JP3987930B2 - Azimuth inclination measuring method and measuring apparatus - Google Patents

Azimuth inclination measuring method and measuring apparatus Download PDF

Info

Publication number
JP3987930B2
JP3987930B2 JP2003170473A JP2003170473A JP3987930B2 JP 3987930 B2 JP3987930 B2 JP 3987930B2 JP 2003170473 A JP2003170473 A JP 2003170473A JP 2003170473 A JP2003170473 A JP 2003170473A JP 3987930 B2 JP3987930 B2 JP 3987930B2
Authority
JP
Japan
Prior art keywords
measured
measurement
measuring
displacement
circular frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003170473A
Other languages
Japanese (ja)
Other versions
JP2005003641A (en
Inventor
昌幸 小杉
学 歌川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003170473A priority Critical patent/JP3987930B2/en
Priority to PCT/JP2004/008316 priority patent/WO2004111573A1/en
Publication of JP2005003641A publication Critical patent/JP2005003641A/en
Application granted granted Critical
Publication of JP3987930B2 publication Critical patent/JP3987930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、方位計測、傾斜角(角度)計測、あるいはこれらの両者を別個に計測して組み合わせ、もしくは同時に計測して組み合わせる方法および装置に関する。
【0002】
【従来の技術】
本願発明の発明者等は、先に三次元変位測定方法及び三次元変位測定装置を出願し、当該出願は特許文献1に示す番号で登録された。当該特許の対応の米国特許は、特許文献2の通りであり、対応のヨーロッパ特許は、特許文献3の通りである。
【0003】
これ以外に次に示すような従来例がある。
特許文献4には、回転可能な機器ケーシングを有する完全自動測定ジャイロコンパスであって、上記ケーシング中には支持バンドに懸架されたジャイロ振子が配置されており、該ジャイロコンパスの回転振動の信号量がオプトエレクトロニック測定装置を用いて取出され中央制御プロセッサにて評価アルゴリズムを用いて指北位置偏差の測定のため評価されるように構成されているものにおいて、上記オプトエレクトロニック測定装置によっては1つの振動周期の小さな端数部分に亙って、自由に振動するジャイロ振子の、機器零(基準)点に対して相対的な夫々の偏差角度及び該偏差角度に所属する角速度及び角速度が検出され、当該中央プロセッサによっては機器零(基準)マークの指北位置偏差(偏位)がジャイロ振子の正規化(基準化)された運動方程式を介して計算され指北位置偏差(偏位)に比例する信号の送出および/又は当該指北位置偏差(偏位)のディスプレイがなされるように構成されている完全自動測定ジャイロコンパスが記載されている。
【0004】
特許文献5には、光ファイバジャイロと重力加速度を利用した傾斜計とを備え、地球接平面に対するロール角またはピッチ角あるいは両方の傾斜角を測定するハイブリッド傾斜計において、ソフトウエア数値フィルタによって、光ファイバジャイロより得られる角度データについては高域周波数のデータのみ通過処理し、前記傾斜角より得られる角度データについては低域周波数のデータのみ通過処理し、実時間領域で双方のデータを合成し、角度出力とする信号処理部を接続したハイブリッド傾斜計が記載されている。
【0005】
特許文献6には、基準台上に設置された、直交する2軸の傾斜計と1軸回転機構と、1軸回転機構に取付けられた1軸レートジャイロを具備すると共に、1軸回転機構制御部と、1軸レートジャイロの基準方位からの回転角及び各回転位置で得られた地球時点の角速度より仮想方位と振幅を求め、これら仮想方位角及び振幅と2軸傾斜角によって得られたロール角、ピッチ角及び外部より入力された検出地点の緯度とにより検出地点での方位角を検出する方位演算部とを備えたレートジャイロ方位計が記載されている。
【0006】
特許文献7には、被測定体にジャイロ傾斜計を取付け、このジャイロ傾斜計からの角速度信号を積分して前記被測定体の傾斜角度を測定する傾斜測定装置において、前記被測定体に重力式傾斜計を取付けると共に、この重力式傾斜計の出力信号が静定状態にあることを判断する静定状態判断手段と、この静定状態により前記重力式傾斜計の出力信号が静定状態にあると判断されたとき前記ジャイロ傾斜計からの角速度信号の積分値を前記重力式傾斜計の出力信号による傾斜角度に補正する補正手段とを設けた傾斜測定装置が記載されている。
【0007】
更に、特許文献8には、三次元の変位および傾斜を測定する変位傾斜測定装置が記載されている。
特許文献9には、移動体又は被測定物の位置及び姿勢角を測定するための位置及び姿勢角測定装置及び方法が記載されている。
特許文献10には、重力式傾斜センサとジャイロを併設することが記載されている。
【0008】
【特許文献1】
特許第2961145号公報
(特願平6−42830、特願平4−253307)
【特許文献2】
USP5,623,108号公報
【特許文献3】
EP0829699号公報
【特許文献4】
特開平5−248871号公報
(優先権主張国 ドイツ国 P4141034.3)
【特許文献5】
特開平7−167651号公報
【特許文献6】
特開平7−167658号公報
【特許文献7】
特開平8−210849号公報
【特許文献8】
特開2001−66110号公報
【特許文献9】
特開平10−160462号公報
【特許文献10】
特開平8−89011号公報
【0009】
【発明が解決しようとする課題】
従来において、傾斜を計測する技術は、クリノメータなど、一方向の傾斜角を検出する方法が用いられており、三次元的な評価のためには、一次元計測する装置を複数台配置して計測したデータを組み合わせることによって実現していた。他方、方位計測では、方位磁石やジャイロ効果における歳差を検出するレートジャイロなどが実用に供されており、方位と傾斜の計測では複数の計測装置や計測センサまたは複数回の計測を必要とし、計測が複雑化する不都合があった。また、複数の計測においてそれぞれの傾斜計の固定点や摺動ラインが異なるために計測誤差を含みやすい欠点があり、必ずしも経済的、効果的な測定手段とは言えない面があった。
【0010】
本発明は、多くの計測器による変位計測を必要とすることなく、簡便な構造によって被測定体の変位を容易に計測できる変位計測方法および装置を提供することを目的とする。
更に本発明は、三次元的に展開した多くの計測器による変位計測を必要とすることなく、一台の装置の簡便な構造によって被測定体の三次元的な変位を容易に計測できる変位計測方法および装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
相対的な三次元傾斜を合理的かつ効率的に一台のセンサによって検出するため、回転軸に傾斜して取付けた非接触式(レーザ変位計など)や接触式(差動トランスなど)の変位センサに対してほぼ直交する曲面からなる円錐型などの被計測面を配し、被計測部の重りと二軸方向の自由回転が可能なフレーム構造によってフリーとされた被計測面の円錐中心軸が常に重力方向を指し示す機能を備えている。変位センサの取付軸を一回転する間の走査によって被計測面までの距離を複数回計測し、そのデータから三角関数の計算によって計測点の傾斜角を求め、傾斜角データの残差が最小になる最小二乗解析によって変位センサ部と被計測体(被計測部)の間の相対的な三次元傾斜を傾斜方向と傾斜角度のベクトル評価として評価する。これにより、従来、3台以上の傾斜計によって評価した三次元的な傾斜を一台の変位センサによってフリーとされた被計測面の変位を計測し、精度評価を行いつつ実現できる。
【0012】
また、三次元傾斜と方位を合理的かつ効率的に一台のセンサによって検出するため、前述装置の被測定体がフレーム構造内で自立回転する際に回転軸が重りとのバランスの中で地球自転軸に沿う方向に傾くジャイロ効果を利用し、前述の円錐面上を回転走査する変位計側から最大傾斜する方向を求めて北方位の評価を実現する。前述の被測定体が重りによって重力方向を指し示す際の三次元傾斜計測とこの方位計測を交互に同一装置で実施することにより、従来まったく異なる計測とされていた方位計測と傾斜計測を一台の装置で実現するとともに、これら全ての基本データを一台の変位センサからの計測によって達成することが可能になる。
【0013】
全方位の三次元傾斜を簡便に検出するため、前述の被測定体が重りによって重力方向を指し示す際の三次元傾斜計測に既存の方位磁石あるいはジャイロスコープを組み込み、ここで検出した北方位と変位センサ部の回転角との関係から、方位との相関において三次元傾斜を評価する全方位傾斜計測を簡便に実現できる。被測定体の円錐形状のある円錐頂点を支点として、すなわち固定点として固定したまま被測定体を全方位に自由傾斜させ得る構造の自由傾斜体を採用することによって前述の固定点を中心として簡便な構造によって被測定体をいかなる方向への傾斜も自由に行うことが実現できる。
【0014】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて説明する。
本発明は、土木・建築構造物、石油削井あるいは飛行・走行物の制御等における固定点の傾斜姿勢と方位監視ならびにパイプや孔井などの円筒空間内摺動において連続的に三次元傾斜と方位を計測する方法および装置を提供する。
【0015】
具体的には、土木・資源分野の岩盤・地盤や岩盤内空洞近傍において、岩盤の微細な傾斜変状を計測監視する目的で用いられる。例えば、地滑り監視地盤やダムサイト地盤内における地盤変状を監視するために、地盤内の孔井において摺動しつつ簡便に全方位傾斜状態を連続的に計測する。また、石油資源開発分野の岩盤内孔井において、孔井の位置を評価する目的で用いられる。例えば、地表の孔口から穴井内を連続的に摺動しつつ方位と傾斜状態を連続的に計測し、地下岩盤内における孔井の三次元位置を的確に標定する。さらに、パイプラインや配管など構造物の変状監視を目的とし、配管内あるいはその外部に沿って摺動しつつ傾斜ベクトルを連続的に計測して全体の変形状態を把握する目的で用いる。
【0016】
他方、建設分野の橋梁、ビルなど構造物において、構造体の微細な傾斜変状を監視する目的で用いられる。例えば、橋梁やビルなどの接続部や基礎部の安定性を監視するため、その固定点の傾斜変状を連続的に検出する。また、岩盤や岩盤内空洞の変状を長期的に監視する目的で、崩落監視対象の岩盤上の固定点や岩盤内空洞の固定点に設置して長期的に傾斜ベクトルを監視する。さらに、飛行物体や走行物体の移動方向制御を目的とし、これら移動物体の方向を方位と三次元傾斜情報として適宜検出する。具体的に説明する。
【0017】
図1は、本発明の一実施例である重力式傾斜センサとしての傾斜計測装置100の構造を示す。図1において、傾斜計測装置100は、装置本体1、装置本体1に固定された計測部2、計測部2に対峙する被測定体(被計測部、被測定部)3、被測定体3の保持部5を介して一体にされた重り4、および保持部5と装置本体1の突起部7との間に設けた自由傾斜体6とから構成される。
装置本体1は、筒状もしくは籠状をなし、頭部に設けた孔部11に回転モータ(回転駆動源)12が設けられ、回転モータ12によってセンサの回転軸13を軸心として回転される計測器取付部14が設けられて前述の計測部2が構成される。
【0018】
計測器取付部14には、変位測定器(変位センサ)を構成するレーザ変位計発光部15およびレーザ受光部16が設けられ、レーザ変位計発光部15から発射されたレーザ17は被測定部に当たり、発射したレーザはレーザ受光部16で検知される。
被測定体3は、計測部2とは別体とされ、開口部21から深部22に向かって収束して設けられた所定の円錐形状からなる被計測面23を備えた円錐部24と円錐部の円錐面方向にある保持部5を有し、上述のように保持部5を介して重り4が一体的に取付けてある。
【0019】
保持部5と装置本体1との間に設けられる自由傾斜体6の構造を図2に示す。図2において自由傾斜体6は、保持部5の軸受を備えた円板状の軸受体29の周囲に間隙を置いて配設される内側のフレーム25、これに間隙を置いて配設される外側のフレーム26と、保持部5と内側のフレーム25と、および内側のフレーム25と外側のフレーム26との間に固着して設けた内フレーム回転軸27、外フレーム回転軸28とから構成され、内側のフレーム25と外側のフレーム26は二重の円形フレームをなし、同一平面配置可能であり、図にあっては静止時において同一平面配置とされている。内フレーム回転軸27、外フレーム回転軸28は同一平面配置時に、図にあっては静止時において互いに直交する関係で配設され、内フレーム回転軸27、外フレーム回転軸28は、図に示すように、保持部5の支点30(図1)を中心としてそれぞれ回転可能である。
【0020】
図1において、支点30は、円錐形状からなる被計測面23の円錐形状方向で、被測定体3の軸心上にある。当然に、支点30は保持部5の軸心上にある。支点30は、二重の円形フレームの回動中心とされる。すなわち二重の円形フレームは支点30を中心として回動するように配設される。ここで重要なことは、このような配設構造によって被測定体3の被計測面23はフリーとされていることである。すなわち、被計測面23は何等拘束されていないことである。
装置本体1の突起部7に外側のフレームは軸(図示せず)によって保持される。
機能的に見れば、レーザ変位計発光部15は計測器取付部14の変位計測固定点31に設けられて回転可能とされ、被測定体3は被測定体3の支点30を中心として回転可能とされる。
【0021】
図2および図3は、被測定体3の保持部5に対して対向配置される自由傾斜体6を構成することになる二重の円形フレーム25、26および双方の円形フレーム25、26を接続する二回転軸配置構成およびこの配置構成に伴う被測定体3の被計測面23の配設状態を示し、図2はそのための斜視図、図3は断面平面図である。これらの図において、保持部5の軸受体29(軸受52を備える)と内側の円形フレーム25と、および内側の円形フレーム25と外側の円形フレーム26との間に内回転軸27および外回転軸28が回転軸心45、46を中心として回転可能に配設される。この場合に、構成された二重の円形フレーム25、26は同一平面配置可能とされる。図においては、静止時において二重の円形フレーム25、26が同一平面配置とされている。
この同一平面配置時に二回転軸、すなわち内回転軸27および外回転軸28は直交する配置となる。このような配置構成によって図1に示す被測定体3は、全方向に自由傾斜可能とされ、被測定面23は拘束されていないフリー端とされる。
【0022】
以上のように、図1は変位計としての三次元傾斜計測装置の概要を示す。ここでは、変位センサ(変位測定器)を取付けた回転体の回転軸上に変位計測軸との交点となる被測定体の固定点31と被計測面の円錐頂点となる被測定体の支点30が配置され、被測定体と一体となった重り4が重量方向を指し示すことによって被測定体3の円錐軸は重力方向に傾斜する。被測定体は、互いに直交し得る回転軸27、28を有する二重のフレームによって、その自由傾斜が実現されている。この結果、変位センサ取付部の回転軸は装置本体の軸方向を示し、被測定体は重量方向を示すことになり、傾斜する方向と傾斜角から構成される三次元傾斜を両者の相対的な傾斜として計測することになる。
【0023】
図4は、一台の変位測定器の回転走査による計測方法を示す。被計測面23の任意の円32についてX−Y軸を取ったときに、変位測定器のセンサ位置の回転角はαをなすとする。センサの回転軸はZ軸をなす。この場合に円32上の点34と変位計測固定点31とがなす距離Lが計測変位を計測するためにレーザによって測定される。
図において、変位センサ取付部が一回転する間に一定回転角度ごとに変位を計測することになる。
被測定体3の傾斜に伴う変位計測範囲をより広げるには、被計測部3の円錐面23を円錐曲面にする対策などが考えられる。
【0024】
被計測面23は、開口部21から深部22に向かって収束すると共に、数式化できる所定形状の曲平面からなり、本実施例において円錐形状とは、図5に示す円錐、円錐台、双曲面、二次曲面、半球面、四角錘、三角錐等の形状のものを含む。また、この被計測面23は、レーザ変位計発光部15による距離測定が正確に行えるように、平滑な表面仕上げが施されている。
【0025】
図6は変位計測の方法を示す。
前述のように基本軸を例えばX軸とすると、回転角度はαnで表され、それぞれの回転角度について変位データLnが得られる。変位センサ取付部の回転軸と被測定部3の軸が一致して傾斜がない場合の変位をLoとすると、それぞれの回転角度αnにおける傾斜角βnは図中の式で求められる。
【0026】
計算例として、変位センサによる円錐被計測面上の計測は、未知数3個以上が最低必要になるが、回転走査における一定回転の計測制御は比較的容易であるため、計測精度の向上のため、回転角45度ごとの8点計測や30度ごとの12点計測などの多点計測が実用的になる。
【0027】
簡単な計算の一例として、回転角度はαnごとに変位データLnが変位センサから得られ、Lnからは

Figure 0003987930
の計算式から直ちに回転角度αnごとのβnが求まる。図1に示した変位測定器の計測座標と被測定体座標の相互関係から、変位走査線が形成する円錐と被測定体3の円錐が交わる線の一般式
Figure 0003987930
を導き、この式から求まるβ’nと計測値のβnとの比較から、残差の二乗和Σ(β’n−βn)が最小となるβ’nを求めることになる。この値は、計測におけるバラツキや誤差を多点データに基づいて最小化した結果の解となり、計測制度の向上に資することになる。
【0028】
以上のように、円錐などの内側曲面とその軸が常に重力方向を指し示す重り4を備えた測定体3とセンサ回転軸に傾斜して取付けられた一台のレーザ変位計などの変位測定器から構成されており、二方向の回転軸を有する円形フレームによって常に重りが重力方向を指し示す際の被計測面上を変位測定器が一回転走査する間に一定の回転角度ごとの変位を検出し、それぞれの変位計測データから導いた傾斜角データの最小二乗解析から残差が最小のべクトルを求め、変位測定器と、被測定体3との間の相対的な三次元傾斜を傾斜方向と傾斜角度のベクトル評価として実現する計測装置とその計測方法が構成される。
【0029】
具体的には、被測定物である被測定体3の傾斜を計測するための傾斜計測方法において、開口部21から深部22に向かって収束して設けられた所定の円錐形状からなる被計測面23と円錐形状方向に支点30を有する保持部5を備えた被測定体3の被計測面23に向けて変位測定器15、16を回転可能にして設け、被測定体3に重り4を保持部5を中にして反対側に一体にして設け、保持部5の周りにそれぞれ間隔を置いて、例えば静止時に同一平面方向に二重の円形フレーム、すなわち内側の円形フレーム25、外側の円形フレーム26を有し、保持部5と内側の円形フレーム25と、および内側の円形フレーム25と外側の円形フレーム26との間に、例えば静止時に互いに同一平面上に直交する回転軸27、28を設けて保持部5の支点を二重の円形フレーム25、26の回動中心とし、被測定体3を自由傾斜可能として保持することによって被計測面23をフリーとなして計測時に常に重力方向を指向させ、この状態で変位測定器を被計測面23に対して回転走査をさせて相対する距離を測定し、測定された相対距離の変位を解析することによって被計測面23の三次元傾斜角を計測する傾斜計測方法および計測装置が構成される。
【0030】
図7は、他の実施例としての方位傾斜計測装置101の構造を示す。左記の実施例に示す構成と同一の構成には同一の番号を付し、先の実施例の説明を援用し、説明が重複しないようにする。本実施例の場合、保持部5は長めに作られており、この部分の周囲に回転モータ(回転駆動源)41が配設してある。他の構成は先の実施例と同一とすることができる。
【0031】
図7は、自由傾斜が可能な被測定体3の被計測面23を回転させる構造例を示す。図2あるいは図3に示す二重の円形フレーム構造と二回転軸に導電性構造をもたせ、円錐部24の下部で重り4の位置に配した回転モータ41まで電気ラインを導き、自由傾斜の構造に配線に伴う摩擦抵抗を排除して被測定体3の軸回転を実現する。この構造では、被測定体3の回転に伴ってジャイロ効果が発生し、回転軸が地球の自転軸に沿う方向に平行になろうとする。しかして、被測定体3の下部の重り4は回転軸を重力方向に向ける働きをするため、そのバランスで、被測定体3の軸が重量方向からやや北方位にむかって傾斜することになる。この場合、傾斜角は方位計測の対象にはならず、最大傾斜する方位が対象になる。この方位角αNが装置本体の配置に対する北方位を示すことになる。傾斜方向は変位計測器による距離測定によって計測することができる。
この計算には、図6の説明と同じ解析を用い、β’nが最大値となるαnが北方位角αNとなる。
【0032】
一式の装置によって方位と三次元傾斜を計測する場合、この回転構造を有する装置を配し、装置の摺動などの際に連続的に計測するには、被計測部を回転しない状態で変位センサによる回転走査を繰り返し、方位計測が必要な際には、被測定体3を回転させて変位センサによる回転走査を行うことになる。
【0033】
以上のように、前述の装置の円錐面と重りを含む構造部が二回転軸円形フレーム内において回転する際に回転軸が地球自転軸に沿う方向の北に傾くジャイロコンパスの原理を用い、円錐面上を回転走査する変位計測から最大傾斜する方向を求めて北方位を評価し、この方位データと同装置による三次元傾斜評価とを組み合わせることによって、全方位の絶対傾斜角評価を一台の変位センサで実現する計測装置とその計測方法が構成される。
【0034】
従って、この実施例によれば、被測定物である被測定体3の方位を計測するための方位計測方法において、開口部21から深部22に向かって収束して設けられた所定の円錐形状からなる被計測面23と円錐形状方向に支点30を有する保持部5を備えた被測定体3の被計測面23に向けて変位測定器15、16を回転可能にして設け、被測定体3に重り4を保持部5を中にして反対側に一体にして設け、保持部5の周りにそれぞれ間隔を置いて、例えば静止時に同一平面方向に二重の円形フレーム25、26を有し、保持部5と内側の円形フレーム25と、および内側の円形フレーム25と外側の円形フレーム26との間に、例えば静止時に互いに同一平面上で直交する回転軸27、28を設けて保持部5の支点30を二重の円形フレーム25、26の回動中心とし、被測定体3を自由傾斜可能として保持することによって被計測面23をフリーとなし、被測定体3を回転させる回転駆動源である回転モータ41を設けて被測定体3の回転時に重力方向と地球自転軸に沿う方向との合体方向を指向させ、この状態で変位測定器15、16を被計測面23に対して回転走査をさせて相対する距離を測定し、測定された相対距離の変位を解析することによって被計測面23の傾斜する方向を計測することを特徴とする方位計測方法および計測装置が構成される。
【0035】
更に、この実施例によれば、被測定物の方位および傾斜を計測するための方位傾斜計測方法において、開口部21から深部22に向かって収束して設けられた所定の円錐形状からなる被計測面23と円錐形状方向に支点30を有する保持部5を備えた被測定体3の被計測面23に向けて変位測定器15、16を回転可能にして設け、被測定体3に重り4を保持部5を中にして反対側に一体にして設け、保持部5の周りにそれぞれ間隔を置いて、例えば静止時に同一平面方向に二重の円形フレーム25、26を有し、保持部5と内側の円形フレーム25と、および内側の円形フレーム25と外側の円形フレーム26との間に互いに直交する回転軸27、28を設けて保持部5の支点30を二重の円形フレーム25、26の回動中心とし、被測定体3を自由傾斜可能として保持することによって計測面23をフリーとなし、被測定体3を回転させる回転駆動源である回転モータ41を設けて被測定体3の回転静止時に常に重力方向を指向させ、かつ被測定体3の回転時に重力方向と地球自転軸に沿う方向との合体方向を指向させ、これらの状態で変位測定器15、16を被計測面23に対して回転走査をさせて相対する距離を測定し、測定された相対距離の変位を解析することによって被計測面23の傾斜する方向と三次元傾斜角を順次計測する方位傾斜計測方法および計測装置が構成される。
【0036】
図8は、方位と傾斜の連続計測するための構成を示す。同時に方位と三次元傾斜を連続計測する場合は、それぞれの目的を有する同様構造の装置を2台配置することが想定される。
図8において、図1に示す三次元傾斜計測のための傾斜角計測器100と図7に示す方位計測器101とが一体とされ、それぞれの計測器によって三次元傾斜角と方位とが連続して同時に計測される。それぞれの構成については先の2つの実施例の説明を援用し、ここでは繰り返して説明しない。
【0037】
従って、本実施例によれば、被測定物の方位および傾斜を計測するための方位傾斜計測方法において、開口部21から深部22に向かって収束して設けられた所定の円錐形状からなる被計測面23と円錐形状方向に支点30を有する保持部5を備えた被測定体3の被計測面23に向けて変位測定器15、16を回転可能にして設け、被測定体3に重り4を保持部5を中にして反対側に一体にして設け、保持部5の周りにそれぞれ間隔を置いて、例えば静止時に同一平面方向に二重の円形フレーム25、26を有し、保持部5と内側の円形フレーム25と、および内側の円形フレーム25と外側の円形フレーム26との間に互いに直交する回転軸27、28を設けて保持部の支点30を二重の円形フレーム25、26の回動中心とし、被測定体3を自由傾斜可能として保持することによって被計測面23をフリーとなし、被測定体3を回転させる回転駆動源である回転モータ41を設けて被測定体3の回転時に重力方向と地球自転軸に沿う方向との合体方向を指向させ、この状態で変位測定器15、16を被計測面23に対して回転走査をさせて相対する距離を測定し、測定された相対距離の変位を解析することによって被計測面23の傾斜する方向を計測し、重力傾斜計である傾斜角計測装置100によって三次元傾斜角を計測し、両者を組み合わせることによって全方向の三次元傾斜角を計測する方位傾斜計測方法および計測装置を構成する。
【0038】
図9は、他の方位傾斜計測装置101を示し、既存の方位磁石やジャイロスコープなどとの組み合わせによる簡易全方位傾斜計測する方法および構成を示す。基本的構成は第1の実施例と同じであり、より簡便に全方位三次元傾斜計測を実現するために、既設の方位磁石あるいはレートジャイロ51を図1に示した装置構造概要の重り4の部分に配置させ、ここから得られる北方向αNと三次元傾斜計測とを組み合わせている。
【0039】
前述の装置における被測定体3に既存の方位磁石あるいはジャイロスコープ51を組み合わせ、前述装置による相対的な三次元傾斜評価に方位データを組み合わせることによって、全方位の絶対傾斜角評価を一台の変位センサで実現する計測装置とその計測方法が提供される。
【0040】
具体的には、被測定物の方位および傾斜を計測するための方位傾斜計測方法において、開口部21から深部22に向かって収束して設けられた所定の円錐形状からなる被計測面23と円錐形状方向に支点30を有する保持部5を備えた被測定体3の被計測面23に向けて変位測定器15、16を回転可能にして設け、被測定体3に重り4を保持部5を中にして反対側に一体にして設け、保持部5の周りにそれぞれ間隔を置いて、例えば静止時に同一平面方向に二重の円形フレーム25、26を有し、保持部5と内側の円形フレーム25と、および内側の円形フレーム25と外側の円形フレーム26との間に静止時に互いに同一平面上で直交する回転軸を設けて保持部5の支点30を二重の円形フレーム25、26の回動中心とし、被測定体3を自由傾斜可能として保持することによって被計測面23をフリーとなして計測時に常に重力方向を指向させ、この状態で変位測定器15、16を被計測面23に対して回転走査をさせて相対する距離を測定し、測定された相対距離の変位を解析することによって被計測面23の三次元傾斜角を計測し、方位磁石あるいはジャイロスコープ51によって方位を計測し、両者を組み合わせることによって全方位の三次元傾斜角を計測する方位傾斜計測方法および計測装置を構成する。
以上の構成において、三次元傾斜角を計測することを主体とするが、これらの方法および装置によって二次元傾斜角を計測することを排除しない。
【0041】
【発明の効果】
以上のように、本発明によれば、多くの計測器による変位計測を必要とすることなく、被測定面をフリーとした簡便な構造によって被測定体の変位を容易に計測できる変位計測方法および装置を提供することができる。
更に本発明によれば、三次元的に展開した多くの計測器による変位計測を必要とすることがなく、基本的に一台の装置の簡便な構造によって被測定体の三次元的な変位を容易に計測できる変位計測方法および装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例である傾斜計測装置の構成を示す構造図。
【図2】図1の一部構成についての斜視図。
【図3】図2の平面図。
【図4】回転走査による計測方法を示す図。
【図5】円錐形状を例を以って説明する図。
【図6】変位計測の方法を示す図。
【図7】本発明の他の実施例である方位傾斜計測装置の構成を示す構造図。
【図8】方位と傾斜を連続計測するための一体型装置の構造図。
【図9】簡易全方位傾斜計測するための装置の構造図。
【符号の説明】
1…装置本体、2…計測部、3…被測定体(被計測部、被測定部)、4…重り、5…保持部、6…自由傾斜体、7…突起部、12…回転モータ、13…センサの回転軸、14…計測器取付部、15…レーザ変位計発光部、16…レーザ受光部、17…レーザ、21…開口部、22…深部、23…被計測面、24…円錐部、25…内側のフレーム、26…外側のフレーム、27…内フレーム回転軸、28…外フレーム回転軸、29…軸受体、30…支点、31…変位計測固定点、100…傾斜計測装置、101…方位傾斜計測装置。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for measuring azimuth, measuring tilt angle (angle), or measuring and combining these separately, or measuring and combining them simultaneously.
[0002]
[Prior art]
The inventors of the present invention previously filed a three-dimensional displacement measuring method and a three-dimensional displacement measuring apparatus, and the application was registered with the numbers shown in Patent Document 1. The corresponding US patent of this patent is as in US Pat.
[0003]
There are other conventional examples as follows.
Patent Document 4 discloses a fully automatic measurement gyrocompass having a rotatable device casing, in which a gyro pendulum suspended on a support band is arranged, and a signal amount of rotational vibration of the gyrocompass Is extracted using an optoelectronic measuring device and is evaluated by a central control processor for measuring finger north position deviation using an evaluation algorithm, depending on the optoelectronic measuring device, The deviation angle of the gyro pendulum that vibrates freely over a small fractional part of the cycle and the angular velocity and angular velocity belonging to the deviation angle relative to the device zero (reference) point are detected, and the center Depending on the processor, the north position deviation (deviation) of the equipment zero (reference) mark is normalized by the gyro pendulum (reference) A fully automatic measurement configured to send a signal proportional to the finger north position deviation (deviation) and / or display the finger north position deviation (deviation) A gyrocompass is described.
[0004]
Patent Document 5 discloses a hybrid inclinometer that includes an optical fiber gyroscope and an inclinometer using gravitational acceleration, and measures a roll angle and / or a pitch angle with respect to the earth tangential plane. For angle data obtained from a fiber gyro, only high frequency data is passed through, for angle data obtained from the tilt angle, only low frequency data is passed through, and both data are synthesized in the real time domain, A hybrid inclinometer is described in which a signal processing unit for outputting an angle is connected.
[0005]
Patent Document 6 includes a two-axis inclinometer, a one-axis rotation mechanism, and a one-axis rate gyro mounted on the one-axis rotation mechanism, which are installed on a reference table. The virtual azimuth and amplitude are obtained from the rotation angle from the reference azimuth of the uniaxial rate gyro and the angular velocity at the time of the earth obtained at each rotational position, and the roll obtained by these virtual azimuth and amplitude and biaxial tilt angle A rate gyro compass is provided that includes an azimuth calculation unit that detects an azimuth angle at a detection point based on the angle, pitch angle, and latitude of the detection point input from the outside.
[0006]
In Patent Document 7, a gyro inclinometer is attached to a measurement object, and an inclination measurement device for measuring an inclination angle of the measurement object by integrating an angular velocity signal from the gyro inclinometer, the gravity measurement is applied to the measurement object. A static state determining means for determining that the output signal of the gravitational inclinometer is in a static state while installing an inclinometer, and the output signal of the gravitational inclinometer is in a static state due to the static state. Describes a tilt measuring device provided with correction means for correcting the integrated value of the angular velocity signal from the gyro inclinometer to the tilt angle based on the output signal of the gravitational inclinometer when it is determined.
[0007]
Further, Patent Document 8 describes a displacement inclination measuring apparatus that measures three-dimensional displacement and inclination.
Patent Document 9 describes a position and posture angle measuring apparatus and method for measuring the position and posture angle of a moving body or an object to be measured.
Patent Document 10 describes that a gravity-type tilt sensor and a gyro are provided together.
[0008]
[Patent Document 1]
Japanese Patent No. 2961145
(Japanese Patent Application No. 6-42830, Japanese Patent Application No. 4-253307)
[Patent Document 2]
USP 5,623,108
[Patent Document 3]
EP0829699
[Patent Document 4]
Japanese Patent Application Laid-Open No. 5-248871
(Priority claiming country Germany P414134.3)
[Patent Document 5]
JP-A-7-167651
[Patent Document 6]
JP-A-7-167658
[Patent Document 7]
JP-A-8-210849
[Patent Document 8]
JP 2001-66110 A
[Patent Document 9]
JP-A-10-160462
[Patent Document 10]
JP-A-8-89011
[0009]
[Problems to be solved by the invention]
Conventionally, as a technique for measuring inclination, a method such as a clinometer is used to detect an inclination angle in one direction, and for three-dimensional evaluation, a plurality of one-dimensional measuring devices are arranged and measured. It was realized by combining the data. On the other hand, in azimuth measurement, rate magnets that detect precession in azimuth magnets and gyro effects are practically used, and azimuth and tilt measurement requires multiple measurement devices, measurement sensors, or multiple measurements, There was an inconvenience that the measurement was complicated. In addition, since the fixed points and sliding lines of the respective inclinometers are different in a plurality of measurements, there is a drawback that measurement errors are likely to be included, and there is an aspect that is not necessarily an economical and effective measurement means.
[0010]
It is an object of the present invention to provide a displacement measuring method and apparatus that can easily measure the displacement of an object to be measured with a simple structure without requiring displacement measurement by many measuring instruments.
Furthermore, the present invention provides a displacement measurement that can easily measure the three-dimensional displacement of the object to be measured with a simple structure of a single device without requiring displacement measurement by many measuring devices developed three-dimensionally. It is an object to provide a method and apparatus.
[0011]
[Means for Solving the Problems]
Non-contact type (laser displacement meter, etc.) or contact type (differential transformer, etc.) displacement mounted on a rotating shaft in an inclined manner to detect relative three-dimensional tilt with a single sensor reasonably and efficiently A conical central axis of the surface to be measured, which is freed by a frame structure that can measure the weight of the measured part and can rotate freely in two axes, with a conical surface to be measured consisting of a curved surface almost orthogonal to the sensor Has a function that always indicates the direction of gravity. The distance to the surface to be measured is measured several times by scanning during one rotation of the mounting shaft of the displacement sensor, and the inclination angle of the measurement point is obtained from the data by calculating the trigonometric function, and the residual of the inclination angle data is minimized. The relative three-dimensional inclination between the displacement sensor unit and the measured object (measured part) is evaluated as a vector evaluation of the inclination direction and the inclination angle by the least square analysis. Thus, the three-dimensional inclination evaluated by three or more inclinometers in the past can be realized while measuring the displacement of the surface to be measured that has been freed by one displacement sensor and performing accuracy evaluation.
[0012]
In addition, in order to detect the three-dimensional inclination and orientation with a single sensor reasonably and efficiently, the rotating shaft is in balance with the weight when the measured object of the above-mentioned device rotates independently within the frame structure. Utilizing the gyro effect that tilts in the direction along the rotation axis, the direction of the maximum tilt is obtained from the displacement meter side that rotates and scans on the aforementioned conical surface, and the north direction is evaluated. By performing the three-dimensional tilt measurement when the measured object points in the direction of gravity with the weight and this orientation measurement alternately with the same device, the orientation measurement and the tilt measurement, which were conventionally different from each other, can be performed on a single unit. All of these basic data can be achieved by measurement from a single displacement sensor while being realized by the apparatus.
[0013]
In order to easily detect the three-dimensional tilt in all directions, an existing compass or gyroscope is incorporated into the three-dimensional tilt measurement when the measured object indicates the direction of gravity by the weight, and the north direction and displacement detected here From the relationship with the rotation angle of the sensor unit, omnidirectional inclination measurement for evaluating three-dimensional inclination in correlation with the azimuth can be easily realized. By adopting a free-tilt structure that allows the measured object to be freely tilted in all directions while fixing the cone-shaped apex of the measured object as a fulcrum, that is, as a fixed point, it is easy to center around the aforementioned fixed point. With the simple structure, it is possible to freely tilt the measurement object in any direction.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
In the present invention, the inclination and orientation of a fixed point in civil engineering / building structures, oil wells, flight / running control, etc., and three-dimensional inclination are continuously observed in sliding in a cylindrical space such as pipes and boreholes. A method and apparatus for measuring azimuth are provided.
[0015]
Specifically, it is used for the purpose of measuring and monitoring the fine slope deformation of the rock in the vicinity of the bedrock / ground in the civil engineering / resources field and the cavity in the rock. For example, in order to monitor ground deformation in a landslide monitoring ground or a dam site ground, the omnidirectional inclination state is continuously continuously measured while sliding in a borehole in the ground. In addition, it is used for the purpose of evaluating the location of a borehole in a borehole in the rock resource development field. For example, azimuth and inclination are continuously measured while continuously sliding in the borehole from the hole in the surface, and the three-dimensional position of the borehole in the underground rock is accurately determined. Furthermore, it is used for the purpose of monitoring the deformation of structures such as pipelines and piping, and for the purpose of grasping the entire deformation state by continuously measuring the inclination vector while sliding along or outside the piping.
[0016]
On the other hand, in structures such as bridges and buildings in the construction field, it is used for the purpose of monitoring minute inclination deformation of structures. For example, in order to monitor the stability of a connection part or a foundation part such as a bridge or a building, the inclination deformation of the fixed point is continuously detected. In addition, in order to monitor the deformation of the rock mass and the rock cavity in the long term, the tilt vector is monitored over a long term by installing it at the fixed point on the rock mass to be monitored for collapse and the fixed point of the cavity in the rock mass. Furthermore, for the purpose of controlling the moving direction of the flying object and the traveling object, the direction of the moving object is appropriately detected as the azimuth and three-dimensional tilt information. This will be specifically described.
[0017]
FIG. 1 shows the structure of a tilt measuring apparatus 100 as a gravity tilt sensor according to an embodiment of the present invention. In FIG. 1, an inclination measurement apparatus 100 includes an apparatus main body 1, a measurement unit 2 fixed to the apparatus main body 1, a measurement target (measurement unit, measurement target) 3 facing the measurement unit 2, and a measurement target 3. The weight 4 is integrated with the holding unit 5, and the free inclined body 6 is provided between the holding unit 5 and the projection 7 of the apparatus main body 1.
The apparatus main body 1 has a cylindrical shape or a bowl shape, and a rotation motor (rotation drive source) 12 is provided in a hole portion 11 provided in the head. The rotation motor 12 is rotated around the rotation shaft 13 of the sensor. The above-described measuring unit 2 is configured by providing the measuring instrument mounting unit 14.
[0018]
The measuring instrument mounting portion 14 is provided with a laser displacement meter light emitting portion 15 and a laser light receiving portion 16 that constitute a displacement measuring device (displacement sensor), and the laser 17 emitted from the laser displacement meter light emitting portion 15 hits the portion to be measured. The emitted laser is detected by the laser receiving unit 16.
The measured object 3 is separate from the measuring unit 2, and has a conical part 24 and a conical part having a measured surface 23 having a predetermined conical shape provided converging from the opening 21 toward the deep part 22. And the weight 4 is integrally attached via the holding portion 5 as described above.
[0019]
FIG. 2 shows the structure of the free inclined body 6 provided between the holding unit 5 and the apparatus main body 1. In FIG. 2, the free inclined body 6 is disposed with a gap around the inner frame 25 disposed with a gap around a disc-shaped bearing body 29 provided with the bearing of the holding portion 5. It comprises an outer frame 26, a holding portion 5 and an inner frame 25, and an inner frame rotating shaft 27 and an outer frame rotating shaft 28 that are fixedly provided between the inner frame 25 and the outer frame 26. The inner frame 25 and the outer frame 26 form a double circular frame and can be arranged in the same plane. In the drawing, they are arranged in the same plane when stationary. The inner frame rotating shaft 27 and the outer frame rotating shaft 28 are disposed in the same plane arrangement, and are arranged in a relationship orthogonal to each other when stationary, and the inner frame rotating shaft 27 and the outer frame rotating shaft 28 are shown in the drawing. As described above, each of them can be rotated around the fulcrum 30 (FIG. 1) of the holding portion 5.
[0020]
In FIG. 1, the fulcrum 30 is on the axis of the measurement object 3 in the conical shape direction of the measurement surface 23 having a conical shape. Naturally, the fulcrum 30 is on the axis of the holding part 5. The fulcrum 30 is the center of rotation of the double circular frame. That is, the double circular frame is arranged so as to rotate about the fulcrum 30. What is important here is that the measured surface 23 of the measured object 3 is free by such an arrangement structure. That is, the measurement target surface 23 is not restrained at all.
The outer frame is held on the projection 7 of the apparatus main body 1 by a shaft (not shown).
From a functional point of view, the laser displacement meter light emitting portion 15 is provided at the displacement measurement fixed point 31 of the measuring instrument mounting portion 14 so as to be rotatable, and the measured body 3 can be rotated around the fulcrum 30 of the measured body 3. It is said.
[0021]
2 and 3 connect the double circular frames 25 and 26 and both the circular frames 25 and 26 that constitute the free inclined body 6 disposed to face the holding portion 5 of the measured object 3. FIG. 2 is a perspective view, and FIG. 3 is a cross-sectional plan view. FIG. In these drawings, the inner rotating shaft 27 and the outer rotating shaft are provided between the bearing body 29 (including the bearing 52) of the holding portion 5 and the inner circular frame 25 and between the inner circular frame 25 and the outer circular frame 26. 28 is disposed so as to be rotatable about rotation axes 45 and 46. In this case, the constructed double circular frames 25 and 26 can be arranged in the same plane. In the figure, the double circular frames 25 and 26 are arranged in the same plane when stationary.
In this same plane arrangement, the two rotation axes, that is, the inner rotation axis 27 and the outer rotation axis 28 are arranged orthogonally. With such an arrangement, the DUT 3 shown in FIG. 1 can be freely tilted in all directions, and the DUT 23 is a free end that is not constrained.
[0022]
As described above, FIG. 1 shows an outline of a three-dimensional inclination measuring apparatus as a displacement meter. Here, the fixed point 31 of the measured object that is the intersection of the displacement measuring axis and the fulcrum 30 of the measured object that is the conical vertex of the measured surface on the rotation axis of the rotating body to which the displacement sensor (displacement measuring device) is attached. Is arranged, and the weight 4 integrated with the measured body indicates the weight direction, whereby the cone axis of the measured body 3 is inclined in the direction of gravity. The object to be measured is freely tilted by a double frame having rotation axes 27 and 28 that can be orthogonal to each other. As a result, the rotation axis of the displacement sensor mounting portion indicates the axial direction of the apparatus main body, the measured object indicates the weight direction, and the three-dimensional inclination composed of the inclination direction and the inclination angle is relative to both. It will be measured as an inclination.
[0023]
FIG. 4 shows a measuring method by rotational scanning of one displacement measuring device. It is assumed that the rotation angle of the sensor position of the displacement measuring device forms α when the XY axis is taken for an arbitrary circle 32 on the measurement target surface 23. The rotation axis of the sensor is the Z axis. In this case, the distance L between the point 34 on the circle 32 and the displacement measurement fixed point 31 is measured by a laser in order to measure the measured displacement.
In the figure, the displacement is measured at every constant rotation angle while the displacement sensor mounting portion makes one rotation.
In order to further expand the displacement measurement range associated with the inclination of the measured body 3, a measure to make the conical surface 23 of the measured portion 3 a conical curved surface can be considered.
[0024]
The surface to be measured 23 is composed of a curved surface of a predetermined shape that converges from the opening 21 toward the deep portion 22 and can be expressed numerically. In this embodiment, the conical shape means a cone, a truncated cone, a hyperboloid shown in FIG. , Secondary curved surfaces, hemispherical surfaces, quadrangular pyramids, triangular pyramids and the like. Further, the surface to be measured 23 has a smooth surface finish so that the distance measurement by the laser displacement meter light emitting unit 15 can be accurately performed.
[0025]
FIG. 6 shows a displacement measurement method.
As described above, when the basic axis is the X axis, for example, the rotation angle is represented by αn, and the displacement data Ln is obtained for each rotation angle. Assuming that the displacement when the rotation axis of the displacement sensor mounting portion coincides with the axis of the portion to be measured 3 and there is no inclination, the inclination angle βn at each rotation angle αn is obtained by the equation in the figure.
[0026]
As a calculation example, the measurement on the measurement surface of the cone by the displacement sensor requires at least three unknowns, but since measurement control of constant rotation in the rotational scanning is relatively easy, in order to improve measurement accuracy, Multi-point measurement such as 8-point measurement every 45 degrees of rotation and 12-point measurement every 30 degrees becomes practical.
[0027]
As an example of simple calculation, displacement data Ln is obtained from the displacement sensor for each rotation angle αn, and from Ln,
Figure 0003987930
Βn for each rotation angle αn is immediately obtained from the above formula. From the mutual relationship between the measurement coordinates of the displacement measuring instrument shown in FIG. 1 and the coordinates of the measured object, a general formula of a line where the cone formed by the displacement scanning line and the cone of the measured object 3 intersect
Figure 0003987930
From the comparison between β′n obtained from this equation and βn of the measured value, the sum of squares of residuals Σ (β′n−βn) 2 Β′n that minimizes is obtained. This value is a solution of the result of minimizing variations and errors in measurement based on multipoint data, and contributes to the improvement of the measurement system.
[0028]
As described above, from the measuring body 3 having the inner curved surface such as a cone and the weight 4 whose axis always indicates the direction of gravity and the displacement measuring instrument such as one laser displacement meter attached to the sensor rotation shaft at an inclination. The displacement measuring device detects displacement at a certain rotation angle while the displacement measuring device scans once on the surface to be measured when the weight always points in the direction of gravity by a circular frame having two rotational axes. The vector with the smallest residual is obtained from the least square analysis of the inclination angle data derived from each displacement measurement data, and the relative three-dimensional inclination between the displacement measuring instrument and the measured object 3 is determined as the inclination direction and the inclination. A measuring apparatus and its measuring method realized as vector evaluation of angles are configured.
[0029]
Specifically, in the inclination measurement method for measuring the inclination of the measurement object 3 that is an object to be measured, the measurement surface having a predetermined conical shape that converges from the opening 21 toward the deep portion 22. The displacement measuring devices 15 and 16 are rotatably provided toward the surface to be measured 23 of the measurement object 3 having the holding part 5 having the fulcrum 30 and the fulcrum 30 in the conical shape direction, and hold the weight 4 on the measurement object 3. For example, a double circular frame in the same plane direction when stationary, that is, an inner circular frame 25 and an outer circular frame, are provided integrally on the opposite side with the portion 5 in the middle and spaced apart from each other around the holding portion 5. 26, and between the inner circular frame 25 and the outer circular frame 26, for example, rotary shafts 27 and 28 that are orthogonal to each other on the same plane when stationary are provided. Holding part 5 With the fulcrum as the center of rotation of the double circular frames 25 and 26, the measured object 3 is held free to be tilted so that the measured surface 23 is free and the direction of gravity is always directed during measurement. Inclination measurement method for measuring the three-dimensional inclination angle of the measurement target surface 23 by measuring the relative distance by causing the displacement measuring device to rotate and scan the measurement target surface 23 and analyzing the displacement of the measured relative distance. And a measuring device is configured.
[0030]
FIG. 7 shows a structure of an azimuth tilt measuring apparatus 101 as another embodiment. The same number is attached | subjected to the same structure as the structure shown to the left example, and description of a previous Example is used and description is not repeated. In the case of the present embodiment, the holding portion 5 is made longer, and a rotary motor (rotation drive source) 41 is disposed around this portion. Other configurations can be the same as those in the previous embodiment.
[0031]
FIG. 7 shows a structural example in which the measurement surface 23 of the measurement object 3 capable of free tilting is rotated. A double circular frame structure shown in FIG. 2 or 3 and a conductive structure on the two rotation shafts, and an electric line is led to the rotary motor 41 arranged at the position of the weight 4 at the lower part of the conical part 24, and a free-tilt structure. In addition, the frictional resistance associated with the wiring is eliminated, and the shaft rotation of the measured object 3 is realized. In this structure, a gyro effect is generated as the measured object 3 rotates, and the rotation axis tends to be parallel to the direction along the rotation axis of the earth. Thus, the weight 4 at the lower part of the measured object 3 works to direct the rotation axis in the direction of gravity, so that the axis of the measured object 3 is inclined slightly from the weight direction toward the north direction due to the balance. . In this case, the inclination angle is not an object of azimuth measurement, but an azimuth with the maximum inclination. This azimuth angle αN indicates the north direction with respect to the arrangement of the apparatus main body. The inclination direction can be measured by distance measurement using a displacement measuring instrument.
For this calculation, the same analysis as described in FIG. 6 is used, and αn at which β′n is the maximum value is the north azimuth angle αN.
[0032]
When measuring azimuth and three-dimensional tilt with a set of devices, a device with this rotating structure is arranged, and in order to continuously measure when the device slides, the displacement sensor does not rotate the measured part When the rotational scanning is repeated and the azimuth measurement is required, the measured object 3 is rotated and the rotational scanning by the displacement sensor is performed.
[0033]
As described above, when the structure including the conical surface and the weight of the above-mentioned device rotates in the circular frame with two rotation axes, the rotation axis is inclined to the north in the direction along the axis of rotation of the earth. The north direction is evaluated by obtaining the direction of maximum inclination from the displacement measurement that rotates and scans the surface, and by combining this direction data and the three-dimensional inclination evaluation by the same device, the absolute inclination angle evaluation of all directions can be performed by one unit. A measuring device and its measuring method realized by a displacement sensor are configured.
[0034]
Therefore, according to this embodiment, in the azimuth measuring method for measuring the azimuth of the body 3 to be measured, from a predetermined conical shape that converges from the opening 21 toward the deep part 22. Displacement measuring instruments 15 and 16 are rotatably provided toward the measurement surface 23 of the measurement object 3 having the measurement surface 23 and the holding portion 5 having the fulcrum 30 in the conical shape direction. The weight 4 is integrally provided on the opposite side with the holding portion 5 in the middle, and is provided with double circular frames 25 and 26 in the same plane direction at a time, for example, at rest around the holding portion 5. For example, rotating shafts 27 and 28 that are orthogonal to each other on the same plane at rest are provided between the portion 5 and the inner circular frame 25, and between the inner circular frame 25 and the outer circular frame 26. 30 in a double circular frame The measurement surface 23 is made free by holding the measurement object 3 as freely tiltable with the rotation centers 5 and 26 being provided, and a rotation motor 41 that is a rotation drive source for rotating the measurement object 3 is provided. When the measuring body 3 is rotated, the direction of the union between the direction of gravity and the direction along the axis of rotation of the earth is directed, and in this state, the displacement measuring devices 15 and 16 are rotated and scanned with respect to the measurement surface 23 to measure the relative distance. Then, an azimuth measuring method and a measuring apparatus are configured to measure the direction in which the surface to be measured 23 is tilted by analyzing the measured displacement of the relative distance.
[0035]
Furthermore, according to this embodiment, in the azimuth inclination measuring method for measuring the azimuth and inclination of the object to be measured, the measurement object having a predetermined conical shape provided converging from the opening 21 toward the deep part 22. Displacement measuring instruments 15 and 16 are rotatably provided toward the surface to be measured 23 of the measurement object 3 having the surface 23 and the holding portion 5 having the fulcrum 30 in the conical shape direction, and the weight 4 is provided on the measurement object 3. The holding part 5 is provided integrally on the opposite side with the holding part 5 in the middle, and is provided with double circular frames 25 and 26 in the same plane direction at a time, for example, at rest around the holding part 5. Rotating shafts 27 and 28 that are orthogonal to each other are provided between the inner circular frame 25 and the inner circular frame 25 and the outer circular frame 26, so that the fulcrum 30 of the holding portion 5 is connected to the double circular frames 25 and 26. Measured around the center of rotation 3 is held free so that the measurement surface 23 is free, and a rotation motor 41 is provided as a rotation drive source for rotating the measurement object 3 so that the direction of gravity is always directed when the measurement object 3 is stationary. In addition, when the object to be measured 3 is rotated, the combined direction of the direction of gravity and the direction along the axis of rotation of the earth is directed, and in these states, the displacement measuring devices 15 and 16 are rotated and scanned with respect to the surface to be measured 23. An azimuth inclination measuring method and a measuring apparatus for measuring the direction in which the measured surface 23 inclines and the three-dimensional inclination angle sequentially by measuring the measured distance and analyzing the displacement of the measured relative distance are configured.
[0036]
FIG. 8 shows a configuration for continuously measuring azimuth and inclination. In the case where the azimuth and the three-dimensional inclination are continuously measured at the same time, it is assumed that two devices having the same structure and having respective purposes are arranged.
8, the tilt angle measuring device 100 for measuring the three-dimensional tilt shown in FIG. 1 and the azimuth measuring device 101 shown in FIG. 7 are integrated, and the three-dimensional tilt angle and the azimuth are continuous by each measuring device. Are simultaneously measured. The description of the two previous embodiments is used for each configuration, and will not be repeated here.
[0037]
Therefore, according to the present embodiment, in the azimuth / inclination measuring method for measuring the azimuth and inclination of the object to be measured, the object to be measured having a predetermined conical shape provided by converging from the opening 21 toward the deep part 22. Displacement measuring instruments 15 and 16 are rotatably provided toward the surface to be measured 23 of the measurement object 3 having the surface 23 and the holding portion 5 having the fulcrum 30 in the conical shape direction, and the weight 4 is provided on the measurement object 3. The holding part 5 is provided integrally on the opposite side with the holding part 5 in the middle, and is provided with double circular frames 25 and 26 in the same plane direction at a time, for example, at rest around the holding part 5. Rotating shafts 27 and 28 that are orthogonal to each other are provided between the inner circular frame 25 and the inner circular frame 25 and the outer circular frame 26 so that the fulcrum 30 of the holding portion can be rotated by the double circular frames 25 and 26. The object to be measured Is held free so that the surface to be measured 23 is free, and a rotation motor 41 is provided as a rotational drive source for rotating the body to be measured 3 so that the body to be measured 3 rotates in the direction of gravity and the earth rotation axis. In this state, the displacement measuring devices 15 and 16 are rotated and scanned with respect to the surface to be measured 23 to measure the relative distance, and the displacement of the measured relative distance is analyzed. Is used to measure the direction in which the measurement surface 23 is tilted, to measure the three-dimensional tilt angle with the tilt angle measuring device 100 that is a gravitational inclinometer, and to measure the three-dimensional tilt angle in all directions by combining the two. A method and a measuring device are configured.
[0038]
FIG. 9 shows another azimuth tilt measuring apparatus 101, and shows a simple omnidirectional tilt measurement method and configuration using a combination with an existing azimuth magnet or a gyroscope. The basic configuration is the same as that of the first embodiment, and in order to more easily realize omnidirectional three-dimensional tilt measurement, an existing azimuth magnet or rate gyro 51 is replaced with the weight 4 of the apparatus structure outline shown in FIG. It arrange | positions in a part and combines the north direction (alpha) N obtained from here, and three-dimensional inclination measurement.
[0039]
By combining an existing azimuth magnet or gyroscope 51 with the object to be measured 3 in the above-described device, and combining the azimuth data with the relative three-dimensional tilt evaluation by the above-described device, the absolute tilt angle evaluation in all directions can be performed by one displacement. A measuring device realized by a sensor and a measuring method thereof are provided.
[0040]
Specifically, in the azimuth / inclination measuring method for measuring the azimuth and inclination of an object to be measured, a measurement surface 23 and a cone having a predetermined conical shape provided converging from the opening 21 toward the deep portion 22. Displacement measuring instruments 15 and 16 are rotatably provided toward the surface to be measured 23 of the measurement object 3 having the holding part 5 having the fulcrum 30 in the shape direction, and the weight 4 is attached to the measurement object 3 and the holding part 5 is provided. Provided integrally on the opposite side inside, and spaced apart from each other around the holding portion 5, for example, have double circular frames 25 and 26 in the same plane direction when stationary, and the holding portion 5 and the inner circular frame 25, and the inner circular frame 25 and the outer circular frame 26 are provided with rotational axes that are orthogonal to each other on the same plane when stationary, and the fulcrum 30 of the holding portion 5 is rotated by the double circular frames 25, 26. The body to be measured 3 By holding the surface to be measured as being freely tiltable, the surface to be measured 23 becomes free and the direction of gravity is always directed at the time of measurement, and in this state, the displacement measuring devices 15 and 16 are rotated and scanned with respect to the surface to be measured 23. The distance is measured, the displacement of the measured relative distance is analyzed, the three-dimensional inclination angle of the measurement target surface 23 is measured, the azimuth is measured by the azimuth magnet or the gyroscope 51, and both are combined to measure all directions. An azimuth tilt measuring method and a measuring apparatus for measuring a three-dimensional tilt angle are configured.
In the above configuration, the main object is to measure the three-dimensional tilt angle, but it is not excluded to measure the two-dimensional tilt angle by these methods and apparatuses.
[0041]
【The invention's effect】
As described above, according to the present invention, a displacement measuring method and a displacement measuring method capable of easily measuring the displacement of a measured object with a simple structure having a measured surface free without requiring displacement measurement by many measuring instruments, and An apparatus can be provided.
Furthermore, according to the present invention, displacement measurement by many measuring devices developed three-dimensionally is not required, and basically, the three-dimensional displacement of the object to be measured is achieved by the simple structure of one device. A displacement measuring method and apparatus that can be easily measured can be provided.
[Brief description of the drawings]
FIG. 1 is a structural diagram showing a configuration of an inclination measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a perspective view of a partial configuration of FIG.
FIG. 3 is a plan view of FIG. 2;
FIG. 4 is a diagram showing a measurement method by rotational scanning.
FIG. 5 is a diagram illustrating a conical shape by way of example.
FIG. 6 is a diagram showing a displacement measurement method.
FIG. 7 is a structural diagram showing a configuration of an azimuth tilt measuring apparatus according to another embodiment of the present invention.
FIG. 8 is a structural diagram of an integrated apparatus for continuously measuring azimuth and inclination.
FIG. 9 is a structural diagram of an apparatus for measuring a simple omnidirectional inclination.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Apparatus main body, 2 ... Measuring part, 3 ... Measured object (measured part, measured part), 4 ... Weight, 5 ... Holding part, 6 ... Free inclined body, 7 ... Projection part, 12 ... Rotation motor, DESCRIPTION OF SYMBOLS 13 ... Rotary axis of a sensor, 14 ... Measuring device attaching part, 15 ... Laser displacement meter light emission part, 16 ... Laser light-receiving part, 17 ... Laser, 21 ... Opening part, 22 ... Deep part, 23 ... Measuring surface, 24 ... Conical 25: inner frame, 26: outer frame, 27: inner frame rotating shaft, 28: outer frame rotating shaft, 29 ... bearing body, 30 ... fulcrum, 31 ... displacement measuring fixed point, 100 ... tilt measuring device, 101 ... Azimuth inclination measuring device.

Claims (4)

被測定物の傾斜及び方位を計測するための方位傾斜計測装置において、
装置本体に、被計測面と支点を有する保持部を備えた被測定体を設け、該被測定体の前記被計測面に向けて変位測定器を回転可能にして設け、前記被測定体に重りを前記保持部を中にして反対側に一体にして設け、前記保持部の周りにそれぞれ間隔を置いて同一平面配置可能な二重の円形フレームを有し、前記保持部と内側の円形フレームと、および内側の円形フレームと外側の円形フレームとの間に同一平面配置時に互いに直交する回転軸を設けた自由傾斜体を前記装置本体に設けて前記保持部の支点を二重の円形フレームの回動中心とし、前記被測定体を自由傾斜可能として保持することによって前記被計測面をフリーとなし、前記被測定体を回転する回転駆動源を設け、該被測定体が回転および回転していない状態でそれぞれ前記変位測定器を前記被計測面に対して回転走査をさせて相対する距離を測定する手段、および測定された相対距離の変位を解析して前記被計測面の三次元傾斜角及び方位を計測する手段を有することを特徴とする方位傾斜計測装置。
In the azimuth tilt measuring device for measuring the tilt and azimuth of the measurement object,
An apparatus body is provided with a measurement object having a measurement surface and a holding part having a fulcrum, a displacement measuring device is provided to be rotated toward the measurement surface of the measurement object, and a weight is provided on the measurement object. The holding portion is integrally provided on the opposite side, and has a double circular frame that can be arranged in the same plane at intervals around the holding portion, the holding portion and the inner circular frame, And a free inclined body provided with rotation axes orthogonal to each other when arranged in the same plane between the inner circular frame and the outer circular frame, and the fulcrum of the holding portion is rotated by a double circular frame. The measurement surface is made free by holding the measurement object as being freely tiltable, and a rotational drive source for rotating the measurement object is provided, and the measurement object is not rotated and rotated Said displacement in each state Means for measuring a relative distance Joki to be allowed a rotational scanning with respect to the object surface, and by analyzing the displacement of the measured relative distance means for measuring the three-dimensional inclination angle and orientation of the object surface An azimuth tilt measuring device characterized by comprising:
被測定物の傾斜及び方位を計測するための方位傾斜計測装置において、
装置本体に、被計測面と支点を有する保持部を備えた被測定体を設け、該被測定体の前記被計測面に向けて変位測定器を回転可能にして設け、前記被測定体に重りを前記保持部を中にして反対側に一体にして設け、前記保持部の周りにそれぞれ間隔を置いて同一平面配置可能な二重の円形フレームを有し、前記保持部と内側の円形フレームと、および内側の円形フレームと外側の円形フレームとの間に同一平面配置時に互いに直交する回転軸を設けた自由傾斜体を前記装置本体に設けて前記保持部の支点を双方の円形フレームの回動中心とし、前記被測定体を自由傾斜可能として保持することによって被計測面をフリーとした傾斜計測装置を2台一体的に配置し、かつ一方の傾斜計測装置には前記被測定体を回転させる回転駆動源を設け、両者の傾斜計測装置のそれぞれが前記変位測定器を前記被計測面に対して固定走査させて相対する距離を測定する手段、および測定された相対距離の変位を解析して前記被計測面の三次元傾斜角及び方位を計測する手段を有することを特徴とする方位傾斜計測装置。
In the azimuth tilt measuring device for measuring the tilt and azimuth of the measurement object,
An apparatus body is provided with a measurement object having a measurement surface and a holding part having a fulcrum, a displacement measuring device is provided to be rotated toward the measurement surface of the measurement object, and a weight is provided on the measurement object. The holding portion is integrally provided on the opposite side, and has a double circular frame that can be arranged in the same plane at intervals around the holding portion, the holding portion and the inner circular frame, In addition, a free inclined body provided with rotating shafts orthogonal to each other when arranged in the same plane between the inner circular frame and the outer circular frame is provided in the apparatus main body, and the fulcrum of the holding portion is rotated by both the circular frames. Two tilt measuring devices that have the measurement surface free by holding the measured object as being freely tiltable at the center are integrally arranged, and one of the tilt measuring devices rotates the measured object. Rotation drive source is provided Means for measuring the relative distance by causing the displacement measuring device to scan fixedly with respect to the surface to be measured, and analyzing the displacement of the measured relative distance to measure the three-dimensional surface of the surface to be measured An azimuth tilt measuring apparatus comprising means for measuring a tilt angle and an azimuth .
装置本体に、被計測面と支点を有する保持部を備えた被測定体を設け、該被測定体の前記被計測面に向けて変位測定器を回転可能にして設け、前記被測定体に重りを前記保持部を中にして反対側に一体にして設け、前記保持部の周りにそれぞれ間隔を置いて同一平面配置可能な二重の円形フレームを有し、前記保持部と内側の円形フレームと、および内側の円形フレームと外側の円形フレームとの間に同一平面配置時に互いに直交する回転軸を設けた自由傾斜体を前記装置本体に設けて前記保持部の支点を二重の円形フレームの回動中心とし、前記被測定体を自由傾斜可能として保持することによって前記被計測面をフリーとなし、前記被測定体を回転する回転駆動源を設け、該被測定体が回転および回転していない状態でそれぞれ前記変位測定器を前記被計測面に対して回転走査をさせて相対する距離を測定する手段、および測定された相対距離の変位を解析する手段を有する方位傾斜計測装置による方位傾斜計測方法において、
計測時に前記被測定体を重力方向に指向させ、この状態で前記変位測定器を前記被計測面に対して回転走査をさせて相対する距離を測定し、測定された相対距離の変位を解析することによって前記被計測面の三次元傾斜角を計測し、前記回転源によって前記被測定体を回転させ、前記被測定体を重力方向と地球自転軸に沿う方向との合体方向を指向させ、この状態で前記変位測定器を前記被計測面に対して回転走査をさせて相対する距離を測定し、測定された相対距離の変位を解析して、前記計測された三次元傾斜角の双方の評価から前記被計測面の傾斜する方向を計測することを特徴とする方位傾斜計測方法。
An apparatus body is provided with a measurement object having a measurement surface and a holding part having a fulcrum, a displacement measuring device is provided to be rotated toward the measurement surface of the measurement object, and a weight is provided on the measurement object. The holding portion is integrally provided on the opposite side, and has a double circular frame that can be arranged in the same plane at intervals around the holding portion, the holding portion and the inner circular frame, And a free inclined body provided with rotation axes orthogonal to each other when arranged in the same plane between the inner circular frame and the outer circular frame, and the fulcrum of the holding portion is rotated by a double circular frame. The measurement surface is made free by holding the measurement object as being freely tiltable, and a rotational drive source for rotating the measurement object is provided, and the measurement object is not rotated and rotated Said displacement in each state Means for measuring the relative distance by the rotation scanning with respect to the object surface to Joki, and the measured orientation inclined measuring method according to the orientation gradient measuring device with a means for analyzing the displacement of the relative distance,
At the time of measurement, the object to be measured is directed in the direction of gravity, and in this state, the displacement measuring device is rotated and scanned with respect to the surface to be measured to measure the opposing distance, and the displacement of the measured relative distance is analyzed. By measuring the three-dimensional tilt angle of the surface to be measured, rotating the measured object by the rotation source, directing the measured object in the direction of combining the direction of gravity and the direction along the axis of rotation of the earth, In this state, the displacement measuring device is rotationally scanned with respect to the surface to be measured to measure the relative distance, analyze the displacement of the measured relative distance, and evaluate both of the measured three-dimensional inclination angles. An azimuth inclination measuring method, comprising: measuring an inclination direction of the surface to be measured.
装置本体に、被計測面と支点を有する保持部を備えた被測定体を設け、該被測定体の前記被計測面に向けて変位測定器を回転可能にして設け、前記被測定体に重りを前記保持部を中にして反対側に一体にして設け、前記保持部の周りにそれぞれ間隔を置いて同一平面配置可能な二重の円形フレームを有し、前記保持部と内側の円形フレームと、および内側の円形フレームと外側の円形フレームとの間に同一平面配置時に互いに直交する回転軸を設けた自由傾斜体を前記装置本体に設けて前記保持部の支点を双方の円形フレームの回動中心とし、前記被測定体を自由傾斜可能として保持することによって被計測面をフリーとした傾斜計測装置を2台一体的に配置し、かつ一方の傾斜計測装置には前記被測定体を回転させる回転駆動源を設け、両者の傾斜計測装置のそれぞれが前記変位測定器を前記被計測面に対して固定走査させて相対する距離を測定する手段、および測定された相対距離の変位を解析する手段を有する方位傾斜計測装置による方位傾斜計測方法において、
他方の傾斜計測装置によって、計測時に前記被測定体を重力方向に指向させ、この状態で前記変位測定器を前記被計測面に対して回転走査させて相対する距離を測定し、測定された相対距離の変位を解析することによって前記被計測面の三次元傾斜角を計測し、
一方の傾斜計測装置によって、前記他方の傾斜計測装置による計測時に、前記回転源によって前記被測定体を回転させ、前記被測定体を重力方向と地球自転軸に沿う方向との合体方向を指向させ、この状態で前記変位測定器を前記被計測面に対して回転走査させて相対する距離を測定し、測定された相対距離の変位を解析して、前記計測された三次元傾斜角の双方から前記被計測面の傾斜する方向を計測することを特徴とする方位傾斜計測方法。
An apparatus body is provided with a measurement object having a measurement surface and a holding part having a fulcrum, a displacement measuring device is provided to be rotated toward the measurement surface of the measurement object, and a weight is provided on the measurement object. The holding portion is integrally provided on the opposite side, and has a double circular frame that can be arranged in the same plane at intervals around the holding portion, the holding portion and the inner circular frame, In addition, a free inclined body provided with rotating shafts orthogonal to each other when arranged in the same plane between the inner circular frame and the outer circular frame is provided in the apparatus main body, and the fulcrum of the holding portion is rotated by both the circular frames. Two tilt measuring devices that have the measurement surface free by holding the measured object as being freely tiltable at the center are integrally arranged, and one of the tilt measuring devices rotates the measured object. Rotation drive source is provided By the azimuth inclination measuring apparatus, each of which has a means for measuring the relative distance by causing the displacement measuring instrument to scan fixedly with respect to the surface to be measured and a means for analyzing the displacement of the measured relative distance. In the azimuth tilt measurement method,
With the other inclination measuring device, the object to be measured is oriented in the direction of gravity at the time of measurement, and in this state, the displacement measuring device is rotated and scanned with respect to the surface to be measured, and the relative distance is measured. By measuring the displacement of the distance, measure the three-dimensional inclination angle of the surface to be measured,
When measuring with one tilt measuring device, the measured object is rotated by the rotation source during measurement by the other tilt measuring device, and the measured object is oriented in the direction of combining the direction of gravity and the direction along the axis of rotation of the earth. In this state, the displacement measuring device is rotated and scanned with respect to the surface to be measured to measure the relative distance, the displacement of the measured relative distance is analyzed, and from both of the measured three-dimensional inclination angles. An azimuth inclination measuring method, wherein the direction in which the measurement surface is inclined is measured.
JP2003170473A 2003-06-16 2003-06-16 Azimuth inclination measuring method and measuring apparatus Expired - Lifetime JP3987930B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003170473A JP3987930B2 (en) 2003-06-16 2003-06-16 Azimuth inclination measuring method and measuring apparatus
PCT/JP2004/008316 WO2004111573A1 (en) 2003-06-16 2004-06-14 Method and device for measuring orientation and inclination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003170473A JP3987930B2 (en) 2003-06-16 2003-06-16 Azimuth inclination measuring method and measuring apparatus

Publications (2)

Publication Number Publication Date
JP2005003641A JP2005003641A (en) 2005-01-06
JP3987930B2 true JP3987930B2 (en) 2007-10-10

Family

ID=33549425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003170473A Expired - Lifetime JP3987930B2 (en) 2003-06-16 2003-06-16 Azimuth inclination measuring method and measuring apparatus

Country Status (2)

Country Link
JP (1) JP3987930B2 (en)
WO (1) WO2004111573A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6419731B2 (en) 2014-01-24 2018-11-07 国立大学法人九州大学 Method for measuring underground excavation position and underground excavation position measuring apparatus
CN110207664B (en) * 2019-07-16 2024-08-20 广东荣骏建设工程检测股份有限公司 Building inclination measuring device with self-correction function and using method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2961145B2 (en) * 1994-03-14 1999-10-12 工業技術院長 Three-dimensional displacement measuring method and three-dimensional displacement measuring device
JP3152044B2 (en) * 1993-12-15 2001-04-03 日立電線株式会社 Hybrid inclinometer
JPH0814910A (en) * 1994-06-30 1996-01-19 Mitsumi Electric Co Ltd Three-dimensional attitude sensor
JPH08159758A (en) * 1994-12-09 1996-06-21 Doboku Keisoku Kenkyusho:Kk Nondirectional inclinometer

Also Published As

Publication number Publication date
JP2005003641A (en) 2005-01-06
WO2004111573A1 (en) 2004-12-23

Similar Documents

Publication Publication Date Title
CN104541129B (en) Inclination sensor
JP2006047293A (en) Apparatus and method for measuring geometry acceleration
EP3221557A1 (en) Tumble gyro surveyor
US7386942B2 (en) Method and apparatus for mapping the trajectory in the subsurface of a borehole
CN109779614A (en) A kind of three axis optical fibre gyro inclinometer
JP2007263689A (en) Azimuth measuring method for apparatus in environment where external information can not be acquired
CN109681189A (en) A kind of hole diameter sector cementing quality and track integrated measuring instrument
US8528220B2 (en) Six-direction indicator
JP3987930B2 (en) Azimuth inclination measuring method and measuring apparatus
US8594973B2 (en) Longitude/latitude ten-dimension XYZ digital-displaying spectrometer
CN112649889A (en) Six-component seismic data and absolute gravity measuring instrument and measuring method
JP6550906B2 (en) Method and apparatus for measuring inclination, electronic device and program
JP6485195B2 (en) Inclination measuring method and apparatus, electronic apparatus and program
JPS6126603B2 (en)
JP2004125511A (en) Gyroscopic apparatus and using method of gyroscopic apparatus for excavation
JPS595845B2 (en) true north reference device
JP2001194143A (en) Detection method for relatively determining x-, y-, z-axes and device therefor
JP2006047295A (en) Azimuth-measuring arrangement
JP3826386B2 (en) Drilling position management method of drilling device
JP5480849B2 (en) Longitude / latitude 10-dimensional XYZ digital display spectrometer
JP3879000B2 (en) Mechanical gyro structure
JPS61186693A (en) Observation of bore hole wall
JP2004212162A (en) Gyroscope device
JPH09329438A (en) Measuring method and device for geological discontinuous plane
JPH0666826A (en) All action force direction sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

R150 Certificate of patent or registration of utility model

Ref document number: 3987930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term