JP3988185B2 - Stirring blade - Google Patents

Stirring blade Download PDF

Info

Publication number
JP3988185B2
JP3988185B2 JP2002281363A JP2002281363A JP3988185B2 JP 3988185 B2 JP3988185 B2 JP 3988185B2 JP 2002281363 A JP2002281363 A JP 2002281363A JP 2002281363 A JP2002281363 A JP 2002281363A JP 3988185 B2 JP3988185 B2 JP 3988185B2
Authority
JP
Japan
Prior art keywords
blade
stirring
paddle blade
bottom paddle
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002281363A
Other languages
Japanese (ja)
Other versions
JP2004113942A (en
Inventor
伸一 近藤
耕次 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2002281363A priority Critical patent/JP3988185B2/en
Publication of JP2004113942A publication Critical patent/JP2004113942A/en
Application granted granted Critical
Publication of JP3988185B2 publication Critical patent/JP3988185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mixers Of The Rotary Stirring Type (AREA)
  • Polymerisation Methods In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、撹拌翼に関する。さらに詳しくは、本発明は、固液撹拌槽において、固体粒子の多くを軸流型パターンで移動させ、効率的に固体粒子を浮遊させ得る撹拌翼に関する。
【0002】
【従来の技術】
撹拌装置は、撹拌槽と呼ばれる液体を入れる容器と、撹拌翼と呼ばれる液体をかき混ぜる可動部から構成される。一般に、撹拌槽は円筒皿底、丸底又は円錐底であり、撹拌翼は撹拌軸に装着されて液体に回転運動を与える。撹拌翼は、撹拌の目的に応じてさまざまな形状が選択され、例えば、パドル翼、タービン翼、ファウドラー翼、プルマージン翼などのほか、フルゾーン翼(神鋼パンテック(株)、登録商標)やマックスブレンド翼(住友重機械工業(株)、登録商標)などが用いられる。
固液撹拌は、乳化重合、懸濁重合などにおける撹拌や、重合終了後のスラリーの安定化維持のために採用され、効率よく撹拌操作を行うためのさまざまな撹拌翼が提案されている。例えば、特開2001−170467号公報には、混合特性が向上し、乳化重合に対してスケール発生を抑制し得る撹拌翼として、撹拌軸にボトムパドル翼と上段パドル翼が交差角30〜90度で装着され、ボトムパドル翼が0〜60度の後退角を有し、上段パドル翼が5〜60度の後退角を有する撹拌翼が提案されている。また、特開2001−261717号公報には、粒度分布がシャープで嵩比重の高い塩化ビニル系重合体の製造方法として、縦横2本以上の格子を有し、翼径dと槽径Dの比d/Dが0.40〜0.50であり、ボトムパドル翼の高さHbと翼の高さHの比Hb/Hが0.3未満である格子翼を用いて懸濁重合する方法が提案されている。
【特許文献1】
特開2001−170467号公報(第2頁)
【特許文献2】
特開2001−261717号公報(第2頁)
【0003】
【発明が解決しようとする課題】
本発明は、固液撹拌槽において、固体粒子の多くを軸流型パターンで移動させ、効率的に固体粒子を浮遊させ得る撹拌翼を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、ボトムパドル翼と上段パドル翼を用いた固液撹拌において、撹拌効率が低下する原因は、ボトムパドル翼の回転により吐出された固体粒子が翼の中心に巻き込まれることにあり、ボトムパドル翼の上縁を撹拌軸側の端から槽壁側の端に向かって下降する形状とすることにより、翼の中心に巻き込まれる固体粒子を減少し、固体粒子の多くを軸流型パターンで移動させ得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)撹拌軸の最下部に後退角を有するボトムパドル翼が取り付けられ、その上部に少なくとも一の上段パドル翼が取り付けられ、ボトムパドル翼の下縁上の任意の点から槽底までの鉛直方向の最短距離が略一定であり、ボトムパドル翼の上縁が、撹拌軸側の端から槽壁側の端に向かって下降する形状を有することを特徴とする撹拌翼、
(2)ボトムパドル翼の上縁が水平方向となす角度が、投影図において2〜20度である第1項記載の撹拌翼、及び、
(3)ボトムパドル翼の最大投影面積が、翼の最大投影面積の合計の0.2〜0.7倍である第1項又は第2項に記載の撹拌翼、
を提供するものである。
さらに、本発明の好ましい態様として、
)ボトムパドル翼の後退角が、2〜70度である第項記載の撹拌翼、
を挙げることができる。
【0005】
【発明の実施の形態】
本発明の撹拌翼は、撹拌軸の最下部にボトムパドル翼が取り付けられ、その上部に少なくとも一の上段パドル翼が取り付けられ、ボトムパドル翼の下縁上の任意の点から槽底までの鉛直方向の最短距離が略一定であり、ボトムパドル翼の上縁が、撹拌軸側の端から槽壁側の端に向かって下降する形状を有する撹拌翼である。
図1は、本発明の撹拌翼の一態様の説明図である。撹拌軸1にボトムパドル翼2と2個の上段パドル翼3が装着され、ボトムパドル翼の下縁4上の任意の点から撹拌槽5の槽底6までの最短距離が略一定であり、ボトムパドル翼の上縁7が撹拌軸側の端から槽壁側の端に向かって下降する形状を有する。図1に示す態様においては、上段パドル翼は2個であるが、上段パドル翼の数は、撹拌槽の深さに応じて、1個とすることも、3個以上とすることもできる。図1に示す態様においては、撹拌槽の槽底は円錐底であるが、撹拌槽の槽底は、円筒皿底、丸底などの任意の形状とすることができる。ボトムパドル翼の下縁上の任意の点から撹拌槽の槽底までの鉛直方向の最短距離が略一定とは、該鉛直方向の最短距離の最小値と最大値の比が0.7〜1.0であることを意味する。撹拌槽が丸底の場合は、ボトムパドル翼の下縁は丸みを帯びた形状となる。
【0006】
本発明の撹拌翼は、ボトムパドル翼の上縁が、撹拌軸側の端から槽壁側の端に向かって下降する形状を有するので、ボトムパドル翼の回転により撹拌槽壁に向けて吐出された固体粒子は、ふたたびボトムパドル翼に巻き込まれることが少なく、多くの固体粒子は上方に巻き上がる。その結果、固体粒子は全体として軸流型パターンを形成し、効率的に液体の中を浮遊する。
本発明の撹拌翼においては、ボトムパドル翼の上縁が水平方向となす角度が、投影図において2〜20度であることが好ましく、5〜15度であることがより好ましい。上縁が水平方向となす角度が投影図において2度未満であると、固体粒子の巻き込みを防ぐ効果が小さくなるおそれがある。上縁が水平方向となす角度が20度を超えると、ボトムパドル翼の槽壁側の端の翼幅が小さくなりすぎて、撹拌効果が小さくなるおそれがある。図1に示す態様においては、ボトムパドル翼の上縁は直線であるが、この態様のほか、ボトムパドル翼の上縁は、上方に凸の曲線、上方に凹の曲線、上方に凸と凹を有する曲線、上方に凸の2直線、上方に凹の2直線など、任意の形状とすることができる。上縁が1直線でない場合は、上縁の撹拌軸側の端と槽壁側の端を結ぶ直線が水平方向となす角度を2〜20度とすることが好ましい。
【0007】
本発明の撹拌翼においては、ボトムパドル翼を後退角を有する形状とすることができる。後退角を有する形状とは、ボトムパドル翼の槽壁側の端が、回転方向に対して後退した形状である。図2(a)は、後退角を有しない平板状のボトムパドル翼、図2(b)は、曲線状に湾曲した後退角を有するボトムパドル翼、図2(c)は、平板を折り曲げた後退角を有するボトムパドル翼を、それぞれ真上から眺めた状態を示す図面である。図2(b)のように曲線状に湾曲したボトムパドル翼の後退角は、撹拌軸の中心と翼の槽壁側の端を結ぶ直線と、翼の変曲点と槽壁側の端を結ぶ直線がなす角αであり、図2(c)のように平板を折り曲げたボトムパドル翼の後退角は、撹拌軸の中心と翼の槽壁側の端を結ぶ直線と、翼の槽壁側の直線部がなす角βである。また、ボトムパドル翼を真上から眺めた図面に変曲点が2個以上存在する場合は、撹拌軸の中心と翼の槽壁側の端を結ぶ直線と、撹拌軸に最も近い変曲点と翼の槽壁側の端を結ぶ直線がなす角が後退角である。平板が2か所以上で折り曲げられた形状のボトムパドル翼は、撹拌軸の中心と翼の槽壁側の端を結ぶ直線と、撹拌軸に最も近い折り曲げ点と翼の槽壁側の端を結ぶ直線がなす角が後退角である。また、上記後退角算出の基点となる折り曲げ点および変曲点の撹拌軸中心からの距離は、撹拌軸中心と翼の槽壁側の端を結ぶ直線距離に対して、通常0.5〜0.9、好ましくは0.6〜0.8である。ボトムパドル翼に後退角を設けることにより、吐出流量を増大し、巻き込まれる固体粒子に対する巻き上がる固体粒子の割合を高めることができる。
本発明の撹拌翼において、ボトムパドル翼の後退角は2〜70度であることが好ましく、30〜60度であることがより好ましい。ボトムパドル翼の後退角が2度未満であると、吐出流量の増大効果が十分に発現しないおそれがある。ボトムパドル翼の後退角が70度を超えても、吐出流量の増大効果が低減するおそれがある。
【0008】
本発明の撹拌翼において、ボトムパドル翼の最大投影面積が、翼の最大投影面積の合計の0.2〜0.7倍であることが好ましく、0.3〜0.6倍であることがより好ましい。翼の最大投影面積とは、翼を内包する無限大球面上の任意の点から投影した面積の最大値である。ボトムパドル翼と上段パドル翼の最大投影面積は、それぞれの翼1個ごとに投影面積が最大となるように投影して求める。ボトムパドル翼の最大投影面積が翼の最大投影面積の合計の0.2倍未満であると、撹拌効果が不足して固体粒子の沈降を防止することが困難となるおそれがある。ボトムパドル翼の最大投影面積が翼の最大投影面積の合計の0.7倍を超えると、ボトムパドル翼による吐出流量が増大して、撹拌槽内全体の均一な流れが崩れるおそれがある。本発明の撹拌翼において、撹拌槽の内径をD、上段パドル翼の翼長をd、翼幅をbとしたとき、d/Dが0.3〜0.6であることが好ましく、b/Dが0.1〜0.3であることが好ましい。ただし、上段パドル翼の翼長とは、撹拌軸に垂直な方向の翼の長さであり、翼幅とは、撹拌軸に平行な方向の翼の幅である。
従来より用いられてきた上縁が水平なボトムパドル翼では、翼の槽壁側の端の吐出流量が撹拌軸装着部分の吐出流量に対して圧倒的に大きいので、翼の槽壁側の端から吐出された流れの一部がふたたび翼の中心に巻き込まれやすいが、本発明の撹拌翼ではボトムパドル翼の撹拌軸装着部分の翼幅が大きいので、吐出された液体が翼に巻き込まれることを防止して、固体粒子の巻き上げ効果を最大化することができる。本発明の撹拌翼は、例えば、有機溶媒中でスラリー重合により生成した顆粒状のポリエーテル系重合体や、懸濁重合により得られたポリ塩化ビニルなどの固体粒子のタンク内における沈降防止のために効果的に用いることができる。
【0009】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
なお、比較例及び実施例においては、下記の装置及び条件により試験を行った。
(1)撹拌槽
内径260mm、深さ550mmの円筒に、頂角114度の円錐形状の槽底を付した、透明なアクリル樹脂製。撹拌軸の直径30mm。
(2)ボトムパドル翼
図3(a)〜(d)に示す上縁水平の平板翼と後退角翼及び上縁下降型の平板翼と後退角翼の4種。翼長180mm、翼投影面積41.6cm2、下降型の上縁が水平方向となす角度10度、後退角50度。
(3)上段パドル翼
翼長130mm、翼幅23mm、槽底から二段目が221mm、三段目が368mm離して撹拌軸に装着。翼投影面積23.0cm2
(4)試験方法
撹拌槽に水30Lと、トレーサーとしてイオン交換樹脂[三菱化学(株)、ダイヤイオンSK−1B、真密度1.28g/cm3、平均粒径0.5mm]1.5Lを仕込み、単位容積あたりの撹拌動力Pv=0.01kW/m3で撹拌する。ボトムパドル翼から吐出されたイオン交換樹脂の粒子の動きに着目し、上段パドル翼を越えなかった粒子を「巻き込み」とし、上段パドル翼を越えた粒子を「巻き上がり」として、1シリーズ合計20個の粒子の動きを観察する。この観察を、5シリーズ繰り返す。
比較例1
図3(a)に示す上縁水平の平板翼を用いて試験を行った。5シリーズの合計で、巻き込み粒子数は71個、巻き上がり粒子数は29個であり、巻き上がりと巻き込みの比は0.41であった。
比較例2
図3(b)に示す上縁水平の後退角翼を用いて試験を行った。5シリーズの合計で、巻き込み粒子数は63個、巻き上がり粒子数は37個であり、巻き上がりと巻き込みの比は0.59であった。
実施例1
図3(c)に示す上縁下降の平板翼を用いて試験を行った。5シリーズの合計で、巻き込み粒子数は59個、巻き上がり粒子数は41個であり、巻き上がりと巻き込みの比は0.69であった。
実施例2
図3(d)に示す上縁下降の後退角翼を用いて試験を行った。5シリーズの合計で、巻き込み粒子数は53個、巻き上がり粒子数は47個であり、巻き上がりと巻き込みの比は0.89であった。
比較例1〜2及び実施例1〜2の結果を、第1表に示す。
【0010】
【表1】

Figure 0003988185
【0011】
第1表に見られるように、比較例1と実施例1の平板翼どうし、比較例2と実施例2の後退角翼どうしを比較すると、比較例の上縁水平翼に対して、実施例の上縁を水平方向に対して10度下降させた翼の方が、巻き込み粒子に対する巻き上がり粒子の比率が大きく、ボトムパドル翼の上縁が撹拌軸側の端から槽壁側の端に向かって下降する形状とすることにより、撹拌効果が向上して、粒子の動きが軸流型パターンに近づくことが分かる。また、比較例1と比較例2の上縁水平翼どうし、実施例1と実施例2の上縁下降翼どうしを比較すると、平板翼よりも後退角翼の方が巻き込み粒子に対する巻き上がり粒子の比率が大きく、後退角翼とすることにより、撹拌効率が向上することが分かる。
【0012】
【発明の効果】
本発明の撹拌翼は、ボトムパドル翼の上縁が撹拌軸側の端から槽壁側の端に向かって下降する形状を有するので、固液撹拌において、ボトムパドル翼により吐出された固体粒子がふたたびボトムパドル翼に巻き込まれる確率が減少し、固体粒子の動きを軸流型パターンに近づけ、安定して浮遊させることができる。
【図面の簡単な説明】
【図1】図1は、本発明の撹拌翼の一態様の説明図である。
【図2】図2は、ボトムパドル翼を真上から眺めた状態を示す図面である。
【図3】図3は、比較例及び実施例で用いたボトムパドル翼の説明図である。
【符号の説明】
1 撹拌軸
2 ボトムパドル翼
3 上段パドル翼
4 下縁
5 撹拌槽
6 槽底
7 上縁[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stirring blade. More specifically, the present invention relates to a stirring blade that can move a large number of solid particles in an axial flow pattern and efficiently float solid particles in a solid-liquid stirring tank.
[0002]
[Prior art]
The stirrer includes a container for storing a liquid called a stirring tank and a movable part called a stirring blade that stirs the liquid. In general, the stirring tank is a cylindrical dish bottom, a round bottom or a conical bottom, and a stirring blade is attached to a stirring shaft to give a rotational motion to the liquid. Various shapes are selected for the stirring blades depending on the purpose of stirring. For example, paddle blades, turbine blades, fiddler blades, pull margin blades, full zone blades (Shinko Pantech Co., Ltd., registered trademark) and Max. Blend wings (Sumitomo Heavy Industries, Ltd., registered trademark) are used.
Solid-liquid agitation is employed for agitation in emulsion polymerization, suspension polymerization, and the like, and for maintaining a stable slurry after completion of polymerization, and various agitation blades have been proposed for efficient agitation operations. For example, Japanese Patent Application Laid-Open No. 2001-170467 discloses a stirring blade that has improved mixing characteristics and can suppress the occurrence of scale against emulsion polymerization. A bottom paddle blade and an upper paddle blade have a crossing angle of 30 to 90 degrees on a stirring shaft. The agitating blade is proposed in which the bottom paddle blade has a receding angle of 0 to 60 degrees and the upper paddle blade has a receding angle of 5 to 60 degrees. Japanese Patent Laid-Open No. 2001-261717 discloses a method for producing a vinyl chloride polymer having a sharp particle size distribution and a high bulk specific gravity, which has two or more lattices in length and width, and the ratio of the blade diameter d to the tank diameter D. A suspension polymerization method using a lattice blade having a d / D of 0.40 to 0.50 and a ratio Hb / H of the height Hb of the bottom paddle blade to the height H of the blade of less than 0.3. Proposed.
[Patent Document 1]
JP 2001-170467 A (second page)
[Patent Document 2]
JP 2001-261717 A (2nd page)
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a stirring blade capable of moving most of solid particles in an axial flow pattern in a solid-liquid stirring tank to efficiently float the solid particles.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that the reason why the stirring efficiency is reduced in the solid-liquid stirring using the bottom paddle blade and the upper paddle blade is that the bottom paddle blade rotates due to the rotation of the bottom paddle blade. The trapped solid particles are caught in the center of the blade, and the upper edge of the bottom paddle blade is lowered from the end on the stirring shaft side toward the end on the tank wall side, thereby being caught in the center of the blade. It has been found that solid particles can be reduced and many of the solid particles can be moved in an axial flow pattern, and the present invention has been completed based on this finding.
That is, the present invention
(1) A bottom paddle blade having a receding angle is attached to the lowermost part of the stirring shaft, and at least one upper paddle blade is attached to the upper part of the stirring shaft, and the vertical from the arbitrary point on the lower edge of the bottom paddle blade to the bottom of the tank A stirring blade characterized in that the shortest distance in the direction is substantially constant, and the upper edge of the bottom paddle blade has a shape that descends from the stirring shaft side end toward the tank wall side end,
(2) The stirring blade according to the first item, wherein the angle formed by the upper edge of the bottom paddle blade with the horizontal direction is 2 to 20 degrees in the projection view, and
(3) The stirring blade according to Item 1 or 2 , wherein the maximum projected area of the bottom paddle blade is 0.2 to 0.7 times the total of the maximum projected areas of the blade.
Is to provide.
Furthermore, as a preferred embodiment of the present invention,
( 4 ) The stirring blade according to item 1 , wherein the receding angle of the bottom paddle blade is 2 to 70 degrees,
Can be mentioned.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the stirring blade of the present invention, a bottom paddle blade is attached to the lowermost portion of the stirring shaft, and at least one upper paddle blade is attached to the upper portion of the stirring blade, and a vertical line extending from an arbitrary point on the lower edge of the bottom paddle blade to the bottom of the tank. The shortest distance in the direction is substantially constant, and the upper edge of the bottom paddle blade is a stirring blade having a shape that descends from the stirring shaft side end toward the tank wall side end.
FIG. 1 is an explanatory view of one embodiment of the stirring blade of the present invention. A bottom paddle blade 2 and two upper paddle blades 3 are attached to the stirring shaft 1, and the shortest distance from an arbitrary point on the lower edge 4 of the bottom paddle blade to the tank bottom 6 of the stirring tank 5 is substantially constant, The upper edge 7 of the bottom paddle blade has a shape descending from the end on the stirring shaft side toward the end on the tank wall side. In the embodiment shown in FIG. 1, there are two upper paddle blades, but the number of upper paddle blades may be one or three or more depending on the depth of the stirring tank. In the embodiment shown in FIG. 1, the tank bottom of the stirring tank is a conical bottom, but the tank bottom of the stirring tank can have any shape such as a cylindrical dish bottom or a round bottom. The shortest distance in the vertical direction from an arbitrary point on the lower edge of the bottom paddle blade to the bottom of the stirring tank is substantially constant. The ratio between the minimum value and the maximum value of the shortest distance in the vertical direction is 0.7 to 1. Means 0.0. When the agitation tank has a round bottom, the lower edge of the bottom paddle blade has a rounded shape.
[0006]
The stirring blade of the present invention has a shape in which the upper edge of the bottom paddle blade descends from the end on the stirring shaft side toward the end on the tank wall side, so that it is discharged toward the stirring tank wall by the rotation of the bottom paddle blade. The solid particles are rarely caught again in the bottom paddle blade, and many solid particles are rolled up. As a result, the solid particles form an axial flow pattern as a whole and efficiently float in the liquid.
In the stirring blade of the present invention, the angle formed by the upper edge of the bottom paddle blade with the horizontal direction is preferably 2 to 20 degrees and more preferably 5 to 15 degrees in the projection view. If the angle between the upper edge and the horizontal direction is less than 2 degrees in the projection view, the effect of preventing entrainment of solid particles may be reduced. If the angle between the upper edge and the horizontal direction exceeds 20 degrees, the blade width at the end of the bottom paddle blade on the tank wall side becomes too small, which may reduce the stirring effect. In the embodiment shown in FIG. 1, the upper edge of the bottom paddle blade is a straight line, but in addition to this embodiment, the upper edge of the bottom paddle blade has an upward convex curve, an upward concave curve, and an upward convex and concave shape. Any shape such as a curved line having a convex shape, two upwardly protruding straight lines, and an upwardly concave two straight lines can be used. When the upper edge is not one straight line, it is preferable that the angle formed by the straight line connecting the end on the stirring shaft side of the upper edge and the end on the tank wall side with the horizontal direction is 2 to 20 degrees.
[0007]
In the stirring blade of the present invention, the bottom paddle blade can be shaped to have a receding angle. The shape having a receding angle is a shape in which the end of the bottom paddle blade on the tank wall side is retreated with respect to the rotation direction. 2 (a) is a flat bottom paddle blade having no receding angle, FIG. 2 (b) is a bottom paddle blade having a curved receding angle, and FIG. 2 (c) is a flat plate bent. It is drawing which shows the state which looked at the bottom paddle wing | blade which has a receding angle from right above, respectively. The receding angle of the bottom paddle blade curved in a curved shape as shown in FIG. 2 (b) is the straight line connecting the center of the stirring shaft and the end of the blade wall side, the inflection point of the blade and the end of the tank wall side. The receding angle of the bottom paddle blade with the flat plate bent as shown in FIG. 2C is the angle α formed by the connecting straight line, the straight line connecting the center of the stirring shaft and the end of the blade wall side of the blade, and the tank wall of the blade The angle β formed by the straight line portion on the side. If there are two or more inflection points in the drawing of the bottom paddle blade viewed from directly above, the straight line connecting the center of the stirring shaft and the end of the blade wall side and the inflection point closest to the stirring shaft. The receding angle is the angle formed by the straight line connecting the end of the wing and the tank wall side. A bottom paddle blade with a flat plate bent at two or more locations has a straight line connecting the center of the stirring shaft and the end of the blade on the tank wall side, the folding point closest to the stirring shaft, and the end of the blade on the tank wall side. The angle formed by the connecting line is the receding angle. Further, the distance from the stirring axis center of the bending point and the inflection point, which are the base points for calculating the receding angle, is usually 0.5 to 0 with respect to the linear distance connecting the stirring axis center and the end of the blade wall side. .9, preferably 0.6 to 0.8. By providing the bottom paddle blade with a receding angle, the discharge flow rate can be increased, and the ratio of the solid particles to be rolled up with respect to the solid particles to be rolled up can be increased.
In the stirring blade of the present invention, the receding angle of the bottom paddle blade is preferably 2 to 70 degrees, and more preferably 30 to 60 degrees. If the receding angle of the bottom paddle blade is less than 2 degrees, the effect of increasing the discharge flow rate may not be sufficiently exhibited. Even if the receding angle of the bottom paddle blade exceeds 70 degrees, the effect of increasing the discharge flow rate may be reduced.
[0008]
In the stirring blade of the present invention, the maximum projected area of the bottom paddle blade is preferably 0.2 to 0.7 times the total of the maximum projected area of the blade, and is 0.3 to 0.6 times. More preferred. The maximum projected area of the wing is the maximum value of the area projected from an arbitrary point on the infinite sphere containing the wing. The maximum projected area of the bottom paddle blade and the upper paddle blade is obtained by projecting so that the projected area is maximized for each blade. When the maximum projected area of the bottom paddle blade is less than 0.2 times the total of the maximum projected areas of the blade, the stirring effect may be insufficient, and it may be difficult to prevent solid particles from settling. When the maximum projected area of the bottom paddle blade exceeds 0.7 times the total of the maximum projected area of the blade, the discharge flow rate by the bottom paddle blade increases, and the uniform flow in the entire stirring tank may be disrupted. In the stirring blade of the present invention, when the inner diameter of the stirring tank is D, the blade length of the upper paddle blade is d, and the blade width is b, d / D is preferably 0.3 to 0.6, and b / It is preferable that D is 0.1 to 0.3. However, the blade length of the upper paddle blade is the blade length in the direction perpendicular to the stirring shaft, and the blade width is the blade width in the direction parallel to the stirring shaft.
For bottom paddle blades with a horizontal upper edge that has been used in the past, the discharge flow rate at the blade wall end of the blade is overwhelmingly larger than the discharge flow rate at the part where the stirring shaft is attached. Part of the flow discharged from the nozzle is likely to be entangled again in the center of the blade, but in the stirring blade of the present invention, since the blade width of the stirring shaft mounting portion of the bottom paddle blade is large, the discharged liquid is caught in the blade. And the effect of winding up the solid particles can be maximized. The stirring blade of the present invention is for preventing sedimentation in a tank of solid particles such as a granular polyether polymer produced by slurry polymerization in an organic solvent or polyvinyl chloride obtained by suspension polymerization. Can be used effectively.
[0009]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In Comparative Examples and Examples, tests were performed using the following apparatuses and conditions.
(1) A transparent acrylic resin made of a cylinder having an inner diameter of 260 mm and a depth of 550 mm with a conical tank bottom having an apex angle of 114 degrees. The diameter of the stirring shaft is 30 mm.
(2) Bottom paddle blades Four types of upper edge horizontal flat blades and swept angle blades and upper edge descending flat plate blades and swept angle blades shown in FIGS. 3 (a) to 3 (d). The blade length is 180 mm, the blade projection area is 41.6 cm 2 , the angle between the descending upper edge and the horizontal direction is 10 degrees, and the receding angle is 50 degrees.
(3) Upper paddle blade length 130 mm, blade width 23 mm, second stage 221 mm away from tank bottom, third stage 368 mm apart and mounted on stirring shaft. Wing projected area 23.0 cm 2 .
(4) Test Method 30 L of water and 1.5 L of ion exchange resin [Mitsubishi Chemical Corporation, Diaion SK-1B, true density 1.28 g / cm 3 , average particle size 0.5 mm] as a tracer are added to the stirring tank. Charge and stir at a stirring power Pv = 0.01 kW / m 3 per unit volume. Focusing on the movement of the ion-exchange resin particles discharged from the bottom paddle blade, the particles that did not exceed the upper paddle blade were “rolled in” and the particles that passed the upper paddle blade were “rolled up”. Observe the movement of individual particles. This observation is repeated for 5 series.
Comparative Example 1
The test was carried out using a horizontal flat plate blade shown in FIG. In total of 5 series, the number of entrained particles was 71, the number of entrained particles was 29, and the ratio of the entrainment and entrainment was 0.41.
Comparative Example 2
The test was conducted using a horizontal swept angle wing shown in FIG. 3 (b). The total number of the 5 series was 63, and the number of rolled-up particles was 37, and the ratio of roll-up and roll-up was 0.59.
Example 1
The test was conducted using a flat plate blade with the upper edge descending as shown in FIG. In total, the number of entrained particles was 59, the number of entrained particles was 41, and the ratio of entrainment and entrainment was 0.69.
Example 2
The test was conducted using a swept angle blade with the upper edge descending as shown in FIG. The total number of the 5 series was 53, and the number of rolled-up particles was 47, and the ratio of roll-up and roll-in was 0.89.
The results of Comparative Examples 1-2 and Examples 1-2 are shown in Table 1.
[0010]
[Table 1]
Figure 0003988185
[0011]
As can be seen from Table 1, when the flat blades of Comparative Example 1 and Example 1 are compared, and the swept angle blades of Comparative Example 2 and Example 2 are compared, the embodiment is compared with the upper edge horizontal blade of the comparative example. The blade whose upper edge is lowered 10 degrees with respect to the horizontal direction has a larger ratio of the rolled-up particles to the entrained particles, and the upper edge of the bottom paddle blade is directed from the end on the stirring shaft side toward the end on the tank wall side. It can be seen that by adopting the shape that descends, the stirring effect is improved and the movement of the particles approaches the axial flow pattern. Further, when the upper edge horizontal blades of Comparative Example 1 and Comparative Example 2 are compared with each other and the upper edge descending blades of Example 1 and Example 2 are compared, the swept angle blades are more likely to have rolled particles than the flat blades. It can be seen that the stirring efficiency is improved by using a swept angle blade with a large ratio.
[0012]
【The invention's effect】
The stirring blade of the present invention has a shape in which the upper edge of the bottom paddle blade descends from the stirring shaft side end toward the tank wall side end, so that solid particles discharged by the bottom paddle blade in solid-liquid stirring The probability of being caught again in the bottom paddle blade is reduced, and the movement of the solid particles can be brought close to the axial flow pattern and stably floated.
[Brief description of the drawings]
FIG. 1 is an explanatory view of one embodiment of a stirring blade of the present invention.
FIG. 2 is a drawing showing a state in which a bottom paddle blade is viewed from directly above.
FIG. 3 is an explanatory diagram of bottom paddle blades used in comparative examples and examples.
[Explanation of symbols]
1 Stirring shaft 2 Bottom paddle blade 3 Upper paddle blade 4 Lower edge 5 Stirrer tank 6 Tank bottom 7 Upper edge

Claims (3)

撹拌軸の最下部に後退角を有するボトムパドル翼が取り付けられ、その上部に少なくとも一の上段パドル翼が取り付けられ、ボトムパドル翼の下縁上の任意の点から槽底までの鉛直方向の最短距離が略一定であり、ボトムパドル翼の上縁が、撹拌軸側の端から槽壁側の端に向かって下降する形状を有することを特徴とする撹拌翼。 A bottom paddle blade having a receding angle is attached to the lowermost part of the stirring shaft, and at least one upper paddle blade is attached to the upper part, and the shortest in the vertical direction from any point on the lower edge of the bottom paddle blade to the bottom of the tank A stirring blade characterized in that the distance is substantially constant, and the upper edge of the bottom paddle blade has a shape that descends from the stirring shaft side end toward the tank wall side end. ボトムパドル翼の上縁が水平方向となす角度が、投影図において2〜20度である請求項1記載の撹拌翼。  The stirring blade according to claim 1, wherein the angle formed by the upper edge of the bottom paddle blade with the horizontal direction is 2 to 20 degrees in the projection view. ボトムパドル翼の最大投影面積が、翼の最大投影面積の合計の0.2〜0.7倍である請求項1又は2に記載の撹拌翼。The stirring blade according to claim 1 or 2, wherein the maximum projected area of the bottom paddle blade is 0.2 to 0.7 times the total of the maximum projected areas of the blade.
JP2002281363A 2002-09-26 2002-09-26 Stirring blade Expired - Fee Related JP3988185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002281363A JP3988185B2 (en) 2002-09-26 2002-09-26 Stirring blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002281363A JP3988185B2 (en) 2002-09-26 2002-09-26 Stirring blade

Publications (2)

Publication Number Publication Date
JP2004113942A JP2004113942A (en) 2004-04-15
JP3988185B2 true JP3988185B2 (en) 2007-10-10

Family

ID=32275824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002281363A Expired - Fee Related JP3988185B2 (en) 2002-09-26 2002-09-26 Stirring blade

Country Status (1)

Country Link
JP (1) JP3988185B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102256402B1 (en) * 2018-10-15 2021-05-25 한화솔루션 주식회사 Batch reactor

Also Published As

Publication number Publication date
JP2004113942A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
RU2338585C2 (en) Boost impeller for reactors and tanks containing suspensions
US10865459B2 (en) Reactor for gas-liquid mass transfer
US9802169B2 (en) Method and apparatus for mixing
BRPI1008950B1 (en) IMPULSOR FOR MIXING MUD IN METALLURGICAL PROCESSES.
US4169047A (en) Flotation machine with mixing and aeration impeller and method
CN1761525A (en) Auxiliary agitator for a flotation device
JP3988185B2 (en) Stirring blade
JP4075332B2 (en) Sewage treatment tank
JPH0975699A (en) Agitator
KR100523466B1 (en) Agitator Hydrofoil for FGD
JP2766847B2 (en) Stirrer
KR102406062B1 (en) Seaweed cleaning device of removable microplastic
CN113003639A (en) Advection formula air supporting device based on sewage treatment usefulness
KR20190025590A (en) Containers for particle generation AND Particle generation method Using them
KR101955286B1 (en) Containers for particle generation AND Particle generation method Using them
CN211329034U (en) Dispersing agent pool stirrer
JP2003265941A (en) Agitation apparatus and agitating method of liquid containing solid particle
JP2006026628A (en) Transfer cylinder-dispensable agitation apparatus installed closely in parallel to inclined wall
CN215500332U (en) Aluminum shell disk surface
CN220861190U (en) Stirring assembly and stirring device suitable for slurry polymerization solid-liquid two-phase system
CN212068472U (en) Turbid liquid uniform mixing stirrer
CN210278939U (en) Spiral ribbon-shaped blade and stirrer
JP2017177015A (en) Mixing granulator
Janurin et al. Solid Suspension Characteristics in a Dished Base Tank for a Range of Geometric and Solids Properties
JP4070620B2 (en) Stirring tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees