the next start according to the actual fuel pressure Pc1 and the actual internal combustion engine speed N1 at a predetermined elapsed time T1. By this discharge amount correcting means, the startability can be improved regardless of the individual difference of the high-pressure pump 7, and a predetermined startability can be secured.
[0081]
The correction of the discharge amount D1 by the discharge amount correcting means is executed when the startability determining means determines that the actual internal combustion engine speed N1 has not reached the target internal combustion engine speed Na. Therefore, it is possible to reduce the load on the discharge amount correction means, that is, the ECU 10, as compared with the case where the discharge amount is corrected regardless of whether the actual internal combustion engine speed N1 is higher or lower than the target internal combustion engine speed Na.
[0082]
The target internal combustion engine rotational speed Na may be any internal combustion engine rotational speed as long as it is within a rotational speed range that occurs in the operating state from the start to the completion of the start.
[0083]
(Third embodiment)
In the third embodiment, as shown in FIG. 8, a cylinder discriminating unit that discriminates a cylinder of the internal combustion engine and a feedback control unit that can control the discharge amount D for each cylinder are provided. FIG. 8 is a flowchart of high-pressure pump control according to the embodiment. In the following embodiments, the same or equivalent components as those in the second embodiment are denoted by the same reference numerals, and description thereof will not be repeated.
[0084]
The cylinder discrimination means includes a crank angle sensor 77 and a rotation speed sensor 71 (see FIG. 2). For example, a signal is transmitted once per rotation of the high-pressure pump 7 by the crank angle sensor 77, and a plurality of signals are transmitted per rotation of the high-pressure pump 7 (for example, 60 times the multiple in the case of four cylinders) by the rotation speed 71. This is a well-known means for knowing a specific cam phase (not shown) corresponding to a specific cylinder of the high-pressure pump 7 when the ECU 10 receives these signals.
[0085]
The feedback control means is a well-known means for controlling the discharge amount D in accordance with the cylinder determined by the cylinder determining means.
[0086]
As shown in FIG. 8, in S801, it is determined whether or not cylinder discrimination can be performed by the cylinder discrimination means. Specifically, it is determined whether at least one of the crank angle sensor 77 and the rotational speed sensor 71 has reached a predetermined signal output (hereinafter referred to as a detectable threshold) or more. If the signal output is equal to or greater than the detectable threshold, it is determined that cylinder discrimination is possible, and the process proceeds to S802. Conversely, if it is equal to or less than the threshold, the process proceeds to S700. Note that the criterion for determining whether or not each cylinder is possible is not limited to the threshold value, and may be a lower limit internal combustion engine speed at which these signals can be detected.
[0087]
In S802, the discharge amount D corresponding to the cylinder is controlled from the relationship between the cylinder of the internal combustion engine detected by the cylinder discrimination means and the specific cam phase corresponding to the cylinder.
[0088]
On the other hand, in S700, the start-time high-pressure pump control described in the second embodiment is performed. That is, a predetermined drive amount D1 is input as the drive amount D at the start, and the discharge amount of the high-pressure pump 7 is adjusted according to the drive amount D1, and the start-up determination means and the discharge amount correction means perform the next start-up. Target drive amount Da is obtained. Thereafter, the process proceeds to S802.
[0089]
In other words, when it is determined by the startability determining means that the target internal combustion engine speed Na has been reached, the discharge amount correcting means is not executed, and the feedback control means executes control of the discharge amount according to the cylinder. As a result, until the startability determining means determines that the predetermined startability has been secured, the learning control for correcting the influence due to the individual difference of the high-pressure pump 7 at the next start can be performed, and the target internal combustion engine speed When it is determined that the predetermined startability has been ensured by reaching Na, correction for improving startability can be performed by feedback control during the start-up, not during the next start-up. For example, according to the set value of the target internal combustion engine speed Na, the startability can be effectively improved in the speed range after the speed Na. Even when the startability determining means does not determine that the predetermined startability has been secured, feedback control can improve the startability in the rotation speed range after the rotation speed Na.
[0090]
Here, in the present embodiment, the target internal combustion engine rotational speed Na is set lower than the lower limit rotational speed Nj (see (a) in S702 of FIG. 7) that allows cylinder discrimination by the cylinder discrimination means. Thereby, the learning control for performing the next start and the feedback control for the correction for improving the startability during the start can be effectively performed, so that the predetermined startability can be efficiently ensured. It is desirable that the target internal combustion engine speed Na is close to the lower limit speed.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a schematic system configuration of a common rail fuel injection device to which an accumulator fuel injection device according to a first embodiment of the present invention is applied.
FIG. 2 is a schematic configuration diagram showing a control system in FIG. 1;
3 is a schematic diagram illustrating a flow control valve of the high-pressure pump in FIG. 1. FIG. 3 (a) is a cross-sectional view of the flow control valve, and FIG. 3 (b) is a B direction of FIG. 3 (a). It is an enlarged view which shows the suction port seen from.
4 is a graph showing drive characteristics of an embodiment of the flow control valve of FIG. 3;
FIG. 5 is a flowchart showing a pre-processing for starting high-pressure pump control executed by the ECU shown in FIG. 1;
FIG. 6 is a flowchart of start-time high-pressure pump control according to the first embodiment of the present invention.
FIG. 7 is a flowchart of start-up high-pressure pump control according to the second embodiment of the present invention.
FIG. 8 is a flowchart of high-pressure pump control according to a third embodiment of the present invention.
[Explanation of symbols]
1-4 Injector (fuel injection valve)
5 Common rail
6 Fuel tank
7 High pressure pump
10 ECU (control device, discharge amount control means)
11-14 Solenoid valve for injection period control (injection period variable means)
19 Electromagnetic valve for injection pressure control (injection pressure variable means, flow control valve)
70 Operating state detection means
71 Rotational speed sensor (part of operating state detection means)
81 Fuel pressure sensor (fuel pressure detection means)
A Opening area
D Drive amount
D1 predetermined value (predetermined driving amount)
Ns Predetermined internal combustion engine speed
Na Target internal combustion engine speed
N1 (when the predetermined elapsed time T1 is reached from the start of starting) actual internal combustion engine speed (reached internal combustion engine speed)
Nj Lower limit rotational speed (cylinder discriminating means can discriminate)
Pc Common rail pressure (fuel pressure in common rail 5)
Pca Target fuel pressure
P1 Actual fuel pressure (when reaching a predetermined elapsed time T1 from the start of starting) (Fuel fuel pressure reached)
Ts arrival time
Ta Target start time (predetermined start time)
T1 Predetermined elapsed time
ΔPc / ΔT (increase value of common rail pressure Pc per unit time)
S501 Pre-processing of high-pressure pump control at start-up (control processing for detecting start-up time by starter energization start detecting means)
S600 (S601 to S607) Start-up high-pressure pump control process according to the first embodiment
S700 (S601 and S702 to S706) Start-up high-pressure pump control process according to the second embodiment
S800 (S801, S802 and S700) High-pressure pump control processing according to the third embodiment

Claims (5)

燃料タンクから燃料を汲み上げる高圧ポンプと、
前記高圧ポンプから吐出された高圧燃料を蓄圧するコモンレールと、
内燃機関の各気筒毎に設けられ、前記コモンレールに蓄圧された高圧燃料を前記気筒の燃焼室に噴射供給する複数の燃料噴射弁と、
前記内燃機関の運転状態を検出する運転状態検出手段と、
前記コモンレール内に蓄圧された高圧燃料の燃料圧力を検出する燃料圧力検出手段と、
前記運転状態検出手段で検出された前記運転状態、および前記燃料圧力検出手段で検出された前記燃料圧力に応じて、前記高圧ポンプの吐出量を制御する吐出量制御手段とを備え、
前記吐出量制御手段は、前記内燃機関の始動の際には前記運転状態検出手段によって所定の内燃機関回転数に到達する時間を検出し、かつ前記燃料圧力検出手段によって前記燃料圧力の昇圧特性を検出し、前記到達時間が所定始動時間を超えるとき、前記昇圧特性に応じて次回始動時での前記吐出量を増減することを特徴とする蓄圧式燃料噴射装置。
A high-pressure pump that pumps fuel from the fuel tank;
A common rail for accumulating high-pressure fuel discharged from the high-pressure pump;
A plurality of fuel injection valves which are provided for each cylinder of the internal combustion engine and supply high pressure fuel accumulated in the common rail to the combustion chamber of the cylinder;
An operating state detecting means for detecting an operating state of the internal combustion engine;
Fuel pressure detecting means for detecting the fuel pressure of the high-pressure fuel accumulated in the common rail;
A discharge amount control means for controlling a discharge amount of the high-pressure pump according to the operation state detected by the operation state detection means and the fuel pressure detected by the fuel pressure detection means;
When the internal combustion engine is started, the discharge amount control means detects a time required to reach a predetermined internal combustion engine speed by the operating state detection means, and the fuel pressure detection means sets the boosting characteristic of the fuel pressure. An accumulator fuel injection device that detects and increases or decreases the discharge amount at the next start according to the pressure increase characteristic when the arrival time exceeds a predetermined start time.
前記高圧ポンプは、前記燃料タンクから汲み上げる燃料吸入量を調整する流量制御弁を備え、
前記吐出量制御手段は、前記流量制御弁へ出力する駆動量を変えることを特徴とする請求項1に記載の蓄圧式燃料噴射装置。
The high-pressure pump includes a flow control valve that adjusts a fuel intake amount pumped from the fuel tank,
The pressure-accumulation fuel injection device according to claim 1, wherein the discharge amount control means changes a drive amount output to the flow control valve.
前記流量制御弁は、リニアソレノイドであることを特徴とする請求項2に記載の蓄圧式燃料噴射装置。  The pressure accumulation type fuel injection device according to claim 2, wherein the flow control valve is a linear solenoid. 前記流量制御弁へ出力する前記駆動量は、デューティ制御で行われていることを特徴とする請求項2または請求項3に記載の蓄圧式燃料噴射装置。  The accumulator fuel injection apparatus according to claim 2 or 3, wherein the drive amount output to the flow control valve is performed by duty control. 前記昇圧特性は、単位時間当たりの前記燃料圧力の上昇量であって、
前記吐出量制御手段は、所定上限上昇値および所定下限上昇値を有しており、前記昇圧特性が前記所定上限上昇値以上であるときには前記駆動量を増加するように補正することで次回始動時での吐出量を減少させ、前記昇圧特性が前記所定下限上昇値以下であるときには前記駆動量を減少するように補正することで次回始動時での吐出量を増加させることを特徴とする請求項2から請求項4のいずれか一項に記載の蓄圧式燃料噴射装置。
The boost characteristic is an increase amount of the fuel pressure per unit time,
The discharge amount control means has a predetermined upper limit increase value and a predetermined lower limit increase value. When the boosting characteristic is equal to or higher than the predetermined upper limit increase value, a correction is made to increase the drive amount at the next start-up. The discharge amount at the next start is increased by correcting the discharge amount so as to decrease when the boosting characteristic is equal to or lower than the predetermined lower limit increase value. The pressure accumulation type fuel injection device according to any one of claims 2 to 4.
JP2002164361A 2002-01-21 2002-06-05 Accumulated fuel injection system Expired - Fee Related JP3988541B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002164361A JP3988541B2 (en) 2002-01-21 2002-06-05 Accumulated fuel injection system
DE10301956A DE10301956B4 (en) 2002-01-21 2003-01-20 Collecting fuel injection system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-11723 2002-01-21
JP2002011723 2002-01-21
JP2002164361A JP3988541B2 (en) 2002-01-21 2002-06-05 Accumulated fuel injection system

Publications (2)

Publication Number Publication Date
JP2003278620A JP2003278620A (en) 2003-10-02
JP3988541B2 true JP3988541B2 (en) 2007-10-10

Family

ID=27667414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002164361A Expired - Fee Related JP3988541B2 (en) 2002-01-21 2002-06-05 Accumulated fuel injection system

Country Status (2)

Country Link
JP (1) JP3988541B2 (en)
DE (1) DE10301956B4 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4779483B2 (en) * 2005-07-21 2011-09-28 株式会社デンソー Fuel injection control device
JP4883105B2 (en) * 2009-02-10 2012-02-22 株式会社デンソー Diesel engine control device
JP5141673B2 (en) 2009-12-04 2013-02-13 株式会社デンソー Idle stop control device for internal combustion engine
JP5664081B2 (en) * 2010-09-29 2015-02-04 トヨタ自動車株式会社 Control device for spark ignition internal combustion engine
JP5760695B2 (en) * 2011-05-27 2015-08-12 株式会社デンソー Accumulated fuel injection system
JP2014202176A (en) * 2013-04-09 2014-10-27 株式会社デンソー Fuel injection control device of internal combustion engine
WO2015125208A1 (en) * 2014-02-18 2015-08-27 日立建機株式会社 Fuel supplying system
KR101977512B1 (en) * 2017-12-29 2019-05-10 주식회사 현대케피코 Method and system for compensating a deviation of flow control valve response time in high pressure fuel pump of vehicle
JP7376994B2 (en) * 2019-02-14 2023-11-09 三菱重工エンジン&ターボチャージャ株式会社 diesel engine system
CN115450778B (en) * 2022-09-14 2024-01-09 一汽解放汽车有限公司 Oil supply control method and device, electronic equipment and storage medium
CN115450779B (en) * 2022-10-28 2024-01-30 上海新动力汽车科技股份有限公司 Control method for large automatic compensation of rail pressure fluctuation of electric control common rail engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3010777B2 (en) * 1991-05-15 2000-02-21 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
JPH0988670A (en) * 1995-09-26 1997-03-31 Fuji Heavy Ind Ltd Fuel injection control device for engine
JP3317202B2 (en) * 1997-08-04 2002-08-26 トヨタ自動車株式会社 Fuel injection control device for accumulator type engine
DE19853823A1 (en) * 1998-11-21 2000-05-25 Bosch Gmbh Robert Method of operating internal combustion engine, especially for motor vehicle, involves controlling fuel pump delivery rate depending on input parameters via characteristic field
JP4240673B2 (en) * 1999-09-09 2009-03-18 株式会社デンソー Fuel injection device

Also Published As

Publication number Publication date
DE10301956B4 (en) 2010-08-26
JP2003278620A (en) 2003-10-02
DE10301956A1 (en) 2003-08-28

Similar Documents

Publication Publication Date Title
JP4333619B2 (en) In-cylinder injection type internal combustion engine start control device
JP5131265B2 (en) Fuel pressure control device
JP5282878B2 (en) In-cylinder injection internal combustion engine control device
US20100268441A1 (en) Controller for fuel pump
JP2009115009A (en) After-stop fuel pressure control device of direct injection engine
JP3988541B2 (en) Accumulated fuel injection system
JP4023020B2 (en) Fuel pressure control device for high pressure fuel injection system
JP2005307747A (en) Fuel supply device for internal combustion engine
US10161342B2 (en) Control device for high-pressure pump
JP6079487B2 (en) High pressure pump control device
JP4134216B2 (en) Internal combustion engine control device
WO2014119289A1 (en) Control device for high-pressure pump
JP5141706B2 (en) Fuel pressure control device
JP5991268B2 (en) Fuel supply device for internal combustion engine
JP3572937B2 (en) Fuel pressure control device for accumulator type fuel injection mechanism
JP3941667B2 (en) Accumulated fuel injection system
JP2009221906A (en) Low pressure pump control device of direct injection type internal combustion engine
JP2001295685A (en) Accumulator fuel injector
JP2019157703A (en) Control device of internal combustion engine
JPH11247683A (en) Fuel injection device of engine
JP4529943B2 (en) Fuel injection control device for internal combustion engine
JP2005147019A (en) Fuel pressure control device for cylinder injection type internal combustion engine
JP4509191B2 (en) Fuel injection control device for in-cylinder injection engine
JP4924310B2 (en) Diesel engine control device
JP5310624B2 (en) Fuel pressure control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees