JP2007254882A - Electroplating device and electroplating method - Google Patents

Electroplating device and electroplating method Download PDF

Info

Publication number
JP2007254882A
JP2007254882A JP2007033221A JP2007033221A JP2007254882A JP 2007254882 A JP2007254882 A JP 2007254882A JP 2007033221 A JP2007033221 A JP 2007033221A JP 2007033221 A JP2007033221 A JP 2007033221A JP 2007254882 A JP2007254882 A JP 2007254882A
Authority
JP
Japan
Prior art keywords
substrate
plating
anode
plating solution
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007033221A
Other languages
Japanese (ja)
Inventor
Akira Yamamoto
暁 山本
Keiichi Kurashina
敬一 倉科
Hisashi Kawakami
尚志 川上
Tsutomu Nakada
勉 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2007033221A priority Critical patent/JP2007254882A/en
Priority to US11/708,548 priority patent/US8029653B2/en
Publication of JP2007254882A publication Critical patent/JP2007254882A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To form a plating film of high film quality to a substrate having an electrically conductive layer (seed layer) with a resistivity equal to or above that of copper at a more uniform film thickness over the whole face. <P>SOLUTION: The electroplating device comprises: a sealing material 90 abutted against the peripheral part of the surface in a substrate held by a substrate holding part and sealing the peripheral part; a cathode contact 88 contacted with an electrically conductive layer formed on the surface of the substrate held by the substrate holding part, and energizing the same; and a housing 94 where an anode 98 to be dipped into a plating liquid is stored at the inside, and a porous structural body 110 is arranged at the edge part of an opening opposite to the substrate held by the substrate holding part, so as to dividedly form a plating liquid chamber 100. The plating liquid chamber 100 is divided into a plurality of chambers 154a, 154b with a partition plate 150, the anode 98 is composed of divided anodes 98a, 98b, and the respective divided anodes 98a, 98b are arranged in such a manner that independent plating current is made to flow through the inside of each chamber 154a, 154b in the plating liquid chamber 100. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば半導体ウエハ等の基板の表面(被めっき面)に形成された微細配線パターンに銅等の金属を埋込んで埋込み配線を形成するのに使用される電解めっき装置及び電解めっき方法に関する。   The present invention relates to an electrolytic plating apparatus and an electrolytic plating method used to form a buried wiring by embedding a metal such as copper in a fine wiring pattern formed on the surface (surface to be plated) of a substrate such as a semiconductor wafer. About.

近年、半導体基板上に配線回路を形成するための金属材料として、アルミニウムまたはアルミニウム合金に代えて、電気抵抗率が低くエレクトロマイグレーション耐性が高い銅を用いる動きが顕著になっている。この種の銅配線は、基板の表面に設けた配線用凹部の内部に銅を埋込むことによって一般に形成される。この銅配線を形成する方法としては、CVD、スパッタリング及びめっきといった手法があるが、いずれにしても、基板のほぼ全表面に銅を成膜し、化学的機械的研磨(CMP)により不要の銅を除去するようにしている。   In recent years, as a metal material for forming a wiring circuit on a semiconductor substrate, instead of aluminum or an aluminum alloy, a movement of using copper having low electrical resistivity and high electromigration resistance has become prominent. This type of copper wiring is generally formed by embedding copper in a wiring recess provided on the surface of the substrate. As a method of forming this copper wiring, there are methods such as CVD, sputtering, and plating. In any case, copper is formed on almost the entire surface of the substrate, and unnecessary copper is formed by chemical mechanical polishing (CMP). To be removed.

図22は、この種の銅配線基板Wの製造例を工程順に示す。先ず、図22(a)に示すように、半導体素子を形成した半導体基材1上の導電層1aの上にSiOやLow−K材からなる絶縁膜(層間絶縁膜)2を堆積し、絶縁膜2の内部に、リソグラフィ・エッチング技術により、配線用凹部としてのコンタクトホール3とトレンチ4を形成する。そして、その上にTaN等からなるバリア層5、更にその上に電解めっきの給電層としてシード層7を形成する。 FIG. 22 shows a manufacturing example of this type of copper wiring board W in the order of steps. First, as shown in FIG. 22A, an insulating film (interlayer insulating film) 2 made of SiO 2 or Low-K material is deposited on a conductive layer 1a on a semiconductor substrate 1 on which a semiconductor element is formed, Inside the insulating film 2, a contact hole 3 and a trench 4 are formed as wiring recesses by lithography and etching techniques. Then, a barrier layer 5 made of TaN or the like is formed thereon, and a seed layer 7 is formed thereon as a power feeding layer for electrolytic plating.

そして、図22(b)に示すように、基板Wの表面に銅めっきを施すことで、コンタクトホール3及びトレンチ4内に銅を充填するとともに、絶縁膜2上に銅膜6を堆積する。その後、化学的機械的研磨(CMP)により、絶縁膜2上の銅膜6、シード層7及びバリア層5を除去して、コンタクトホール3及びトレンチ4内に充填させた銅膜6の表面と絶縁膜2の表面とをほぼ同一平面にする。これにより、図22(c)に示すように、絶縁膜2の内部に銅膜6からなる配線を形成する。   Then, as shown in FIG. 22B, copper is plated on the surface of the substrate W to fill the contact hole 3 and the trench 4 with copper, and to deposit a copper film 6 on the insulating film 2. Thereafter, the copper film 6, the seed layer 7 and the barrier layer 5 on the insulating film 2 are removed by chemical mechanical polishing (CMP), and the surface of the copper film 6 filled in the contact hole 3 and the trench 4 The surface of the insulating film 2 is substantially flush with the surface. Thereby, as shown in FIG. 22C, a wiring made of the copper film 6 is formed inside the insulating film 2.

基板の表面の電解めっきを施すには、図23に示すように、基板Wの表面に形成したシード層7等の導電層の外周部にカソード接点200を接触させ、基板Wと該基板Wに対向する位置に配置したアノード202との間にめっき液204を満たす。そして、カソード接点200とアノード202との間に電源206によりめっき電流を流すことで、基板Wの導電層上にめっき膜を成膜する。   In order to perform electrolytic plating on the surface of the substrate, as shown in FIG. 23, the cathode contact 200 is brought into contact with the outer peripheral portion of the conductive layer such as the seed layer 7 formed on the surface of the substrate W, and the substrate W and the substrate W are contacted. The plating solution 204 is filled between the anode 202 and the anode 202 arranged at the opposite position. Then, a plating film is formed on the conductive layer of the substrate W by applying a plating current from the power source 206 between the cathode contact 200 and the anode 202.

LSI用の半導体ウエハや液晶基板は、年々大面積となる傾向にあり、それに伴う弊害も生じてきた。つまり、大面積の基板Wの場合、基板Wの外周近傍のカソード接点200から基板Wの中央までのシード層7等の導電層の電気抵抗(シート抵抗)が大きくなり、基板Wの面内で電位差が生じて、各部のめっき速度に差が生じてしまう。図23は、代表的な電解めっきの等価回路を示しており、回路中には、以下のような抵抗成分が存在する。
R1:電源206とアノード202との間の電源線抵抗及び各種接触抵抗
R2:アノード202における分極抵抗
R3:めっき液204の抵抗
R4:カソード接点200における分極抵抗
R5:導電層の抵抗(シート抵抗)
R6:カソード接点200と電源206との間の電源線抵抗及び各種接触抵抗
Semiconductor wafers and liquid crystal substrates for LSIs tend to have a large area year by year, and there have been problems associated therewith. In other words, in the case of a large-area substrate W, the electrical resistance (sheet resistance) of the conductive layer such as the seed layer 7 from the cathode contact 200 near the outer periphery of the substrate W to the center of the substrate W increases, and in the plane of the substrate W An electric potential difference arises and a difference arises in the plating speed of each part. FIG. 23 shows an equivalent circuit of a typical electrolytic plating, and the following resistance components exist in the circuit.
R1: Power line resistance and various contact resistances between the power source 206 and the anode 202 R2: Polarization resistance at the anode 202 R3: Resistance of the plating solution 204 R4: Polarization resistance at the cathode contact 200 R5: Resistance of the conductive layer (sheet resistance)
R6: power line resistance and various contact resistances between the cathode contact 200 and the power source 206

図23から明らかなように、導電層の抵抗R5が他の電気抵抗R1〜R4及びR6に比して大きくなると、この抵抗R5の両端に生じる電位差が大きくなり、それに伴ってめっき電流に差が生じる。このため、カソード接点200から遠い位置ではめっき膜の成長速度が低下する。導電層の膜厚が薄いと抵抗R5が更に大きくなって、この現象が顕著に表れてしまう。この現象は、ターミナルエフェクトと呼ばれ、基板Wの面内で電流密度が異なることを意味し、めっき膜の特性自体(めっき膜の抵抗率、純度、埋込特性など)が面内で均一とならない。   As is clear from FIG. 23, when the resistance R5 of the conductive layer becomes larger than the other electric resistances R1 to R4 and R6, the potential difference generated at both ends of the resistance R5 increases, and accordingly, the difference in the plating current occurs. Arise. For this reason, the growth rate of the plating film decreases at a position far from the cathode contact 200. When the conductive layer is thin, the resistance R5 is further increased, and this phenomenon appears remarkably. This phenomenon is called a terminal effect, which means that the current density is different in the plane of the substrate W, and the characteristics of the plating film itself (the resistivity, purity, embedding characteristics, etc. of the plating film) are uniform in the plane. Don't be.

以上の問題を回避する方法として、導電層の厚さを厚くしたり、導電層の電気導電率を大きくしたりすることが考えられる。しかしながら、基板は、めっき以外の製造工程でも様々な制約を受けるばかりでなく、例えば微細パターン上にスパッタ法で厚い導電層を形成すると、パターン内部にボイドが発生し易くなってしまう。このため、容易に導電層の厚みを厚くしたり、導電層の膜種を変更したりすることはできない。   As a method for avoiding the above problems, it is conceivable to increase the thickness of the conductive layer or increase the electrical conductivity of the conductive layer. However, the substrate is not only subject to various restrictions in the manufacturing process other than plating. For example, when a thick conductive layer is formed on a fine pattern by a sputtering method, voids are likely to be generated inside the pattern. For this reason, it is not possible to easily increase the thickness of the conductive layer or change the film type of the conductive layer.

この欠点を防止するため、発明者は、図24に示すように、アノード202と基板Wの間に、めっき液204の電気伝導率よりも小さい電気伝導率の高抵抗構造体208を配置することを提案した。このように構成すると、図24に示すような等価回路となり、図23に示す等価回路に比べて、高抵抗構造体208による抵抗Rpが追加される。このため、高抵抗構造体208による抵抗Rpが大きな値になると、(R2+R3+Rp+R4)/(R2+R3+Rp+R4+R5)は1に近づき、抵抗R5、即ち導電層の抵抗成分(シート抵抗)の影響を受けにくくなる。   In order to prevent this drawback, the inventor places a high-resistance structure 208 having an electric conductivity smaller than the electric conductivity of the plating solution 204 between the anode 202 and the substrate W as shown in FIG. Proposed. With this configuration, an equivalent circuit as shown in FIG. 24 is obtained, and a resistance Rp by the high-resistance structure 208 is added compared to the equivalent circuit shown in FIG. For this reason, when the resistance Rp due to the high resistance structure 208 becomes a large value, (R2 + R3 + Rp + R4) / (R2 + R3 + Rp + R4 + R5) approaches 1 and is less affected by the resistance R5, that is, the resistance component (sheet resistance) of the conductive layer.

出願人は、アノードとして、任意の形状に分割された分割アノードを用いることを提案した(特許文献1参照)。また、基板入槽時に、基板の表面(導電層)とアノードとの間に、基板の表面(導電層)に対する平均陰極電流密度で1〜30mA/cmとなるような電圧を印加することも提案した(特許文献2参照)。
特開2005−213610号公報 特開2004−218080号公報
The applicant has proposed to use a divided anode divided into arbitrary shapes as the anode (see Patent Document 1). In addition, when the substrate is placed in the tank, a voltage such that the average cathode current density with respect to the substrate surface (conductive layer) is 1 to 30 mA / cm 2 may be applied between the substrate surface (conductive layer) and the anode. Proposed (see Patent Document 2).
JP 2005-213610 A JP 2004-210808 A

しかしながら、近年の半導体装置の更なる微細化に伴って、半導体ウエハ等の基板の表面に形成されるシード層等の導電層の膜厚が益々薄くなってきており、それとともに、導電層の電気抵抗(シート抵抗)も益々増加する傾向にある。このため、アノードとして分割アノードを使用したとしても、基板の表面に、全面に亘って膜厚が均一なめっき膜を形成することが困難になってきている。特に、65nmノードの現世代にあっては、十分な膜厚の面内均一性を有するめっき膜を形成できたとしても、45nmノードの次世代、更には32nmノードの次々世代と進むにつれて、基板の表面に形成されるめっき膜の膜厚のばらつきが大きくなって、十分な膜厚の面内均一性を有するめっき膜を形成することが困難となると考えられる。   However, with the further miniaturization of semiconductor devices in recent years, the thickness of conductive layers such as seed layers formed on the surface of substrates such as semiconductor wafers has become increasingly thinner, and the electrical properties of the conductive layers have also increased. Resistance (sheet resistance) is also increasing. For this reason, even if a divided anode is used as the anode, it has become difficult to form a plating film having a uniform film thickness over the entire surface of the substrate. In particular, in the current generation of the 65 nm node, even if a plating film having a sufficient thickness in-plane uniformity can be formed, as the next generation of the 45 nm node and further to the next generation of the 32 nm node, the substrate is advanced. It is considered that it is difficult to form a plating film having sufficient in-plane uniformity with a large variation in the film thickness of the plating film formed on the surface.

更に、シード層の薄膜化に対応するため、シード層を、例えばルテニウムとすると、基板自体の抵抗は一層大きくなる。また、シード層の高抵抗化により、従来使用していた電流レシピでは良好な膜質を得られない問題も発生している。   Furthermore, if the seed layer is made of, for example, ruthenium in order to cope with the thinning of the seed layer, the resistance of the substrate itself is further increased. Further, due to the high resistance of the seed layer, there is a problem that a good film quality cannot be obtained with a current recipe that has been conventionally used.

本発明は上記事情に鑑みて為されたもので、銅と同等以上の抵抗率の導電層(シード層)を有した基板に対して、より均一な膜厚で、全面に亘って膜質の良好なめっき膜を成膜できるようにした電解めっき装置及び電解めっき方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has a more uniform film thickness and good film quality over the entire surface of a substrate having a conductive layer (seed layer) having a resistivity equal to or higher than that of copper. It is an object of the present invention to provide an electrolytic plating apparatus and an electrolytic plating method capable of forming an appropriate plating film.

請求項1に記載の発明は、基板を保持する基板保持部と、前記基板保持部で保持した基板表面の周縁部に当接して該周縁部をシールするシール材と、前記基板保持部で保持した基板の表面に形成した導電層に接触して通電させるカソード接点と、内部にめっき液に浸漬させるアノードを収納し、前記基板保持部で保持した基板と対向する開口端部に多孔質構造体を配置してめっき液室を区画形成したハウジングを有し、仕切り板と前記多孔質構造体で前記めっき液室が仕切られており、前記アノードは複数に分割された分割アノードから構成されて、各分割アノードは前記めっき液室の各部屋の内部に独立しためっき電流が流せるように配置されていることを特徴とする電解めっき装置である。   According to the first aspect of the present invention, there is provided a substrate holding portion that holds a substrate, a sealing material that contacts a peripheral portion of the substrate surface held by the substrate holding portion and seals the peripheral portion, and is held by the substrate holding portion. A cathode contact for contacting and energizing a conductive layer formed on the surface of the substrate and an anode immersed in a plating solution are housed therein, and a porous structure is provided at an opening end facing the substrate held by the substrate holding portion. And the plating solution chamber is partitioned by a partition plate and the porous structure, and the anode is composed of a plurality of divided anodes, Each of the divided anodes is an electroplating apparatus characterized in that an independent plating current can flow inside each of the plating solution chambers.

これにより、例えば、基板上に初期めっき膜を形成する一定期間だけ、中央部側に位置する分割アノードの電流密度をその周辺より高め、基板外周部にめっき電流が集中することを防止して基板の中央部側にもめっき電流が流れるようにし、これによって、より高いシート抵抗をもつ基板に対しても、基板表面のシート抵抗による電流密度の面内差を小さくして、より均一な膜厚のめっき膜を確実に形成することができる。これは、ターミナルエフェクトに対して効果的なため、より均一な膜厚のめっき膜を得ることができる。しかも、各分割アノードのそれぞれの電場が互いに干渉してしまうことを防止して、分割アノードを用いた効果が薄れてしまうことを防止することができる。   Thus, for example, the current density of the divided anode located on the center side is increased from the periphery only for a certain period of time when the initial plating film is formed on the substrate, and the plating current is prevented from concentrating on the outer periphery of the substrate. The plating current also flows to the center side of the substrate, which reduces the in-plane difference in current density due to the sheet resistance on the substrate surface, even for substrates with higher sheet resistance, and more uniform film thickness The plating film can be reliably formed. Since this is effective for the terminal effect, a plating film having a more uniform film thickness can be obtained. In addition, the electric fields of the divided anodes can be prevented from interfering with each other, and the effect of using the divided anodes can be prevented from diminishing.

請求項2に記載の発明は、前記多孔質構造体と前記仕切り板と間、及び/または前記仕切り板と前記ハウジングとの間にシールリングが介在されていることを特徴とする請求項1記載の電解めっき装置である。
これにより、多孔質構造体と仕切り板と間、及び/または仕切り板とハウジングとの間をシールリングでシールして、めっき液を通して電流が漏れてしまうことを確実に防止することができる。
The invention according to claim 2 is characterized in that a seal ring is interposed between the porous structure and the partition plate and / or between the partition plate and the housing. Electrolytic plating apparatus.
Thereby, between the porous structure and the partition plate and / or between the partition plate and the housing is sealed with the seal ring, it is possible to reliably prevent current from leaking through the plating solution.

請求項3に記載の発明は、前記アノードは、同心円状に分割された分割アノードから構成され、中央に位置する分割アノードは円板状で、前記仕切り板は、円筒状に形成され、内方に位置する分割アノードの周囲を包囲するように配置されていることを特徴とする請求項1または2記載の電解めっき装置である。
これにより、電場が分散されることを防止し、中央に位置する円板状の分割アノードに対面する基板の中央部に特化した電流を流すことができるようにして、導電層のシート抵抗の影響を緩和しつつ、基板の中央部にめっきが付き易くすることができる。アノードは、溶解アノードと不溶解アノードのどちらでもよい。
According to a third aspect of the present invention, the anode is composed of a split anode divided concentrically, the split anode located in the center is in a disc shape, and the partition plate is formed in a cylindrical shape, The electroplating apparatus according to claim 1, wherein the electroplating apparatus is disposed so as to surround a periphery of the divided anode located at the center.
As a result, the electric field is prevented from being dispersed, and a specialized current can be passed through the central portion of the substrate facing the disc-shaped divided anode located at the center, thereby reducing the sheet resistance of the conductive layer. Plating can be easily applied to the central portion of the substrate while reducing the influence. The anode may be either a dissolved anode or an insoluble anode.

請求項4に記載の発明は、前記円板状の分割アノードの直径、及び該円板状の分割アノードの周囲を包囲するように配置された前記仕切り板の内径は、基板の直径の2/3以下であることを特徴とする請求項3記載の電解めっき装置である。
例えば、直径が300mmのウエハの表面にめっき膜を成膜する場合、中央に位置する円板状の分割アノードの直径、及び円板状の分割アノードの周囲を包囲する仕切り板の内径は、いずれも200mm以下で、60mm以上であることが好ましい。
According to a fourth aspect of the present invention, the diameter of the disk-shaped divided anode and the inner diameter of the partition plate arranged so as to surround the disk-shaped divided anode are 2 / diameter of the substrate diameter. The electroplating apparatus according to claim 3, wherein the electroplating apparatus is 3 or less.
For example, when a plating film is formed on the surface of a wafer having a diameter of 300 mm, the diameter of the disk-shaped divided anode located in the center and the inner diameter of the partition plate surrounding the disk-shaped divided anode are Is preferably 200 mm or less and preferably 60 mm or more.

前記各分割アノードと前記多孔質構造体との距離は、10mm以内に設定されていることが好ましい。
各分割アノードは多孔質構造体にできる限り近づけることによって、基板の中央部に特化した電流を流すことが容易となる。
The distance between each of the divided anodes and the porous structure is preferably set within 10 mm.
By making each divided anode as close as possible to the porous structure, it becomes easy to pass a specialized current to the central portion of the substrate.

請求項5に記載の発明は、前記導電層は、少なくともCu、Ru、Ta、TaN、W、WNC、WC、Pt、ITO、Ti、TiWのいずれかを有することを特徴とする請求項1乃至4のいずれかに記載の電解めっき装置である。
このような導電層は、銅と同等以上の抵抗率を持ち、通常では銅よりも均一なめっきを行うことが難しい。
The invention according to claim 5 is characterized in that the conductive layer has at least one of Cu, Ru, Ta, TaN, W, WNC, WC, Pt, ITO, Ti, and TiW. 4. The electroplating apparatus according to any one of 4 above.
Such a conductive layer has a resistivity equal to or higher than that of copper, and it is usually difficult to perform plating more uniform than copper.

請求項6に記載の発明は、カソード接点を接触させた基板の導電層と該基板の導電層に対面する位置に同心状に複数に分割されて配置させた分割アノードとの間にめっき液を満たし、前記めっき液中に多孔質構造体を配置し、めっき初期に、前記カソード接点と中央部に位置する分割アノードとの間に、前記カソード接点と他の分割アノードとの間よりも高い電流密度の電流を流すことを特徴とする電解めっき方法である。
これにより、ターミナルエフェクトに対してより効果的なめっきを行って、より膜厚の均一なめっき膜を成膜することができる。
めっき初期に、前記カソード接点と中央部に位置する分割アノードとの間に流す電流は、前記基板の導電層に対する平均陰極電流密度で40mA/cm以上で、60mA/cm以下あることが好ましい。
According to a sixth aspect of the present invention, a plating solution is provided between a conductive layer of a substrate in contact with a cathode contact and a divided anode arranged concentrically at a position facing the conductive layer of the substrate. Fill and place a porous structure in the plating solution, and at the initial stage of plating, a higher current between the cathode contact and the split anode located in the center than between the cathode contact and the other split anode. An electrolytic plating method is characterized in that a current having a density flows.
Thereby, more effective plating can be performed on the terminal effect, and a plating film having a more uniform film thickness can be formed.
The plating initial, current flowing between the divided anode positioned in the cathode contact and the central portion has an average cathode current density in the 40 mA / cm 2 or more to the conductive layer of the substrate, it is preferable that 60 mA / cm 2 or less .

前記めっき初期は、めっき開始後、例えば5000msec以内、好ましくは、めっきを開始してから0〜3000msec経過するまでの間である。
めっき初期の時間に幅を持たせることにより、種々の微細電気回路パターンに対して優れた埋め込み性を得ることができる。めっき開始後、5000msec以内に、基板の導電層に対する平均陰極電流密度が40mA/cm以上の電流を複数回流すようにしても良い。基板がめっき液に対してホットエントリーでもコールドエントリーでも適用できる。
The initial stage of plating is, for example, within 5000 msec after the start of plating, and preferably from 0 to 3000 msec after the start of plating.
By providing a wide initial plating time, it is possible to obtain excellent embedding properties with respect to various fine electric circuit patterns. Within 5000 msec after the start of plating, a current having an average cathode current density of 40 mA / cm 2 or more with respect to the conductive layer of the substrate may be allowed to flow a plurality of times. The substrate can be applied to the plating solution by either hot entry or cold entry.

請求項7に記載の発明は、めっき初期以降に、前記カソード接点と前記中央部に位置する分割アノードとの間に、めっき初期よりも低い電流を流すことを特徴とする請求項6記載の電解めっき方法である。   The invention according to claim 7 is characterized in that, after the initial stage of plating, a current lower than that in the initial stage of plating is passed between the cathode contact and the divided anode located in the central portion. It is a plating method.

めっき初期に、カソード接点と中央部に位置する分割アノードとの間に高い電流密度の電流を流し、続いて該第1の電流よりも低い(通常の)第2の電流を流すことにより、基板の全面に亘り膜厚の均一なめっき膜を形成することができ、また接点から距離のある基板中心部までも細かい結晶粒子のめっき膜を成膜して、光沢のある膜質の良いめっき膜を全面に亘って成膜することができる。これ以降は、めっき初期の電流密度より高い電流を流しても問題はない。   In the initial stage of plating, a current having a high current density is passed between the cathode contact and the split anode located in the center, and then a second current lower than (normal) the first current is allowed to flow. A plating film with a uniform film thickness can be formed over the entire surface of the substrate, and a plating film of fine crystal particles can be formed from the contact point to the center of the substrate at a distance to form a plating film having a glossy and good quality. A film can be formed over the entire surface. Thereafter, there is no problem even if a current higher than the initial current density is passed.

請求項8に記載の発明は、前記めっき初期に、前記カソード接点と前記他の分割アノードとの間に電流を流さないことを特徴とする請求項6または7記載の電解めっき方法である。   The invention according to claim 8 is the electrolytic plating method according to claim 6 or 7, wherein no current flows between the cathode contact and the other divided anode in the initial stage of the plating.

本発明によれば、アノードを複数に分割した分割アノードで構成し、各分割アノードに、それぞれ互いに絶縁した状態で、異なる電流を流すことで、より良好な面内均一性を持っためっき膜を成膜することができる。また、成膜初期の電流密度を、例えば40mA/cm以上と高くすることで、銅と同等以上の抵抗率の導電層を保有した基板に光沢のある良好な膜質を持っためっきを行うことができる。 According to the present invention, the anode is composed of a plurality of divided anodes, and a plated film having better in-plane uniformity is obtained by flowing different currents to each divided anode while being insulated from each other. A film can be formed. In addition, by making the current density at the initial stage of film formation as high as 40 mA / cm 2 or more, for example, plating having a glossy and good film quality on a substrate having a conductive layer having a resistivity equal to or higher than that of copper is performed. Can do.

以下、本発明の実施の形態を図面を参照して説明する。この例は、図22に示すように、銅と同等以上の抵抗率を持つ、例えばCu、Ru、Ta、TaN、W、WNC、WC、Pt、ITO、Ti、TiWのいずれかを有するシード層(導電層)7を有する半導体ウエハ等の基板の表面に電解銅めっきを施して、基板表面に設けた微細な配線用凹部に銅を埋込んで銅からなる配線を形成するようにした例を示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In this example, as shown in FIG. 22, a seed layer having a resistivity equal to or higher than that of copper, for example, any one of Cu, Ru, Ta, TaN, W, WNC, WC, Pt, ITO, Ti, and TiW. An example in which electrolytic copper plating is applied to the surface of a substrate such as a semiconductor wafer having (conductive layer) 7 and copper is embedded in a fine wiring recess provided on the substrate surface to form a wiring made of copper. Show.

図1は、本発明の実施の形態の電解めっき装置を備えた基板処理装置の全体配置図を示す。図1に示すように、この基板処理装置には、同一設備内に位置して、内部に複数の基板Wを収納する2基のロード・アンロード部10と、電解めっき処理及びその付帯処理を行う2基の電解めっき装置12と、ロード・アンロード部10と電解めっき装置12との間で基板Wの受渡しを行う搬送ロボット14と、めっき液タンク16を有するめっき液供給設備18が備えられている。   FIG. 1 shows an overall layout of a substrate processing apparatus including an electrolytic plating apparatus according to an embodiment of the present invention. As shown in FIG. 1, this substrate processing apparatus includes two load / unload units 10 that are located in the same facility and house a plurality of substrates W therein, and an electrolytic plating process and an incidental process thereof. Two electroplating apparatuses 12 to be performed, a transfer robot 14 for delivering the substrate W between the load / unload unit 10 and the electroplating apparatus 12, and a plating solution supply facility 18 having a plating solution tank 16 are provided. ing.

電解めっき装置12には、図2に示すように、めっき処理及びその付帯処理を行う基板処理部20が備えられ、この基板処理部20に隣接して、めっき液を溜めるめっき液トレー22が配置されている。また、回転軸24を中心に揺動する揺動アーム26の先端に保持されて基板処理部20とめっき液トレー22との間を移動する電極ヘッド28を有する電極アーム部30が備えられている。更に、基板処理部20の側方に位置して、プレコート・回収アーム32と、純水やイオン水等の薬液、または気体等を基板に向けて噴射する固定ノズル34が配置されている。この実施の形態にあっては、3個の固定ノズル34が備えられ、その内の1個を純水の供給用に用いている。   As shown in FIG. 2, the electrolytic plating apparatus 12 includes a substrate processing unit 20 that performs a plating process and an incidental process, and a plating solution tray 22 that stores a plating solution is disposed adjacent to the substrate processing unit 20. Has been. Further, an electrode arm section 30 having an electrode head 28 that is held at the tip of a swing arm 26 that swings about the rotation shaft 24 and moves between the substrate processing section 20 and the plating solution tray 22 is provided. . Further, a pre-coat / recovery arm 32 and a fixed nozzle 34 for injecting a chemical solution such as pure water or ionic water, gas, or the like toward the substrate are disposed on the side of the substrate processing unit 20. In this embodiment, three fixed nozzles 34 are provided, and one of them is used for supplying pure water.

基板処理部20には、図3に示すように、表面(被めっき面)を上向きにして基板Wを保持する基板保持部36と、この基板保持部36の上方に該基板保持部36の周縁部を囲繞するように配置されたカソード部38が備えられている。更に、基板保持部36の周囲を囲繞して処理中に用いる各種薬液の飛散を防止する有底略円筒状の飛散防止カップ40が、エアシリンダ(図示せず)を介して上下動自在に配置されている。   As shown in FIG. 3, the substrate processing unit 20 includes a substrate holding unit 36 that holds the substrate W with the surface (surface to be plated) facing upward, and a peripheral edge of the substrate holding unit 36 above the substrate holding unit 36. A cathode portion 38 is provided so as to surround the portion. Further, a bottomed substantially cylindrical scattering prevention cup 40 that surrounds the periphery of the substrate holding part 36 and prevents the scattering of various chemicals used during processing is arranged to be movable up and down via an air cylinder (not shown). Has been.

ここで、基板保持部36は、エアシリンダ44によって、下方の基板受渡し位置Aと、上方のめっき位置Bと、これらの中間の前処理・洗浄位置Cとの間を昇降し、図示しない回転モータ及びベルトを介して、任意の加速度及び速度でカソード部38と一体に回転するように構成されている。この基板受渡し位置Aに対向して、電解めっき装置12のフレーム側面の搬送ロボット14側には、基板搬出入口(図示せず)が設けられ、また基板保持部36がめっき位置Bまで上昇した時に、基板保持部36で保持された基板Wの周縁部に下記のカソード部38のシール材90とカソード接点88が当接する。飛散防止カップ40は、その上端が基板搬出入口下方に位置し、図3に仮想線で示すように、上昇した時に基板搬出入口を塞いでカソード部38の上方に達する。   Here, the substrate holding unit 36 is moved up and down between a lower substrate delivery position A, an upper plating position B, and an intermediate pretreatment / cleaning position C by an air cylinder 44, and a rotary motor (not shown). And it is comprised so that it may rotate integrally with the cathode part 38 with arbitrary acceleration and speed | velocity | rate via a belt. Opposite to the substrate delivery position A, a substrate carry-in / out port (not shown) is provided on the side of the transfer robot 14 on the side of the frame of the electroplating apparatus 12, and when the substrate holding part 36 is raised to the plating position B. The sealing material 90 and cathode contact 88 of the cathode part 38 described below abut on the peripheral edge of the substrate W held by the substrate holding part 36. The upper end of the anti-scattering cup 40 is located below the substrate carry-in / out port, and as shown by the phantom line in FIG.

めっき液トレー22は、めっき処理を実施していない時に、電極アーム部30の下記の多孔質構造体110及びアノード98をめっき液で湿潤させるためのもので、この多孔質構造体110が収容できる大きさに設定され、図示しないめっき液供給口とめっき液排水口を有している。また、フォトセンサがめっき液トレー22に取付けられており、めっき液トレー22内のめっき液の満水、即ちオーバーフローと排水の検出が可能になっている。
電極アーム部30は、図示しないサーボモータからなる上下動モータとボールねじを介して上下動し、旋回モータを介して、めっき液トレー22と基板処理部20との間を電極ヘッド28が移動するように旋回(揺動)する。
The plating solution tray 22 is used to wet the following porous structure 110 and the anode 98 of the electrode arm portion 30 with a plating solution when the plating process is not being performed, and can accommodate the porous structure 110. It is set to a size and has a plating solution supply port and a plating solution drain port (not shown). In addition, a photo sensor is attached to the plating solution tray 22 so that the plating solution in the plating solution tray 22 is fully filled, that is, overflow and drainage can be detected.
The electrode arm unit 30 moves up and down via a vertical movement motor and a ball screw, which are not shown, and the electrode head 28 moves between the plating solution tray 22 and the substrate processing unit 20 through a turning motor. Swivel (oscillate).

プレコート・回収アーム32は、図4に示すように、上下方向に延びる支持軸58の上端に連結されて、ロータリアクチュエータ60を介して旋回(揺動)し、エアシリンダ(図示せず)を介して上下動するよう構成されている。このプレコート・回収アーム32には、その自由端側にプレコート液吐出用のプレコートノズル64が、基端側にめっき液回収用のめっき液回収ノズル66がそれぞれ保持されている。そして、プレコートノズル64は、例えばエアシリンダによって駆動するシリンジに接続されて、プレコート液がプレコートノズル64から間欠的に吐出される。また、めっき液回収ノズル66は、例えばシリンダポンプまたはアスピレータに接続されて、基板上のめっき液がめっき液回収ノズル66から吸引される。   As shown in FIG. 4, the precoat / recovery arm 32 is connected to the upper end of a support shaft 58 extending in the vertical direction, pivots (swings) via a rotary actuator 60, and passes through an air cylinder (not shown). Are configured to move up and down. The precoat / collection arm 32 holds a precoat nozzle 64 for discharging a precoat liquid on the free end side, and a plating solution recovery nozzle 66 for collecting a plating liquid on the base end side. The precoat nozzle 64 is connected to a syringe driven by an air cylinder, for example, and the precoat liquid is intermittently discharged from the precoat nozzle 64. The plating solution recovery nozzle 66 is connected to, for example, a cylinder pump or an aspirator, and the plating solution on the substrate is sucked from the plating solution recovery nozzle 66.

基板保持部36は、図5乃至図7に示すように、円板状の基板ステージ68を備え、この基板ステージ68の周縁部の円周方向に沿った6カ所に、上面に基板Wを水平に載置して保持する支持腕70が立設されている。この支持腕70の1つの上端には、基板Wの端面に当接して位置決めする位置決め板72が固着され、この位置決め板72を固着した支持腕70に対向する支持腕70の上端には、基板Wの端面に当接し回動して基板Wを位置決め板72側に押付ける押付け片74が回動自在に支承されている。また、他の4個の支持腕70の上端には、回動して基板Wをこの上方から下方に押付けるチャック爪76が回動自在に支承されている。   As shown in FIGS. 5 to 7, the substrate holding unit 36 includes a disk-shaped substrate stage 68, and the substrate W is horizontally placed on the upper surface at six locations along the circumferential direction of the peripheral portion of the substrate stage 68. A support arm 70 is erected to be placed and held on the head. A positioning plate 72 is fixed to one upper end of the support arm 70 to be positioned in contact with the end surface of the substrate W, and a substrate is fixed to the upper end of the support arm 70 facing the support arm 70 to which the positioning plate 72 is fixed. A pressing piece 74 is pivotally supported so as to be rotated in contact with the end face of W and press the substrate W against the positioning plate 72 side. In addition, chuck claws 76 that pivot and press the substrate W downward from above are rotatably supported at the upper ends of the other four support arms 70.

ここで、押付け片74及びチャック爪76の下端は、コイルばね78を介して下方に付勢した押圧棒80の上端に連結されて、この押圧棒80の下動に伴って押付け片74及びチャック爪76が内方に回動して閉じるようになっており、基板ステージ68の下方には、押圧棒80に下面に当接してこれを上方に押上げる支持板82が配置されている。   Here, the lower end of the pressing piece 74 and the chuck claw 76 is connected to the upper end of the pressing bar 80 biased downward via the coil spring 78, and the pressing piece 74 and the chuck are moved along with the downward movement of the pressing bar 80. A claw 76 is pivoted inwardly and closed, and a support plate 82 is disposed below the substrate stage 68 so as to abut the lower surface of the pressing rod 80 and push it upward.

これにより、基板保持部36が図3に示す基板受渡し位置Aに位置する時、押圧棒80は支持板82に当接し上方に押上げられて、押付け片74及びチャック爪76が外方に回動して開き、基板ステージ68を上昇させると、押圧棒80がコイルばね78の弾性力で下降して、押付け片74及びチャック爪76が内方に回転して閉じる。   Thereby, when the substrate holding portion 36 is positioned at the substrate delivery position A shown in FIG. 3, the pressing rod 80 contacts the support plate 82 and is pushed upward, so that the pressing piece 74 and the chuck pawl 76 rotate outward. When the substrate stage 68 is raised by moving, the pressing rod 80 is lowered by the elastic force of the coil spring 78, and the pressing piece 74 and the chuck pawl 76 are rotated inward and closed.

カソード部38は、図8及び図9に示すように、支持板82(図7等参照)の周縁部に立設した支柱84の上端に固着した環状の枠体86と、この枠体86の下面に内方に突出させて取付けた、この例では6分割されたカソード接点88と、このカソード接点88の上方を覆うように枠体86の上面に取付けた環状のシール材90とを有している。シール材90は、その内周縁部が内方に向け下方に傾斜し、かつ徐々に薄肉となって、内周端部が下方に垂下するように構成されている。   As shown in FIGS. 8 and 9, the cathode portion 38 includes an annular frame 86 fixed to the upper end of a column 84 erected on the peripheral edge of a support plate 82 (see FIG. 7 and the like), and the frame 86. In this example, the cathode contact 88 is divided into six parts and attached to the lower surface, and an annular seal member 90 is attached to the upper surface of the frame 86 so as to cover the upper side of the cathode contact 88. ing. The seal member 90 is configured such that an inner peripheral edge thereof is inclined downward inward and gradually becomes thin, and an inner peripheral end portion hangs downward.

これにより、図3に示すように、基板保持部36がめっき位置Bまで上昇した時に、この基板保持部36で保持した基板Wの周縁部にカソード接点88が押付けられて通電し、同時にシール材90の内周端部が基板Wの周縁部上面に圧接し、ここを水密的にシールして、基板Wの上面(被めっき面)に供給されためっき液が基板Wの端部から染み出すのを防止するとともに、めっき液がカソード接点88を汚染することを防止する。
なお、この実施の形態において、カソード部38は、上下動不能で基板保持部36と一体に回転するようになっているが、上下動自在で、下降した時にシール材90が基板Wの被めっき面に圧接するように構成してもよい。
As a result, as shown in FIG. 3, when the substrate holding part 36 rises to the plating position B, the cathode contact 88 is pressed against the peripheral edge of the substrate W held by the substrate holding part 36 and energized, and at the same time, the sealing material The inner peripheral end of 90 is in pressure contact with the upper surface of the peripheral edge of the substrate W, and this is sealed in a watertight manner, so that the plating solution supplied to the upper surface (surface to be plated) of the substrate W oozes out from the end of the substrate W. And preventing the plating solution from contaminating the cathode contact 88.
In this embodiment, the cathode portion 38 cannot move up and down and rotates integrally with the substrate holding portion 36. However, the cathode portion 38 is movable up and down, and the seal material 90 is plated on the substrate W when lowered. You may comprise so that it may press-contact to a surface.

前記電極アーム部30の電極ヘッド28は、図10及び図11に示すように、揺動アーム26の自由端にボールベアリング92を介して連結したハウジング94と、このハウジング94の下端開口部を塞ぐように配置された多孔質構造体110とを有している。すなわち、ハウジング94は、下方に開口した有底カップ状に形成され、この下部内周面には、凹状部94aが、多孔質構造体110の上部には、この凹状部94aに嵌合するフランジ部110aがそれぞれ設けられ、このフランジ部110aを凹状部94aに嵌入することで、ハウジング94に多孔質構造体110が保持されている。これによって、ハウジング94の内部に中空のめっき液室100が区画形成されている。   As shown in FIGS. 10 and 11, the electrode head 28 of the electrode arm portion 30 closes the housing 94 connected to the free end of the swing arm 26 via a ball bearing 92 and the lower end opening of the housing 94. The porous structure 110 is arranged as described above. That is, the housing 94 is formed in a bottomed cup shape that opens downward, and a concave portion 94a is formed on the inner peripheral surface of the lower portion, and a flange that fits the concave portion 94a is formed on the upper portion of the porous structure 110. Each portion 110a is provided, and the porous structure 110 is held in the housing 94 by fitting the flange portion 110a into the concave portion 94a. As a result, a hollow plating solution chamber 100 is defined in the housing 94.

このめっき液室100は、円筒状の絶縁材からなる仕切り板150で、同心状の2つの部屋152a,152bに仕切られている。そして、仕切り板150の上端面とハウジング94の天井壁下面との間、及び仕切り板150の下端面と多孔質構造体110の上面との間には、ゴムまたはテフロン(登録商標)等のシールリング154a,154bが介装されている。これによって、各部屋152a,152b内にめっき液で満たしても、このめっき液を介して、一方の部屋152aから他方の部屋152bに電流が流れるのを防止して、各部屋152a,152bが電気的に互いに絶縁されるようになっている。   The plating solution chamber 100 is divided into two concentric chambers 152a and 152b by a partition plate 150 made of a cylindrical insulating material. A seal such as rubber or Teflon (registered trademark) is provided between the upper end surface of the partition plate 150 and the lower surface of the ceiling wall of the housing 94 and between the lower end surface of the partition plate 150 and the upper surface of the porous structure 110. Rings 154a and 154b are interposed. As a result, even if each of the rooms 152a and 152b is filled with a plating solution, current is prevented from flowing from one room 152a to the other room 152b via this plating solution, and each of the rooms 152a and 152b is electrically connected. Are insulated from each other.

多孔質構造体110は、圧力損失(室温下、厚さ14mmの多孔質構造体に対して、窒素ガスを線速度0.01m/secで通気した場合)が500kPa以上、好ましくは1000kPa以上、更に好ましくは1500kPa以上、または見掛気孔率(JIS R 2205の規定による)が19%以下、好ましくは15%以下、更に好ましくは10%以下で、抵抗率が1.0×10Ω・cm以上の炭化ケイ素、表面を酸化処理した炭化ケイ素、アルミナまたはポリプロピレンやポリエチレンの焼結体等のプラスチック、またはそれらの組合せから構成されている。多孔質構造体110の厚みは、一般的には1〜20mm程度で、5〜20mm程度であることが好ましく、8〜15mm程度であることが更に好ましい。 The porous structure 110 has a pressure loss (when nitrogen gas is aerated at a linear velocity of 0.01 m / sec with respect to a porous structure having a thickness of 14 mm at room temperature) of 500 kPa or more, preferably 1000 kPa or more. Preferably, it is 1500 kPa or more, or the apparent porosity (according to JIS R 2205) is 19% or less, preferably 15% or less, more preferably 10% or less, and the resistivity is 1.0 × 10 5 Ω · cm or more. Silicon carbide, silicon carbide whose surface is oxidized, alumina, plastic such as a sintered body of polypropylene or polyethylene, or a combination thereof. The thickness of the porous structure 110 is generally about 1 to 20 mm, preferably about 5 to 20 mm, and more preferably about 8 to 15 mm.

この例では、多孔質構造体110として、圧力損失が1500kPa、または見掛気孔率が10%で、抵抗率が1.0×10Ω・cmの炭化ケイ素(SiC)製のものが使用されている。そして、この多孔質構造体110の内部にめっき液を含有させることで、つまり多孔質構造体110自体は絶縁体であるが、この内部にめっき液を複雑に入り込ませ、厚さ方向にかなり長い経路を辿らせることで、めっき液の電気伝導率より小さい電気伝導率を有するように構成されている。 In this example, the porous structure 110 is made of silicon carbide (SiC) having a pressure loss of 1500 kPa, an apparent porosity of 10%, and a resistivity of 1.0 × 10 6 Ω · cm. ing. Then, by containing a plating solution in the porous structure 110, that is, the porous structure 110 itself is an insulator, the plating solution is complicatedly introduced into the porous structure 110 and is considerably long in the thickness direction. By making the path follow, the electric conductivity is smaller than the electric conductivity of the plating solution.

このように、圧力損失が500kPa以上、好ましくは1000kPa以上、更に好ましくは1500kPa以上、または見掛気孔率が19%以下、好ましくは15%以下、更に好ましくは10%以下で、抵抗率が1.0×10Ω・cm以上の炭化ケイ素製等の多孔質構造体110をめっき液室100内に配置し、この多孔質構造体110によって大きな抵抗を発生させることで、たとえ大面積で、表面に薄く電気抵抗が大きなシード層7(図22参照)が形成された基板であっても、シード層7の抵抗の影響を無視できる程度となし、基板Wの表面の電気抵抗による電流密度の面内差を小さくして、めっき膜の面内均一性を向上させることができる。 Thus, the pressure loss is 500 kPa or more, preferably 1000 kPa or more, more preferably 1500 kPa or more, or the apparent porosity is 19% or less, preferably 15% or less, more preferably 10% or less, and the resistivity is 1. A porous structure 110 made of silicon carbide or the like having a size of 0 × 10 5 Ω · cm or more is disposed in the plating solution chamber 100, and a large resistance is generated by the porous structure 110. Even if the substrate is formed with a thin seed layer 7 (see FIG. 22) having a large electric resistance, the influence of the resistance of the seed layer 7 is negligible, and the surface of the substrate W has a current density due to the electric resistance. The in-plane uniformity of the plating film can be improved by reducing the internal difference.

前記めっき液室100内には、多孔質構造体110の上方に位置して、内部に上下に貫通する多数の通孔98cを有するアノード98が配置されている。このアノード98は、同心状に分割された、中央部の円板状アノード98aと周辺部のリング状アノード98bの2つの分割アノードから構成されている。そして、この円板状アノード(分割アノード)98aは、めっき液室100の中央に位置する部屋152a内に配置され、リング状アノード(分割アノード)98bは、めっき液室100の周囲に位置する部屋152b内に配置されている。   In the plating solution chamber 100, an anode 98 having a large number of through-holes 98c penetrating vertically is disposed above the porous structure 110. The anode 98 is composed of two divided anodes, a central disk-shaped anode 98a and a peripheral ring-shaped anode 98b, which are concentrically divided. The disc-shaped anode (divided anode) 98 a is disposed in a room 152 a located in the center of the plating solution chamber 100, and the ring-shaped anode (divided anode) 98 b is a room located around the plating solution chamber 100. It is arranged in 152b.

なお、この例では、めっき液室100を同心状に2つの部屋152a,152bに区分し、同心状に2つに分割した分割アノード98a,98bを各部屋152a,152bにそれぞれ配置した例を示しているが、めっき液室100を同心状に3つ以上の部屋に区分し、同心状に3つ以上に分割した分割アノードを各部屋にそれぞれ配置してもよい。まためっき液室100を任意の形状の部屋に区分し、任意の形状に分割した分割アノードを各部屋に配置するようにしてもよい。   In this example, the plating solution chamber 100 is concentrically divided into two chambers 152a and 152b, and the divided anodes 98a and 98b divided into two concentrically are arranged in the respective chambers 152a and 152b. However, the plating solution chamber 100 may be concentrically divided into three or more chambers, and divided anodes that are concentrically divided into three or more may be arranged in each chamber. Further, the plating solution chamber 100 may be divided into rooms of arbitrary shapes, and divided anodes divided into arbitrary shapes may be arranged in the respective rooms.

ここに、この円板状アノード98aの直径、及び仕切り板150の内径は、それぞれ基板Wの直径の2/3以下で1/5以上の、例えば直径300mmのウエハの表面にめっき膜を形成する場合には、200mm以下で60mm以上であることが好ましい。これにより、電場が分散されることを防止し、中央に位置する円板状アノード98aに対面する基板の中央部に特化した電流を流すことができるようにして、導電層(シード層7)のシート抵抗の影響を緩和しつつ、基板の中央部にめっきが付き易くすることができる。   Here, the diameter of the disk-like anode 98a and the inner diameter of the partition plate 150 are each 2/3 or less of the diameter of the substrate W and 1/5 or more, for example, a plating film is formed on the surface of a wafer having a diameter of 300 mm. In such a case, it is preferable that the thickness is 200 mm or less and 60 mm or more. As a result, the electric field is prevented from being dispersed, and a current specialized in the central portion of the substrate facing the disc-shaped anode 98a located in the center can be passed, so that the conductive layer (seed layer 7) While the influence of the sheet resistance is eased, the central portion of the substrate can be easily plated.

これによって、この例では、仕切り板150の下端に取付けられたシールリング154bと多孔質構造体110の表面が、基板Wの直径の2/3以下で1/5以上の、例えば直径300mmのウエハの表面にめっき膜を形成する場合には、200mm以下で60mm以上の円に沿って互いに接触するようになっている。なお、仕切り板150の内径と円板状アノード98aの外径は、必ずしも一致しなくてもよいことは勿論である。   Accordingly, in this example, the surface of the seal ring 154b attached to the lower end of the partition plate 150 and the porous structure 110 is 2/3 or less of the diameter of the substrate W and 1/5 or more, for example, a wafer having a diameter of 300 mm. In the case of forming a plating film on the surface of this, they are in contact with each other along a circle of 200 mm or less and 60 mm or more. Of course, the inner diameter of the partition plate 150 and the outer diameter of the disc-shaped anode 98a do not necessarily have to coincide with each other.

また、各分割アノード98a,98bと多孔質構造体110との距離は、10mm以内であることが好ましい。このように、各分割アノード98a,98bを多孔質構造体110にできる限り近づけることによって、例えば基板の中央部に特化した電流を流すことが容易となる。   The distance between each divided anode 98a, 98b and the porous structure 110 is preferably within 10 mm. In this manner, by bringing the divided anodes 98a and 98b as close as possible to the porous structure 110, it becomes easy to pass a specialized current, for example, in the central portion of the substrate.

そして、ハウジング94には、めっき液室100の各部屋152a,152bの内部のめっき液を吸引して排出するめっき液排出口103a,103bが設けられ、このめっき液排出口103a,103bは、めっき液供給設備18(図1参照)から延びるめっき液排出管106に接続されている。更に、ハウジング94の周壁内部には、アノード98及び多孔質構造体110の側方に位置して上下に貫通するめっき液注入部104が設けられている。このめっき液注入部104は、この例では、下端をノズル形状としたチューブで構成され、めっき液供給設備18(図1参照)から延びるめっき液供給管102に接続されている。   The housing 94 is provided with plating solution discharge ports 103a and 103b for sucking and discharging the plating solution inside the chambers 152a and 152b of the plating solution chamber 100. The plating solution discharge ports 103a and 103b are provided with plating. It is connected to a plating solution discharge pipe 106 extending from the solution supply equipment 18 (see FIG. 1). Further, a plating solution injection part 104 is provided inside the peripheral wall of the housing 94 and is located on the side of the anode 98 and the porous structure 110 and penetrates vertically. In this example, the plating solution injection part 104 is configured by a tube having a nozzle shape at the lower end, and is connected to a plating solution supply pipe 102 extending from the plating solution supply facility 18 (see FIG. 1).

このめっき液注入部104は、基板保持部36がめっき位置B(図3参照)にある時に、基板保持部36で保持した基板Wと多孔質構造体110の隙間が、例えば0.5〜3mm程度となるまで電極ヘッド28を下降させ、この状態で、アノード98及び多孔質構造体110の側方から、基板Wと多孔質構造体110との間の領域にめっき液を注入するためのもので、シール材90と多孔質構造体110に挟まれた領域で下端のノズル部が開口するようになっている。また、多孔質構造体110の外周部には、ここを電気的にシールドするゴム製のシールドリング112が装着されている。   In the plating solution injection part 104, when the substrate holding part 36 is at the plating position B (see FIG. 3), the gap between the substrate W held by the substrate holding part 36 and the porous structure 110 is, for example, 0.5 to 3 mm. The electrode head 28 is lowered to a certain level, and in this state, a plating solution is injected into the region between the substrate W and the porous structure 110 from the side of the anode 98 and the porous structure 110. Thus, the lower end nozzle portion opens in a region sandwiched between the sealing material 90 and the porous structure 110. In addition, a rubber shield ring 112 that electrically shields the outer periphery of the porous structure 110 is attached.

このめっき液注入時には、めっき液注入部104から注入されためっき液は、基板Wの表面に沿って一方向に流れ、このめっき液の流れによって、基板Wと多孔質構造体110との間の領域の空気が外方に押し出されて外部に排出され、この領域がめっき液注入部104から注入された新鮮で組成が調整されためっき液で満たされて、基板Wとシール材90で区画された領域に溜められる。   At the time of injecting the plating solution, the plating solution injected from the plating solution injection unit 104 flows in one direction along the surface of the substrate W, and the flow of the plating solution causes a gap between the substrate W and the porous structure 110. The air in the region is pushed outward and discharged to the outside, and this region is filled with the fresh and adjusted plating solution injected from the plating solution injection unit 104 and partitioned by the substrate W and the sealing material 90. Accumulated in the area.

このように、アノード98及び多孔質構造体110の側方から、基板Wと多孔質構造体110との間の領域にめっき液を注入することにより、多孔質構造体110の内部に、絶縁体からなる電解液供給チューブ等の電界分布を乱す要因となるものを設けることなく、めっき液の液張りを行うことができる。これによって、特に大面積の基板であっても、基板の表面全面に亘る電界分布をより均一にするとともに、めっき液を注入する際に、多孔質構造体110で保持しためっき液が多孔質構造体110から漏れてしまうことを防止して、基板保持部36で保持した基板Wと多孔質構造体110が対向する領域内に新鮮で組成が調整されためっき液を供給することができる。   As described above, by injecting a plating solution into the region between the substrate W and the porous structure 110 from the side of the anode 98 and the porous structure 110, an insulator is provided inside the porous structure 110. Thus, the plating solution can be filled without the need to disturb the electric field distribution, such as an electrolyte supply tube made of the above. Thereby, even in the case of a large-area substrate, the electric field distribution over the entire surface of the substrate is made more uniform, and when the plating solution is injected, the plating solution held by the porous structure 110 is porous. It is possible to prevent leakage from the body 110 and supply a fresh and adjusted plating solution in a region where the substrate W held by the substrate holding part 36 and the porous structure 110 face each other.

ここで、この電解めっき装置12にあっては、液張り時に反応が起こり、この反応による影響によって、例えばめっき膜の埋込みが不能となったり、めっき膜の特性が部分的に変化したりすることがあり、これを防止するためには、めっき液を0.1〜10m/secの線速度で注入し、例えば300mmのウエハにあっては、5秒以内に液張り完了することが望ましい。めっき液注入部104として、このような要求に満たすような任意の形状のものを使用することが好ましい。
ここで、アノード98は、スライムの生成を抑制するため、含有量が0.03〜0.05%のリンを含む銅(含リン銅)で構成されているが、不溶解の不溶性アノードを使用するようにしてもよい。
Here, in the electroplating apparatus 12, a reaction occurs during liquid filling, and the influence of this reaction makes it impossible for example to embed a plating film, or the characteristics of the plating film partially change. In order to prevent this, it is desirable to inject the plating solution at a linear velocity of 0.1 to 10 m / sec. It is preferable to use a plating solution injection portion 104 having an arbitrary shape that satisfies such requirements.
Here, in order to suppress the production of slime, the anode 98 is composed of copper containing 0.03 to 0.05% phosphorus (phosphorus-containing copper), but an insoluble insoluble anode is used. You may make it do.

この例では、円板状アノード(分割アノード)98aは、第1めっき電源114aの陽極に、カソード接点88は第1めっき電源114aの陰極にそれぞれ電気的に接続され、リング状アノード(分割アノード)98bは、第2めっき電源114bの陽極に、カソード接点88は第2めっき電源114bの陰極にそれぞれ電気的に接続されるようになっている。これにより、円板状アノード98aとカソード接点88との間、つまり基板Wの表面に形成したシード層(導電層)7(図22参照)の中央部を流れる電流と、リング状アノード98bとカソード接点88との間、つまり基板Wの表面に形成したシード層(導電層)7(図22参照)の周辺部を流れる電流とを個別に調整できるようになっている。   In this example, the disc-shaped anode (divided anode) 98a is electrically connected to the anode of the first plating power source 114a, and the cathode contact 88 is electrically connected to the cathode of the first plating power source 114a. 98b is electrically connected to the anode of the second plating power source 114b, and the cathode contact 88 is electrically connected to the cathode of the second plating power source 114b. As a result, the current flowing between the disc-shaped anode 98a and the cathode contact 88, that is, the center of the seed layer (conductive layer) 7 (see FIG. 22) formed on the surface of the substrate W, the ring-shaped anode 98b and the cathode The current flowing between the contacts 88, that is, the peripheral portion of the seed layer (conductive layer) 7 (see FIG. 22) formed on the surface of the substrate W can be individually adjusted.

なお、共通のめっき電源を使用して、円板状アノード98aとカソード接点88との間を流れる電流と、リング状アノード98bとカソード接点88との間を流れる電流とを個別に調整するようにしてもよい。   A common plating power source is used to individually adjust the current flowing between the disc-shaped anode 98a and the cathode contact 88 and the current flowing between the ring-shaped anode 98b and the cathode contact 88. May be.

そして、基板保持部36がめっき位置B(図3参照)にある時に、基板保持部36で保持した基板Wと多孔質構造体110との隙間が、例えば0.5〜3mm程度となるまで電極ヘッド28を下降させる。この状態で、基板Wと多孔質構造体110との領域にめっき液注入部104からめっき液を注入してめっき液で満たし、このめっき液を基板Wとシール材90で区画された領域に溜めてめっき処理を行う。   Then, when the substrate holding portion 36 is at the plating position B (see FIG. 3), the electrode is used until the gap between the substrate W held by the substrate holding portion 36 and the porous structure 110 becomes, for example, about 0.5 to 3 mm. The head 28 is lowered. In this state, the plating solution is injected into the region between the substrate W and the porous structure 110 from the plating solution injection unit 104 and filled with the plating solution, and this plating solution is stored in the region partitioned by the substrate W and the sealing material 90. Plating.

次に、この実施の形態の電解めっき装置12を備えた基板処理装置の操作について説明する。
先ず、ロード・アンロード部10からめっき処理前の基板Wを搬送ロボット14で取出し、表面(被めっき面)を上向きにした状態で、フレームの側面に設けられた基板搬出入口から一方の電解めっき装置12の内部に搬送する。この時、基板保持部36は、下方の基板受渡し位置Aにあり、搬送ロボット14は、そのハンドが基板ステージ68の真上に到達した後に、ハンドを下降させることで、基板Wを支持腕70上に載置する。そして、搬送ロボット14のハンドを、前記基板搬出入口を通って退去させる。
Next, the operation of the substrate processing apparatus provided with the electrolytic plating apparatus 12 of this embodiment will be described.
First, the substrate W before plating processing is taken out from the loading / unloading unit 10 by the transfer robot 14, and one surface is electroplated from the substrate loading / unloading port provided on the side surface of the frame with the surface (surface to be plated) facing upward. It is conveyed inside the device 12. At this time, the substrate holding unit 36 is at the lower substrate delivery position A, and the transport robot 14 lowers the hand after the hand reaches just above the substrate stage 68, thereby supporting the substrate W on the support arm 70. Place on top. Then, the hand of the transfer robot 14 is retreated through the substrate carry-in / out entrance.

搬送ロボット14のハンドの退去が完了した後、飛散防止カップ40を上昇させ、同時に基板受渡し位置Aにあった基板保持部36を前処理・洗浄位置Cに上昇させる。この時、この上昇に伴って、支持腕70上に載置された基板は、位置決め板72と押付け片74で位置決めされ、チャック爪76で確実に把持される。   After the removal of the hand of the transfer robot 14 is completed, the anti-scattering cup 40 is raised, and at the same time, the substrate holding part 36 that was in the substrate delivery position A is raised to the pretreatment / cleaning position C. At this time, with this rise, the substrate placed on the support arm 70 is positioned by the positioning plate 72 and the pressing piece 74 and is securely gripped by the chuck claws 76.

一方、電極アーム部30の電極ヘッド28は、この時点ではめっき液トレー22上の通常位置にあって、多孔質構造体110またはアノード98がめっき液トレー22内に位置しており、この状態で、飛散防止カップ40の上昇と同時に、めっき液トレー22及び電極ヘッド28にめっき液の供給を開始する。そして、基板のめっき工程に移るまで、新しいめっき液を供給し、併せてめっき液排出管106を通じためっき液の吸引を行って、多孔質構造体110に含まれるめっき液の交換と泡抜きを行う。なお、飛散防止カップ40の上昇が完了すると、フレーム側面の基板搬出入口は飛散防止カップ40で塞がれて閉じ、フレーム内外の雰囲気が遮断状態となる。   On the other hand, the electrode head 28 of the electrode arm unit 30 is at a normal position on the plating solution tray 22 at this point, and the porous structure 110 or the anode 98 is located in the plating solution tray 22. Simultaneously with the rising of the anti-scattering cup 40, supply of the plating solution to the plating solution tray 22 and the electrode head 28 is started. Then, until the substrate plating process is started, a new plating solution is supplied, and at the same time, the plating solution is sucked through the plating solution discharge pipe 106 to replace the plating solution contained in the porous structure 110 and remove bubbles. Do. When the raising of the scattering prevention cup 40 is completed, the substrate carry-in / out entrance on the side of the frame is closed and closed by the scattering prevention cup 40, and the atmosphere inside and outside the frame is cut off.

飛散防止カップ40が上昇するとプレコート処理に移る。即ち、基板Wを受取った基板保持部36を回転させ、待避位置にあったプレコート・回収アーム32を基板と対峙する位置へ移動させる。そして、基板保持部36の回転速度が設定値に到達したところで、プレコート・回収アーム32の先端に設けられたプレコートノズル64から、例えば界面活性剤からなるプレコート液を基板の表面(被めっき面)に間欠的に吐出する。この時、基板保持部36が回転しているため、プレコート液は基板Wの表面の全面に行き渡る。次に、プレコート・回収アーム32を待避位置へ戻し、基板保持部36の回転速度を増して、遠心力により基板Wの被めっき面のプレコート液を振り切って乾燥させる。   When the anti-scattering cup 40 rises, the precoat process is started. That is, the substrate holding part 36 that has received the substrate W is rotated, and the precoat / collection arm 32 that has been in the retracted position is moved to a position facing the substrate. When the rotational speed of the substrate holding unit 36 reaches a set value, a precoat liquid made of, for example, a surfactant is applied to the surface of the substrate (surface to be plated) from a precoat nozzle 64 provided at the tip of the precoat / collection arm 32. Discharge intermittently. At this time, since the substrate holding part 36 is rotating, the precoat liquid spreads over the entire surface of the substrate W. Next, the precoat / collection arm 32 is returned to the retracted position, the rotational speed of the substrate holding part 36 is increased, and the precoat liquid on the surface to be plated of the substrate W is shaken off and dried by centrifugal force.

プレコート完了後にめっき処理に移る。先ず、基板保持部36を、この回転を停止、若しくは回転速度をめっき時速度まで低下させた状態で、めっきを施すめっき位置Bまで上昇させる。すると、基板Wの周縁部は、カソード接点88に接触して通電可能な状態となり、同時に基板Wの周縁部上面にシール材90が圧接して、基板Wの周縁部が水密的にシールされる。   After pre-coating is completed, the process proceeds to plating. First, the substrate holding unit 36 is raised to the plating position B where plating is performed in a state where the rotation is stopped or the rotation speed is reduced to the plating speed. Then, the peripheral portion of the substrate W comes into contact with the cathode contact 88 and can be energized. At the same time, the sealing material 90 is pressed against the upper surface of the peripheral portion of the substrate W, and the peripheral portion of the substrate W is sealed watertight. .

一方、搬入された基板Wのプレコート処理が完了したという信号に基づいて、電極アーム部30をめっき液トレー22上方からめっき処理を施す位置の上方に電極ヘッド28が位置するように水平方向に旋回させ、しかる後、電極ヘッド28をカソード部38に向かって下降させる。この時、多孔質構造体110を基板Wの表面に接触することなく、0.5mm〜3mm程度に近接した位置とする。そして、めっき液注入部104から基板Wと多孔質構造体110との間の領域にめっき液を注入して該領域をめっき液で満たす。   On the other hand, based on the signal that the precoat process of the loaded substrate W has been completed, the electrode arm unit 30 is swung horizontally from above the plating solution tray 22 so that the electrode head 28 is positioned above the position where the plating process is performed. After that, the electrode head 28 is lowered toward the cathode portion 38. At this time, the porous structure 110 is brought into a position close to about 0.5 mm to 3 mm without contacting the surface of the substrate W. Then, the plating solution is injected from the plating solution injection unit 104 into the region between the substrate W and the porous structure 110 to fill the region with the plating solution.

この状態で、図13に示すように、めっき初期(t〜t)にあっては、カソード接点88と中央部に位置する円板状アノード98aとの間に、基板の中央部の導電層(シード層7)に対する平均陰極電極密度がAとなるように、めっき電源114aから第1の電流を流し、カソード接点88と外周部に位置するリング状アノード98bとの間には、基板の外周部の導電層(シード層7)に対する平均陰極電極密度がAとなるように、めっき電源114bから第1の電流を流す。この時、基板中央部における平均陰極電極密度がAの方が、基板外周部における平均陰極電極密度がAより高く(A>A)なるようにする。 In this state, as shown in FIG. 13, at the initial stage of plating (t 1 to t 2 ), the conductivity of the central portion of the substrate is between the cathode contact 88 and the disc-shaped anode 98 a located at the central portion. A first current is supplied from the plating power source 114a so that the average cathode electrode density with respect to the layer (seed layer 7) is A1, and the substrate is interposed between the cathode contact 88 and the ring-shaped anode 98b located on the outer periphery. the average cathode density for conductive layer of the outer peripheral portion (a seed layer 7) of such that the a 2, flows a first current from the plating power source 114b. At this time, the average cathode density at the central portion of the substrate is more of A 1 is the average cathode density at the substrate peripheral portion is higher than A 2 (A 1> A 2 ) so as to.

これにより、基板外周部にめっき電流が集中することを防止して基板の中央部側にもめっき電流が流れるようにし、これによって、より高いシート抵抗をもつ基板に対しても、基板表面のシート抵抗による電流密度の面内差を小さくして、より均一な膜厚のめっき膜を確実に形成することができる。しかも、分割アノード98a,98bの間に仕切り板150を配置し、この仕切り板150の上端面とハウジング94の天井壁下面との間、及び仕切り板150の下端面と多孔質構造体110の上面との間にゴムまたはテフロン(登録商標)等のシールリング154a,154bを介装してシールすることで、各分割アノード98a,98bのそれぞれの電場がめっき液を通して互いに干渉してしまうことを防止して、分割アノード98a,98bを用いた効果が薄れてしまうことを防止することができる。   This prevents the plating current from concentrating on the outer periphery of the substrate and allows the plating current to flow also to the central portion side of the substrate, thereby enabling the sheet on the surface of the substrate even for a substrate having a higher sheet resistance. By reducing the in-plane difference in current density due to resistance, a plating film having a more uniform film thickness can be reliably formed. In addition, a partition plate 150 is disposed between the divided anodes 98 a and 98 b, between the upper end surface of the partition plate 150 and the lower surface of the ceiling wall of the housing 94, and the lower end surface of the partition plate 150 and the upper surface of the porous structure 110. By interposing seal rings 154a and 154b such as rubber or Teflon (registered trademark) between them, the electric fields of the divided anodes 98a and 98b are prevented from interfering with each other through the plating solution. As a result, it is possible to prevent the effect of using the divided anodes 98a and 98b from fading.

そして、めっき中期(t〜t)にあっては、カソード接点88と中央部に位置する円板状アノード98aとの間に、基板の中央部の導電層(シード層7)に対する平均陰極電極密度がA(=A)となるように、めっき電源114aから第2の電流を流し、カソード接点88と外周部に位置するリング状アノード98bとの間には、基板の外周部の導電層(シード層7)に対する平均陰極電極密度が引き続きAとなるようにめっき電源114bから第2の電流を流す。これによって、基板の全面にほぼ均一のめっき速度でめっき膜を成膜する。 In the middle stage of plating (t 2 to t 3 ), an average cathode for the conductive layer (seed layer 7) in the central portion of the substrate between the cathode contact 88 and the disc-shaped anode 98a located in the central portion. A second current is passed from the plating power source 114a so that the electrode density becomes A 3 (= A 2 ), and the outer periphery of the substrate is between the cathode contact 88 and the ring-shaped anode 98b located on the outer periphery. A second current is passed from the plating power supply 114b such that the average cathode electrode density for the conductive layer (seed layer 7) continues to be A2. As a result, a plating film is formed on the entire surface of the substrate at a substantially uniform plating rate.

めっき後期(t〜t)にあっては、カソード接点88と中央部に位置する円板状アノード98aとの間、及びカソード接点88と外周部に位置するリング状アノード98bとの間に、基板の導電層(シード層7)に対する平均陰極電極密度が共にA(>A=A)となるように、めっき電源114a,114bから第2の電流より高い第3の電流を流す。これによって、基板の全面に、ほぼ均一なより早いめっき速度でめっき膜を成膜する。 In the late stage of plating (t 3 to t 4 ), between the cathode contact 88 and the disc-shaped anode 98a located at the center, and between the cathode contact 88 and the ring-shaped anode 98b located at the outer periphery. A third current higher than the second current is supplied from the plating power sources 114a and 114b so that the average cathode electrode density with respect to the conductive layer (seed layer 7) of the substrate is both A 4 (> A 2 = A 3 ). . Thereby, a plating film is formed on the entire surface of the substrate at a substantially uniform higher plating rate.

これにより、図14に示すように、めっき初期に基板の表面に均一な膜厚のめっき膜を成膜し、めっき中期から後期にかけて、めっき膜を膜厚が均一なまま、均一なめっき速度で成長させて、表面が均一な、目標の膜厚を持っためっき膜を得ることができる。   As a result, as shown in FIG. 14, a plating film having a uniform film thickness is formed on the surface of the substrate at the initial stage of plating, and the plating film is kept at a uniform plating speed from the middle stage to the latter stage while the film thickness is uniform. By growing it, a plating film having a uniform surface and a target film thickness can be obtained.

ここで、めっき初期(t〜t)に、基板の中央部の導電層(シード層7)に対する平均陰極電極密度Aが、40mA/cm以上で60mA/cm以下(60>A>40(mA/cm))とるように、カソード接点88と中央部に位置する円板状アノード98aとの間に高い第1の電流を流し、めっき中期(t〜t)に、基板の中央部の導電層(シード層7)に対する平均陰極電極密度Aが、40mA/cm以下の、例えば10mA/cm(A=10mA/cm)となるように、第1の電流より低い第2の電流を流すことが好ましい。 Here, the plating initial (t 1 ~t 2), the average cathode density A 1 to the conductive layer of the central portion of the substrate (seed layer 7), 40 mA / cm 2 or more at 60 mA / cm 2 or less (60> A 1 > 40 (mA / cm 2 )), a high first current is allowed to flow between the cathode contact 88 and the disc-shaped anode 98a located in the center, and during the middle plating period (t 2 to t 3 ). The first cathode electrode density A 3 with respect to the conductive layer (seed layer 7) in the center of the substrate is 40 mA / cm 2 or less, for example, 10 mA / cm 2 (A 3 = 10 mA / cm 2 ). It is preferable to pass a second current lower than the current.

これにより、カソード接点88から距離のある基板中心部までも細かい結晶粒子のめっき膜を成膜して、光沢のある膜質の良いめっき膜を基板の全面に亘って成膜することができる。これ以降のめっき後期(t〜t)にあっては、めっき初期の電流密度より高い電流を流しても問題はない。 As a result, a plated film of fine crystal particles can be formed from the cathode contact 88 to the center of the substrate at a distance, and a plated film having a glossy and good quality can be formed over the entire surface of the substrate. In the later plating period (t 3 to t 4 ) thereafter, there is no problem even if a current higher than the current density at the initial stage of plating is passed.

めっき初期(t〜t)は、例えば、めっき開始後5000msec以内、好ましくは、めっきを開始した後、0〜3000msec経過するまでの間である。このように、めっき初期の時間に幅を持たせることにより、種々の微細電気回路パターンに対して優れた埋め込み性を得ることができる。めっき開始後5000msec以内、好ましくは、めっきを開始した後、0〜3000msec経過するまでの間に、基板の導電層に対する平均陰極電流密度が40mA/cm以上で60mA/cm以下の電流を複数回流すようにしても良い。 The initial plating period (t 1 to t 2 ) is, for example, within 5000 msec after the start of plating, and preferably from 0 to 3000 msec after the start of plating. Thus, by providing a range in the initial plating time, excellent embedding properties can be obtained for various fine electric circuit patterns. Within the plating after the start 5000 msec, preferably, after the start of the plating and before lapse 0~3000Msec, a plurality of 60 mA / cm 2 or less of the current at an average cathode current density to the conductive layer of the substrate is 40 mA / cm 2 or more You may make it flow around.

この例では、基板Wと多孔質構造体110との間の領域にめっき液を注入して該領域をめっき液で満たした後に、カソード接点88とアノード98との間に電圧を印加してめっきを開始する、いわゆるコールドエントリーを採用しているが、カソード接点88とアノード98との間に電圧を印加しながら、基板Wと多孔質構造体110との間の領域にめっき液を注入してめっきを開始する、いわゆるホットエントリーを採用しても良い。また、めっき初期に、カソード接点88と周辺部に位置するリング状アノード(分割アノード)98bとの間に電流を流さないようにしてよい。   In this example, a plating solution is injected into a region between the substrate W and the porous structure 110 to fill the region with the plating solution, and then a voltage is applied between the cathode contact 88 and the anode 98 to perform plating. The so-called cold entry is used, but a plating solution is injected into the region between the substrate W and the porous structure 110 while applying a voltage between the cathode contact 88 and the anode 98. You may employ | adopt what is called hot entry which starts metal plating. Further, at the initial stage of plating, no current may flow between the cathode contact 88 and the ring-shaped anode (divided anode) 98b located in the peripheral portion.

めっき処理が完了すると、電極アーム部30を上昇させ旋回させてめっき液トレー22上方へ戻し、通常位置へ下降させる。次に、プレコート・回収アーム32を待避位置から基板Wに対峙する位置へ移動させて下降させ、めっき液回収ノズル66から基板W上のめっき液の残液を回収する。この残液の回収が終了した後、プレコート・回収アーム32を待避位置へ戻し、基板めっき面のリンスのために、純水用の固定ノズル34から基板Wの中央部に純水を吐出し、同時に基板保持部36をスピードを増して回転させて基板Wの表面のめっき液を純水に置換する。このように、基板Wのリンスを行うことで、基板保持部36をめっき位置Bから下降させる際に、めっき液が跳ねて、カソード部38のカソード接点88が汚染されることが防止される。   When the plating process is completed, the electrode arm part 30 is raised and turned to return to the upper part of the plating solution tray 22 and lowered to the normal position. Next, the precoat / recovery arm 32 is moved from the retracted position to a position facing the substrate W and lowered, and the plating solution remaining solution on the substrate W is recovered from the plating solution recovery nozzle 66. After the collection of the residual liquid is completed, the precoat / collection arm 32 is returned to the retracted position, and pure water is discharged from the fixed nozzle 34 for pure water to the central portion of the substrate W in order to rinse the substrate plating surface. At the same time, the substrate holder 36 is rotated at an increased speed to replace the plating solution on the surface of the substrate W with pure water. Thus, by rinsing the substrate W, when the substrate holding part 36 is lowered from the plating position B, the plating solution is prevented from splashing and the cathode contact 88 of the cathode part 38 is prevented from being contaminated.

リンス終了後に水洗工程に入る。即ち、基板保持部36をめっき位置Bから前処理・洗浄位置Cへ下降させ、純水用の固定ノズル34から純水を供給しつつ基板保持部36及びカソード部38を回転させて水洗を実施する。この時、カソード部38に直接供給した純水、又は基板Wの面から飛散した純水によってシール材90及びカソード接点88も基板Wと同時に洗浄することができる。   After rinsing, the water washing process is started. That is, the substrate holding part 36 is lowered from the plating position B to the pretreatment / cleaning position C, and the substrate holding part 36 and the cathode part 38 are rotated while supplying pure water from the fixed nozzle 34 for pure water, and water washing is performed. To do. At this time, the sealing material 90 and the cathode contact 88 can also be cleaned simultaneously with the substrate W by pure water directly supplied to the cathode portion 38 or pure water scattered from the surface of the substrate W.

水洗完了後にドライ工程に入る。即ち、固定ノズル34からの純水の供給を停止し、更に基板保持部36及びカソード部38の回転スピードを増して、遠心力により基板表面の純水を振り切って乾燥させる。併せて、シール材90及びカソード接点88も乾燥される。ドライ工程が完了すると基板保持部36及びカソード部38の回転を停止させ、基板保持部36を基板受渡し位置Aまで下降させる。すると、チャック爪76による基板Wの把持が解かれ、基板Wは、支持腕70の上面に載置された状態となる。これと同時に、飛散防止カップ40も下降させる。   After the water washing is completed, the drying process is started. That is, the supply of pure water from the fixed nozzle 34 is stopped, the rotation speed of the substrate holding part 36 and the cathode part 38 is increased, and the pure water on the substrate surface is shaken off by the centrifugal force and dried. At the same time, the sealing material 90 and the cathode contact 88 are also dried. When the drying process is completed, the rotation of the substrate holding part 36 and the cathode part 38 is stopped, and the substrate holding part 36 is lowered to the substrate delivery position A. Then, the grip of the substrate W by the chuck claws 76 is released, and the substrate W is placed on the upper surface of the support arm 70. At the same time, the splash prevention cup 40 is also lowered.

以上でめっき処理及びそれに付帯する前処理や洗浄・乾燥工程の全て工程を終了し、搬送ロボット14は、そのハンドを基板搬出入口から基板Wの下方に挿入し、そのまま上昇させることで、基板保持部36から処理後の基板Wを受取る。そして、搬送ロボット14は、この基板保持部36から受取った処理後の基板Wをロード・アンロード部10に戻す。   Thus, the plating process and all the pre-processing and cleaning / drying processes incidental thereto are completed, and the transfer robot 14 inserts the hand into the lower part of the substrate W from the substrate loading / unloading port and lifts the substrate as it is, thereby holding the substrate. The processed substrate W is received from the unit 36. Then, the transfer robot 14 returns the processed substrate W received from the substrate holding unit 36 to the load / unload unit 10.

なお、上記の例では、多孔質構造体110として、圧力損失が1500kPa、または見掛気孔率が10%で、抵抗率が1.0×10Ω・cmの炭化ケイ素製のものを使用した例を示しているが、圧力損失が500kPa以上、好ましくは1000kPa以上、更に好ましくは1500kPa以上、または見掛気孔率が19%以下、好ましくは15%以下、更に好ましくは10%以下で、抵抗率が、好ましくは1.0×10Ω・cm以上に調整した炭化ケイ素等の任意のもの、または、かさ比重及び吸水率の少なくとも一つを調整した任意のものを使用し、カソード接点88とアノード98との間に電圧を印加して、めっきを行うようにしてもよい。これにより、基板の表面における電場の状態が所望の状態になるようにして、電解めっき等の電解処理を行って、基板の表面の電解処理による処理状態を目的とする処理状態とすることができる。 In the above example, the porous structure 110 is made of silicon carbide having a pressure loss of 1500 kPa, an apparent porosity of 10%, and a resistivity of 1.0 × 10 6 Ω · cm. For example, the pressure loss is 500 kPa or more, preferably 1000 kPa or more, more preferably 1500 kPa or more, or the apparent porosity is 19% or less, preferably 15% or less, more preferably 10% or less. However, it is preferable to use any one such as silicon carbide adjusted to 1.0 × 10 5 Ω · cm or more, or any one adjusted at least one of bulk specific gravity and water absorption, Plating may be performed by applying a voltage between the anode 98 and the anode 98. As a result, the state of the electric field on the surface of the substrate becomes a desired state, and an electrolytic treatment such as electrolytic plating is performed, so that the treatment state by the electrolytic treatment of the surface of the substrate can be set as a target treatment state. .

また、多孔質構造体110として、内部をめっき液(電解液)で満たした状態での上下両面間における多孔質構造体110の全体の電気抵抗値A(Ω)が基板Wの表面のシード層(導電層)7のシート抵抗(電気抵抗)値B(Ω/□)に対して0.02倍以上(A/B≧0.02)に調整したものを使用してもよい。   Further, as the porous structure 110, the entire electrical resistance value A (Ω) of the porous structure 110 between the upper and lower surfaces in a state where the inside is filled with a plating solution (electrolytic solution) is a seed layer on the surface of the substrate W. You may use what was adjusted to 0.02 times or more (A / B> = 0.02) with respect to the sheet resistance (electrical resistance) value B ((omega | ohm) / square) of (conductive layer) 7.

図15は、カソード接点88とアノード98との間に流すめっき電流とめっき時間の他の関係を示すグラフである。
つまり、めっき初期(t〜t)にあっては、カソード接点88と中央部に位置する円板状アノード98aとの間に、基板の中央部の導電層(シード層7)に対する平均陰極電極密度がAとなるように、めっき電源114aから第1の電流を流し、カソード接点88と外周部に位置するリング状アノード98bとの間には電流を流さない。
FIG. 15 is a graph showing another relationship between the plating current flowing between the cathode contact 88 and the anode 98 and the plating time.
That is, in the initial plating period (t 5 to t 6 ), the average cathode for the conductive layer (seed layer 7) in the central portion of the substrate between the cathode contact 88 and the disc-shaped anode 98a located in the central portion. as the electrode density is a 5, passing a first current from the plating power source 114a, no current flows between the ring-shaped anode 98b located cathode contacts 88 and the outer peripheral portion.

そして、めっき中期から後期(t〜t)にあっては、カソード接点88と中央部に位置する円板状アノード98aとの間に、基板の中央部の導電層(シード層7)に対する平均陰極電極密度がA(<A)となるように、めっき電源114aから第1の電流より低い第2の電流を流す。同時に、カソード接点88と外周部に位置するリング状アノード98bとの間には、基板の外周部の導電層(シード層7)に対する平均陰極電極密度がA(A<A<A)なるように、めっき電源114bから、めっき初期(t〜t)にカソード接点88と中央部に位置する円板状アノード98aとの間に流す第1の電流より低く、かつめっき中期から後期(t〜t)にカソード接点88と中央部に位置する円板状アノード98aとの間に流す第2の電流より高い電流を流す。 From the middle stage to the later stage (t 6 to t 7 ), the conductive layer (seed layer 7) in the central part of the substrate is interposed between the cathode contact 88 and the disc-shaped anode 98a located in the central part. A second current lower than the first current is supplied from the plating power source 114a so that the average cathode electrode density becomes A 6 (<A 5 ). At the same time, the average cathode electrode density with respect to the conductive layer (seed layer 7) on the outer peripheral portion of the substrate is A 9 (A 8 <A 9 <A 7 ) between the cathode contact 88 and the ring-shaped anode 98b located on the outer peripheral portion. ) so as to, from the plating power source 114b, the plating initial (t 5 ~t 6) to lower than the first current to flow between the disk-shaped anode 98a positioned at the center and the cathode contact 88, and the plating medium term In the latter period (t 7 to t 8 ), a current higher than the second current that flows between the cathode contact 88 and the disc-shaped anode 98a located in the center is passed.

これによって、めっき初期に、基板の周縁部にめっき膜が成膜されるのを極力防止しつつ、基板の中央部にもめっき膜が成膜し、めっき中期から後期にかけては、基板の中央部と周辺部に成膜されるめっき膜のめっき速度が等しくなり、より面内均一性の優れためっき膜を成膜することができる。   This prevents a plating film from being formed on the peripheral edge of the substrate as much as possible in the initial stage of plating, and also forms a plating film in the central portion of the substrate. Thus, the plating rate of the plating film formed on the peripheral portion becomes equal, and a plating film with better in-plane uniformity can be formed.

なお、前述と同様に、めっき初期(t〜t)に、基板の中央部の導電層(シード層7)に対する平均陰極電極密度Aが、40mA/cm以上60mA/cm以下(60>A>40(mA/cm))とるように、カソード接点88と中央部に位置する円板状アノード98aとの間に高い第1の電流を流すことが好ましい。また、めっき初期(t〜t)は、例えば、めっき開始後5000msec以内、好ましくは、めっきを開始した後、0〜3000msec経過するまでの間である。 Similarly to the above, the plating initial (t 5 ~t 6), the average cathode density A 7 to the conductive layer of the central portion of the substrate (seed layer 7), 40 mA / cm 2 or more 60 mA / cm 2 or less ( 60> A 1 > 40 (mA / cm 2 )), it is preferable to pass a high first current between the cathode contact 88 and the disc-shaped anode 98a located in the center. In addition, the initial plating period (t 5 to t 7 ) is, for example, within 5000 msec after the start of plating, and preferably from 0 to 3000 msec after the start of plating.

直径が150mmの円板状カソード98aを使用し、図15に示す条件(レシピ)で、300mmウエハに成膜した、シード層としてのルテニウム膜(導電層)の表面に銅膜を成膜した時のウエハ(基板)位置と銅膜の膜厚との関係を図16に実線で示す。なお、図16において、参考のため、通常の条件、つまり分割カソードを使用することなく、一枚板からなるカソードとルテニウム膜とを互いに対峙させ、めっき液の存在下で、カソードとルテニウム膜との間に一定電流を所定時間流して該ルテニウム膜の表面に銅膜を成膜した時のウエハ位置と銅膜の膜厚との関係を波線で示している。   When a disk-shaped cathode 98a having a diameter of 150 mm is used and a copper film is formed on the surface of a ruthenium film (conductive layer) as a seed layer formed on a 300 mm wafer under the conditions (recipe) shown in FIG. The relationship between the wafer (substrate) position and the film thickness of the copper film is shown by a solid line in FIG. In FIG. 16, for reference, the cathode and ruthenium film made of a single plate are opposed to each other under normal conditions, that is, without using a split cathode, and in the presence of the plating solution, The relationship between the wafer position and the copper film thickness when a copper film is formed on the surface of the ruthenium film by supplying a constant current for a predetermined time is indicated by a broken line.

この図16から、300mmウエハのルテニウム膜の表面に、通常の条件で銅めっきを行うと、ターミナルエフェクトによって、周縁部の膜厚が中央部の膜厚より厚い銅膜が成膜されるが、この例によれば、面内均一性の高い銅膜を成膜できることが判る。   From FIG. 16, when copper plating is performed on the surface of the ruthenium film of a 300 mm wafer under normal conditions, a copper film having a thicker peripheral part than the central part is formed by the terminal effect. According to this example, it can be seen that a copper film with high in-plane uniformity can be formed.

直径が150mmの円板状カソード98aを使用し、300mmウエハに成膜した、シード層としてのルテニウム膜(導電層)の表面に、カソード接点88と外周部に位置するリング状アノード98bとの間にはめっき電流を流すことなく、カソード接点88と中央部に位置する円板状アノード98aとの間にのみめっき電流を流して初期銅めっきを行った時のウエハ(基板)位置と銅膜の膜厚の関係を図17に(●)で示す。なお、参考として、仕切り板150の上端面とハウジング94の天井壁下面との間、及び仕切り板150の下端面と多孔質構造体110の上面との間のシールリング154a,154bを除いて、上記と同様に初期銅めっきを行った時のウエハ(基板)位置と銅膜の膜厚の関係を図17に(×)で示している。   A disc-shaped cathode 98a having a diameter of 150 mm is used, and a surface of a ruthenium film (conductive layer) as a seed layer formed on a 300 mm wafer is disposed between the cathode contact 88 and the ring-shaped anode 98b located on the outer peripheral portion. The wafer (substrate) position and the copper film position when the initial copper plating was performed by flowing the plating current only between the cathode contact 88 and the disc-shaped anode 98a located at the center without passing the plating current. The relationship of the film thickness is shown by (●) in FIG. For reference, except for the seal rings 154a and 154b between the upper end surface of the partition plate 150 and the lower surface of the ceiling wall of the housing 94 and between the lower end surface of the partition plate 150 and the upper surface of the porous structure 110, The relationship between the wafer (substrate) position and the film thickness of the copper film when initial copper plating is performed in the same manner as described above is indicated by (x) in FIG.

この図17から、仕切り板150の上端面とハウジング94の天井壁下面との間、及び仕切り板150の下端面と多孔質構造体110の上面との間にシールリング154a,154bを介在させ、仕切り板150の上端面とハウジング94の天井壁下面との間、及び仕切り板150の下端面と多孔質構造体110の上面との間をシールリング154a,154bでシールしてめっき液の流通を確実に阻止することにより、初期めっきで基板の中央部に選択的に銅膜を成膜でき、これによって、分割アノード98a,98bを用いた効果を最大限に発揮させ得ることが判る。   From FIG. 17, seal rings 154a and 154b are interposed between the upper end surface of the partition plate 150 and the lower surface of the ceiling wall of the housing 94, and between the lower end surface of the partition plate 150 and the upper surface of the porous structure 110, Sealing between the upper end surface of the partition plate 150 and the lower surface of the ceiling wall of the housing 94 and between the lower end surface of the partition plate 150 and the upper surface of the porous structure 110 with seal rings 154a and 154b allows the plating solution to flow. It can be seen that by reliably blocking, a copper film can be selectively formed in the central portion of the substrate by the initial plating, whereby the effect of using the divided anodes 98a and 98b can be maximized.

なお、例えば仕切り板150の上端面をハウジング94の天井壁下面に、仕切り板150の下端面と多孔質構造体110の上面にそれぞれ圧接させて、仕切り板150の上端面とハウジング94の天井壁下面との間、及び仕切り板150の下端面と多孔質構造体110の上面との間をシールできる場合には、シールリングは必ずしも必要ではないことは勿論である。   For example, the upper end surface of the partition plate 150 is brought into pressure contact with the lower surface of the ceiling wall of the housing 94, and the lower end surface of the partition plate 150 and the upper surface of the porous structure 110, respectively. Needless to say, the seal ring is not necessarily required when the gap between the lower surface and the lower end surface of the partition plate 150 and the upper surface of the porous structure 110 can be sealed.

図18は、他の電解めっき装置の電極ヘッド及び基板保持部で保持した基板を概略的に示す電解めっき時における断面図である。この図18に示す電解めっき装置と、前述の図2乃至図12に示す電解めっき装置12と異なる点は、めっき液室100内に仕切り板150を設けることなく、めっき液室100の内部に、円板状のアノード98を配置し、更に、アノード98とカソード接点88との間に、めっき電源114からめっき電圧を印加するとともに、めっき液室100内のめっき液をめっき液排出口103から外部に排出するようにした点にある。その他の構成は、前述の図2乃至図12に示す電解めっき装置12とほぼ同様である。   FIG. 18 is a cross-sectional view during electrolytic plating schematically showing a substrate held by an electrode head and a substrate holding part of another electrolytic plating apparatus. The electrolytic plating apparatus shown in FIG. 18 and the electrolytic plating apparatus 12 shown in FIGS. 2 to 12 described above are different from the electrolytic plating apparatus 12 shown in FIG. 2 to FIG. A disc-shaped anode 98 is disposed, and a plating voltage is applied from the plating power source 114 between the anode 98 and the cathode contact 88, and the plating solution in the plating solution chamber 100 is externally supplied from the plating solution discharge port 103. It is in the point which made it discharge to. Other configurations are substantially the same as those of the electroplating apparatus 12 shown in FIGS.

この図18に示す電解めっき装置を使用して、図19(a)に示すように、めっき初期から中期(t〜t10)に、基板の導電層(シード層7)に対する平均陰極電極密度A10が、通常の、例えば10mA/cm(A10=10mA/cm)とるように、めっき後期(t10〜t11)には、基板の導電層(シード層7)に対する平均陰極電極密度A11が、めっき初期から中期の平均陰極電極密度A10よりも高く(A11>A10)なるように、カソード接点88とアノード98との間にめっき電流を流して、ルテニウム膜からなるシード層7の表面にめっきを行った。この時、図20(a)に示すように、ルテニウム膜の表面に成膜されためっき膜の周縁部に曇り(Haze)Hが見られた。 Using the electrolytic plating apparatus shown in FIG. 18, as shown in FIG. 19A, the average cathode electrode density with respect to the conductive layer (seed layer 7) of the substrate from the initial plating stage to the middle stage (t 8 to t 10 ). a 10 is, usually, to take for example 10mA / cm 2 (a 10 = 10mA / cm 2), the plating later (t 10 ~t 11), the average cathode to the conductive layer of the substrate (seed layer 7) A ruthenium film is formed by flowing a plating current between the cathode contact 88 and the anode 98 so that the density A 11 is higher than the average cathode electrode density A 10 from the initial stage to the middle stage (A 11 > A 10 ). The surface of the seed layer 7 was plated. At this time, as shown in FIG. 20A, cloudiness (Haze) H was observed at the peripheral portion of the plating film formed on the surface of the ruthenium film.

これに対して、図19(b)に示すように、めっき初期(t〜t)に、基板の導電層(シード層7)に対する平均陰極電極密度A12が、通常の、例えば10mA/cmより高い、例えば40mA/cm(A12≧40mA/cm)となり、めっき中期から後期(t〜t11)に、通常のめっき電流となるようにカソード接点88とアノード98との間にめっき電流を流して、ルテニウム膜からなるシード層7の表面にめっきを行った。この時、図20(b)に示すように、ルテニウム膜の表面に成膜されためっき膜の周縁部に曇り(Haze)は見られず、全面に亘る光沢面が得られたことが確かめられている。 In contrast, as shown in FIG. 19 (b), the plating initial (t 8 ~t 9), the average cathode density A 12 to the conductive layer of the substrate (seed layer 7), usually, for example, 10 mA / It becomes higher than cm 2 , for example, 40 mA / cm 2 (A 12 ≧ 40 mA / cm 2 ), and between the cathode contact 88 and the anode 98 so as to be a normal plating current from the middle stage of plating to the latter stage (t 9 to t 11 ). Plating was applied to the surface of the seed layer 7 made of a ruthenium film by passing a plating current therebetween. At this time, as shown in FIG. 20 (b), it was confirmed that no haze was observed at the peripheral portion of the plating film formed on the surface of the ruthenium film, and a glossy surface over the entire surface was obtained. ing.

めっき初期(t〜t)は、例えば、めっき開始後5000msec以内である。めっき開始後、5000msec以内に、基板の導電層に対する平均陰極電流密度が40mA/cm以上の電流を複数回流すようにしても良い。 Initial plating (t 8 ~t 9) is, for example, within the plating after the start 5000 msec. Within 5000 msec after the start of plating, a current having an average cathode current density of 40 mA / cm 2 or more with respect to the conductive layer of the substrate may be allowed to flow a plurality of times.

図21は、本発明の他の実施の形態の電解めっき装置を示す。この電解めっき装置は、上方に開口し内部にめっき液600を保持する円筒状のハウジング(めっき槽)602と、表面を下向きにして半導体ウエハ等の基板Wを着脱自在に保持して該基板Wをハウジング602の上端開口部を塞ぐ位置に配置する回転自在な基板保持部604とを有している。この例にあっては、基板Wは、基板保持部604に設けたカソード接点(図示せず)に接触して通電し、シール材(図示せず)で周縁部をシールされた状態で基板保持部604に保持される。   FIG. 21 shows an electroplating apparatus according to another embodiment of the present invention. This electrolytic plating apparatus has a cylindrical housing (plating tank) 602 that opens upward and holds a plating solution 600 therein, and a substrate W such as a semiconductor wafer that is detachably held with the surface facing downward. And a rotatable substrate holding part 604 disposed at a position closing the upper end opening of the housing 602. In this example, the substrate W is in contact with a cathode contact (not shown) provided on the substrate holding portion 604 and energized, and the substrate is held in a state where the peripheral portion is sealed with a sealing material (not shown). Held by the unit 604.

ハウジング602の上端開口部には、多孔質構造体632が配置され、これによって、ハウジング602の内部にめっき液室650が区画形成されている。めっき液室650は、円筒状の絶縁材からなる仕切り板652で、同心状の2つの部屋654a,654bに仕切られている。そして、仕切り板652の下端面とハウジング602の底壁上面との間、及び仕切り板652の上端面と多孔質構造体632の下面との間には、ゴムまたはテフロン(登録商標)等のシールリング656a,656bが介装されている。なお、ハウジング602と仕切り板652は、一体となっていても良い。   A porous structure 632 is disposed in the upper end opening of the housing 602, and thereby a plating solution chamber 650 is defined in the housing 602. The plating solution chamber 650 is partitioned into two concentric chambers 654a and 654b by a partition plate 652 made of a cylindrical insulating material. A seal such as rubber or Teflon (registered trademark) is provided between the lower end surface of the partition plate 652 and the upper surface of the bottom wall of the housing 602 and between the upper end surface of the partition plate 652 and the lower surface of the porous structure 632. Rings 656a and 656b are interposed. Note that the housing 602 and the partition plate 652 may be integrated.

めっき液室650内には、多孔質構造体632の下方に位置して、アノード606が水平に配置されている。このアノード606は、同心状に分割された、中央部の円板状アノード606aと周辺部のリング状アノード606bの2つの分割アノードから構成されている。そして、この円板状アノード(分割アノード)606aは、めっき液室650の中央に位置する部屋654a内に配置され、リング状アノード(分割アノード)606bは、めっき液室650の周囲に位置する部屋654b内に配置されている。このアノード606は、例えば銅の板あるいは、銅の球の集合体よりなる。   In the plating solution chamber 650, an anode 606 is disposed horizontally below the porous structure 632. The anode 606 is composed of two divided anodes, a central disk-shaped anode 606a and a peripheral ring-shaped anode 606b, which are concentrically divided. The disc-shaped anode (divided anode) 606a is arranged in a room 654a located in the center of the plating solution chamber 650, and the ring-shaped anode (divided anode) 606b is a room located around the plating solution chamber 650. 654b. The anode 606 is made of, for example, a copper plate or an aggregate of copper balls.

円板状アノード(分割アノード)606aは、第1めっき電源658aの陽極に、リング状アノード(分割アノード)606bは、第2めっき電源658bの陽極にそれぞれ電気的に接続され、これらのめっき電源658a,658bの陰極は、基板保持部604に設けたカソード接点(図示せず)にそれぞれ電気的に接続されるようになっている。   The disc-shaped anode (split anode) 606a is electrically connected to the anode of the first plating power source 658a, and the ring-shaped anode (split anode) 606b is electrically connected to the anode of the second plating power source 658b. , 658b are electrically connected to cathode contacts (not shown) provided on the substrate holding portion 604, respectively.

ハウジング602の底部は、内部にポンプ608を設置し、2つに分岐してめっき液室650の各部屋654a,654bにめっき液600を供給するめっき液供給管610a,610bにそれぞれ接続されている。ハウジング602の外側には、めっき液受け612が配置されている。更に、このめっき液受け612内に流入しためっき液は、めっき液戻り管614からポンプ608に戻されるようになっている。   The bottom of the housing 602 is provided with a pump 608 therein, and is connected to plating solution supply pipes 610a and 610b that branch into two and supply the plating solution 600 to the chambers 654a and 654b of the plating solution chamber 650, respectively. . A plating solution receiver 612 is disposed outside the housing 602. Further, the plating solution that has flowed into the plating solution receiver 612 is returned to the pump 608 from the plating solution return pipe 614.

これにより、ハウジング602の上部に基板Wを基板保持部604で下向きに保持して配置して回転させ、各分割アノード606a,606bと基板Wの導電層(シード層7)の間に所定の電圧を印加しつつ、ポンプ608を駆動してめっき液600をハウジング602内に導入することで、各分割アノード606a,606bと基板Wの導電層(シード層)の間にめっき電流を流して、基板Wの下面にめっき膜を形成するようにしている。この時、ハウジング602をオーバーフローしためっき液600は、めっき液受け612で回収されて循環する。
この例にあっても、前述と同様な制御を行うことで、基板の表面に均一な膜厚のめっき膜を成膜することができる。
As a result, the substrate W is disposed on the upper portion of the housing 602 while being held downward by the substrate holding portion 604 and rotated, and a predetermined voltage is applied between each divided anode 606a, 606b and the conductive layer (seed layer 7) of the substrate W. , While the pump 608 is driven to introduce the plating solution 600 into the housing 602, a plating current is caused to flow between each of the divided anodes 606 a and 606 b and the conductive layer (seed layer) of the substrate W. A plating film is formed on the lower surface of W. At this time, the plating solution 600 overflowing the housing 602 is collected by the plating solution receiver 612 and circulated.
Even in this example, a plating film having a uniform film thickness can be formed on the surface of the substrate by performing the same control as described above.

これまで本発明の実施の形態について説明したが、本発明は上述の実施の形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。例えば、本発明は、300mmのウエハのみではなく、次世代のウエハにも対応可能である。   Although the embodiments of the present invention have been described so far, it is needless to say that the present invention is not limited to the above-described embodiments, and may be implemented in various forms within the scope of the technical idea. For example, the present invention can be applied not only to a 300 mm wafer but also to a next generation wafer.

本発明の実施の形態の電解めっき装置を備えた基板処理装置の全体を示す平面図である。It is a top view which shows the whole substrate processing apparatus provided with the electrolytic plating apparatus of embodiment of this invention. 図1に示す電解めっき装置の平面図である。It is a top view of the electroplating apparatus shown in FIG. 図1に示す電解めっき装置の基板保持部及びカソード部の拡大断面図である。It is an expanded sectional view of the board | substrate holding | maintenance part and cathode part of the electroplating apparatus shown in FIG. 図1に示す電解めっき装置のプレコート・回収アームを示す正面図である。It is a front view which shows the precoat and collection | recovery arm of the electroplating apparatus shown in FIG. 図1に示す電解めっき装置の基板保持部の平面図である。It is a top view of the board | substrate holding | maintenance part of the electroplating apparatus shown in FIG. 図5のB−B線断面図である。FIG. 6 is a sectional view taken along line B-B in FIG. 5. 図5のC−C線断面図である。It is CC sectional view taken on the line of FIG. 図1に示す電解めっき装置のカソード部の平面図である。It is a top view of the cathode part of the electroplating apparatus shown in FIG. 図8のD−D線断面図である。It is the DD sectional view taken on the line of FIG. 図1に示す電解めっき装置の電極アーム部の平面図である。It is a top view of the electrode arm part of the electroplating apparatus shown in FIG. 図1に示す電解めっき装置の電極ヘッド及び基板保持部で保持した基板を概略的に示す電解めっき時における断面図である。It is sectional drawing at the time of the electroplating which shows schematically the board | substrate hold | maintained with the electrode head and board | substrate holding part of the electroplating apparatus shown in FIG. 図1に示す電解めっき装置のアノードを示す平面図である。It is a top view which shows the anode of the electrolytic plating apparatus shown in FIG. 図1に示す電解めっき装置において、カソード接点とアノードとの間に流すめっき電流とめっき時間の関係を示すグラフである。2 is a graph showing a relationship between a plating current flowing between a cathode contact and an anode and a plating time in the electrolytic plating apparatus shown in FIG. 図13に示すめっき電流を流した時にめっき膜が成長する様子を模式的に示すグラフである。It is a graph which shows typically a mode that a plating film grows when the plating current shown in Drawing 13 is sent. 図1に示す電解めっき装置において、カソード接点とアノードとの間に流すめっき電流とめっき時間の他の関係を示すグラフである。3 is a graph showing another relationship between the plating current flowing between the cathode contact and the anode and the plating time in the electrolytic plating apparatus shown in FIG. 1. 図15に示す条件(レシピ)でルテニウム膜(導電層)の表面に銅膜を成膜した時のウエハ(基板)位置と銅膜の膜厚との関係を実線で、通常の電解めっきでルテニウム膜(導電層)の表面に銅膜を成膜した時のウエハ(基板)位置と銅膜の膜厚との関係を波線でそれぞれ示すグラフである。The relationship between the wafer (substrate) position and the copper film thickness when a copper film is formed on the surface of the ruthenium film (conductive layer) under the conditions (recipe) shown in FIG. It is a graph which shows the relationship between the wafer (substrate | substrate) position when forming a copper film on the surface of a film | membrane (conductive layer), and the film thickness of a copper film with a broken line, respectively. 図1に示す電解めっき装置でルテニウム膜(導電層)の表面に初期銅めっきを行った時のウエハ(基板)位置と銅膜の膜厚の関係を(●)で、図1に示す電解めっき装置からはシールリングの除いた装置でルテニウム膜(導電層)の表面に初期銅めっきを行った時のウエハ(基板)位置と銅膜の膜厚の関係を(×)でそれぞれ示すグラフである。The relationship between the wafer (substrate) position and the film thickness of the copper film when the initial copper plating is performed on the surface of the ruthenium film (conductive layer) with the electrolytic plating apparatus shown in FIG. It is a graph which shows the relationship between the wafer (substrate | substrate) position and the film thickness of a copper film when initial copper plating is performed on the surface of a ruthenium film (conductive layer) with an apparatus excluding a seal ring from the apparatus, respectively. . 他の電解めっき装置の電極ヘッド及び基板保持部で保持した基板を概略的に示す電解めっき時における断面図である。It is sectional drawing at the time of the electroplating which shows schematically the board | substrate hold | maintained with the electrode head and board | substrate holding | maintenance part of the other electroplating apparatus. 図18に示す電解めっき装置において、めっき初期に高電流を流して電解めっきを行った場合(a)と、めっき初期に高電流を流さないで電解めっきを行った場合(b)における、めっき時間とめっき電流の関係を示すグラフである。In the electroplating apparatus shown in FIG. 18, the plating time in the case where the electroplating is performed by flowing a high current at the initial stage of plating (a) and the case where the electroplating is performed without flowing the high current in the initial stage of plating (b). It is a graph which shows the relationship between a plating current. 図18に示す電解めっき装置において、めっき初期に高電流を流して電解めっきを行った場合(a)と、めっき初期に高電流を流さないで電解めっきを行った場合(b)における、めっき膜の表面を模式的に示す図である。In the electroplating apparatus shown in FIG. 18, the plating film in the case where the electroplating is performed by flowing a high current at the initial stage of plating (a) and the case where the electroplating is performed without flowing the high current in the initial stage of plating (b) It is a figure which shows the surface of this. 本発明の他の実施の形態の電解めっき装置を示す概要図である。It is a schematic diagram which shows the electrolytic plating apparatus of other embodiment of this invention. めっき処理によって銅配線を形成する例を工程順に示す図である。It is a figure which shows the example which forms a copper wiring by plating process in order of a process. 従来の電解めっき装置を示す図である。It is a figure which shows the conventional electrolytic plating apparatus. 本発明に用いられる電解めっき装置の基本構成を示す図である。It is a figure which shows the basic composition of the electroplating apparatus used for this invention.

符号の説明Explanation of symbols

6 銅膜
7 シード層(導電層)
10 ロード・アンロード部
12 電解めっき装置
20 基板処理部
26 揺動アーム
28 電極ヘッド
36,604 基板保持部
38 カソード部
40 飛散防止カップ
68 基板ステージ
70 支持腕
86 枠体
88 カソード接点
90 シール材
94,602 ハウジング
98,606 アノード
98a,606a 円板状アノード(分割アノード)
98b,606b リング状アノード(分割アノード)
100,650 めっき液室
102 めっき液供給管
103a,103b めっき液排出口
104 めっき液注入部
106 めっき液排出管
110,632 多孔質構造体
112 シールドリング
114a,114b,658a,658b 電源
150,652 仕切り板
152a,152b,654a,654b 部屋
154a,154b,656a,656b シールリング
6 Copper film 7 Seed layer (conductive layer)
DESCRIPTION OF SYMBOLS 10 Load / unload part 12 Electroplating apparatus 20 Substrate processing part 26 Oscillating arm 28 Electrode head 36,604 Substrate holding part 38 Cathode part 40 Anti-scattering cup 68 Substrate stage 70 Support arm 86 Frame 88 Cathode contact 90 Sealing material 94 , 602 Housing 98, 606 Anode 98a, 606a Discoidal anode (split anode)
98b, 606b Ring-shaped anode (split anode)
100, 650 Plating solution chamber 102 Plating solution supply pipe 103a, 103b Plating solution discharge port 104 Plating solution injection part 106 Plating solution discharge tube 110, 632 Porous structure 112 Shield ring 114a, 114b, 658a, 658b Power supply 150, 652 Partition Plate 152a, 152b, 654a, 654b Chamber 154a, 154b, 656a, 656b Seal ring

Claims (8)

基板を保持する基板保持部と、
前記基板保持部で保持した基板表面の周縁部に当接して該周縁部をシールするシール材と、
前記基板保持部で保持した基板の表面に形成した導電層に接触して通電させるカソード接点と、
内部にめっき液に浸漬させるアノードを収納し、前記基板保持部で保持した基板と対向する開口端部に多孔質構造体を配置してめっき液室を区画形成したハウジングを有し、
仕切り板と前記多孔質構造体で前記めっき液室が仕切られており、前記アノードは複数に分割された分割アノードから構成されて、各分割アノードは前記めっき液室の各部屋の内部に独立しためっき電流が流せるように配置されていることを特徴とする電解めっき装置。
A substrate holder for holding the substrate;
A sealing material that comes into contact with the peripheral portion of the substrate surface held by the substrate holding portion and seals the peripheral portion;
A cathode contact for contacting and energizing a conductive layer formed on the surface of the substrate held by the substrate holding unit;
An anode that is immersed in the plating solution is housed therein, and has a housing in which a plating solution chamber is defined by disposing a porous structure at an opening end facing the substrate held by the substrate holding unit,
The plating solution chamber is partitioned by a partition plate and the porous structure, and the anode is composed of a plurality of divided anodes, and each divided anode is independent inside each chamber of the plating solution chamber. An electroplating apparatus characterized by being arranged so that a plating current can flow.
前記多孔質構造体と前記仕切り板と間、及び/または前記仕切り板と前記ハウジングとの間にシールリングが介在されていることを特徴とする請求項1記載の電解めっき装置。   The electroplating apparatus according to claim 1, wherein a seal ring is interposed between the porous structure and the partition plate and / or between the partition plate and the housing. 前記アノードは、同心円状に分割された分割アノードから構成され、中央に位置する分割アノードは円板状で、前記仕切り板は、円筒状に形成され、内方に位置する分割アノードの周囲を包囲するように配置されていることを特徴とする請求項1または2記載の電解めっき装置。   The anode is composed of split anodes concentrically divided, the split anode located in the center is a disc shape, and the partition plate is formed in a cylindrical shape and surrounds the inner periphery of the split anode. The electroplating apparatus according to claim 1, wherein the electroplating apparatus is arranged so as to perform. 前記円板状の分割アノードの直径、及び該円板状の分割アノードの周囲を包囲するように配置された前記仕切り板の内径は、基板の直径の2/3以下であることを特徴とする請求項3記載の電解めっき装置。   The diameter of the disk-shaped divided anode and the inner diameter of the partition plate arranged so as to surround the disk-shaped divided anode are 2/3 or less of the diameter of the substrate. The electrolytic plating apparatus according to claim 3. 前記導電層は、少なくともCu、Ru、Ta、TaN、W、WNC、WC、Pt、ITO、Ti、TiWのいずれかを有することを特徴とする請求項1乃至4のいずれかに記載の電解めっき装置。   The electroplating according to any one of claims 1 to 4, wherein the conductive layer includes at least one of Cu, Ru, Ta, TaN, W, WNC, WC, Pt, ITO, Ti, and TiW. apparatus. カソード接点を接触させた基板の導電層と該基板の導電層に対面する位置に同心状に複数に分割されて配置させた分割アノードとの間にめっき液を満たし、
前記めっき液中に多孔質構造体を配置し、
めっき初期に、前記カソード接点と中央部に位置する分割アノードとの間に、前記カソード接点と他の分割アノードとの間よりも高い電流密度の電流を流すことを特徴とする電解めっき方法。
A plating solution is filled between the conductive layer of the substrate in contact with the cathode contact and the divided anode arranged concentrically at the position facing the conductive layer of the substrate,
Placing a porous structure in the plating solution;
An electroplating method, wherein an electric current having a higher current density is passed between the cathode contact and a divided anode located at a central portion at an initial stage of plating than between the cathode contact and another divided anode.
めっき初期以降に、前記カソード接点と前記中央部に位置する分割アノードとの間に、めっき初期よりも低い電流を流すことを特徴とする請求項6記載の電解めっき方法。   7. The electrolytic plating method according to claim 6, wherein a current lower than that in the initial stage of plating is caused to flow between the cathode contact and the divided anode located in the central portion after the initial stage of plating. 前記めっき初期に、前記カソード接点と前記他の分割アノードとの間に電流を流さないことを特徴とする請求項6または7記載の電解めっき方法。   The electroplating method according to claim 6 or 7, wherein no current flows between the cathode contact and the other divided anode in the initial stage of the plating.
JP2007033221A 2006-02-21 2007-02-14 Electroplating device and electroplating method Pending JP2007254882A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007033221A JP2007254882A (en) 2006-02-21 2007-02-14 Electroplating device and electroplating method
US11/708,548 US8029653B2 (en) 2006-02-21 2007-02-21 Electroplating apparatus and electroplating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006044264 2006-02-21
JP2007033221A JP2007254882A (en) 2006-02-21 2007-02-14 Electroplating device and electroplating method

Publications (1)

Publication Number Publication Date
JP2007254882A true JP2007254882A (en) 2007-10-04

Family

ID=38629403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007033221A Pending JP2007254882A (en) 2006-02-21 2007-02-14 Electroplating device and electroplating method

Country Status (1)

Country Link
JP (1) JP2007254882A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070780A (en) * 2008-09-16 2010-04-02 Ebara Corp Electrolytic treatment apparatus and electrolytic treatment method
JP5371783B2 (en) * 2008-01-23 2013-12-18 Jx日鉱日石金属株式会社 ULSI fine wiring member having ruthenium electroplating layer on barrier layer
CN110699738A (en) * 2019-11-07 2020-01-17 俊杰机械(深圳)有限公司 Independent electroplating device and process for hardware workpiece

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243797A (en) * 1990-02-20 1991-10-30 Fujitsu Ltd Electroplating device
JPH04311591A (en) * 1991-04-08 1992-11-04 Sumitomo Metal Ind Ltd Device and method for plating
JPH07173700A (en) * 1993-12-17 1995-07-11 Nec Corp Divided anode plating device and current value determining method
JP2002129383A (en) * 2000-10-20 2002-05-09 Ebara Corp Plating equipment and method
JP2005213610A (en) * 2004-01-30 2005-08-11 Ebara Corp Plating equipment and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243797A (en) * 1990-02-20 1991-10-30 Fujitsu Ltd Electroplating device
JPH04311591A (en) * 1991-04-08 1992-11-04 Sumitomo Metal Ind Ltd Device and method for plating
JPH07173700A (en) * 1993-12-17 1995-07-11 Nec Corp Divided anode plating device and current value determining method
JP2002129383A (en) * 2000-10-20 2002-05-09 Ebara Corp Plating equipment and method
JP2005213610A (en) * 2004-01-30 2005-08-11 Ebara Corp Plating equipment and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5371783B2 (en) * 2008-01-23 2013-12-18 Jx日鉱日石金属株式会社 ULSI fine wiring member having ruthenium electroplating layer on barrier layer
JP2010070780A (en) * 2008-09-16 2010-04-02 Ebara Corp Electrolytic treatment apparatus and electrolytic treatment method
CN110699738A (en) * 2019-11-07 2020-01-17 俊杰机械(深圳)有限公司 Independent electroplating device and process for hardware workpiece

Similar Documents

Publication Publication Date Title
US6632335B2 (en) Plating apparatus
US20070238265A1 (en) Plating apparatus and plating method
US20050145482A1 (en) Apparatus and method for processing substrate
US8029653B2 (en) Electroplating apparatus and electroplating method
US20040149584A1 (en) Plating method
JP2008095157A (en) Plating device and plating method
US20070158202A1 (en) Plating apparatus and method for controlling plating solution
KR20150138826A (en) Metallization of wafer edge for optimized electroplating performance on resistive substrates
JP2008098449A (en) Substrate processing apparatus and substrate processing method
US20040256238A1 (en) Electrolytic processing apparatus and substrate processing method
US6802947B2 (en) Apparatus and method for electro chemical plating using backside electrical contacts
JP2004083932A (en) Electrolytic treatment apparatus
US7901550B2 (en) Plating apparatus
JP4423359B2 (en) Plating method
JP2007254882A (en) Electroplating device and electroplating method
US20090095634A1 (en) Plating method
JP2010007153A (en) Plating apparatus and plating method
US7479213B2 (en) Plating method and plating apparatus
US20040055893A1 (en) Wafer backside electrical contact for electrochemical deposition and electrochemical mechanical polishing
US20040192066A1 (en) Method for immersing a substrate
JP5564171B2 (en) Plating apparatus and plating method
JP2006152415A (en) Plating apparatus and plating method
JP2006225715A (en) Plating apparatus and plating method
JP2005146334A (en) Plating method and plating apparatus
JP2006152421A (en) Electroplating device and electroplating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090710

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Effective date: 20110823

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120104

Free format text: JAPANESE INTERMEDIATE CODE: A02