JP3987480B2 - Substrate plating apparatus and substrate plating method - Google Patents

Substrate plating apparatus and substrate plating method Download PDF

Info

Publication number
JP3987480B2
JP3987480B2 JP2003370286A JP2003370286A JP3987480B2 JP 3987480 B2 JP3987480 B2 JP 3987480B2 JP 2003370286 A JP2003370286 A JP 2003370286A JP 2003370286 A JP2003370286 A JP 2003370286A JP 3987480 B2 JP3987480 B2 JP 3987480B2
Authority
JP
Japan
Prior art keywords
substrate
current value
plating solution
electrolytic plating
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003370286A
Other languages
Japanese (ja)
Other versions
JP2004124262A (en
Inventor
貞雄 平得
保▲広▼ 溝畑
英明 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2003370286A priority Critical patent/JP3987480B2/en
Publication of JP2004124262A publication Critical patent/JP2004124262A/en
Application granted granted Critical
Publication of JP3987480B2 publication Critical patent/JP3987480B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、半導体ウエハ、液晶表示用ガラス基板、フォトマスク用ガラス基板、光ディスク用ガラス基板などの基板に銅電解メッキ液などのメッキ液を供給してメッキ処理を行う基板メッキ装置および基板メッキ処理方法に関する。 The present invention relates to a substrate plating apparatus and a substrate plating process for supplying a plating solution such as a copper electrolytic plating solution to a substrate such as a semiconductor wafer, a glass substrate for liquid crystal display, a glass substrate for photomask, and a glass substrate for optical disk. Regarding the method .

従来のこの種の基板メッキ装置として、例えば、特許文献1に示すようなものが提案されている。   As a conventional substrate plating apparatus of this type, for example, the one shown in Patent Document 1 has been proposed.

この公報に開示された従来の基板メッキ装置は、図5に示すように、メッキ層を形成する処理面WFを上方に向けてウエハWを静止状態で保持するステージ200やステージ200に保持されたウエハWの処理面WFに対して電気的に接続する陰電極(カソードコンタクト部)210、ステージ200に保持されたウエハWの上部に電解メッキ液を貯溜するカップ部220、カップ部220に貯溜された電解メッキ液に浸漬され、ステージ200に保持されたウエハWの処理面WFに対向配置される陽電極(アノード)230、カップ部220に電解メッキ液を供給するための電解メッキ液の貯溜タンク241や、ポンプ242、供給管243などを有する電解メッキ液供給機構240、陽電極230から陰電極210へ向けて電流が流れるように給電する電源250などを備えている。なお、図5中の符号260は、カップ部220内にウエハWの搬入・搬出の際に用いる上下方向に昇降のみ可能な押し上げ台を示している。   As shown in FIG. 5, the conventional substrate plating apparatus disclosed in this publication is held by a stage 200 or a stage 200 that holds the wafer W in a stationary state with the processing surface WF for forming a plating layer facing upward. A negative electrode (cathode contact portion) 210 electrically connected to the processing surface WF of the wafer W, a cup portion 220 for storing an electrolytic plating solution on the upper portion of the wafer W held on the stage 200, and a cup portion 220. Electrolytic plating solution storage tank for supplying the electrolytic plating solution to the positive electrode (anode) 230 and the cup portion 220, which are immersed in the electrolytic plating solution and disposed opposite to the processing surface WF of the wafer W held on the stage 200. 241, an electrolytic plating solution supply mechanism 240 having a pump 242, a supply pipe 243, and the like, and a current flows from the positive electrode 230 to the negative electrode 210. And a like power 250 to urchin feed. Note that reference numeral 260 in FIG. 5 indicates a push-up stand that can be moved up and down in the vertical direction used when the wafer W is loaded into and unloaded from the cup portion 220.

この従来の基板メッキ装置による電解メッキ処理は、処理面WFを上方に向けてウエハWをステージ200に保持した状態で、カップ部220内に収容し、ウエハWが静止保持された状態でカップ部220内に電解メッキ液を供給しつつ、カップ部220の上部から電解メッキ液をオーバーフローで排出することで、カップ部220内に貯溜される電解メッキ液を入れ替えながら、陽電極230と陰電極210との間を給電することで行われている。   In the electrolytic plating process by this conventional substrate plating apparatus, the wafer W is accommodated in the cup part 220 with the processing surface WF facing upward and held in the stage 200, and the cup part is held in a state where the wafer W is held stationary. While supplying the electrolytic plating solution into 220, the electrolytic plating solution is discharged from the upper part of the cup part 220 by overflow, so that the positive electrode 230 and the negative electrode 210 are exchanged while replacing the electrolytic plating solution stored in the cup part 220. This is done by supplying power between the two.

特開平1−294888号公報JP-A-1-294888

しかしながら、この従来の基板メッキ装置では、カップ220内へ電解メッキ液を供給してから、陽電極230と陰電極210との間の給電を行っていたので、電解メッキ液が供給されはじめて給電までの時間が長いと、図6(a)に示すように、ウエハの処理面の絶縁膜表面に形成されたシード層がエッチングされることがある。シード層がエッチングされた状態でメッキ処理を行ってしまうと、図6(b)に示すように、メッキの析出が阻害されてしまう結果、ボイドが発生して半導体装置の歩留まりを著しく低下させるという問題がある。そのため、カップ220内を急速に電解メッキ液で充填させる必要があり、カップ220やメッキ槽そのものの構成を複雑にするという問題がある。   However, in this conventional substrate plating apparatus, since the electrolytic plating solution is supplied into the cup 220 and then power is supplied between the positive electrode 230 and the negative electrode 210, the electrolytic plating solution is not supplied until the power supply starts. If this time is long, the seed layer formed on the insulating film surface of the processing surface of the wafer may be etched as shown in FIG. If the plating process is performed in a state where the seed layer is etched, as shown in FIG. 6B, the deposition of the plating is hindered. As a result, voids are generated and the yield of the semiconductor device is significantly reduced. There's a problem. Therefore, it is necessary to rapidly fill the inside of the cup 220 with the electrolytic plating solution, and there is a problem that the configuration of the cup 220 and the plating tank itself is complicated.

本発明は、かかる事情に鑑みてなされたものであって、基板の処理面におけるボイドの発生を防止する基板メッキ装置および基板メッキ処理方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a substrate plating apparatus and a substrate plating method that prevent the generation of voids on the processing surface of the substrate.

上記課題を解決するため、請求項1の発明は、基板にメッキ処理を行う基板メッキ装置において、基板を保持する基板保持手段と、前記基板保持手段に保持された基板にメッキ液を供給するメッキ液供給手段と、前記基板保持手段に保持された基板の処理面に対向して配置された第1の電極と、前記基板保持手段に保持された基板に電気的に接続された第2の電極と、前記第1の電極と前記第2の電極との間で電流が流れるように給電する給電手段と、前記メッキ液供給手段からメッキ液を供給して基板にメッキ処理を行う際に、前記第1の電極と前記第2の電極との間で第1の電流値で給電して通電を開始し、所定の通電時間が経過した後、前記第1の電流値より高い第2の電流値で給電するように前記給電手段を制御する給電制御手段と、を備えている。 In order to solve the above-mentioned problems, the invention of claim 1 is a substrate plating apparatus for performing a plating process on a substrate, a substrate holding means for holding the substrate, and plating for supplying a plating solution to the substrate held by the substrate holding means. A liquid supply unit; a first electrode disposed opposite to a processing surface of the substrate held by the substrate holding unit; and a second electrode electrically connected to the substrate held by the substrate holding unit And a power supply means for supplying power so that a current flows between the first electrode and the second electrode, and when the plating solution is supplied from the plating solution supply means to perform the plating process on the substrate, The first electrode and the second electrode are fed with a first current value to start energization, and after a predetermined energization time has elapsed, a second current value higher than the first current value. Power supply control means for controlling the power supply means to supply power at It is equipped with a.

また、請求項2の発明は、請求項1の発明に係る基板メッキ装置において、前記給電制御手段に、前記給電手段に第1の電流値で給電させた後、前記第1の電流値から前記第2の電流値に複数段階で電流値を切り換えて前記第2の電流値で給電させている。
また、請求項3の発明は、基板にメッキ処理を行う基板メッキ処理方法において、基板にメッキ液を供給して基板にメッキ処理を行う際に、基板の処理面に対向して配置された第1の電極と当該基板に電気的に接続された第2の電極との間で第1の電流値で給電して通電を開始し、所定の通電時間が経過した後、前記第1の電流値より高い第2の電流値で給電する。
また、請求項4の発明は、請求項3の発明に係る基板メッキ処理方法において、前記第1の電極と前記第2の電極との間で第1の電流値で給電した後、前記第1の電流値から前記第2の電流値に複数段階で電流値を切り換えて前記第2の電流値で給電する。
According to a second aspect of the present invention, in the substrate plating apparatus according to the first aspect of the present invention, the power supply control unit causes the power supply unit to supply power at a first current value, and then the first current value is The current value is switched to the second current value in a plurality of stages, and power is supplied at the second current value.
According to a third aspect of the present invention, there is provided a substrate plating method for performing a plating process on a substrate. When a plating solution is supplied to the substrate and the substrate is subjected to the plating process, the substrate is disposed so as to face the processing surface of the substrate. A first current value is fed between a first electrode and a second electrode electrically connected to the substrate to start energization, and after a predetermined energization time has elapsed, the first current value Power is supplied at a higher second current value.
According to a fourth aspect of the present invention, in the substrate plating method according to the third aspect of the present invention, after the first current is supplied between the first electrode and the second electrode at a first current value, the first The current value is switched from the current value to the second current value in a plurality of stages, and power is supplied at the second current value.

請求項1および請求項3の発明によれば、メッキ液を供給して基板にメッキ処理を行う際に、第1の電極と第2の電極との間で第1の電流値で給電して通電を開始し、所定の通電時間が経過した後、その第1の電流値より高い第2の電流値で給電しているため、シード層がエッチングされることもなく、ボイドの発生を防止できる。 According to the invention of claim 1 and claim 3, when performing the plating process on a substrate by supplying a plating solution, and feeding in the first current value between the first electrode and the second electrode Since energization is started and power is supplied at a second current value higher than the first current value after a predetermined energization time has elapsed , the seed layer is not etched, and generation of voids can be prevented. .

また、請求項2および請求項4の発明によれば、第1の電流値で給電した後、第1の電流値から第2の電流値に複数段階で電流値を切り換えて第2の電流値で給電しているため、シード層がエッチングされることもなく、ボイドの発生を防止できる。 According to the invention of claim 2 and claim 4 , after supplying power with the first current value , the current value is switched from the first current value to the second current value in a plurality of stages, and the second current value is set. Therefore, the seed layer is not etched and generation of voids can be prevented.

以下、図面を参照して本発明の一実施の形態を説明する。図1は、本発明の第1の実施の形態に係る基板メッキ装置の全体構成を示す図である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an overall configuration of a substrate plating apparatus according to a first embodiment of the present invention.

この基板メッキ装置は、メッキ層を形成する処理面WFを上方に向けて基板の一種であるウエハWを保持する保持機構1を備えている。   The substrate plating apparatus includes a holding mechanism 1 that holds a wafer W, which is a kind of substrate, with a processing surface WF on which a plating layer is formed facing upward.

この保持機構1は、モータ2に連動連結されており、鉛直方向の軸芯周りで回転される回転軸3の上部にウエハWよりも大径の円板状のベース部材4が一体回転可能に連結され、ベース部材4の上面周辺部にウエハWの周縁部を保持する保持部材5が3つ以上設けられている。   The holding mechanism 1 is linked to a motor 2 so that a disk-shaped base member 4 having a diameter larger than that of the wafer W can be integrally rotated on an upper portion of a rotating shaft 3 that is rotated around a vertical axis. Three or more holding members 5 that are connected and hold the peripheral edge of the wafer W are provided around the upper surface of the base member 4.

ベース部材4は、導電性の材料で形成されている。このベース部材4に設けられた回転軸3との連結部4aには、給電ブラシ6によって、保持機構1の回転中でもブラシ給電されるようになっている。なお、回転軸3は絶縁部3aによって上部と下部とが電気的に絶縁されており、給電ブラシ6からの給電がモータ2に影響しないように構成されている。   The base member 4 is made of a conductive material. The power supply brush 6 supplies power to the connecting portion 4 a connected to the rotating shaft 3 provided on the base member 4 while the holding mechanism 1 is rotating. The rotating shaft 3 is configured so that the upper portion and the lower portion are electrically insulated by an insulating portion 3 a so that the power supply from the power supply brush 6 does not affect the motor 2.

各保持部材5は、鉛直方向の軸芯周りで回転可能であり、この軸芯から離れた外周部にウエハWを係止するための凹部5aが形成されている。また、各保持部材5は凹部5aの天井面側に設けられた第2の電極である陰電極7だけが給電ブラシ6と導通するようになっており、ウエハWが各保持部材5に係止されて保持されると、ウエハWの処理面WFと陰電極7とが電気的に接続されてウエハWの処理面WFだけに通電される。   Each holding member 5 is rotatable around an axis in the vertical direction, and a recess 5a for locking the wafer W is formed on an outer peripheral part away from the axis. In addition, each holding member 5 is configured such that only the negative electrode 7 which is the second electrode provided on the ceiling surface side of the recess 5 a is electrically connected to the power supply brush 6, and the wafer W is locked to each holding member 5. When held, the processing surface WF of the wafer W and the negative electrode 7 are electrically connected, and only the processing surface WF of the wafer W is energized.

保持機構1は、第1昇降機構8によって上下方向に昇降可能である。この第1昇降機構8は、ボールネジなどで構成される周知の1軸方向駆動機構によって実現されている。   The holding mechanism 1 can be moved up and down by the first lifting mechanism 8. The first elevating mechanism 8 is realized by a well-known uniaxial driving mechanism constituted by a ball screw or the like.

保持機構1の上方には、下方が開口され、保持機構1の上部を覆う有蓋円筒状の上部カップ10が設けられている。この上部カップ10も周知の1軸方向駆動機構によって実現された第2昇降機構11によって上下方向に昇降可能である。第1昇降機構8、第2昇降機構11によって保持機構1と上部カップ10とが近接され、保持機構1のベース部材4の上面と上部カップ10の下端部とが閉じ合わされることにより、保持機構1に保持されたウエハWの上部に電解メッキ液を貯溜するメッキ処理空間12が形成される。このメッキ処理空間12には、後述する板状部材に相当する仕切り板22によって上側空間12aと下側空間12bとが形成される。   Above the holding mechanism 1, there is provided a covered cup-shaped upper cup 10 that opens downward and covers the upper part of the holding mechanism 1. The upper cup 10 can also be moved up and down by a second lifting mechanism 11 realized by a well-known uniaxial driving mechanism. The holding mechanism 1 and the upper cup 10 are brought close to each other by the first elevating mechanism 8 and the second elevating mechanism 11, and the upper surface of the base member 4 of the holding mechanism 1 and the lower end portion of the upper cup 10 are closed to each other. A plating processing space 12 for storing the electrolytic plating solution is formed on the upper portion of the wafer W held by the semiconductor wafer 1. In the plating treatment space 12, an upper space 12a and a lower space 12b are formed by a partition plate 22 corresponding to a plate-like member described later.

なお、上部カップ10の下端部にはシール部材13が設けられ、電解メッキ処理を行うための銅メッキ液などの電解メッキ液を下側空間12bに充填する際に、ベース部材4の上面と上部カップ10の下端部との接合部分から電解メッキ液が漏れ出ないようになっている。   A seal member 13 is provided at the lower end portion of the upper cup 10, and the upper surface and the upper portion of the base member 4 are filled when the lower space 12 b is filled with an electrolytic plating solution such as a copper plating solution for performing an electrolytic plating process. The electrolytic plating solution is prevented from leaking from the joint portion with the lower end portion of the cup 10.

上部カップ10内には、保持機構1に保持されたウエハWの処理面WFに対向して配置されるように円板状の第1の電極である陽電極14が配設されている。この陽電極14の周囲には、0.5μm程度の濾過性能を有するフィルタFが装着されている。なお、フィルタFの代わりにイオン交換膜などの電解メッキ液を通過させる透過膜でもよい。   In the upper cup 10, a positive electrode 14, which is a disc-shaped first electrode, is disposed so as to face the processing surface WF of the wafer W held by the holding mechanism 1. A filter F having a filtration performance of about 0.5 μm is mounted around the positive electrode 14. Instead of the filter F, a permeable membrane that allows an electrolytic plating solution such as an ion exchange membrane to pass therethrough may be used.

給電ブラシ6は、電源ユニット15の陰極側に接続され、陽電極14は電源ユニット15の陽極側に接続されている。したがって、ウエハWの処理面WFは、陰電極7だけがベース部材4と導通させる導電部(図示省略)、ベース部材4、連結部4a、給電ブラシ6、導線16を介して陰極となり、陽電極14は、導線17を介して陽極となるように給電される。   The power supply brush 6 is connected to the cathode side of the power supply unit 15, and the positive electrode 14 is connected to the anode side of the power supply unit 15. Therefore, the processing surface WF of the wafer W becomes a cathode through a conductive portion (not shown) in which only the negative electrode 7 is electrically connected to the base member 4, the base member 4, the connecting portion 4 a, the power supply brush 6, and the conductive wire 16. 14 is fed via a conducting wire 17 so as to be an anode.

また、以下のような構成により陽電極14の周りの電解メッキ液を保持するための電解メッキ液保持機構20が設けられている。   In addition, an electrolytic plating solution holding mechanism 20 for holding the electrolytic plating solution around the positive electrode 14 is provided with the following configuration.

すなわち、まず上部カップ10内には、陽電極14の下方に位置させて複数の微小開口孔21が形成された仕切り板22が設けられ、この仕切り板22と、陽電極14の側方及び上方を囲う上部カップ10の側壁及び天井面とによって上側空間12aが形成され、この上側空間12a内に陽電極14が収容された状態にする。   That is, first, in the upper cup 10, a partition plate 22 is provided, which is positioned below the positive electrode 14 and formed with a plurality of minute apertures 21, and the partition plate 22 and the side and upper sides of the positive electrode 14 are provided. The upper space 12a is formed by the side wall and the ceiling surface of the upper cup 10 surrounding the upper cup 10, and the positive electrode 14 is accommodated in the upper space 12a.

また、上部カップ10の天井部分に電解メッキ液の供給口23を設け、この供給口23から、まず、上側空間12aに電解メッキ液が供給される。次に、仕切り板22に形成された微小開口孔21から下側空間12b内へ電解メッキ液を供給させる。   Further, an electrolytic plating solution supply port 23 is provided in the ceiling portion of the upper cup 10, and the electrolytic plating solution is first supplied from the supply port 23 to the upper space 12 a. Next, an electrolytic plating solution is supplied from the minute opening 21 formed in the partition plate 22 into the lower space 12b.

このような構成にすることによって、電解メッキ処理を終えて上側空間12aへの電解メッキ液の供給を停止するとともに、下側空間12b内の電解メッキ液を排出しても、電解メッキ液の表面張力により、上側空間12aの電解メッキ液が仕切り板22に形成された微小開口孔21から下方に排出されることが防止され、陽電極14が上側空間12aの電解メッキ液内に浸漬された状態を常時維持することができる。   By adopting such a configuration, the surface of the electrolytic plating solution is stopped even when the electrolytic plating treatment is finished and the supply of the electrolytic plating solution to the upper space 12a is stopped and the electrolytic plating solution in the lower space 12b is discharged. The state in which the electrolytic plating solution in the upper space 12a is prevented from being discharged downward from the minute opening hole 21 formed in the partition plate 22 due to the tension, and the positive electrode 14 is immersed in the electrolytic plating solution in the upper space 12a. Can be maintained at all times.

なお、仕切り板22に形成する微小開口孔21の孔径は、上側空間12a内の電解メッキ液が微小開口孔21から下方に排出されないような電解メッキ液の表面張力が得られる孔径とし、電解メッキ液の粘度や仕切り板22の材質などに応じて設定される。   The hole diameter of the minute opening hole 21 formed in the partition plate 22 is set to a hole diameter that can obtain the surface tension of the electrolytic plating solution so that the electrolytic plating solution in the upper space 12a is not discharged downward from the minute opening hole 21. It is set according to the viscosity of the liquid and the material of the partition plate 22.

上部カップ10の天井面には、上側空間12a内と大気とを連通させて、上側空間12a内に電解メッキ液を供給できるようにするためにエア抜き部24が設けられている。   An air vent 24 is provided on the ceiling surface of the upper cup 10 so as to allow the inside of the upper space 12a to communicate with the atmosphere so that the electrolytic plating solution can be supplied into the upper space 12a.

上部カップ10の天井部分に設けられた電解メッキ液の供給口23には、以下のような電解メッキ液供給機構30により電解メッキ液が供給されるようになっている。   Electrolytic plating solution is supplied to an electrolytic plating solution supply port 23 provided in the ceiling portion of the upper cup 10 by an electrolytic plating solution supply mechanism 30 as described below.

すなわち、供給口23は、貯溜タンク31内の電解メッキ液Qを供給する供給管32が接続されている。供給管32には、貯溜タンク31内の電解メッキ液Qを送液するポンプ33、及び開閉弁34が設けられているとともに、供給管32の途中には、帰還管35が分岐されている。帰還管35の先端は貯溜タンク31に接続され、帰還管35の途中には開閉弁36が設けられている。   In other words, the supply port 23 is connected to a supply pipe 32 that supplies the electrolytic plating solution Q in the storage tank 31. The supply pipe 32 is provided with a pump 33 for sending the electrolytic plating solution Q in the storage tank 31 and an open / close valve 34, and a return pipe 35 is branched in the middle of the supply pipe 32. The tip of the return pipe 35 is connected to the storage tank 31, and an open / close valve 36 is provided in the middle of the return pipe 35.

基板メッキ装置を稼動している際には、常時ポンプ33を駆動させている。上側空間12aに電解メッキ液Qを供給するときには、開閉弁34を開、開閉弁36を閉に切り換えて、供給口23に電解メッキ液Qをすぐに供給できるようにしている。なお、供給管32の一部と帰還管35とを介した電解メッキ液Qの循環中に図示しない温度調整機構により電解メッキ液Qの温度を所定温度範囲に維持するように温調したり、図示しない濃度調整機構により電解メッキ液Qの濃度を所定濃度範囲に維持するようにしてもよい。   When the substrate plating apparatus is operating, the pump 33 is always driven. When supplying the electrolytic plating solution Q to the upper space 12a, the on-off valve 34 is opened and the on-off valve 36 is switched to close so that the electrolytic plating solution Q can be immediately supplied to the supply port 23. During the circulation of the electrolytic plating solution Q through a part of the supply pipe 32 and the return pipe 35, the temperature of the electrolytic plating solution Q is controlled to be maintained within a predetermined temperature range by a temperature adjusting mechanism (not shown). The concentration of the electroplating solution Q may be maintained within a predetermined concentration range by a concentration adjusting mechanism (not shown).

貯溜タンク31には液補充管37や回収管38も接続されている。貯溜タンク31内の電解メッキ液Qの貯溜量が減少すると、図示しない液補充機構によって液補充管37を介して電解メッキ液Qが貯溜タンク31に補充される。また、後述する液回収部40に形成された電解メッキ液回収部41によって電解メッキ処理中に回収された電解メッキ液Qは回収管38を介して貯溜タンク31へ戻される。   A liquid replenishment pipe 37 and a recovery pipe 38 are also connected to the storage tank 31. When the storage amount of the electrolytic plating solution Q in the storage tank 31 decreases, the electrolytic plating solution Q is replenished to the storage tank 31 via the liquid replenishment pipe 37 by a liquid replenishment mechanism (not shown). In addition, the electrolytic plating solution Q recovered during the electrolytic plating process by the electrolytic plating solution recovery unit 41 formed in the liquid recovery unit 40 described later is returned to the storage tank 31 via the recovery pipe 38.

保持機構1の周囲には、電解メッキ液回収部41と洗浄液回収部42とが形成されるとともに、電解メッキ液回収部41の回収口43と洗浄液回収部42の回収口44とが上下方向に設けられた液回収部40が固設されている。   An electrolytic plating solution recovery unit 41 and a cleaning solution recovery unit 42 are formed around the holding mechanism 1, and a recovery port 43 of the electroplating solution recovery unit 41 and a recovery port 44 of the cleaning solution recovery unit 42 are vertically arranged. The provided liquid recovery unit 40 is fixed.

この液回収部40は、円筒状の内壁45と、円筒状の仕切り壁46と、円筒状の外壁47と、仕切り壁46の上部に設けられた傾斜部48と、外壁47の上部に設けられた傾斜部49とを備えている。内壁45と、仕切り壁46及び傾斜部48の内側面とによって囲まれる空間が洗浄液回収部42となり、仕切り壁46及び傾斜部48の外側面と、外壁47及び傾斜部49とによって囲まれる空間が電解メッキ液回収部41となっている。また、内壁45の上端部と傾斜部48の先端部との間の開口が洗浄液回収部42の回収口44となり、傾斜部48の先端部と傾斜部49の先端部との間の開口が電解メッキ液回収部41の回収口43となっている。   The liquid recovery unit 40 is provided on a cylindrical inner wall 45, a cylindrical partition wall 46, a cylindrical outer wall 47, an inclined part 48 provided on the upper part of the partition wall 46, and an upper part of the outer wall 47. And an inclined portion 49. The space surrounded by the inner wall 45 and the inner surface of the partition wall 46 and the inclined portion 48 becomes the cleaning liquid recovery portion 42, and the space surrounded by the outer surface of the partition wall 46 and the inclined portion 48, the outer wall 47 and the inclined portion 49. An electrolytic plating solution recovery unit 41 is provided. Further, the opening between the upper end of the inner wall 45 and the tip of the inclined portion 48 becomes the recovery port 44 of the cleaning liquid recovery portion 42, and the opening between the tip of the inclined portion 48 and the tip of the inclined portion 49 is electrolyzed. It is a collection port 43 of the plating solution collection unit 41.

電解メッキ処理時は、第1昇降機構8によって液回収部40に対して保持機構1が昇降されて、液回収部40に形成されている電解メッキ液回収部41の回収口43を保持機構1の周囲に位置させ、保持機構1及び保持機構1によって保持されたウエハWの回転に伴って保持機構1及びウエハWの周囲に飛散される電解メッキ液Qが電解メッキ液回収部41の回収口43を介して傾斜部49の内側面で受け止められ、電解メッキ液回収部41に回収される。なお、電解メッキ液回収部41の底部には、回収管38に接続された液排出口50が設けられ、電解メッキ液回収部41で回収された電解メッキ液Qは液排出口50、回収管38を介して貯溜タンク31へ戻される。   During the electrolytic plating process, the holding mechanism 1 is moved up and down with respect to the liquid recovery unit 40 by the first lifting mechanism 8, and the recovery port 43 of the electrolytic plating solution recovery unit 41 formed in the liquid recovery unit 40 is held in the holding mechanism 1. The electrolytic plating solution Q is scattered around the holding mechanism 1 and the wafer W as the wafer W held by the holding mechanism 1 and the holding mechanism 1 is rotated. It is received by the inner surface of the inclined portion 49 through 43 and is recovered by the electrolytic plating solution recovery portion 41. Note that a liquid discharge port 50 connected to the recovery pipe 38 is provided at the bottom of the electrolytic plating solution recovery unit 41, and the electrolytic plating solution Q recovered by the electrolytic plating solution recovery unit 41 is supplied to the liquid discharge port 50 and the recovery tube. It is returned to the storage tank 31 via 38.

また、洗浄処理時と乾燥処理時とは、第1昇降機構8によって液回収部40に対して保持機構1が昇降されて液回収部40に形成された洗浄液回収部42の回収口44を保持機構1の周囲に位置させ、保持機構1及びウエハWの回転に伴って保持機構1及びウエハWの周囲に飛散される洗浄液が洗浄液回収部42の回収口44を介して傾斜部48の内側面で受け止められ、洗浄液回収部42で回収される。なお、洗浄液回収部42の底部には、廃棄管51に接続された液排出口52が設けられ、洗浄液回収部42で回収された洗浄液は液排出口52、廃棄管51を介して廃棄される。   During the cleaning process and the drying process, the holding mechanism 1 is moved up and down with respect to the liquid recovery unit 40 by the first lifting mechanism 8 to hold the recovery port 44 of the cleaning liquid recovery unit 42 formed in the liquid recovery unit 40. The cleaning liquid that is positioned around the mechanism 1 and splashes around the holding mechanism 1 and the wafer W as the holding mechanism 1 and the wafer W rotate is connected to the inner surface of the inclined portion 48 through the recovery port 44 of the cleaning liquid recovery unit 42. And is collected by the cleaning liquid collecting unit 42. In addition, a liquid discharge port 52 connected to the disposal pipe 51 is provided at the bottom of the cleaning liquid collection unit 42, and the cleaning liquid collected by the cleaning liquid collection unit 42 is discarded through the liquid discharge port 52 and the disposal pipe 51. .

保持機構1に保持されたウエハWの上方であって、離間された保持機構1と上部カップ10との間の防滴位置に位置されて上方から保持機構1に保持されたウエハWへの電解メッキ液Qの滴下を防止する円板状の防滴部材60と、防滴位置とそこから外れた待機位置(図1に示す防滴部材60の位置)との間で防滴部材60を移動させる移動機構61とを備えている。   Electrolysis of the wafer W held above the wafer W held by the holding mechanism 1 and positioned at a drip-proof position between the holding mechanism 1 and the upper cup 10 which are separated from each other and held by the holding mechanism 1 from above. The drip-proof member 60 is moved between the disc-shaped drip-proof member 60 that prevents the plating solution Q from dripping, and the drip-proof position and the standby position (the position of the drip-proof member 60 shown in FIG. 1) that deviates therefrom. And a moving mechanism 61 to be moved.

防滴部材60は、防滴位置に位置しているときには水平姿勢をとり、待機位置に位置しているときには起立姿勢をとる。このような姿勢転換を伴う防滴部材60の移動を行う移動機構61は、図2(a)に示すような構成で実現することができる。   The drip-proof member 60 takes a horizontal posture when positioned at the drip-proof position, and takes a standing posture when positioned at the standby position. The moving mechanism 61 that moves the drip-proof member 60 with such a posture change can be realized with the configuration shown in FIG.

すなわち、固定フレームに取り付けられた回転軸62、63に回転自在に連結された支持部材64、65の基端部に防滴部材60が支持されている。そして、支持部材65の先端部には、エアシリンダ66のロッド67が連結されていて、エアシリンダ66のロッド67を伸縮させることにより、図2(b)に示すように、姿勢転換を伴う防滴部材60の移動が行われる。このように防滴部材60が待機位置に位置しているときは起立姿勢をとるように構成したことにより、基板メッキ装置のフットプリントを小さくすることができる。   That is, the drip-proof member 60 is supported on the base end portions of the support members 64 and 65 that are rotatably connected to the rotation shafts 62 and 63 attached to the fixed frame. The rod 67 of the air cylinder 66 is connected to the tip of the support member 65. By extending and contracting the rod 67 of the air cylinder 66, as shown in FIG. The drop member 60 is moved. Thus, when the drip-proof member 60 is located at the standby position, the footprint of the substrate plating apparatus can be reduced by adopting the standing posture.

防滴部材60の下部には、保持機構1に保持されたウエハWに洗浄液を供給する洗浄液供給ノズル70が設けられている。洗浄液供給ノズル70には、洗浄液供給管71を介して図示しない洗浄液供給源から洗浄液が供給される。洗浄液供給ノズル70からの洗浄液の供給とその停止の切換えは、洗浄液供給管71に設けられた開閉弁72の開閉によって行われる。   Below the drip-proof member 60, a cleaning liquid supply nozzle 70 that supplies a cleaning liquid to the wafer W held by the holding mechanism 1 is provided. A cleaning liquid is supplied to the cleaning liquid supply nozzle 70 from a cleaning liquid supply source (not shown) via a cleaning liquid supply pipe 71. Switching between the supply of the cleaning liquid from the cleaning liquid supply nozzle 70 and the stop thereof is performed by opening and closing an on-off valve 72 provided in the cleaning liquid supply pipe 71.

この基板メッキ装置の各部の制御は、図3に示すような制御部80によって行われる。この制御部80は、モータ2、第1昇降機構8、第2昇降機構11、電源ユニット15、液面検出センサ18、ポンプ33、開閉弁34、開閉弁36、開閉弁72、及び移動機構61にそれぞれ接続されている。そして、この制御部80は、モータ2による保持機構1の回転制御、第1昇降機構8による保持機構1の上下方向の昇降制御、第2昇降機構11による上部カップ10の上下方向の昇降制御、電源ユニット15の給電制御、液面検出センサ18による下側空間12b内の電解メッキ液の検出制御、ポンプ33の駆動制御、開閉弁34の開閉による電解メッキ液の供給とその停止の制御、開閉弁36の開閉制御、開閉弁72の開閉による洗浄液の供給とその停止の制御、及び移動機構61による防滴部材60の姿勢転換制御とを行う。なお、この制御部80は、CPUやメモリ等を備えたコンピュータで構成されている。   Control of each part of the substrate plating apparatus is performed by a control unit 80 as shown in FIG. The control unit 80 includes a motor 2, a first lifting mechanism 8, a second lifting mechanism 11, a power supply unit 15, a liquid level detection sensor 18, a pump 33, an opening / closing valve 34, an opening / closing valve 36, an opening / closing valve 72, and a moving mechanism 61. Are connected to each. And this control part 80 is the rotation control of the holding mechanism 1 by the motor 2, the vertical movement control of the holding mechanism 1 by the first lifting mechanism 8, the vertical movement control of the upper cup 10 by the second lifting mechanism 11, Power supply control of the power supply unit 15, detection control of the electroplating solution in the lower space 12 b by the liquid level detection sensor 18, drive control of the pump 33, control of supply and stop of the electroplating solution by opening and closing the on-off valve 34, opening and closing Control of opening and closing of the valve 36, supply of cleaning liquid by opening and closing of the opening and closing valve 72, control of stopping thereof, and posture change control of the drip-proof member 60 by the moving mechanism 61 are performed. The control unit 80 is constituted by a computer having a CPU, a memory, and the like.

次に、本発明に係る基板処理装置の通電制御について説明する。図4は、本発明に係る基板処理装置の通電制御を示す図である。   Next, energization control of the substrate processing apparatus according to the present invention will be described. FIG. 4 is a diagram showing energization control of the substrate processing apparatus according to the present invention.

まず、開閉弁34を開の状態にして、上側空間12aを電解メッキ液で充填しておく。このとき、ウエハWは保持機構1に保持された状態であるとともに、上部カップ10と保持機構1とは離間した状態である。次に、第1昇降機構8、第2昇降機構11によって保持機構1と上部カップ10とが近接され、保持機構1のベース部材4の上面と上部カップ10の下端部とが閉じ合わされ、微小開口孔21を介して電解メッキ液が上側空間12aから下側空間12bへ流入する。このときに、制御部80が電源ユニット15を制御して第1の電流値A1(例えば、8インチのウエハを用いた場合、1mA/cm2〜10mA/cm2)を流して予備通電を開始する(図4(b)に示すt1時)。なお、電解メッキ液の下側空間12bへの流入量の増加に伴って、図4(a)に示すように、陽電極14とウエハWとの間の電流の抵抗値が減少している。 First, the on-off valve 34 is opened, and the upper space 12a is filled with an electrolytic plating solution. At this time, the wafer W is held by the holding mechanism 1 and the upper cup 10 and the holding mechanism 1 are separated from each other. Next, the holding mechanism 1 and the upper cup 10 are brought close to each other by the first elevating mechanism 8 and the second elevating mechanism 11, and the upper surface of the base member 4 of the holding mechanism 1 and the lower end portion of the upper cup 10 are closed to each other. The electrolytic plating solution flows from the upper space 12a into the lower space 12b through the holes 21. At this time, the control unit 80 is the first current value and controls the power supply unit 15 A1 (e.g., when using an 8-inch wafer, 1mA / cm 2 ~10mA / cm 2) initiate a preliminary energization is flowed (At time t1 shown in FIG. 4B). As the amount of inflow into the lower space 12b of the electrolytic plating solution increases, the resistance value of the current between the positive electrode 14 and the wafer W decreases as shown in FIG.

予備通電が所定の時間経過すると、下側空間12bが電解メッキ液で充填され、図4(b)に示すt2時(t1から約15秒以内)に、液面検出センサ18は、下側空間12bが電解メッキ液で充填されたことを検出し、この検出に基づいて制御部80は、t2時に電源ユニット15を制御して第1の電流値より高い第2の電流値(例えば、8インチのウエハを用いた場合、10mA/cm2〜30mA/cm2)で本通電を開始する。なお、図4(b)のt2以降は、陽電極14とウエハWとの間の電流の抵抗値は一定となる。 When the pre-energization elapses for a predetermined time, the lower space 12b is filled with the electrolytic plating solution, and at t2 (within about 15 seconds from t1) shown in FIG. Based on this detection, the control unit 80 controls the power supply unit 15 to detect a second current value higher than the first current value (for example, 8 inches). when using the wafer to initiate the energization at 10mA / cm 2 ~30mA / cm 2 ). Note that the resistance value of the current between the positive electrode 14 and the wafer W is constant after t2 in FIG.

その後、制御部80は、第1昇降機構8、第2昇降機構11によって保持機構1と上部カップ10とを離間させ、モータ2を制御して保持機構1を回転させ、保持機構1及びウエハWの回転に伴って、ウエハWに対する本格的な電解メッキ処理が行われる。   Thereafter, the controller 80 separates the holding mechanism 1 and the upper cup 10 by the first elevating mechanism 8 and the second elevating mechanism 11, controls the motor 2 to rotate the holding mechanism 1, and holds the holding mechanism 1 and the wafer W. Along with this rotation, a full-scale electrolytic plating process is performed on the wafer W.

以上の構成より明らかなように、この発明の一実施の態様によれば以下のような効果が得られる。   As is apparent from the above configuration, according to one embodiment of the present invention, the following effects can be obtained.

一旦供給口23から電解メッキ液が供給された後、仕切り板22に形成された微小開口孔21を介して上側空間12aから下側空間12bへ電解メッキ液を供給し、保持機構1に保持されたウエハWの処理面WFに供給しているので、電解メッキ液の銅イオンの濃度などの影響を受けることはなく、電解メッキ液を充分に分散してウエハWの処理面WFに電解メッキ液を供給できる。また、仕切り板22は、陽電極14と保持機構1に保持されたウエハWとの間に設けられているので、この仕切り板22で電流のショートパスを防止でき、電流密度を均一にすることができる。その結果、ウエハWの処理面WFに均一な膜厚のメッキ層を形成することができる。   Once the electrolytic plating solution is supplied from the supply port 23, the electrolytic plating solution is supplied from the upper space 12 a to the lower space 12 b through the minute opening 21 formed in the partition plate 22 and is held by the holding mechanism 1. Since it is supplied to the processing surface WF of the wafer W, it is not affected by the concentration of copper ions in the electrolytic plating solution, and the electrolytic plating solution is sufficiently dispersed to be applied to the processing surface WF of the wafer W. Can supply. Further, since the partition plate 22 is provided between the positive electrode 14 and the wafer W held by the holding mechanism 1, the partition plate 22 can prevent a short-circuit current and make the current density uniform. Can do. As a result, a plating layer having a uniform thickness can be formed on the processing surface WF of the wafer W.

また、陽電極14にフィルタまたはイオン交換膜などのような透過膜を装着しているので、陽電極14の溶解物であるスライムがウエハWの処理面WFに供給されるのを防止することができる。したがって、ウエハWの処理面WFにスライムの付着、もしくは陽電極14に吸着している電解メッキ液中の添加剤等の一時的な大量離脱が原因の離脱成分の付着による膜質の悪化を防止することができる。   Further, since a permeable membrane such as a filter or an ion exchange membrane is attached to the positive electrode 14, it is possible to prevent slime, which is a dissolved material of the positive electrode 14, from being supplied to the processing surface WF of the wafer W. it can. Therefore, the deterioration of the film quality due to the adhesion of the release component due to the adhesion of slime to the processing surface WF of the wafer W or the temporary large-scale separation of the additive in the electrolytic plating solution adsorbed to the positive electrode 14 is prevented. be able to.

また、保持機構1及び保持機構1によって保持されたウエハWを回転させながら電解メッキ処理を行うので、ウエハWの回転によって、ウエハWの処理面WF上のウエハWの中心から周囲へ向かう電解メッキ液Qの流れが形成され、保持機構1に保持されたウエハWの処理面WF上に形成される境界層が薄く、かつ均一にすることができ、ウエハWの処理面WFにメッキ層形成イオンが移動し易くなり、ウエハWの処理面WFへのメッキ層形成イオンの移動を均一化できる。したがって、メッキ層の形成に要する時間を短縮できるとともに、均一なメッキ層をウエハWの処理面WFに形成することができる。   Further, since the electrolytic plating process is performed while rotating the holding mechanism 1 and the wafer W held by the holding mechanism 1, the electrolytic plating is performed from the center of the wafer W on the processing surface WF of the wafer W toward the periphery by the rotation of the wafer W. The boundary layer formed on the processing surface WF of the wafer W held by the holding mechanism 1 is formed thin and uniform, and a plating layer forming ion is formed on the processing surface WF of the wafer W. It becomes easy to move, and the movement of the plating layer forming ions to the processing surface WF of the wafer W can be made uniform. Therefore, the time required for forming the plating layer can be shortened, and a uniform plating layer can be formed on the processing surface WF of the wafer W.

また、電解メッキ処理を行う際に、電解メッキ液が上側空間12aから下側空間12bへ流入してから(図4に示すt1時)、制御部80が電源ユニット15を制御して第1の電流値A1を流して予備通電を開始し、下側空間12bが電解メッキ液で充填された後に、制御部80は、t2時に電源ユニット15を制御して第1の電流値A1より高い第2の電流値A2で本通電を開始し、ウエハWに対する本格的な電解メッキ処理を行っている。その結果、従来の技術のように、シード層が電解メッキ液でエッチングされることもなく、メッキの析出が阻害されてボイドが発生して半導体装置の歩留まりを著しく低下させるという問題を解決することができる。   Further, when the electrolytic plating process is performed, after the electrolytic plating solution flows from the upper space 12a into the lower space 12b (at time t1 shown in FIG. 4), the control unit 80 controls the power supply unit 15 to perform the first operation. After the current value A1 is flown and preliminary energization is started and the lower space 12b is filled with the electrolytic plating solution, the control unit 80 controls the power supply unit 15 at t2 to set the second current higher than the first current value A1. The main energization is started at a current value of A2 and a full-scale electrolytic plating process is performed on the wafer W. As a result, unlike the prior art, the seed layer is not etched with the electrolytic plating solution, and the problem that the deposition of the plating is hindered and voids are generated to significantly reduce the yield of the semiconductor device is solved. Can do.

図4(b)に示すt2時、すなわち、下側空間12bが電解メッキ液で充填された時、液面検出センサ18は、下側空間12bが電解メッキ液で充填されたことを検出し、この検出に基づいて制御部80は、t2時に電源ユニット15を制御して第1の電流値A1より高い第2の電流値A2の電流値で本通電を開始し、それによってウエハWに対する本格的な電解メッキ処理が行われる。その結果、第1の電流値A1から第2の電流値A2への切り換えを確実に行うことができる。   At time t2 shown in FIG. 4B, that is, when the lower space 12b is filled with the electrolytic plating solution, the liquid level detection sensor 18 detects that the lower space 12b is filled with the electrolytic plating solution, Based on this detection, the control unit 80 controls the power supply unit 15 at t2 to start the main energization with the current value of the second current value A2 higher than the first current value A1, and thereby the full-scale operation for the wafer W is performed. An electrolytic plating process is performed. As a result, switching from the first current value A1 to the second current value A2 can be performed reliably.

なお、上記発明の実施の形態では、図4(b)において第1の電流値A1と第2の電流値A2といったように2段階で電流値を切り換える内容を説明したが、第1の電流値A1から第2の電流値A2に切り換える前に、複数段階で電流値を切り換えるようにしてもよい。   In the embodiment of the invention described above, the content of switching the current value in two stages such as the first current value A1 and the second current value A2 in FIG. 4B has been described. Prior to switching from A1 to the second current value A2, the current value may be switched in a plurality of stages.

本発明の一実施の形態に係る基板処理装置の全体構成を示す図である。1 is a diagram illustrating an overall configuration of a substrate processing apparatus according to an embodiment of the present invention. 図1の基板処理装置の移動機構を示す図である。It is a figure which shows the moving mechanism of the substrate processing apparatus of FIG. 図1の基板処理装置の制御系を示す図である。It is a figure which shows the control system of the substrate processing apparatus of FIG. 図1の基板処理装置の通電制御を示す図である。It is a figure which shows the electricity supply control of the substrate processing apparatus of FIG. 従来の基板メッキ装置の概略構成図である。It is a schematic block diagram of the conventional board | substrate plating apparatus. 従来の基板メッキ装置の問題点を説明する図である。It is a figure explaining the problem of the conventional board | substrate plating apparatus.

符号の説明Explanation of symbols

1 保持機構
4 ベース部材
5 保持部材
6 給電ブラシ
7 陰電極
10 上部カップ
12 メッキ処理空間
12a 上側空間
12b 下側空間
14 陽電極
15 電源ユニット
16 導線
17 導線
18 液面検出センサ
20 メッキ液保持空間
23 供給口
80 制御部
W ウエハ
WF 処理面
A1 第1の電流値
A2 第2の電流値
DESCRIPTION OF SYMBOLS 1 Holding mechanism 4 Base member 5 Holding member 6 Power supply brush 7 Negative electrode 10 Upper cup 12 Plating process space 12a Upper space 12b Lower space 14 Positive electrode 15 Power supply unit 16 Conductor 17 Conductor 18 Liquid level detection sensor 20 Plating solution holding space 23 Supply port 80 Control unit W Wafer WF Processing surface A1 First current value A2 Second current value

Claims (4)

基板にメッキ処理を行う基板メッキ装置であって、
基板を保持する基板保持手段と、
前記基板保持手段に保持された基板にメッキ液を供給するメッキ液供給手段と、
前記基板保持手段に保持された基板の処理面に対向して配置された第1の電極と、
前記基板保持手段に保持された基板に電気的に接続された第2の電極と、
前記第1の電極と前記第2の電極との間で電流が流れるように給電する給電手段と、
前記メッキ液供給手段からメッキ液を供給して基板にメッキ処理を行う際に、前記第1の電極と前記第2の電極との間で第1の電流値で給電して通電を開始し、所定の通電時間が経過した後、前記第1の電流値より高い第2の電流値で給電するように前記給電手段を制御する給電制御手段と、
を備えたことを特徴とする基板メッキ装置。
A substrate plating apparatus for performing plating on a substrate,
Substrate holding means for holding the substrate;
A plating solution supply means for supplying a plating solution to the substrate held by the substrate holding means;
A first electrode disposed to face the processing surface of the substrate held by the substrate holding means;
A second electrode electrically connected to the substrate held by the substrate holding means;
Power supply means for supplying power so that a current flows between the first electrode and the second electrode;
When the plating solution is supplied from the plating solution supply means to perform the plating process on the substrate, power supply is started at a first current value between the first electrode and the second electrode, and energization is started. Power supply control means for controlling the power supply means to supply power at a second current value higher than the first current value after a predetermined energization time has elapsed ;
A substrate plating apparatus comprising:
請求項1記載の基板メッキ装置において、
前記給電制御手段は、前記給電手段に第1の電流値で給電させた後、前記第1の電流値から前記第2の電流値に複数段階で電流値を切り換えて前記第2の電流値で給電させることを特徴とする基板メッキ装置。
The substrate plating apparatus according to claim 1,
The power supply control unit supplies power to the power supply unit with a first current value, and then switches the current value from the first current value to the second current value in a plurality of stages, and uses the second current value. A substrate plating apparatus characterized by feeding power.
基板にメッキ処理を行う基板メッキ処理方法であって、A substrate plating method for plating a substrate,
基板にメッキ液を供給して基板にメッキ処理を行う際に、基板の処理面に対向して配置された第1の電極と当該基板に電気的に接続された第2の電極との間で第1の電流値で給電して通電を開始し、所定の通電時間が経過した後、前記第1の電流値より高い第2の電流値で給電することを特徴とする基板メッキ処理方法。When the plating solution is supplied to the substrate and the substrate is plated, the first electrode disposed opposite to the processing surface of the substrate and the second electrode electrically connected to the substrate The substrate plating method according to claim 1, wherein energization is started by supplying power at a first current value, and power is supplied at a second current value higher than the first current value after a predetermined energization time has elapsed.
請求項3記載の基板メッキ処理方法において、The substrate plating method according to claim 3, wherein
前記第1の電極と前記第2の電極との間で第1の電流値で給電した後、前記第1の電流値から前記第2の電流値に複数段階で電流値を切り換えて前記第2の電流値で給電することを特徴とする基板メッキ処理方法。After supplying power at a first current value between the first electrode and the second electrode, the current value is switched from the first current value to the second current value in a plurality of stages to change the second current value. A substrate plating method, wherein power is supplied at a current value of.
JP2003370286A 2003-10-30 2003-10-30 Substrate plating apparatus and substrate plating method Expired - Lifetime JP3987480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003370286A JP3987480B2 (en) 2003-10-30 2003-10-30 Substrate plating apparatus and substrate plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370286A JP3987480B2 (en) 2003-10-30 2003-10-30 Substrate plating apparatus and substrate plating method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16792699A Division JP3856986B2 (en) 1999-06-15 1999-06-15 Board plating equipment

Publications (2)

Publication Number Publication Date
JP2004124262A JP2004124262A (en) 2004-04-22
JP3987480B2 true JP3987480B2 (en) 2007-10-10

Family

ID=32290950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370286A Expired - Lifetime JP3987480B2 (en) 2003-10-30 2003-10-30 Substrate plating apparatus and substrate plating method

Country Status (1)

Country Link
JP (1) JP3987480B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204750A (en) 2010-03-24 2011-10-13 Elpida Memory Inc Method of manufacturing semiconductor device
KR20190015666A (en) * 2017-08-04 2019-02-14 세메스 주식회사 Substrate processing apparatus and method

Also Published As

Publication number Publication date
JP2004124262A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
KR100824759B1 (en) Substrate processing apparatus and substrate plating apparatus
US7736474B2 (en) Plating apparatus and plating method
JP2002220692A (en) Plating equipment and method
JP2004524436A (en) Flow diffuser used in electrochemical plating system
JP3534605B2 (en) Substrate plating equipment
US20070158202A1 (en) Plating apparatus and method for controlling plating solution
US20050023149A1 (en) Plating apparatus, plating method and substrate processing apparatus
JP3667224B2 (en) Plating equipment
JP3987480B2 (en) Substrate plating apparatus and substrate plating method
JP4423359B2 (en) Plating method
JP3856986B2 (en) Board plating equipment
US7901550B2 (en) Plating apparatus
US20090095634A1 (en) Plating method
JP3797860B2 (en) Plating apparatus and plating method
JP2010007153A (en) Plating apparatus and plating method
JP3706770B2 (en) Board plating equipment
JP2005187948A (en) Plating device
JP5564171B2 (en) Plating apparatus and plating method
JP3715846B2 (en) Board plating equipment
JP2000256897A (en) Device and method for plating substrate
JP4197288B2 (en) Board plating equipment
JP2007254882A (en) Electroplating device and electroplating method
JP2005146334A (en) Plating method and plating apparatus
JP2001342597A (en) Apparatus for plating substrate
JP2000313990A (en) Substrate plating device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3