JP3826386B2 - Drilling position management method of drilling device - Google Patents
Drilling position management method of drilling device Download PDFInfo
- Publication number
- JP3826386B2 JP3826386B2 JP2004277431A JP2004277431A JP3826386B2 JP 3826386 B2 JP3826386 B2 JP 3826386B2 JP 2004277431 A JP2004277431 A JP 2004277431A JP 2004277431 A JP2004277431 A JP 2004277431A JP 3826386 B2 JP3826386 B2 JP 3826386B2
- Authority
- JP
- Japan
- Prior art keywords
- azimuth
- drilling
- angle detection
- detection device
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005553 drilling Methods 0.000 title claims description 133
- 238000007726 management method Methods 0.000 title claims description 33
- 238000001514 detection method Methods 0.000 claims description 75
- 238000005259 measurement Methods 0.000 claims description 39
- 230000001133 acceleration Effects 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 5
- 238000001125 extrusion Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Images
Landscapes
- Earth Drilling (AREA)
- Gyroscopes (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
Description
本発明は、小口径ボーリング等の削孔装置の先端部位置を管理するための削孔装置の削孔位置管理方法に関する。 The present invention relates to a drilling position management method for a drilling device for managing the tip position of a drilling device such as a small bore boring.
従来、小口径ボーリング等の削孔装置として、図2に示すごとき削孔装置が知られている。 2. Description of the Related Art Conventionally, a drilling device as shown in FIG. 2 is known as a drilling device such as small bore boring.
この削孔装置は、屈曲可能な鞘管1と、鞘管1の中心に挿入された同じく屈曲可能な削孔用ロッド2と、削孔用ロッド2の先端部に連結され、鞘管1の先端部外に突出させた可撓性先端ロッド2aと、可撓性先端ロッド2aの先端部に固定された削孔ビット3とを備え、削孔用ロッド2及び可撓性先端ロッド2aを回転させながら押し出すことにより掘り進み、これに追随させて鞘管1を推進させるようになっている。尚、図中符号4は削孔用ロッド2の回転及び押し出し、それに伴う鞘管1の押し出し作業等を行う支援装置であり、符号6は管理制御用コンピュータである。
This drilling device is connected to a
また、この削孔装置には、削孔装置の位置管理が必要な部分、即ち削孔用ロッド2の先端部に該削孔用ロッド2と一体に回転できるように方位傾斜角検知装置5が連結され、削孔用ロッド2の先端部と共に動作し、削孔用ロッド2の先端部と同じ方位角及び傾斜角を検出するようになっている。
Further, in this drilling device, an azimuth / inclination angle detection device 5 is provided so as to be able to rotate integrally with the
この方位傾斜角検知装置として、削孔用ロッド2の先端部に連結された計測ケース内に計測ケースの中心軸及び該中心軸と直交する配置の軸をそれぞれ入力軸とするレートジャイロを配置し、レートジャイロより検出された角速度を積分することにより相対方位を求め、それにより削孔装置の削孔位置を管理する方位傾斜角検知装置が知られている。
As this azimuth / inclination angle detection device, a rate gyro with the central axis of the measurement case and an axis orthogonal to the central axis as input axes is arranged in the measurement case connected to the tip of the
しかし、このような方位計測装置では、推進しながら移動中の各角速度を測定するため、このときの振動や衝撃を外乱として拾い、それにより誤差の生じた角速度が計測され、それを積分することにより相対方位を求めると、角速度の誤差が蓄積されて大きな誤差を有する相対方位になるという問題があった。また、レートジャイロは静止状態においても温度や湿度の変動によりドリフトするという性質を有しており、その値、即ちドリフトレートの影響で測定精度が低下するという問題があった。 However, in such an azimuth measuring device, each angular velocity while moving is measured while propelling, so the vibrations and shocks at this time are picked up as disturbances, thereby measuring the angular velocity in which the error occurred and integrating it. When the relative azimuth is obtained by the above, there is a problem that the angular velocity error is accumulated and the relative azimuth has a large error. Further, the rate gyro has the property of drifting due to fluctuations in temperature and humidity even in a stationary state, and there is a problem that the measurement accuracy is lowered due to the influence of the value, that is, the drift rate.
更には、このような方位計測装置では、削孔開始方向を基準として、その位置からの角度変化量を用いて位置演算を行うため、削孔開始方向を正確に合わせなければならず、トランシット等を使用しての緻密な作業を強いられるうえ、位置を誤差なくセットすることはかなり困難であり、仮に正確にセットできたとしても初回の計測位置まで削孔する間に削孔装置や削孔用ロッドの位置がずれてしまって、そのずれが誤差となってしまうという問題もあった。 Furthermore, in such an azimuth measuring apparatus, since the position calculation is performed using the angle change amount from the position on the basis of the drilling start direction, the drilling start direction must be accurately adjusted, such as transit. It is very difficult to set the position without error, and even if it can be set accurately, the drilling device and drilling hole will be drilled while drilling to the first measurement position. There was also a problem that the position of the service rod was shifted and the shift became an error.
そこで、上述の問題を解決すべく、図3に示す如き方位傾斜角検知装置を使用した削孔装置が開発され、高精度の削孔位置管理が行えるようになっている(特許文献1を参照)。 Therefore, in order to solve the above-described problem, a drilling device using an azimuth / inclination angle detection device as shown in FIG. 3 has been developed to enable highly accurate drilling position management (see Patent Document 1). ).
この方位傾斜角検知装置5は、削孔装置の削孔用ロッド2の先端部に連結され、装置の外殻をなす筒状の計測用ケース7と、計測用ケース7内に配置されたセンサ支持台8と、センサ支持台8に回転台9を介して支持され、計測用ケースの中心軸y及び中心軸と直交しセンサ支持台と平行配置にある軸xを入力軸とするチューンドドライジャイロ10と、センサ支持台8にそれぞれ回転台11,12を介して支持され、計測用ケースの中心軸y方向の加速度を検知する加速度計13及び中心軸と直交しセンサ支持台と平行配置にある軸x方向の加速度を検知する加速度計14と、回転台9,11,12を同期的に回転させる回転制御手段15と、回転台12の回転角を検知する回転角検知手段16と、チューンドドライジャイロ10、加速度計13,14及び回転角検知手段16からの出力に基づいてセンサ支持台8の傾斜及び方位を算出する算出手段17とを備えている。尚、図中符号18は、z軸方向の加速度を測定する加速度計である。
This azimuth / inclination angle detection device 5 is connected to the tip of the
また、この方位傾斜角検知装置5は、必要に応じて、加速度計14からの出力をフィードバックして、センサ支持台8が中心軸回りで水平な状態となるようにセンサ支持台の位置を調整することができるようになっている。
Further, the azimuth / inclination angle detection device 5 feeds back the output from the
この方位傾斜角検知装置5は、所定の距離を移動する毎(直線区間では3m毎、曲線区間では1.5m毎)に、加速度計より傾斜角θを検出し、チューンドドライジャイロ10を用いて地球自転角速度の水平・鉛直成分を計測し、それに基づいて真北からの角度(絶対方位)αを検出する。
This azimuth tilt angle detection device 5 detects the tilt angle θ from an accelerometer every time it moves a predetermined distance (every 3 m in a straight section and every 1.5 m in a curved section), and uses the tuned
この算出された(絶対)方位角α、傾斜角θ及び測定された削孔装置(センサ支持台)の移動距離Lに基づいて、方位角α、傾斜角θ及び移動距離Lの関係は図4に示すようになるので、削孔装置の位置座標を次式により求めることができる。尚、移動距離Lは、削孔用ロッドの押し出し量より計測することができる。 Based on the calculated (absolute) azimuth angle α and inclination angle θ and the measured movement distance L of the drilling device (sensor support base), the relationship between the azimuth angle α, inclination angle θ, and movement distance L is shown in FIG. Therefore, the position coordinates of the drilling device can be obtained by the following equation. The moving distance L can be measured from the amount of extrusion of the drilling rod.
xn=xn−1+Lcosθ・sinα
yn=yn−1+Lcosθ・cosα
zn=zn−1+Lsinθ
このような各座標成分を所望の移動距離毎(通常、直線区間では3m毎、曲線区間では1.5m毎)に算出し、その座標データに基づいて削孔装置の削孔位置を管理するようになっている。
y n = y n−1 + L cos θ · cos α
z n = z n-1 + Lsin θ
Such coordinate components are calculated for each desired moving distance (usually every 3 m in a straight section and every 1.5 m in a curved section), and the drilling position of the drilling device is managed based on the coordinate data. It has become.
しかし、上述の如き従来の技術では、方位傾斜角検知装置により算出される方位角が絶対方位を基準としているため、位置座標に関して絶対方位を用いた座標系で画一的に管理することが好ましいが、実際に現場で真北を正確に測定することが困難であり、このような絶対方位座標系による位置座標管理が困難であるという問題があった。 However, in the conventional technology as described above, since the azimuth calculated by the azimuth inclination detector is based on the absolute azimuth, it is preferable to manage the position coordinates uniformly in a coordinate system using the absolute azimuth. However, there is a problem that it is difficult to accurately measure true north in the field, and it is difficult to manage position coordinates using such an absolute azimuth coordinate system.
また、このような方位傾斜角検知装置は、方位傾斜角検知装置の持つ機械特性などの固有特性の違いにより、方位傾斜角検知装置毎にそれぞれ異なった誤差特性を有しており、各装置の性能は、例えば、図5に示すように、それぞれ計測方位中央値の方位誤差が±0.5°、方位計測精度が±0.35°(1σ)となっている。 In addition, such an azimuth tilt angle detection device has different error characteristics for each azimuth tilt angle detection device due to differences in inherent characteristics such as mechanical characteristics of the azimuth tilt angle detection device. For example, as shown in FIG. 5, the performance is such that the orientation error of the median measurement orientation is ± 0.5 °, and the orientation measurement accuracy is ± 0.35 ° (1σ).
一方で、各方位傾斜角検知装置における、図6に示す如き機首方位に対する計測方位誤差は、方位傾斜角検知装置毎に異なり、一方位において、ある方位傾斜角検知装置の計測方位誤差が最大値(+0.5°)であり、別の方位傾斜角検知装置の計測方位誤差が最長値(−0.5°)である場合には、両方位傾斜角検知装置間の方位差は最大(1°)となり、この方位差が位置演算に与える影響により、100mの距離を削孔する間に最大約1.8mものずれが生じる場合があり、係る方位差は削孔位置管理において重要な問題となっている。特に、複数の削孔路線を複数の削孔装置を用いて並行して施行するような場合、各方位傾斜角検知装置の誤差特性に影響されずに施工を行えることが望ましい。 On the other hand, the measurement azimuth error with respect to the heading as shown in FIG. 6 in each azimuth tilt angle detection device differs for each azimuth tilt angle detection device. Value (+ 0.5 °), and when the measurement azimuth error of another azimuth angle detector is the longest value (−0.5 °), the azimuth difference between the two azimuth angle detectors is the largest ( Due to the effect of this azimuth difference on position calculation, a deviation of up to about 1.8 m may occur while drilling a distance of 100 m. This azimuth difference is an important problem in drilling position management. It has become. In particular, when performing a plurality of drilling routes in parallel using a plurality of drilling devices, it is desirable that construction can be performed without being affected by the error characteristics of each azimuth inclination angle detection device.
そこで本発明は、上述の従来技術の問題を鑑み、絶対方位によらず方位角度差のみで座標を算出して画一的に管理することができ、より高精度に削孔装置の位置を管理することができる削孔装置の削孔位置管理方法の提供を目的とする。 Therefore, in view of the above-described problems of the conventional technology, the present invention can uniformly manage the coordinates by calculating only the azimuth angle difference regardless of the absolute azimuth, and can manage the position of the drilling device with higher accuracy. It is an object of the present invention to provide a drilling position management method for a drilling device that can be used.
上述の如き従来の問題を解決し、所期の目的を達成するための請求項1に記載の発明は、削孔装置の位置管理が必要な部分に連結された計測用ケースと、該計測用ケース内に配置されたセンサ支持台と、該センサ支持台に回転台を介して支持され、前記計測用ケースの中心軸及び該中心軸と直交し前記センサ支持台と平行配置にある軸をそれぞれ入力軸とするチューンドドライジャイロと、該センサ支持台に回転台を介して支持され、前記計測用ケースの中心軸方向及び該中心軸と直交し前記センサ支持台と平行配置にある軸方向の加速度を検知する加速度計と、前記回転台を同期的に回転させる回転台制御手段と、前記回転台の回転角を検知する回転角検知手段と、前記センサ支持台の位置を前記中心軸回りで水平状態となるように調整する支持台調整手段と、前記チューンドドライジャイロ、加速度計及び回転角検知手段からの出力に基づいて前記センサ支持台の傾斜角及び方位角を算出する算出手段とを有する方位傾斜角検知装置を使用し、
該方位傾斜角検知装置より得られた傾斜角及び方位角と前記方位傾斜角検知装置の移動距離とに基づいて前記方位傾斜角検知装置の位置座標を算出する削孔装置の削孔位置管理方法において、
前記方位傾斜角検知装置を予め設定した現場座標系Y軸の軸方向に向けて配置し、その状態で該方位傾斜角検知装置により現場座標系Y軸の方位を算出し、該算出された現場座標系Y軸の方位を基準方位とし、その後、前記方位傾斜角検知装置を削孔装置に組み込み、所定距離を削孔する毎に前記方位傾斜角検知装置により算出された方位の前記基準方位に対する方位角度差を検出し、該方位角度差に基づいて前記位置座標を算出する削孔装置の削孔位置管理方法であることを特徴とする。
The invention according to
A drilling position management method for a drilling device that calculates the position coordinates of the azimuth tilt angle detection device based on the tilt angle and azimuth angle obtained from the azimuth tilt angle detection device and the movement distance of the azimuth tilt angle detection device. In
The azimuth / inclination angle detection device is arranged in the axial direction of the Y-axis of the on-site coordinate system set in advance, and the azimuth of the on-site coordinate system Y-axis is calculated by the azimuth / inclination angle detection device in that state, and the calculated on-site The azimuth of the coordinate system Y-axis is set as a reference azimuth, and then the azimuth tilt angle detection device is incorporated in the drilling device, and the azimuth calculated by the azimuth tilt angle detection device with respect to the reference azimuth each time a predetermined distance is drilled. It is a drilling position management method for a drilling apparatus that detects an azimuth angle difference and calculates the position coordinates based on the azimuth angle difference.
請求項2に記載の発明は、請求項1の構成に加え、方位傾斜角検知装置を備えた削孔装置を複数台使用するに際し、前記方位傾斜角検知装置毎に現場座標系Y軸の方位を算出し、該Y軸を基準方位とすることを特徴とする。
In addition to the structure of
請求項3に記載の発明は、請求項1又は2の構成に加え、削孔路線における最も直線部の長い部分の方位に現場座標系のY軸を設定することを特徴とする。
The invention according to claim 3 is characterized in that, in addition to the configuration of
請求項4に記載の発明は、請求項1、2又は3の構成に加え、削孔開始位置において削孔装置に方位傾斜角検知装置を組み込み、その位置でセンサ支持台の初期位置を測量し、該初期位置における座標を基準座標に設定したことを特徴とする。
In addition to the structure of
請求項5に記載の発明は、請求項1〜3又は4の構成に加え、障害物や隣接する削孔の位置を同一の現場座標系により管理することを特徴とする。 In addition to the structure of Claims 1-3 or 4, the invention of Claim 5 is characterized by managing the position of an obstacle and an adjacent drilling hole by the same field coordinate system.
請求項6に記載の発明は、請求項1〜4又は5の構成に加え、方位傾斜角検知装置は、所定の時間内に数回の方位算出を行うことを特徴とする。 According to a sixth aspect of the invention, in addition to the configuration of the first to fourth or fifth aspect, the azimuth / inclination angle detecting device performs azimuth calculation several times within a predetermined time.
本発明に係る削孔装置の削孔位置管理方法は、削孔装置の位置管理が必要な部分に連結された計測用ケースと、該計測用ケース内に配置されたセンサ支持台と、該センサ支持台に回転台を介して支持され、前記計測用ケースの中心軸及び該中心軸と直交し前記センサ支持台と平行配置にある軸をそれぞれ入力軸とするチューンドドライジャイロと、該センサ支持台に回転台を介して支持され、前記計測用ケースの中心軸方向及び該中心軸と直交し前記センサ支持台と平行配置にある軸方向の加速度を検知する加速度計と、前記回転台を同期的に回転させる回転台制御手段と、前記回転台の回転角を検知する回転角検知手段と、前記センサ支持台の位置を前記中心軸回りで水平状態となるように調整する支持台調整手段と、前記チューンドドライジャイロ、加速度計及び回転角検知手段からの出力に基づいて前記センサ支持台の傾斜角及び方位角を算出する算出手段とを有する方位傾斜角検知装置を使用し、
該方位傾斜角検知装置より得られた傾斜角及び方位角と前記センサ支持台の移動距離とに基づいて前記削孔装置の位置座標を算出する削孔装置の削孔位置管理方法において、
前記方位傾斜角検知装置を予め設定した現場座標系Y軸の軸方向に向けて配置し、その状態で該方位傾斜角検知装置により現場座標系Y軸の方位を算出し、該算出された現場座標系Y軸の方位を基準方位とし、その後、前記方位傾斜角検知装置を削孔装置に組み込み、所定距離を削孔する毎に前記方位傾斜角検知装置により算出された方位の前記基準方位に対する方位角度差を検出し、該方位角度差に基づいて前記位置座標を算出することにより、位置演算に用いる方位として純粋に方位傾斜角検知装置の検出した方位角度差を使用することができ、設定した現場座標系により位置座標を管理することができる。また、方位傾斜角検知装置の削孔方位を現場座標系上の方位として処理することができるので、削孔開始位置で煩雑な位置決め作業を行わずともよい。
A drilling position management method for a drilling apparatus according to the present invention includes a measurement case connected to a portion of the drilling apparatus that requires position management, a sensor support base disposed in the measurement case, and the sensor. A tuned dry gyroscope supported by a support base via a turntable and having an input axis that is a central axis of the measurement case and an axis orthogonal to the central axis and parallel to the sensor support base, and the sensor support base And an accelerometer that detects acceleration in a central axis direction of the measurement case and an axial direction orthogonal to the central axis and parallel to the sensor support base, and the rotary base synchronously Turntable control means for rotating the turntable, rotation angle detection means for detecting the rotation angle of the turntable, and support stand adjustment means for adjusting the position of the sensor support stand to be in a horizontal state around the central axis, Tuned dora Gyro, use the azimuth angle of inclination sensing device having a calculation unit based on the output from the accelerometer and the rotation angle detecting means for calculating a tilt angle and azimuth angle of the sensor supporting plate,
In the drilling position management method of the drilling device, which calculates the position coordinates of the drilling device based on the tilt angle and azimuth obtained from the azimuth tilt angle detection device and the movement distance of the sensor support base,
The azimuth / inclination angle detection device is arranged in the axial direction of the Y-axis of the on-site coordinate system set in advance, and the azimuth of the on-site coordinate system Y-axis is calculated by the azimuth / inclination angle detection device in that state, and the calculated on-site The azimuth of the coordinate system Y-axis is set as a reference azimuth, and then the azimuth tilt angle detection device is incorporated in the drilling device, and the azimuth calculated by the azimuth tilt angle detection device with respect to the reference azimuth each time a predetermined distance is drilled. By detecting the azimuth angle difference and calculating the position coordinates based on the azimuth angle difference, the azimuth angle difference detected by the azimuth tilt angle detection device can be used purely as the azimuth used for position calculation. The position coordinates can be managed by the on-site coordinate system. Further, since the drilling azimuth of the azimuth tilt angle detecting device can be processed as an azimuth on the on-site coordinate system, it is not necessary to perform complicated positioning work at the drilling start position.
方位傾斜角検知装置を備えた削孔装置を複数台使用するに際し、前記方位傾斜角検知装置毎に現場座標系Y軸の方位を算出し、該Y軸を基準方位とすることにより、方位傾斜角検知装置個々の方位検出特性のばらつきに影響されず、数台の方位傾斜角検知装置を有する削孔装置を統一した現場座標系で管理することができる。 When using a plurality of drilling devices equipped with an azimuth tilt angle detection device, the azimuth of the field coordinate system Y axis is calculated for each azimuth tilt angle detection device, and the Y axis is used as a reference azimuth, thereby azimuth tilt A hole drilling device having several azimuth angle detection devices can be managed in a unified on-site coordinate system without being affected by variations in azimuth detection characteristics of individual angle detection devices.
削孔路線における最も直線部の長い部分の方位に現場座標系のY軸を設定することにより、位置検出誤差を最小限にすることができる。 The position detection error can be minimized by setting the Y axis of the on-site coordinate system in the direction of the longest straight line portion in the drilling route.
削孔開始位置において削孔装置に方位傾斜角検知装置を組み込み、その位置でセンサ支持台の初期位置を測量し、該初期位置における座標を基準座標に設定したことにより、異なる方位傾斜角検知装置を有する削孔装置を用い、異なる削孔路線の全てを一つの現場座標系で一元管理することができる。 By incorporating an azimuth tilt angle detection device into the drilling device at the drilling start position, surveying the initial position of the sensor support base at that position, and setting the coordinates at the initial position as reference coordinates, different azimuth tilt angle detection devices All of the different drilling routes can be centrally managed in one on-site coordinate system.
障害物や隣接する削孔の位置を同一の現場座標系により管理することにより、全削孔や埋設物等の障害物との相対的位置関係も容易に管理することができる。 By managing the positions of obstacles and adjacent drilling holes using the same on-site coordinate system, the relative positional relationship with obstacles such as all drilling holes and buried objects can be easily managed.
方位傾斜角検知装置は、所定の時間内に数回の方位算出を行うことにより、複数の方位計測結果を比較することで、方位計測精度のバラツキを確認することができるとともに、低精度の計測結果を取り除き、より精度の高いデータを得ることができる。 The azimuth angle detector can check the variation in azimuth measurement accuracy by comparing several azimuth measurement results by performing azimuth calculation several times within a predetermined time, and can also perform low-accuracy measurement. The result can be removed and more accurate data can be obtained.
次に、本発明方法に使用する方位傾斜角検知装置について説明する。尚、上述の実施例と同一の部分には、同一符号を付して説明を省略する。 Next, the azimuth / inclination angle detecting device used in the method of the present invention will be described. In addition, the same code | symbol is attached | subjected to the part same as the above-mentioned Example, and description is abbreviate | omitted.
本発明方法に使用される削孔装置1は、図2に示す削孔装置と同様に、屈曲可能な鞘管1と、鞘管1の中心に挿入された同じく屈曲可能な削孔用ロッド2と、削孔用ロッド2の先端部に連結され、鞘管1の先端部外に突出させた可撓性先端ロッド2aと、可撓性先端ロッド2aの先端部に固定された削孔ビット3とを備え、削孔用ロッド2及び可撓性先端ロッド2aを回転させながら押し出すことにより掘り進み、これに追随させて鞘管1を推進させるようになっている。尚、図中符号4は削孔用ロッド2の回転及び押し出し、それに伴う鞘管1の押し出し作業等を行う支援装置である。
As with the drilling device shown in FIG. 2, the
また、この削孔装置には、この削孔装置における位置管理が必要な部分、即ち削孔用ロッド2の先端部に該削孔用ロッド2と一体に回転できるように方位傾斜角検知装置5が連結され、削孔用ロッド2の先端部と共に動作し、削孔用ロッド2の先端部と同じ方位角及び傾斜角を検出するようになっている。
Further, in this drilling device, the azimuth angle detector 5 can be rotated integrally with the
この方位傾斜角検知装置5より出力された方位角及び傾斜角のデータは、削孔用ロッド2,2…の押し出し量より計測された削孔装置の移動距離データとともに管理制御用コンピュータ6に出力され、それに基づいて管理制御用コンピュータ6は、削孔装置の位置座標を算出し、その位置座標データを基に削孔装置を管理制御するようになっている。
The azimuth angle and tilt angle data output from the azimuth angle detector 5 is output to the management control computer 6 together with the movement distance data of the drilling device measured from the amount of extrusion of the
この方位傾斜角検知装置5は、削孔装置の位置管理が必要な部分、即ち削孔用ロッド2の先端部に連結され、外殻をなす筒状の計測用ケース7と、計測用ケース7内に配置されたセンサ支持台8と、センサ支持台8に回転台9を介して支持され、計測用ケースの中心軸y及び中心軸と直交しセンサ支持台と平行配置にある軸xを入力軸とするチューンドドライジャイロ10と、センサ支持台8にそれぞれ回転台11,12を介して支持され、計測用ケースの中心軸y及び中心軸と直交しセンサ支持台と平行配置にある軸x方向の加速度を検知する加速度計13,14と、回転台9,11,12を同期的に回転させる回転制御手段15と、回転台12の回転角を検知する回転角検知手段16と、チューンドドライジャイロ10、加速度計13,14及び回転角検知手段16からの出力に基づいてセンサ支持台8の傾斜及び方位を算出する算出手段17とを備えている。尚、図中符号18は、z軸方向の加速度を測定する加速度計である。
This azimuth / inclination angle detection device 5 is connected to a portion of the drilling device that requires position management, that is, the tip of the
また、この方位傾斜角検知装置5は、必要に応じて、加速度計14からの出力をフィードバックして、センサ支持台8が中心軸回りで水平な状態となるようにセンサ支持台の位置を調整することができるようになっている。
Further, the azimuth / inclination angle detection device 5 feeds back the output from the
この方位傾斜角検知装置5は、所定の距離を移動する毎に静止して、チューンドドライジャイロ、加速度計及び回転角検知手段からの出力に基づいて(絶対)方位角α、傾斜角θを算出するようになっている。 This azimuth angle detector 5 is stationary every time it moves a predetermined distance, and calculates an (absolute) azimuth angle α and inclination angle θ based on outputs from the tuned dry gyroscope, accelerometer and rotation angle detector. It is supposed to be.
尚、方位傾斜角検知装置5は、所定の時間内(約3分)に方位角を数回算出し、管理制御用コンピュータ6は、その算出方位を比較することにより方位計測精度のバラツキを確認できるようになっており、また、複数の算出方位を比較することにより、削孔用ロッドのねじれが残っている場合等の削孔用ロッドが静止していない状態で計測されたことによって計測精度の低下したデータを取り除き、各算出方位角の精度を高めることができるようになっている。 The azimuth / inclination angle detection device 5 calculates the azimuth angle several times within a predetermined time (about 3 minutes), and the management control computer 6 confirms variations in the azimuth measurement accuracy by comparing the calculated azimuths. In addition, by comparing multiple calculated orientations, measurement accuracy can be obtained by measuring the drilling rod in a stationary state, such as when the drilling rod twist remains. Thus, the accuracy of each calculated azimuth angle can be improved.
次に、上述の装置を使用した削孔装置の削孔位置管理方法について説明する。 Next, a drilling position management method for a drilling apparatus using the above-described apparatus will be described.
まず、図1に示すように、予め設定した現場座標系のY軸の方位を以下の手順により検出する。尚、図中符号20はデータ表示装置(ローカル表示盤)、21は方位傾斜角検知装置を制御する制御手段である。
First, as shown in FIG. 1, the azimuth of the Y axis of a preset field coordinate system is detected by the following procedure. In the figure,
最初に、予め設定した現場座標系Y軸上に位置決め台22を設置し、この位置決め台22上に削孔装置より取り外された方位傾斜角検知装置5を戴置する。 First, the positioning table 22 is set on the preset field coordinate system Y-axis, and the azimuth / inclination angle detection device 5 removed from the drilling device is placed on the positioning table 22.
尚、現場座標系Y軸は、削孔路線における最も直線部の長い部分の方位に合わせて設定されている。 The in-situ coordinate system Y-axis is set in accordance with the direction of the longest straight portion of the drilling route.
このようにY軸を設定することによって、方位傾斜角検知装置5のとる方位が、基準方位に対し±30°程度の範囲内となり、方位を高い精度で計測できるようになる。 By setting the Y-axis in this way, the azimuth taken by the azimuth angle detector 5 is within a range of about ± 30 ° with respect to the reference azimuth, and the azimuth can be measured with high accuracy.
即ち、実際の曲線区間の施行には鉄のロッド3を曲げる動作が含まれる為に、大きな角度変化は難しく、削孔方向に対し±30°程度の範囲で曲げることができれば十分であり、計測方位誤差は、sinカーブのような規則性をもって変化するとともに、方位傾斜角検知装置は、一方位に関しては方位計測精度±0.35°(1σ)内において非常に高い再現性をもつので、基準方位±30°程度の範囲では、方位を高い精度で計測することができる。 In other words, since the actual curve section includes an operation to bend the iron rod 3, a large angle change is difficult, and it is sufficient if it can be bent within a range of about ± 30 ° with respect to the drilling direction. The azimuth error changes with a regularity like a sin curve, and the azimuth inclination detector has a very high reproducibility within one azimuth measurement accuracy of ± 0.35 ° (1σ). In the range of azimuth ± 30 °, the azimuth can be measured with high accuracy.
次に、トランシット23を用いて、方位傾斜角検知装置5をY軸上に誘導し、その位置で方位傾斜角検知装置5により方位角を算出する。
Next, using the
これによって、現場座標系Y軸の(絶対)方位角α0が算出され、この値を基準方位として管理制御用コンピュータ6に登録する。 As a result, the (absolute) azimuth angle α 0 of the on-site coordinate system Y axis is calculated, and this value is registered in the management control computer 6 as the reference azimuth.
これにより、方位傾斜角検知装置5のY軸を基準方位とした方位角αは、
α=αn−α0
で表すことができる。即ち、基準方位の絶対方位角α0に対する計測された絶対方位角αnの方位角度差で表すことができる。
Thereby, the azimuth angle α with the Y axis of the azimuth tilt angle detection device 5 as the reference azimuth is
α = α n −α 0
Can be expressed as That is, it can be represented by the difference in azimuth angle of the measured absolute azimuth angle α n with respect to the absolute azimuth angle α 0 of the reference azimuth.
次に、削孔装置の削孔用ロッド2の先端部に削孔装置のリーダ上で方位傾斜角検知装置5を取り付け、その位置で方位傾斜角検知装置5の初期位置を光波側距離計やレベル計等を用いて測量し、その位置座標を現場座標系の発進点、即ち(x0,y0,z0)とし、それを管理制御用コンピュータ6に入力する。
Next, an azimuth / inclination angle detecting device 5 is attached to the tip of the hole-
尚、この削孔装置へ方位傾斜角検知装置5を取り付ける際に、削孔開始方向に正確に合わせて取り付ける必要がなく、容易に取り付けることができる。 In addition, when attaching the azimuth / inclination angle detecting device 5 to this drilling device, it is not necessary to attach it precisely according to the drilling start direction, and it can be easily installed.
そして、削孔を開始し、所定の距離を削孔する毎(直線部分では3m毎、曲線部では1.5m毎)に、方位傾斜角検知装置5により方位角αn及び傾斜角θnを算出し、また、削孔用ロッドの押し出し量より削孔装置の計測位置間移動距離Lnを計測し、方位角αn、傾斜角θn及び移動距離Lnを管理制御用コンピュータ6に自動入力する。 Then, every time a drilling is started and a predetermined distance is drilled (every 3 m in the straight line portion and every 1.5 m in the curved portion), the azimuth angle detection device 5 sets the azimuth angle α n and the inclination angle θ n . The moving distance L n between the measurement positions of the drilling device is measured from the amount of extrusion of the drilling rod, and the azimuth angle α n , the inclination angle θ n and the moving distance L n are automatically transmitted to the management control computer 6. input.
これにより、管理制御用コンピュータ6は、この位置における現場座標系の各座標成分を次式により求める。 Thereby, the computer 6 for management control calculates | requires each coordinate component of the field coordinate system in this position by following Formula.
xn=xn−1+Lncosθn・sin(αn−α0)
yn=yn−1+Lncosθn・cos(αn−α0)
zn=zn−1+Lnsinθn
これにより、基準方位であるY軸に対する方位角を単純に方位傾斜角検知装置により算出した絶対方位角の差αn−α0により求めることができ、各座標を予め設定した現場座標系で管理することができる。
x n = x n-1 + L n cosθ n · sin (α n -α 0)
y n = y n−1 + L n cos θ n · cos (α n −α 0 )
z n = z n-1 + L n sin θ n
As a result, the azimuth angle with respect to the Y axis, which is the reference azimuth, can be obtained simply by the absolute azimuth angle difference α n -α 0 calculated by the azimuth tilt angle detector, and each coordinate is managed in a preset field coordinate system. can do.
また、方位傾斜角検知装置を有する削孔装置1を複数台使用する場合においては、方位傾斜角検知装置毎に図1に示すY軸計測を行い、各方位傾斜角検知装置の基準方位をコンピュータに登録することが好ましい。
Further, when using a plurality of
このようにすることによって、方位傾斜角検知装置の方位検出特性のバラツキに関係なく、方位傾斜角検知装置を有する削孔装置を統一した現場座標系でより高い精度で運用することができる。 By doing so, the drilling device having the azimuth tilt angle detection device can be operated with higher accuracy in the unified field coordinate system regardless of variations in the azimuth detection characteristics of the azimuth tilt angle detection device.
また、管理制御用コンピュータには、計画路線をはじめ、支持杭や配管等の埋設物や、既存削孔の位置を上述の現場座標系上に入力することが好ましい。 Moreover, it is preferable to input into the above-mentioned on-site coordinate system the planned control lines, the buried objects such as support piles and pipes, and the positions of existing drilling holes.
尚、上述の実施例では、図2に示す削孔装置を例に説明したが、本願発明は、その他様々の形態の装置の位置検出に適用することができる。 In the above-described embodiment, the hole drilling apparatus shown in FIG. 2 has been described as an example. However, the present invention can be applied to position detection of various other forms of apparatuses.
1 鞘管
2 削孔用ロッド
2a 可撓性先端ロッド
3 削孔ビット
4 支援装置
5 方位傾斜角検知装置
6 管理制御用コンピュータ
7 計測用ケース
8 センサ支持台
9 回転台
10 チューンドドライジャイロ
11,12 回転台
13,14 加速度計
15 回転制御手段
16 回転角検知手段
17 算出部
18 加速度計
20 データ表示装置
21 制御手段
22 位置決め台
23 トランシット
DESCRIPTION OF
Claims (6)
該方位傾斜角検知装置より得られた傾斜角及び方位角と、前記方位傾斜角検知装置の移動距離とに基づいて該方位傾斜角検知装置の位置座標を算出する削孔装置の削孔位置管理方法において、
前記方位傾斜角検知装置を予め設定した現場座標系Y軸の軸方向に向けて配置し、その状態で該方位傾斜角検知装置により現場座標系Y軸の方位を算出し、該算出された現場座標系Y軸の方位を基準方位とし、その後、前記方位傾斜角検知装置を削孔装置に組み込み、所定距離を削孔する毎に前記方位傾斜角検知装置により算出された方位の前記基準方位に対する方位角度差を検出し、該方位角度差に基づいて前記位置座標を算出することを特徴としてなる削孔装置の削孔位置管理方法。 A measurement case connected to a portion of the drilling device that requires position management, a sensor support base disposed in the measurement case, and the measurement case supported by the sensor support base via a turntable And a tuned dry gyroscope having an input axis that is orthogonal to the central axis and parallel to the sensor support base, and a center of the measurement case supported by the sensor support base via a turntable An accelerometer that detects axial acceleration orthogonal to the central axis and parallel to the sensor support base, a rotary base control means for synchronously rotating the rotary base, and a rotation angle of the rotary base A rotation angle detection means for detecting the position of the sensor, a support base adjustment means for adjusting the position of the sensor support base to be in a horizontal state around the central axis, the tuned dry gyroscope, the accelerometer, and the rotation angle detection means. Using the azimuth angle of inclination sensing device and a calculating means for calculating the inclination and azimuth of the sensor supporting plate on the basis of the output,
Drilling position management of the drilling device that calculates the position coordinates of the azimuth tilt angle detection device based on the tilt angle and azimuth angle obtained from the azimuth tilt angle detection device and the movement distance of the azimuth tilt angle detection device In the method
The azimuth / inclination angle detection device is arranged in the axial direction of the Y-axis of the on-site coordinate system set in advance, and the azimuth of the on-site coordinate system Y-axis is calculated by the azimuth / inclination angle detection device in that state, and the calculated on-site The azimuth of the coordinate system Y-axis is set as a reference azimuth, and then the azimuth tilt angle detection device is incorporated in the drilling device, and the azimuth calculated by the azimuth tilt angle detection device with respect to the reference azimuth each time a predetermined distance is drilled. A drilling position management method for a drilling apparatus, characterized by detecting an azimuth angle difference and calculating the position coordinates based on the azimuth angle difference.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004277431A JP3826386B2 (en) | 2004-09-24 | 2004-09-24 | Drilling position management method of drilling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004277431A JP3826386B2 (en) | 2004-09-24 | 2004-09-24 | Drilling position management method of drilling device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006090025A JP2006090025A (en) | 2006-04-06 |
JP3826386B2 true JP3826386B2 (en) | 2006-09-27 |
Family
ID=36231262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004277431A Expired - Lifetime JP3826386B2 (en) | 2004-09-24 | 2004-09-24 | Drilling position management method of drilling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3826386B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010078585A (en) * | 2009-03-10 | 2010-04-08 | Penta Ocean Construction Co Ltd | Method for finding the location of buried magnetic object |
CN106121538A (en) * | 2016-08-17 | 2016-11-16 | 核工业湖州工程勘察院 | A kind of boring direction positioner and using method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111411939B (en) * | 2020-04-01 | 2023-07-18 | 宁波金地电子有限公司 | Method for calculating drill bit depth of non-excavation drilling system |
-
2004
- 2004-09-24 JP JP2004277431A patent/JP3826386B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010078585A (en) * | 2009-03-10 | 2010-04-08 | Penta Ocean Construction Co Ltd | Method for finding the location of buried magnetic object |
CN106121538A (en) * | 2016-08-17 | 2016-11-16 | 核工业湖州工程勘察院 | A kind of boring direction positioner and using method thereof |
CN106121538B (en) * | 2016-08-17 | 2019-01-18 | 核工业湖州工程勘察院 | A kind of boring direction positioning device and its application method |
Also Published As
Publication number | Publication date |
---|---|
JP2006090025A (en) | 2006-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100489459C (en) | Strapdown inertial combined measurement controller adapted to whole-optical fiber digital slope level | |
US5606124A (en) | Apparatus and method for determining the gravitational orientation of a well logging instrument | |
US6816788B2 (en) | Inertially-stabilized magnetometer measuring apparatus for use in a borehole rotary environment | |
US20200166338A1 (en) | Improved surveying pole | |
JP2013509582A (en) | Orientation initialization and calibration of well surveying gyroscope and inertial instruments by external navigation system | |
NO882361L (en) | PROCEDURE FOR MEASURING AZIMUT FOR DRILL HOLE DURING DRILLING. | |
CA2691034A1 (en) | Reducing error contributions to gyroscopic measurements from a wellbore survey system | |
EP3221665B1 (en) | Inertial carousel positioning | |
JP2007263689A (en) | Azimuth measuring method for apparatus in environment where external information can not be acquired | |
US9856729B2 (en) | Apparatus for aligning drilling machines | |
EP2800870B1 (en) | Navigation device and method for surveying and directing a borehole under drilling conditions | |
US20200132458A1 (en) | Wellbore Survey Tool Using Coriolis Vibratory Gyroscopic Sensors | |
JP3826386B2 (en) | Drilling position management method of drilling device | |
CA2484104C (en) | Method and apparatus for mapping the trajectory in the subsurface of a borehole | |
FI88427B (en) | FOER FARING FOR RINGING AVERAGE MATERIALS SAMT BERGBORRANORDNING OCH MAETNINGSANORDNING | |
JP2866078B2 (en) | Excavation propulsion position detecting device and position detecting method | |
JP5717537B2 (en) | Drilling rod arrangement angle management system and arrangement angle management method | |
CN114704246A (en) | Drilling azimuth angle and inclination angle measuring equipment and measuring method | |
US10422211B2 (en) | Apparatus for aligning drilling machines | |
RU2829726C1 (en) | Gyro-inclinometer for inclinometric survey and method of its performance | |
AU2012318276B8 (en) | Navigation device and method for surveying and directing a borehole under drilling conditions | |
JP3987930B2 (en) | Azimuth inclination measuring method and measuring apparatus | |
JPH06307864A (en) | Inclination angle measuring device | |
CN116006185A (en) | Embedded automatic guiding system for miniature pipe jacking machine | |
JPH09280866A (en) | Underground pipe line bearing measuring method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060508 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20060508 |
|
TRDD | Decision of grant or rejection written | ||
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20060525 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060623 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3826386 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090714 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120714 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120714 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130714 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |