JP3986802B2 - Optical film sheet and display device manufacturing method using the same - Google Patents

Optical film sheet and display device manufacturing method using the same Download PDF

Info

Publication number
JP3986802B2
JP3986802B2 JP2001354207A JP2001354207A JP3986802B2 JP 3986802 B2 JP3986802 B2 JP 3986802B2 JP 2001354207 A JP2001354207 A JP 2001354207A JP 2001354207 A JP2001354207 A JP 2001354207A JP 3986802 B2 JP3986802 B2 JP 3986802B2
Authority
JP
Japan
Prior art keywords
display device
barrier layer
water vapor
manufacturing
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001354207A
Other languages
Japanese (ja)
Other versions
JP2003157019A (en
Inventor
進 新井
敏正 江口
和彦 屋ヶ田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001354207A priority Critical patent/JP3986802B2/en
Publication of JP2003157019A publication Critical patent/JP2003157019A/en
Application granted granted Critical
Publication of JP3986802B2 publication Critical patent/JP3986802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラスチックフィルムシートを基板として用いる表示装置の製造方法に関するものである。
【0002】
【従来の技術】
表示素子用基板としてはガラス基板が従来から使用されてきた。しかしながら、近年携帯用の表示媒体の急速な成長により、軽く、割れないと言った特徴を活かしたプラスチック基板を用いた表示媒体の研究開発がなされている。ところが、プラスチックは酸素や水蒸気等のガス透過性、吸水による寸法変化率があり、基板にプラスチックを用いた場合は透過ガスにより気泡を生ずることで表示不良が発生したり、液晶中に水分が混入することにより液晶の比抵抗が低下して表示不良が発生したり、更に工程中の吸湿による寸法変化により上下基板の透明電極回路の位置ずれによる接続不良が起こるなどの問題があった。この問題を解決するために、プラスチックフィルムシートの両面にSiOx、ポリ塩化ビニリデン等の光線透過率が高く水蒸気透過度が低い皮膜をバリア層として形成することが行われている。
【0003】
しかし、これらの皮膜形成は真空プロセスによって行われることが多く、プラスチックフィルムシートの側面には処理することが困難であり、しかも液晶表示装置の場合には、1枚の大型基板で複数のセルを一括形成した後に切断し、ドライバが接続された状態で側面に皮膜を形成する必要があるため、これはさらに難しく一般に行われていない。この場合、湿度が著しく高い環境においては、特にネマチック液晶を用いた液晶表示装置や円偏光板を用いた有機エレクトロルミネッセンス表示装置のように偏光を利用した表示装置の場合、表示部の四隅や周辺に表示ムラが発生する場合があり問題となっている。
【0004】
【発明が解決しようとする課題】
本発明は、プラスチックを基板に用いた際の、工程中及び装置完成後に起こる表示装置の表示ムラを防止することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明者らは、前記表示ムラが以下の原因によって起きるものと推定した。即ち、高湿環境下に表面に水蒸気バリア層を有するプラスチック基板が置かれた場合、バリア層を有しない側面から水蒸気が拡散し、側面近傍と面内部で吸水による寸法変化が異なる。側面に近い周囲および四隅では基板が膨潤して伸びようとし、光弾性の高いプラスチック材料では、ことさら位相差が生じ、これにより表示装置が偏光を利用した装置である場合に表示ムラが発生するものと考えられる。これを防止するため、カラーフィルター等の製造工程中に生じる吸湿によるプラスチック基板の寸法変化に対処する為に、プラスチック基板に水蒸気バリアとなる層を単層または複合層で設け、カラーフィルター形成後の何れかの工程で、表示装置とした際に外面となる側のバリア層のバリア性を劣化させることにより、基板の水蒸気透過度を、基板の中心層となるプラスチックへの水分浸入量の面内分布に著しい差を生じさせず、かつ表示装置とした際に内側となる面には水蒸気を十分に遮断できるレベルの水蒸気透過度であるバリア層を維持させることで前記課題を解決できることを突き止め、以下の発明に至った。
【0006】
すなわち本発明は、
(1)プラスチックフィルムシートを基板として用いる表示装置の製造方法において、プラスチックフィルムシートの両側に、水蒸気透過度が1g/m2/day以下のバリア層を積層し、表示装置作成工程中に、表示装置とした際に外面となる側のバリア層の水蒸気透過度を10g/m2/day以上50g/m2/day以下となるように低下させる工程を含む、表示装置の製造方法。
(2)バリア層の水蒸気透過度を低下させる工程が少なくともカラーフィルター形成工程の後である(1)の表示装置の製造方法。
(3)バリア層の水蒸気透過度を低下させる工程がバリア層に凸形状を有する部材を刺入するものである(1)、(2)の表示装置の製造方法。
(4)バリア層の水蒸気透過度を低下させる工程がバリア層を化学的に劣化させるものである(1)、(2)の表示装置の製造方法。
(5)バリア層の水蒸気透過度を低下させる工程が微小な粒を衝突させてバリア層を劣化させるものである(1)、(2)の表示装置の製造方法。
(6)バリア層の水蒸気透過度を低下させる工程がバリア層を電気的に劣化させるものである(1)、(2)の表示装置の製造方法。
(7)バリア層の水蒸気透過度を低下させる工程がバリア層にエネルギー線を照射するものである(1)、(2)の表示装置の製造方法。
(8)バリア層の水蒸気透過度を低下させる工程がバリア層に超音波を照射するものである(1)、(2)の表示装置の製造方法。
(9)バリア層が酸化珪素または窒素化珪素または酸化インジウム錫(ITO)の何れかを含む層を少なくとも一層有する(1)〜(8)の表示装置の製造方法。
(10)前記プラスチックフィルムシートの位相差が20nm以下であり、
且つ、波長550nmにおける光線透過率が80%以上であることを特徴とする(1)〜(9)の表示装置の製造方法。
(11)前記プラスチックフィルムシートの光弾性定数が10×10-13cm2/dyn以上である(1)〜(10)の表示装置の製造方法。
(12)前記プラスチックフィルムシートが(1)エステル結合で結合された繰り返し単位を有する高分子、(2)カーボネート結合で結合された繰り返し単位を有する高分子または(3)スルホン結合で結合された繰り返し単位を有する高分子を主成分とする(1)〜(11)の表示装置の製造方法。
である。
【0007】
【発明の実施の形態】
本発明は、カラーフィルター等の製造工程中は寸法変化に問題が生じないように、カラーフィルター形成工程、基板貼り合せ等の何れかの工程前前にプラスチックフィルムシートの両面に水蒸気透過度が1g/m2/day以下であるバリア層を形成し、カラーフィルター形成後には、基板の中心となるプラスチックフィルムシートへの水分浸入量の面内分布に著しい差が生じないように、装置とした際に外面となる側のバリア層のみを水蒸気透過度が10g/m2/day以上50g/m2/day以下まで劣化させることで、表示ムラの発生を防止するものである。
【0008】
本発明のバリア層としては、特に限定しないが、ポリ塩化ビニリデン等の有機バリア層をコーティング等により必要な厚さに成膜するか、またはSi、Ti、Zr、Al、Ta、Nb、Sn、In等の酸化物、窒化物、ハロゲン化物等の無機バリア層を真空蒸着,CVD,スパッタリング等で成膜することができる。さらに有機層と無機層を重ねて成膜することもできる。これらの組成および膜厚を選ぶ事により、水蒸気透過度を前記範囲に制御することができるが、産業上または経済上の理由から酸化珪素または窒素化珪素または酸化インジウム錫(ITO)が好ましい。
上記の表示装置外面側のバリア層の水蒸気透過度としては、カラーフィルターを形成工程、基板貼り合せ等の工程前までは、1g/m2/day以下であり、好ましくは、0.1g/m2/day以下更に好ましくは、0.05g/m2/day以下である。水蒸気透過度が1g/m2/dayを越えた場合、フィルムシートの寸法変化が大きく、特にカラーフィルター形成時にブラックマトリックスやRGBフィルターの形成に位置ズレを生じ問題となるが、カラーフィルター形成後、特に表示装置となった後には、水蒸気透過度が10g/m2/day未満であるとバリア性が高すぎて側面からの水蒸気の浸入とプラスチック中の拡散により吸湿濃度分布が発生してしまい位相差を発生する原因となる。
表示装置とした際に外面の側にあるバリア層の水蒸気透過度を低下させる方法としては、特に限定はしないが、外面のバリア層を貫通し、内面のバリア層には影響を及ぼさない程度の突起を面内に均一になるように配置したロールや板等の凸形状を有する部材をフィルムシートまたは表示装置の外面側のバリア層に押し当て刺入させ、劣化させる方法や、ナイフ状または針状の治具を使用し、外面のバリア層を貫通させて内面のバリア層には影響を及ぼさない程度に格子状または面内均一になるようにランダムに傷をつける方法、溶剤、エッチング剤等を使用し化学的に外面のバリア層を劣化させる方法、微小な粒を外面のバリア層に衝突させる方法、放電、電蝕等の処理により電気的に外面のバリア層を劣化させる方法、超音波を表面にあて外面のバリア層を劣化させる方法、焦点を絞ったレーザー等のエネルギー線照射で外面のバリア層を劣化させる方法等が挙げられる。また、上記方法の2種類以上を組み合わせて用いても良い。
一方、表示装置とした際に内面の側に形成される単独層または複合層の成膜は、Si、Ti、Zr、Al、Ta、Nb、Sn、In等の酸化物、窒化物、ハロゲン化物等の無機バリア層を真空蒸着,CVD,スパッタリング等で成膜するか、これらと有機膜を重ねて成膜することで得ることができる。これらの組成および膜厚を選ぶ事により、水蒸気透過度を前記範囲に制御することができるが、産業上または経済上の上から酸化珪素または窒素化珪素または酸化インジウム錫(ITO)が好ましい。透明導電材料であるITOはガス・水蒸気透過度を0.1g/m2/day以下とすることできるため、電着透明電極を全面に成膜するTFT−LCDの共通電極側基板のような場合には、ITO電極で兼用できる場合がある。
【0009】
本発明の光学用フィルムシートは位相差が20nm以下であることが望ましい。位相差フィルムを別として、表示基板等に使用する場合は位相差が20nmを越えると、吸湿による位相差発生が無くても表示装置の表示ムラとして不良となる場合がある。さらに、本発明の光学用フィルムシートは、光弾性定数が10×10-13cm2/dyn以上のプラスチックフィルムシートを用いた際に特に有効である。光弾性定数が10×10-13cm2/dyn以下のプラスチックフィルムシートでは応力による位相差の発生が少ないため両面のバリア層ともに水蒸気透過度が0.1g/m2/day以下であっても表示装置に表示ムラを発生する問題は起こりにくいが、光弾性定数が低いプラスチックは一般に脂肪族系高分子等の耐熱性が低いものが多く、表示装置用基板としては使用が限られるものが多い。本発明の光学用フィルムシートに用いるプラスチックとしては特に限定はしないが、好ましいものを挙げると、(1)ポリエステルやポリアリレート等エステル結合で結合された繰り返し単位を有する高分子、(2)ポリカーボネート等カーボネート結合で結合された繰り返し単位を有する高分子または(3)ポリスルホン等スルホン結合で結合された繰り返し単位を有する高分子を主成分とするプラスチックである。これらを1種類で用いても2種類以上を混合して用いてもよい。また、滑剤、耐熱安定剤、耐候安定剤、顔料、染料、無機質充填剤などを適宜ブレンドしても良い。表示装置の製造工程では150℃程度に加熱される工程が存在するので、耐熱性に優れるプラスチックが好ましく、芳香族基を有する芳香族ポリエステル、芳香族ポリアリレート、芳香族ポリカーボネート、芳香族ポリスルホン系の高分子を主成分とするものが好ましい。特に、耐熱性と以下に記す透明性のバランスからポリエーテルスルホンが好ましい。
【0010】
本発明の光学用フィルムシートは波長550nmにおける光線透過率が80%以上である方が好ましい。光線透過率が低いと、表示装置とした際に表示が暗くて見にくいことや、或いは明るくするために電力消費が大きくなる。この不具合は光線透過率の低下と共に徐々に問題となるものであるが、実用的には半透過型の表示基板を除けば、波長550nmにおける光線透過率が80%以上である方が望ましい。
【0011】
【実施例】
以下、実施例に基づき、詳細に説明するが、本発明は本実施例に限定されるものではない。
<実施例1>
溶融押出法で製造した幅1m厚さ200μm、位相差4nm±2nmのポリエーテルスルホンのフィルム両面に、コーター部、乾燥炉、高圧水銀灯による紫外線照射装置を有する連続式塗工機を用い、紫外線硬化性樹脂組成物としてエポキシアクリレート樹脂25重量部、ウレタンアクリレート樹脂10重量部、光重合開始剤として、イルガキュアー907(チバスぺシャリティケミカルズ製)1重量部、シランカップリング剤としてγ−メルカプトプロピルトリメトキシシラン0.2重量部、酢酸ブチル65重量部の混合液(以下、紫外線硬化性樹脂組成物Aと称す。)を塗布し、120℃で乾燥後に紫外線を350mJ/cm2照射し膜厚2μmのコート層を設けた。この工程でサンプリングしたフィルムの40℃90%RHにおける水蒸気透過度をカップ法にて測定したところ、 50g/m2/dayであった。また、用いたポリエーテルスルホンの光弾性定数は100×10-13cm2/dynであった。
続いて、このフィルムの一方の面、表示装置の内側となる面に、連続式スパッタ装置を用いて厚さ50nmの酸化珪素膜を成膜した。酸化珪素膜は、原料ターゲットに珪素を用い、スパッタ装置内を10-3Pa以下まで減圧した上で放電ガスとしてアルゴンを分圧で0.08Pa導入、反応ガスとして酸素を分圧で0.08Pa導入して反応性スパッタリングを行い成膜した。この酸化珪素層の上に、再度紫外線硬化性樹脂組成物Aを前記と同様の方法により塗工し、コート層を設けた。この工程でサンプリングしたフィルムの水蒸気透過度をヤナコ分析工業株式会社製ガスクロマトグラフィー式ガス・水蒸気透過率測定機GTR−30(以下、水蒸気透過率測定機と称す。)を用いて測定したところ、0.06g/m2/dayであった。
【0012】
次に、前記の酸化珪素膜を成膜した面と逆の面、表示装置の外側となる面に、連続式スパッタ装置を用いて厚さ50nmの酸化珪素膜を前記と同様の方法により成膜した。この酸化珪素層の上に、再度紫外線硬化性樹脂組成物Aを前記と同様の方法により塗工し、コート層を設け、光学用フィルムを得た。尚、2度目に成膜した酸化珪素膜とコート層による水蒸気透過度を測定するために、1度目の酸化珪素膜とその上層のコート層が無いサンプルを作成し、水蒸気透過率測定機を用いて測定したところ、0.10g/m2/dayであった。また、この光学用フィルムの波長550nmにおける光線透過率を分光光度計により測定したところ、89%であった。
【0013】
この光学用フィルムを360mm×460mmのシートに切断し、表示素子用基板とした。カラーフィルター層形成及び表示用透明電極形成のフォトリソグラフィー工程でフォトレジストの加熱乾燥及び水溶液による現像・エッチングの繰り返しに対する寸法変化を評価するため、次のような試験を行った。まず、基板を120℃で1時間乾燥させた後、乾燥容器中で基板の温度23℃となるまで放置し精密寸法測定装置で外寸の測定を行い、その後23℃の純水に5分間浸漬した後に再度外寸の測定を行う。この操作を再度繰り返し、最初の測定値に対する振れ幅の割合を求めた。このようにして求めた寸法変化は0.004%であった。次に表示装置の外側となる面を、高さ5±1μの針が縦横1mm間隔で並んだ平板により、十分に針がフィルムに突き刺さる荷重にて押さえ込み、外側の面の酸化珪素膜に穴をあけ、外側のバリア性を劣化させる処理を施した。
上記処理を施した基板の水蒸気透過率を水蒸気透過率測定機を用いて測定したところ、0.06g/m2/dayであった。
また、バリア性を劣化させる処理の効果を見るために、表示装置内面側のバリア層が無いサンプルを作成し、上記と同様のバリア性劣化処理をした後、40℃90%RHにおける水蒸気透過度をカップ法にて測定したところ、15.0g/m2/dayであった。
上記処理を施した基板を高温高湿条件下での位相差発生の評価を行った。まず、基板を、小型表示装置を想定して40mm×60mmの外寸に切断し、四隅から縦・横ともに3mm内側の部分の位相差をベレックコンペンセイターを装着した偏光顕微鏡で測定した。位相差は1〜2nmであった。この基板を、60℃90%RHに設定した恒温恒湿槽に投入し、24時間ごとに240時間まで、その後100時間ごとに1040時間まで前記と同じ位置の位相差の測定を行ったところ、位相差の最大値は8nmであった。
【0014】
<実施例2>
溶液キャスト法で製造した幅1m厚さ180μm、位相差1nm±1nmのポリカーボネートフィルムの両面に、コーター部、乾燥炉、高圧水銀灯による紫外線照射装置を有する連続式塗工機を用い、紫外線硬化性樹脂組成物としてエポキシアクリレート樹脂25重量部、ウレタンアクリレート樹脂10重量部、光重合開始剤として、イルガキュアー907(チバスぺシャリティケミカルズ製)1重量部、シランカップリング剤としてγ−メルカプトプロピルトリメトキシシラン0.2重量部、酢酸ブチル65重量部の混合液(以下、紫外線硬化性樹脂組成物Aと称す。)を塗布し、120℃で乾燥後に紫外線を350mJ/cm2照射し膜厚2μmのコート層を設けた。この工程でサンプリングしたフィルムの40℃90%RHにおける水蒸気透過度をカップ法にて測定したところ、 40g/m2/dayであった。尚、用いたポリカーボネートの光弾性定数は96×10-13cm2/dynであった。
続いて、このフィルムの一方の面、表示装置の内側となる面に、連続式スパッタ装置を用いて厚さ50nmの酸化珪素膜を成膜した。酸化珪素膜は、原料ターゲットに珪素を用い、スパッタ装置内を10-3Pa以下まで減圧した上で放電ガスとしてアルゴンを分圧で0.04Pa導入、反応ガスとして酸素を分圧で0.04Pa導入して反応性スパッタリングを行い成膜した。この酸化珪素層の上に、再度紫外線硬化性樹脂組成物Aを前記と同様の方法により塗工し、コート層を設けた。この工程でサンプリングしたフィルムの水蒸気透過度を水蒸気透過率測定機を用いて測定したところ、0.02g/m2/dayであった。
【0015】
次に、前記の酸化珪素膜を成膜した面と逆の面、表示装置の外側となる面に、
連続式スパッタ装置を用いて厚さ20nmのITO(酸化インジウム錫)膜を成膜した。ITO膜は、原料ターゲットにITOターゲットを用い、スパッタ装置内を10-3Pa以下まで減圧した上で放電ガスとしてアルゴンを分圧で0.06Pa導入、反応ガスとして酸素を分圧で0.02Pa導入してスパッタリングを行い成膜した。このITO層の上に、再度紫外線硬化性樹脂組成物Aを前記と同様の方法により塗工し、コート層を設け、光学用フィルムを得た。尚、2度目のITO膜とコート層による水蒸気透過度を測定するために、一度目の酸化珪素膜とその上層のコート層が無いサンプルを作成し、水蒸気透過率測定機を用いて測定したところ、0.03g/m2/dayであった。また、この光学用フィルムの波長550nmにおける光線透過率を分光光度計により測定したところ、92%であった。
【0016】
この光学用フィルムについて実施例1と同様にして寸法変化を求めたところ、0.003%であった。
次に表示装置の外側となる面を、高さ5±1μの円錐状の突起が円周方向および幅方向に3mm間隔で並んだ100mmφの金属ロールにより、十分に突起がフィルムに突き刺さる荷重にて押さえ込み、外側の面のITO膜に穴をあけ、外側のバリア性を劣化させる処理を施した。
上記処理を施した基板の水蒸気透過率を水蒸気透過率測定機を用いて測定したところ、0.02g/m2/dayであった。
また、バリア性を劣化させる処理の効果を見るために、表示装置内面側のバリア層が無いサンプルを作成し、上記と同様のバリア性劣化処理をした後、40℃90%RHにおける水蒸気透過度をカップ法にて測定したところ、30.0g/m2/dayであった。
また、実施例1と同様にして高温高湿条件下での位相差発生の評価を行ったところ、位相差の最大値は4nmであった。
【0017】
<実施例3>
紫外線硬化性樹脂組成物として、ウレタンアクリレート樹脂20重量部、イソシアヌル酸トリアクリレート70重量部、光重合開始剤として、イルガキュアー907(チバスぺシャリティケミカルズ製)1重量部、メチルセロソルブアセテート5重量部の混合液を、表面に離型剤を均一に塗布した研磨ガラス上に流延し、90℃のオーブン中で30分乾燥した後、高圧水銀灯により紫外線を基板上下から各200mJ/cm2照射して紫外線硬化性樹脂組成物を硬化させた。硬化物を基板から剥離した後、更に上下から各400mJ/cm2の紫外線を照射し、次いで研磨ガラス間に挟持した状態で150℃のオーブン中で2時間処理して厚さ0.4mm、外形300mm×300mmのプラスチックシートを得た。このシートの40℃90%RHにおける水蒸気透過度をカップ法にて測定したところ、 20g/m2/dayであった。また、このプラスチックシートの位相差は0〜1nmであり、光弾性定数は4×10-13cm2/dynであった。
続いて、このシートの一方の面、表示装置の内側となる面に、枚葉式スパッタ装置を用いて厚さ50nmの酸化珪素膜を成膜した。酸化珪素膜は、原料ターゲットに珪素を用い、スパッタ装置内を10-3Pa以下まで減圧した上で放電ガスとしてアルゴンを分圧で0.04Pa導入、反応ガスとして酸素を分圧で0.04Pa導入して反応性スパッタリングを行い成膜した。この酸化珪素層の上に、再度紫外線硬化性樹脂組成物Aをスピンコーティングし、80℃のホットプレート上で2分間、さらに120℃のホットプレートで2分間乾燥した後、高圧水銀灯により紫外線を400mJ/cm2して硬化し、コート層を設けた。この工程でサンプリングしたフィルムの水蒸気透過度を水蒸気透過率測定機を用いて測定したところ、0.002g/m2/dayであった。
【0018】
次に、前記の酸化珪素膜を成膜した面と逆の面、表示装置の外側となる面に、式スパッタ装置を用いて厚さ50nmの酸化珪素膜を成膜した。酸化珪素膜は、原料ターゲットに珪素を用い、スパッタ装置内を10-3Pa以下まで減圧した上で放電ガスとしてアルゴンを分圧で0.05Pa導入、反応ガスとして酸素を分圧で0.05Pa導入して反応性スパッタリングを行い成膜した。この酸化珪素層の上に、再度紫外線硬化性樹脂組成物Aを前記と同様の方法により塗工し、コート層を設け、光学用フィルムを得た。尚、2度目に成膜した酸化珪素膜とコート層による水蒸気透過度を測定するために、1度目の酸化珪素膜とその上層のコート層が無いサンプルを作成し、水蒸気透過率測定機を用いて測定したところ、0.8g/m2/dayであった。また、この光学用フィルムの波長550nmにおける光線透過率を分光光度計により測定したところ、88%であった。
【0019】
得られた光学用フィルムについて実施例1と同様にして寸法変化を求めたところ、0.003%であった。次に表示装置の外側となる面を、実施例1と同様の方法で外側のバリア性を劣化させる処理を施した。
上記処理を施した基板の水蒸気透過率を水蒸気透過率測定機を用いて測定したところ、0.002g/m2/dayであった。
また、バリア性を劣化させる処理の効果を見るために、表示装置内面側のバリア層が無いサンプルを作成し、実施例1と同様のバリア性劣化処理をした後、40℃90%RHにおける水蒸気透過度をカップ法にて測定したところ、20.0g/m2/dayであった。
また、実施例1と同様にして高温高湿条件下での位相差発生の評価を行ったところ、位相差の最大値は1nmであった。
【0020】
<実施例4>
溶融押出法で製造した幅1m厚さ150μm、位相差4nm±2nmのポリエーテルスルホンのフィルム両面に、コーター部、乾燥炉、高圧水銀灯による紫外線照射装置を有する連続式塗工機を用い、紫外線硬化性樹脂組成物としてエポキシアクリレート樹脂25重量部、ウレタンアクリレート樹脂10重量部、光重合開始剤として、イルガキュアー907(チバスぺシャリティケミカルズ製)1重量部、シランカップリング剤としてγ−メルカプトプロピルトリメトキシシラン0.2重量部、酢酸ブチル65重量部の混合液(以下、紫外線硬化性樹脂組成物Aと称す。)を塗布し、120℃で乾燥後に紫外線を350mJ/cm2照射し膜厚2μmのコート層を設けた。この工程でサンプリングしたフィルムの40℃90%RHにおける水蒸気透過度をカップ法にて測定したところ、 80g/m2/dayであった。また、用いたポリエーテルスルホンの光弾性定数は100×10-13cm2/dynであった。
続いて、このフィルムの一方の面、表示装置の内側となる面に、連続式スパッタ装置を用いて厚さ50nmの酸化珪素膜を成膜した。酸化珪素膜は、原料ターゲットに珪素を用い、スパッタ装置内を10-3Pa以下まで減圧した上で放電ガスとしてアルゴンを分圧で0.08Pa導入、反応ガスとして酸素を分圧で0.06Pa導入して反応性スパッタリングを行い成膜した。この酸化珪素層の上に、再度紫外線硬化性樹脂組成物Aを前記と同様の方法により塗工し、コート層を設けた。この工程でサンプリングしたフィルムの水蒸気透過度を水蒸気透過率測定機を用いて測定したところ、0.04g/m2/dayであった。
【0021】
次に、前記の酸化珪素膜を成膜した面と逆の面、表示装置の外側となる面に、連続式スパッタ装置を用いて厚さ50nmの酸化珪素膜を前記と同様の方法により成膜し、光学用フィルムを得た。尚、2度目に成膜した酸化珪素膜による水蒸気透過度を測定するために、1度目の酸化珪素膜とその上層のコート層が無いサンプルを作成し、水蒸気透過率測定機を用いて測定したところ、0.05g/m2/dayであった。また、この光学用フィルムの波長550nmにおける光線透過率を分光光度計により測定したところ、90%であった。
得られた光学用フィルムについて実施例1と同様にして寸法変化を求めたところ、0.002%であった。
次に上記基板を23℃のフッ化水素溶液中に10分間浸漬し、外側のバリア性を化学処理で劣化させる処理を施した。
上記処理を施した基板の水蒸気透過率を水蒸気透過率測定機を用いて測定したところ、0.03g/m2/dayであった。
また、バリア性を劣化させる処理の効果を見るために、表示装置内面側のバリア層が無いサンプルを作成し、23℃のフッ化水素溶液中に10分間浸漬し、外側のバリア性を化学処理で劣化させる処理を施した後、40℃90%RHにおける水蒸気透過度をカップ法にて測定したところ、10.0g/m2/dayであった。
また、実施例1と同様にして高温高湿条件下での位相差発生の評価を行ったところ、位相差の最大値は9nmであった。
【0022】
<実施例5>
溶融押出法で製造した幅1m厚さ300μm、位相差5nm±2nmのポリエーテルスルホンのフィルム両面に、コーター部、乾燥炉、高圧水銀灯による紫外線照射装置を有する連続式塗工機を用い、紫外線硬化性樹脂組成物としてエポキシアクリレート樹脂25重量部、ウレタンアクリレート樹脂10重量部、光重合開始剤として、イルガキュアー907(チバスぺシャリティケミカルズ製)1重量部、シランカップリング剤としてγ−メルカプトプロピルトリメトキシシラン0.2重量部、酢酸ブチル65重量部の混合液(以下、紫外線硬化性樹脂組成物Aと称す。)を塗布し、120℃で乾燥後に紫外線を350mJ/cm2照射し膜厚2μmのコート層を設けた。この工程でサンプリングしたフィルムの40℃90%RHにおける水蒸気透過度をカップ法にて測定したところ、 50g/m2/dayであった。また、用いたポリエーテルスルホンの光弾性定数は100×10-13cm2/dynであった。
続いて、このフィルムの一方の面、表示装置の内側となる面に、連続式スパッタ装置を用いて厚さ50nmの酸化珪素膜を成膜した。酸化珪素膜は、原料ターゲットに珪素を用い、スパッタ装置内を10-3Pa以下まで減圧した上で放電ガスとしてアルゴンを分圧で0.08Pa導入、反応ガスとして酸素を分圧で0.06Pa導入して反応性スパッタリングを行い成膜した。この酸化珪素層の上に、再度紫外線硬化性樹脂組成物Aを前記と同様の方法により塗工し、コート層を設けた。この工程でサンプリングしたフィルムの水蒸気透過度を水蒸気透過率測定機を用いて測定したところ、0.05g/m2/dayであった。
【0023】
次に、前記の酸化珪素膜を成膜した面と逆の面、表示装置の外側となる面に、連続式スパッタ装置を用いて厚さ30nmの酸化珪素膜を前記と同様の方法により成膜し、光学用フィルムを得た。尚、2度目に成膜した酸化珪素膜による水蒸気透過度を測定するために、1度目の酸化珪素膜とその上層のコート層が無いサンプルを作成し、水蒸気透過率測定機を用いて測定したところ、0.08g/m2/dayであった。また、この光学用フィルムの波長550nmにおける光線透過率を分光光度計により測定したところ、90%であった。
得られた光学用フィルムについて実施例1と同様にして寸法変化を求めたところ、0.003%であった。
次に上記基板の外側のバリア側に10%NaOHを塗布し、ホットプレート上で10分間、50℃に加熱し、外側のバリア性を化学処理で劣化させる処理を施した。
上記処理を施した基板の水蒸気透過率を水蒸気透過率測定機を用いて測定したところ、0.05g/m2/dayであった。
また、バリア性を劣化させる処理の効果を見るために、表示装置内面側のバリア層が無いサンプルを作成し、上記と同様にして外側のバリア性を化学処理で劣化させる処理を施した後、40℃90%RHにおける水蒸気透過度をカップ法にて測定したところ、15.0g/m2/dayであった。
また、実施例1と同様にして高温高湿条件下での位相差発生の評価を行ったところ、位相差の最大値は10nmであった。
【0024】
<実施例6>
溶融押出法で製造した幅1m厚さ200μm、位相差3nm±2nmのポリエーテルスルホンのフィルムの両面に、コーター部、乾燥炉、高圧水銀灯による紫外線照射装置を有する連続式塗工機を用い、紫外線硬化性樹脂組成物としてエポキシアクリレート樹脂25重量部、ウレタンアクリレート樹脂10重量部、光重合開始剤として、イルガキュアー907(チバスぺシャリティケミカルズ製)1重量部、シランカップリング剤としてγ−メルカプトプロピルトリメトキシシラン0.2重量部、酢酸ブチル65重量部の混合液(以下、紫外線硬化性樹脂組成物Aと称す。)を塗布し、120℃で乾燥後に紫外線を350mJ/cm2照射し膜厚2μmのコート層を設けた。この工程でサンプリングしたフィルムの40℃90%RHにおける水蒸気透過度をカップ法にて測定したところ、 50g/m2/dayであった。また、用いたポリエーテルスルホンの光弾性定数は100×10-13cm2/dynであった。
続いて、このフィルムの一方の面、表示装置の外側となる面に、連続式スパッタ装置を用いて厚さ50nmの酸化珪素膜を成膜した。窒素化珪素膜は、原料ターゲットに珪素を用い、スパッタ装置内を10-3Pa以下まで減圧した上で放電ガスとしてアルゴンを分圧で0.08Pa導入、反応ガスとして酸素を分圧で各0.08Pa導入して反応性スパッタリングを行い成膜した。この酸化珪素層の上に、再度紫外線硬化性樹脂組成物Aを前記と同様の方法により塗工し、コート層を設けた。この工程でサンプリングしたフィルムの水蒸気透過度を水蒸気透過率測定機を用いて測定したところ、0.01g/m2/dayであった。
【0025】
次に、前記の窒素化珪素膜を成膜した面と逆の面、表示装置の外側となる面に、連続式スパッタ装置を用いて厚さ50nmの酸化珪素膜を前記と同様の方法により成膜し、光学用フィルムを得た。尚、2度目に成膜した酸化珪素膜による水蒸気透過度を測定するために、1度目の酸化珪素膜とその上層のコート層が無いサンプルを作成し、水蒸気透過率測定機を用いて測定したところ、0.10g/m2/dayであった。また、この光学用フィルムの波長550nmにおける光線透過率を分光光度計により測定したところ、89%であった。
得られた光学用フィルムについて実施例1と同様にして寸法変化を求めたところ、0.002%であった。
次に表示装置の外側となる面を、太さが0.5mm、長さが30mmで先端の尖った円錐部分の長さが4mm、先端R形状が2μの裁縫用の縫い針を用い、内側のバリア面に穴が開かないよう差込深さに注意しながら、ランダムに外側の面の酸化珪素膜に穴をあけ、外側のバリア性を劣化させる処理を施した。
上記処理を施した基板の水蒸気透過率を水蒸気透過率測定機を用いて測定したところ、0.01g/m2/dayであった。
また、バリア性を劣化させる処理の効果を見るために、表示装置内面側のバリア層が無いサンプルを作成し、上記と同様のバリア性劣化処理をした後、40℃90%RHにおける水蒸気透過度をカップ法にて測定したところ、20.0g/m2/dayであった。
また、実施例1と同様にして高温高湿条件下での位相差発生の評価を行ったところ、位相差の最大値は10nmであった。
【0026】
<実施例7>
溶融押出法で製造した幅1m厚さ200μm、位相差3nm±2nmのポリエーテルスルホンのフィルムの両面に、コーター部、乾燥炉、高圧水銀灯による紫外線照射装置を有する連続式塗工機を用い、紫外線硬化性樹脂組成物としてエポキシアクリレート樹脂25重量部、ウレタンアクリレート樹脂10重量部、光重合開始剤として、イルガキュアー907(チバスぺシャリティケミカルズ製)1重量部、シランカップリング剤としてγ−メルカプトプロピルトリメトキシシラン0.2重量部、酢酸ブチル65重量部の混合液(以下、紫外線硬化性樹脂組成物Aと称す。)を塗布し、120℃で乾燥後に紫外線を350mJ/cm2照射し膜厚2μmのコート層を設けた。この工程でサンプリングしたフィルムの40℃90%RHにおける水蒸気透過度をカップ法にて測定したところ、 50g/m2/dayであった。また、用いたポリエーテルスルホンの光弾性定数は100×10-13cm2/dynであった。
続いて、このフィルムの一方の面、表示装置の外側となる面に、連続式スパッタ装置を用いて厚さ50nmの窒素化珪素膜を成膜した。窒素化珪素膜は、原料ターゲットに珪素を用い、スパッタ装置内を10-3Pa以下まで減圧した上で放電ガスとしてアルゴンを分圧で0.08Pa導入、反応ガスとして酸素と窒素を分圧で各0.01Pa導入して反応性のRFスパッタリングを行い成膜した。この窒素化珪素層の上に、再度紫外線硬化性樹脂組成物Aを前記と同様の方法により塗工し、コート層を設けた。この工程でサンプリングしたフィルムの水蒸気透過度を水蒸気透過率測定機を用いて測定したところ、0.01g/m2/dayであった。
【0027】
次に、前記の窒素化珪素膜を成膜した面と逆の面、表示装置の外側となる面に、連続式スパッタ装置を用いて厚さ30nmの窒素化珪素膜を前記と同様の方法により成膜し、光学用フィルムを得た。尚、2度目に成膜した窒素化珪素膜による水蒸気透過度を測定するために、1度目の窒素化珪素膜とその上層のコート層が無いサンプルを作成し、水蒸気透過率測定機を用いて測定したところ、0.06g/m2/dayであった。また、この光学用フィルムの波長550nmにおける光線透過率を分光光度計により測定したところ、89%であった。
得られた光学用フィルムについて実施例1と同様にして寸法変化を求めたところ、0.002%であった。
次に表示装置の外側となる面を、高さ5±1μの円錐状の突起が円周方向および幅方向に3mm間隔で並んだ100mmφの金属ロールにより、十分に突起がフィルムに突き刺さる荷重にて押さえ込み、外側の面の窒素化珪素膜に穴をあけ、外側のバリア性を劣化させる処理を施した。
上記処理を施した基板の水蒸気透過率を水蒸気透過率測定機を用いて測定したところ、0.01g/m2/dayであった。
また、バリア性を劣化させる処理の効果を見るために、表示装置内面側のバリア層が無いサンプルを作成し、実施例2と同様のバリア性劣化処理をした後、40℃90%RHにおける水蒸気透過度をカップ法にて測定したところ、20.0g/m2/dayであった。
また、実施例1と同様にして高温高湿条件下での位相差発生の評価を行ったところ、位相差の最大値は9nmであった。
【0028】
<実施例8>
実施例1で得られた表示装置外面側のバリア層を劣化させる前の光学用フィルムを基板として用いて、液晶表示装置を作製した。第1の工程として、カラーフィルター層を形成した。カラーフォルター層は、樹脂ブラックマトリクス材,R,G,Bの3種の顔料分散カラーレジストを用い、フォトリソグラフィーにより水蒸気透過度0.06g/m2/dayのバリア層成膜面、表示装置の内側となる面側に形成を行った。R,G,Bのカラーレジストの寸法は70μm×200μmで、その間には幅10μmでブラックマトリクスを形成した。ブラックマトリクスの外寸は40mm×60mmで、カラーフィルター形成範囲は30mm×50mmとした。更に、カラーフィルターオーバーコート材をスピンコーターにより塗布し、170℃のオーブン中で1時間硬化した。
【0029】
第2の工程として、透明電極を形成した。カラーフィルターを形成した基板には、カラーフィルター形成面上に、組み合わせて用いるカラーフィルターを形成していない基板は、水蒸気透過度0.06g/m2/dayのバリア層成膜面、表示装置の内側になる面側に、枚葉式スパッタ装置で酸化インジウム錫(ITO)を厚さ130nmに成膜し、フォトリソグラフィーとエッチングによりストライプ状にパターニングして透明電極とした。
パターニングした透明電極上に配向剤を印刷・成膜し、240度ツイストの配向となるようラビングを行った後、洗浄して乾燥した。次に、カラーフィルターを形成していない基板にシール材をスクリーン印刷し、プリベークを行った。その間に、カラーフィルターを形成した基板側にはスペーサーを散布した。尚、スペーサーは接着性のコーティングがなされるものを用いた。続いて両基板のはり合わせを行い、シール材を完全硬化してセルとした。セル化後に、実施例1と同様の方法でセルの外側にあたる両面のバリア層に平板を押し当てバリア性を劣化させた。その後、セルに、液晶としてメルク社製ZLI2293にカイラル剤を添加した組成物を注入し、封口材を用いて封口し、液晶セルを得た。さらに液晶セルに位相差フィルムと偏光フィルムを貼り液晶表示装置とした。
【0030】
作製した液晶表示装置に駆動波形発生装置を接続し表示を行った。全面点灯時も非点灯時も表示ムラは見られず良好であった。また、液晶表示装置を60℃90%RHの恒温恒湿槽に入れ、処理により表示に変化を生じないかを処理時間1000時間まで試験したところ、表示ムラは発生しなかった。
【0031】
<実施例9>
実施例1で得られた表示装置外面側のバリア層を劣化させる前の光学用フィルムを基板として用いて、液晶表示装置を作製した。第1の工程として、カラーフィルター層を形成した。カラーフォルター層は、樹脂ブラックマトリクス材,R,G,Bの3種の顔料分散カラーレジストを用い、フォトリソグラフィーにより水蒸気透過度0.06g/m2/dayのバリア層成膜面、表示装置の内側となる面側に形成を行った。R,G,Bのカラーレジストの寸法は70μm×200μmで、その間には幅10μmでブラックマトリクスを形成した。ブラックマトリクスの外寸は40mm×60mmで、カラーフィルター形成範囲は30mm×50mmとした。更に、カラーフィルターオーバーコート材をスピンコーターにより塗布し、170℃のオーブン中で1時間硬化した。
【0032】
第2の工程として、透明電極を形成した。カラーフィルターを形成した基板には、カラーフィルター形成面上に、組み合わせて用いるカラーフィルターを形成していない基板は、水蒸気透過度0.06g/m2/dayのバリア層成膜面、表示装置の内側になる面側に、枚葉式スパッタ装置で酸化インジウム錫(ITO)を厚さ130nmに成膜し、フォトリソグラフィーとエッチングによりストライプ状にパターニングして透明電極とした。
パターニングした透明電極上に配向剤を印刷・成膜し、240度ツイストの配向となるようラビングを行った後、洗浄して乾燥した。次に、カラーフィルターを形成していない基板にシール材をスクリーン印刷し、プリベークを行った。その間に、カラーフィルターを形成した基板側にはスペーサーを散布した。尚、スペーサーは接着性のコーティングがなされるものを用いた。続いて両基板のはり合わせを行い、シール材を完全硬化させセルとしたが、その際に粗面化された平板を使用し、セルの外側にあたる両面のバリア層に押し当てバリア性を劣化させた。その後、セルに、液晶としてメルク社製ZLI2293にカイラル剤を添加した組成物を注入し、封口材を用いて封口し、液晶セルを得た。さらに液晶セルに位相差フィルムと偏光フィルムを貼り液晶表示装置とした。
【0033】
作製した液晶表示装置に駆動波形発生装置を接続し表示を行った。全面点灯時も非点灯時も表示ムラは見られず良好であった。また、液晶表示装置を60℃90%RHの恒温恒湿槽に入れ、処理により表示に変化を生じないかを処理時間1000時間まで試験したところ、表示ムラは発生しなかった。
【0034】
<比較例1>
溶融押出法で製造した幅1m厚さ200μm、位相差4nm±2nmのポリエーテルスルホンのフィルム両面に、実施例1と同様にして膜厚2μmのコート層を設けた。この工程でサンプリングしたフィルムの40℃90%RHにおける水蒸気透過度をカップ法にて測定したところ、 50g/m2/dayであった。また、用いたポリエーテルスルホンの光弾性定数は100×10-13cm2/dynであった。
続いて、このフィルムの一方の面、表示装置の外側となる面に、連続式スパッタ装置を用いて厚さ50nmの酸化珪素膜を成膜した。酸化珪素膜は、原料ターゲットに珪素を用い、スパッタ装置内を10-3Pa以下まで減圧した上で放電ガスとしてアルゴンを分圧で0.08Pa導入、反応ガスとして酸素を分圧で0.08Pa導入して反応性スパッタリングを行い成膜した。この酸化珪素層の上に、再度紫外線硬化性樹脂組成物Aを実施例1と同様の方法により塗工し、コート層を設けた。この工程でサンプリングしたフィルムの水蒸気透過度を水蒸気透過率測定機を用いて測定したところ、0.06g/m2/dayであった。
【0035】
次に、前記の酸化珪素膜を成膜した面と逆の面、表示装置の内側となる面に、連続式真空蒸着装置を用いて厚さ20nmの酸化珪素膜を成膜して、光学用フィルムを得た。尚、2度目に成膜した酸化珪素膜による水蒸気透過度を測定するために、1度目の酸化珪素膜とその上層のコート層が無いサンプルを作成し、水蒸気透過率測定機を用いて測定したところ、15g/m2/dayであった。また、この光学用フィルムの波長550nmにおける光線透過率を分光光度計により測定したところ、89%であった。
【0036】
得られた光学用フィルムについて実施例1と同様にして寸法変化を求めたところ、0.01%であった。また、平板を使用した表示装置の外側となる面のバリア層の劣化処理を実施しなかった以外は実施例1と同様にして高温高湿条件下での位相差発生の評価を行ったところ、位相差の最大値は7nmであった。
この光学用フィルムを基板として用いて、液晶表示装置の作製を試みた。実施例2と同様にしてカラーフィルター層の形成を行ったところ、フォトリソグラフィーの繰り返し時に位置ズレが生じ、ブラックマトリクスとR,G,Bのカラーレジストの間に隙間ができる、2色のカラーレジストが一部重なるといった不良が発生した。
【0037】
<比較例2>
溶融押出法で製造した幅1m厚さ300μm、位相差4nm±2nmのポリエーテルスルホンのフィルム両面に、実施例1と同様にして膜厚2μmのコート層を設けた。この工程でサンプリングしたフィルムの40℃90%RHにおける水蒸気透過度をカップ法にて測定したところ、 50g/m2/dayであった。また、用いたポリエーテルスルホンの光弾性定数は100×10-13cm2/dynであった。
続いて、このフィルムの一方の面、表示装置の外側となる面に、連続式スパッタ装置を用いて厚さ50nmの酸化珪素膜を成膜した。酸化珪素膜は、原料ターゲットに珪素を用い、スパッタ装置内を10-3Pa以下まで減圧した上で放電ガスとしてアルゴンを分圧で0.08Pa導入、反応ガスとして酸素を分圧で0.08Pa導入して反応性スパッタリングを行い成膜した。この酸化珪素層の上に、再度紫外線硬化性樹脂組成物Aを実施例1と同様の方法により塗工し、コート層を設けた。この工程でサンプリングしたフィルムの水蒸気透過度を水蒸気透過率測定機を用いて測定したところ、0.06g/m2/dayであった。
【0038】
次に、前記の酸化珪素膜を成膜した面と逆の面、表示装置の内側となる面に、連続式真空蒸着装置を用いて厚さ50nmの酸化珪素膜を成膜して、光学用フィルムを得た。尚、2度目に成膜した酸化珪素膜による水蒸気透過度を測定するために、1度目の酸化珪素膜とその上層のコート層が無いサンプルを作成し、水蒸気透過率測定機を用いて測定したところ、0.08g/m2/dayであった。また、この光学用フィルムの波長550nmにおける光線透過率を分光光度計により測定したところ、89%であった。
【0039】
得られた光学用フィルムについて実施例1と同様にして寸法変化を求めたところ、0.003%であった。また、平板を使用した表示装置の外側となる面のバリア層の劣化処理を実施しなかった以外は実施例1と同様にして高温高湿条件下での位相差発生の評価を行ったところ、位相差の最大値は45nmであった。
この光学用フィルムを基板として用いて、平板を使用した表示装置の外側となる面のバリア層の劣化処理を実施しなかった以外は、実施例2と同様にして液晶表示装置を作製した。作製した液晶表示装置に駆動波形発生装置を接続し表示を行った。全面点灯時も非点灯時も表示ムラは見られず良好であった。この液晶表示装置を60℃90%RHの恒温恒湿槽に入れ、処理により表示に変化を生じないかを試験したところ、50時間程度より表示部四隅から表示ムラが発生した。
【0040】
実施例1〜5では、カラーフィルター形成時には、寸法変化も小さく、バリア性の劣化処理を施すことにより、高温高湿処理による位相差発生も小さな表示装置用基板として好適な光学用フィルムシートがえられており、この中では最も位相差発生が大きな実施例1の光学用フィルムを用いて表示装置を作製した場合でも、良好な表示を行うことができた(実施例6)。
【0041】
一方、比較例1では、一方の面に、水蒸気透過度が0.1g/m2/day以下でとなる単独層または複合層を有するものの、他方の面に水蒸気透過度が15g/m2/dayと大きかったため、カラーフィルターの形成がうまくできなかった。また、実施例2では、両面ともに水蒸気透過度が0.002g/m2/day以下と小さく、バリア性の劣化処理を施さなかったために、高温高湿処理による位相差の発生が大きく、表示装置とした際には高温高湿条件下で表示ムラが発生してしまった。
【0042】
【発明の効果】
以上のように、本発明の表示装置の製造方法及びこれを用いた表示装置は、表示装置製造時には、良好な寸法安定性を維持しつつ、表示装置となった後では従来プラスチック基板で発生していた表示部四隅の表示ムラを無くす事ができ、表示性能を著しく向上させることができるものである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a display device using a plastic film sheet as a substrate.
[0002]
[Prior art]
As a substrate for a display element, a glass substrate has been conventionally used. However, due to the rapid growth of portable display media in recent years, research and development have been conducted on display media using plastic substrates that take advantage of the characteristics of being light and not cracking. However, plastics have gas permeability such as oxygen and water vapor, and the rate of dimensional change due to water absorption. When plastic is used for the substrate, bubbles are generated by the permeated gas, resulting in display defects and moisture in the liquid crystal. As a result, the specific resistance of the liquid crystal is lowered to cause a display failure, and further, a connection failure due to a displacement of the transparent electrode circuit on the upper and lower substrates occurs due to a dimensional change due to moisture absorption during the process. In order to solve this problem, a film having a high light transmittance, such as SiOx, polyvinylidene chloride, and the like, having a low water vapor transmission rate is formed on both surfaces of a plastic film sheet as a barrier layer.
[0003]
However, these film formations are often performed by a vacuum process, which is difficult to process on the side of a plastic film sheet. In the case of a liquid crystal display device, a plurality of cells are formed on one large substrate. This is more difficult and generally not done because it is necessary to form a film on the side with the driver connected to the side after cutting together. In this case, in an environment where the humidity is extremely high, especially in the case of a display device using polarized light such as a liquid crystal display device using a nematic liquid crystal or an organic electroluminescence display device using a circularly polarizing plate, Display unevenness may occur, which is a problem.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to prevent display unevenness of a display device that occurs during a process and after completion of the device when plastic is used for a substrate.
[0005]
[Means for Solving the Problems]
The present inventors estimated that the display unevenness is caused by the following causes. That is, when a plastic substrate having a water vapor barrier layer on the surface is placed in a high humidity environment, water vapor diffuses from the side surface without the barrier layer, and the dimensional change due to water absorption differs between the vicinity of the side surface and the inside of the surface. A substrate that swells and stretches near the sides and at the four corners, and a plastic material with high photoelasticity causes a phase difference, which causes display unevenness when the display device uses polarized light. it is conceivable that. In order to prevent this, in order to cope with the dimensional change of the plastic substrate due to moisture absorption during the manufacturing process of the color filter etc., a layer serving as a water vapor barrier is provided on the plastic substrate as a single layer or a composite layer. By deteriorating the barrier property of the barrier layer on the outer surface when a display device is formed in any step, the water vapor permeability of the substrate is set within the in-plane amount of moisture intrusion into the plastic that is the central layer of the substrate. Ascertaining that the above-mentioned problem can be solved by maintaining a barrier layer having a water vapor permeability of a level that can sufficiently block water vapor on the inner surface when the display device is made without causing a significant difference in distribution, It led to the following invention.
[0006]
That is, the present invention
(1) In a manufacturing method of a display device using a plastic film sheet as a substrate, the water vapor permeability is 1 g / m on both sides of the plastic film sheet. 2 A barrier layer of / day or less is laminated, and the water vapor permeability of the barrier layer on the outer surface side when the display device is formed during the display device manufacturing process is 10 g / m. 2 / Day or more 50g / m 2 / The manufacturing method of a display apparatus including the process reduced so that it may become below.
(2) The method for manufacturing a display device according to (1), wherein the step of reducing the water vapor permeability of the barrier layer is at least after the color filter forming step.
(3) The method of manufacturing a display device according to (1) or (2), wherein the step of reducing the water vapor permeability of the barrier layer inserts a member having a convex shape into the barrier layer.
(4) The method for manufacturing a display device according to (1) or (2), wherein the step of reducing the water vapor permeability of the barrier layer chemically degrades the barrier layer.
(5) The method for manufacturing a display device according to (1) or (2), wherein the step of reducing the water vapor permeability of the barrier layer causes the barrier layer to deteriorate by colliding fine particles.
(6) The method for manufacturing a display device according to (1) or (2), wherein the step of reducing the water vapor permeability of the barrier layer electrically degrades the barrier layer.
(7) The method of manufacturing a display device according to (1) or (2), wherein the step of reducing the water vapor permeability of the barrier layer irradiates the barrier layer with energy rays.
(8) The method for manufacturing a display device according to (1) or (2), wherein the step of reducing the water vapor permeability of the barrier layer irradiates the barrier layer with ultrasonic waves.
(9) The method for manufacturing a display device according to any one of (1) to (8), wherein the barrier layer includes at least one layer containing any one of silicon oxide, silicon nitride, and indium tin oxide (ITO).
(10) The phase difference of the plastic film sheet is 20 nm or less,
And the light transmittance in wavelength 550nm is 80% or more, The manufacturing method of the display apparatus of (1)-(9) characterized by the above-mentioned.
(11) The photoelastic constant of the plastic film sheet is 10 × 10 -13 cm 2 / Dyn or more The manufacturing method of the display device of (1) to (10).
(12) The plastic film sheet is (1) a polymer having a repeating unit bonded by an ester bond, (2) a polymer having a repeating unit bonded by a carbonate bond, or (3) a repetition bonded by a sulfone bond. (1)-(11) manufacturing method of the display apparatus which has the polymer which has a unit as a main component.
It is.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention has a water vapor transmission rate of 1 g on both sides of the plastic film sheet before any process such as the color filter forming process and the substrate bonding so that there is no problem in dimensional change during the manufacturing process of the color filter and the like. / M 2 After forming the color filter and forming a barrier layer that is less than or equal to / day, the outer surface and the outer surface when the apparatus is used so that there is no significant difference in the in-plane distribution of the amount of moisture intrusion into the plastic film sheet that is the center of the substrate Only the barrier layer on the side to be formed has a water vapor permeability of 10 g / m 2 / Day or more 50g / m 2 The display unevenness is prevented by deteriorating to / day or less.
[0008]
The barrier layer of the present invention is not particularly limited, but an organic barrier layer such as polyvinylidene chloride is formed to a required thickness by coating or the like, or Si, Ti, Zr, Al, Ta, Nb, Sn, An inorganic barrier layer such as an oxide such as In, nitride, or halide can be formed by vacuum deposition, CVD, sputtering, or the like. Further, an organic layer and an inorganic layer can be stacked to form a film. By selecting these compositions and film thicknesses, the water vapor permeability can be controlled within the above range, but silicon oxide, silicon nitride, or indium tin oxide (ITO) is preferred for industrial or economic reasons.
The water vapor permeability of the barrier layer on the outer surface side of the display device is 1 g / m until the color filter is formed and before the steps such as substrate bonding. 2 / Day or less, preferably 0.1 g / m 2 / Day or less, more preferably 0.05 g / m 2 / Day or less. Water vapor permeability is 1g / m 2 When the value exceeds / day, the dimensional change of the film sheet is large, and in particular, there is a problem of misalignment in the formation of the black matrix or the RGB filter when forming the color filter. Water vapor permeability is 10g / m 2 If it is less than / day, the barrier property is too high, and moisture absorption concentration distribution occurs due to the infiltration of water vapor from the side surface and diffusion in the plastic, causing a phase difference.
The method for reducing the water vapor permeability of the barrier layer on the outer surface side when the display device is used is not particularly limited, but it does not affect the barrier layer on the inner surface through the outer barrier layer. A method in which a member having a convex shape such as a roll or a plate with projections arranged uniformly in the surface is pressed against the barrier layer on the outer surface side of the film sheet or the display device to cause deterioration, or a knife or needle , A method of scratching randomly so that the outer surface of the barrier layer is penetrated and the inner surface of the barrier layer is not affected so as to be uniform in a lattice shape or in the surface, solvent, etching agent, etc. A method of chemically deteriorating the outer surface barrier layer using a method, a method of causing microscopic particles to collide with the outer surface barrier layer, a method of electrically deteriorating the outer surface barrier layer by treatment such as electric discharge and electric corrosion, ultrasonic On the surface How to degrade the barrier layer of the outer surface, the method and the like to degrade the barrier layer outer surface with an energy ray irradiation such as a laser that focus. Two or more of the above methods may be used in combination.
On the other hand, a single layer or a composite layer formed on the inner surface side in the case of a display device is formed by oxides, nitrides, halides of Si, Ti, Zr, Al, Ta, Nb, Sn, In, etc. It can be obtained by forming an inorganic barrier layer such as vacuum vapor deposition, CVD, sputtering, or the like, or by stacking these with an organic film. By selecting these compositions and film thicknesses, the water vapor permeability can be controlled within the above range, but silicon oxide, silicon nitride, or indium tin oxide (ITO) is preferable from the industrial or economic viewpoint. ITO, which is a transparent conductive material, has a gas / water vapor permeability of 0.1 g / m. 2 / Day or less, in the case of a common electrode side substrate of a TFT-LCD in which an electrodeposited transparent electrode is formed on the entire surface, the ITO electrode may be used in some cases.
[0009]
The optical film sheet of the present invention desirably has a retardation of 20 nm or less. Aside from the retardation film, when used for a display substrate or the like, if the retardation exceeds 20 nm, display unevenness of the display device may be defective even if no retardation is generated due to moisture absorption. Furthermore, the optical film sheet of the present invention has a photoelastic constant of 10 × 10. -13 cm 2 This is particularly effective when a plastic film sheet of / dyn or more is used. The photoelastic constant is 10 × 10 -13 cm 2 / Dyn or less plastic film sheet is less likely to cause phase difference due to stress, so that the water vapor permeability is 0.1 g / m for both barrier layers. 2 / Day or less is less likely to cause display unevenness in the display device, but plastics having a low photoelastic constant are generally low in heat resistance such as aliphatic polymers, and are used as display device substrates. Many are limited in use. Although it does not specifically limit as a plastic used for the optical film sheet of this invention, When a preferable thing is mentioned, (1) The polymer which has a repeating unit couple | bonded by ester bonds, such as polyester and polyarylate, (2) Polycarbonate etc. It is a plastic mainly composed of a polymer having a repeating unit bonded by a carbonate bond or (3) a polymer having a repeating unit bonded by a sulfone bond such as polysulfone. These may be used alone or in combination of two or more. Further, a lubricant, a heat stabilizer, a weather stabilizer, a pigment, a dye, an inorganic filler, and the like may be appropriately blended. Since there is a process of heating to about 150 ° C. in the manufacturing process of the display device, a plastic excellent in heat resistance is preferable, and aromatic polyester having an aromatic group, aromatic polyarylate, aromatic polycarbonate, aromatic polysulfone series are preferable. Those mainly composed of a polymer are preferred. In particular, polyethersulfone is preferable from the balance of heat resistance and transparency described below.
[0010]
The optical film sheet of the present invention preferably has a light transmittance of 80% or more at a wavelength of 550 nm. If the light transmittance is low, the display becomes dark and difficult to see when the display device is used, or the power consumption increases to make it brighter. This problem gradually becomes a problem as the light transmittance decreases. However, practically, it is desirable that the light transmittance at a wavelength of 550 nm is 80% or more except for a semi-transmissive display substrate.
[0011]
【Example】
Hereinafter, although it demonstrates in detail based on an Example, this invention is not limited to a present Example.
<Example 1>
UV curing using a continuous coating machine with a coater part, a drying furnace, and a UV irradiation device using a high-pressure mercury lamp on both sides of a polyethersulfone film with a width of 1m, a thickness of 200μm, and a retardation of 4nm ± 2nm produced by melt extrusion. 25 parts by weight of an epoxy acrylate resin, 10 parts by weight of a urethane acrylate resin, 1 part by weight of Irgacure 907 (manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator, and γ-mercaptopropyltri as a silane coupling agent A mixed liquid of 0.2 parts by weight of methoxysilane and 65 parts by weight of butyl acetate (hereinafter referred to as UV curable resin composition A) was applied, dried at 120 ° C., and then irradiated with UV light at 350 mJ / cm. 2 Irradiation was performed to provide a coating layer having a thickness of 2 μm. When the water vapor transmission rate at 40 ° C. and 90% RH of the film sampled in this step was measured by the cup method, 50 g / m 2 / Day. The polyethersulfone used had a photoelastic constant of 100 × 10 -13 cm 2 / Dyn.
Subsequently, a silicon oxide film having a thickness of 50 nm was formed on one surface of the film, that is, the inner surface of the display device, using a continuous sputtering apparatus. The silicon oxide film uses silicon as a raw material target, and the inside of the sputtering apparatus is 10 -3 After reducing the pressure to Pa or less, 0.08 Pa was introduced as a discharge gas at a partial pressure of 0.08 Pa, and oxygen was introduced as a reactive gas at a partial pressure of 0.08 Pa to form a film by reactive sputtering. On this silicon oxide layer, the ultraviolet curable resin composition A was again coated by the same method as described above to provide a coat layer. When the water vapor permeability of the film sampled in this step was measured using a gas chromatography gas / water vapor permeability measuring machine GTR-30 (hereinafter referred to as a water vapor permeability measuring machine) manufactured by Yanaco Analytical Industries, Ltd., 0.06 g / m 2 / Day.
[0012]
Next, a silicon oxide film having a thickness of 50 nm is formed on the surface opposite to the surface on which the silicon oxide film is formed, on the surface that is outside the display device, by a method similar to the above using a continuous sputtering apparatus. did. On this silicon oxide layer, the ultraviolet curable resin composition A was applied again by the same method as described above, and a coating layer was provided to obtain an optical film. In addition, in order to measure the water vapor transmission rate by the silicon oxide film and the coating layer formed the second time, a sample without the first silicon oxide film and the upper coating layer was prepared, and a water vapor transmission rate measuring machine was used. Measured to be 0.10 g / m. 2 / Day. Further, the light transmittance of this optical film at a wavelength of 550 nm was measured with a spectrophotometer and found to be 89%.
[0013]
This optical film was cut into a sheet of 360 mm × 460 mm to obtain a display element substrate. In order to evaluate the dimensional change with respect to repeated heating and drying of a photoresist and development / etching with an aqueous solution in a photolithography process for forming a color filter layer and a transparent electrode for display, the following test was performed. First, after drying the substrate at 120 ° C. for 1 hour, the substrate is left to stand in a drying container until the temperature of the substrate reaches 23 ° C., and the external dimensions are measured with a precision dimension measuring device, and then immersed in pure water at 23 ° C. for 5 minutes. After that, measure the outer dimensions again. This operation was repeated again, and the ratio of the amplitude to the first measured value was obtained. The dimensional change thus obtained was 0.004%. Next, the outer surface of the display device is pressed by a flat plate in which needles with a height of 5 ± 1 μ are arranged at intervals of 1 mm vertically and horizontally with a load that the needle pierces the film, and a hole is formed in the silicon oxide film on the outer surface. Opening and processing to degrade the outer barrier properties.
When the water vapor transmission rate of the substrate subjected to the above treatment was measured using a water vapor transmission rate measuring device, it was 0.06 g / m. 2 / Day.
In addition, in order to see the effect of the treatment for deteriorating the barrier property, a sample without the barrier layer on the inner surface side of the display device was prepared, and after performing the same barrier property deterioration treatment as described above, the water vapor permeability at 40 ° C. and 90% RH Was measured by the cup method, 15.0 g / m 2 / Day.
The substrate subjected to the above treatment was evaluated for the occurrence of phase difference under high temperature and high humidity conditions. First, the substrate was cut into an external size of 40 mm × 60 mm assuming a small display device, and the phase difference of the inner part 3 mm from the four corners in the vertical and horizontal directions was measured with a polarizing microscope equipped with a Berek compensator. The phase difference was 1-2 nm. When this substrate was put into a constant temperature and humidity chamber set at 60 ° C. and 90% RH, and the phase difference at the same position was measured up to 240 hours every 24 hours and then every 10 hours up to 1040 hours, The maximum value of the phase difference was 8 nm.
[0014]
<Example 2>
UV curable resin using a continuous coating machine with a coater part, a drying furnace, and a UV irradiation device using a high-pressure mercury lamp on both sides of a polycarbonate film with a width of 1m, a thickness of 180μm, and a retardation of 1nm ± 1nm manufactured by the solution casting method 25 parts by weight of epoxy acrylate resin as composition, 10 parts by weight of urethane acrylate resin, 1 part by weight of Irgacure 907 (manufactured by Ciba Specialty Chemicals) as photopolymerization initiator, and γ-mercaptopropyltrimethoxysilane as silane coupling agent A mixed liquid of 0.2 parts by weight and 65 parts by weight of butyl acetate (hereinafter referred to as ultraviolet curable resin composition A) was applied, and after drying at 120 ° C., ultraviolet rays were 350 mJ / cm. 2 Irradiation was performed to provide a coating layer having a thickness of 2 μm. When the water vapor permeability at 40 ° C. and 90% RH of the film sampled in this step was measured by the cup method, 40 g / m 2 / Day. The polycarbonate used has a photoelastic constant of 96 × 10. -13 cm 2 / Dyn.
Subsequently, a silicon oxide film having a thickness of 50 nm was formed on one surface of the film, that is, the inner surface of the display device, using a continuous sputtering apparatus. The silicon oxide film uses silicon as a raw material target, and the inside of the sputtering apparatus is 10 -3 After reducing the pressure to Pa or less, 0.04 Pa was introduced as a discharge gas at a partial pressure of 0.04 Pa, and oxygen was introduced as a reactive gas at a partial pressure of 0.04 Pa to form a film by reactive sputtering. On this silicon oxide layer, the ultraviolet curable resin composition A was again coated by the same method as described above to provide a coat layer. When the water vapor permeability of the film sampled in this step was measured using a water vapor permeability measuring machine, it was found to be 0.02 g / m. 2 / Day.
[0015]
Next, on the surface opposite to the surface on which the silicon oxide film is formed, the surface that is outside the display device,
An ITO (indium tin oxide) film having a thickness of 20 nm was formed using a continuous sputtering apparatus. The ITO film uses an ITO target as a raw material target, and the inside of the sputtering apparatus is 10 -3 After reducing the pressure to Pa or less, 0.06 Pa was introduced as a discharge gas at a partial pressure of 0.06 Pa, and oxygen was introduced as a reactive gas at a partial pressure of 0.02 Pa to form a film by sputtering. On this ITO layer, the ultraviolet curable resin composition A was coated again by the same method as described above, and a coating layer was provided to obtain an optical film. In addition, in order to measure the water vapor transmission rate by the second ITO film and the coating layer, a sample without the first silicon oxide film and the upper coating layer was prepared and measured using a water vapor transmission rate measuring machine. 0.03 g / m 2 / Day. Further, the light transmittance of this optical film at a wavelength of 550 nm was measured with a spectrophotometer and found to be 92%.
[0016]
The dimensional change of this optical film was determined in the same manner as in Example 1, and it was 0.003%.
Next, the surface which becomes the outer side of the display device is sufficiently loaded with a protrusion with a 100 mmφ metal roll in which conical protrusions having a height of 5 ± 1 μ are arranged at intervals of 3 mm in the circumferential direction and the width direction. Pressing down and making a hole in the ITO film on the outside surface, the outer barrier properties were deteriorated.
When the water vapor transmission rate of the substrate subjected to the above treatment was measured using a water vapor transmission rate measuring device, it was 0.02 g / m. 2 / Day.
In addition, in order to see the effect of the treatment for deteriorating the barrier property, a sample without the barrier layer on the inner surface side of the display device was prepared, and after performing the same barrier property deterioration treatment as above, the water vapor permeability at 40 ° C. and 90% RH Was measured by the cup method, 30.0 g / m 2 / Day.
Further, when the occurrence of retardation under high temperature and high humidity conditions was evaluated in the same manner as in Example 1, the maximum value of retardation was 4 nm.
[0017]
<Example 3>
As UV curable resin composition, urethane acrylate resin 20 parts by weight, isocyanuric acid triacrylate 70 parts by weight, as photopolymerization initiator, Irgacure 907 (manufactured by Ciba Specialty Chemicals), 1 part by weight, methyl cellosolve acetate 5 parts by weight The mixture was cast on a polished glass having a release agent uniformly applied to the surface, dried in an oven at 90 ° C. for 30 minutes, and then irradiated with UV light from the top and bottom of the substrate with a high-pressure mercury lamp at 200 mJ / cm from the top and bottom. 2 The ultraviolet curable resin composition was cured by irradiation. After peeling the cured product from the substrate, 400 mJ / cm each from above and below 2 Then, it was treated in an oven at 150 ° C. for 2 hours while being sandwiched between polished glasses to obtain a plastic sheet having a thickness of 0.4 mm and an outer shape of 300 mm × 300 mm. When the water vapor permeability at 40 ° C. and 90% RH of this sheet was measured by the cup method, 20 g / m 2 / Day. The phase difference of this plastic sheet is 0 to 1 nm, and the photoelastic constant is 4 × 10. -13 cm 2 / Dyn.
Subsequently, a silicon oxide film having a thickness of 50 nm was formed on one surface of the sheet, that is, the inner surface of the display device, using a single wafer sputtering apparatus. The silicon oxide film uses silicon as a raw material target, and the inside of the sputtering apparatus is 10 -3 After reducing the pressure to Pa or less, 0.04 Pa was introduced as a discharge gas at a partial pressure of 0.04 Pa, and oxygen was introduced as a reactive gas at a partial pressure of 0.04 Pa to form a film by reactive sputtering. On this silicon oxide layer, the ultraviolet curable resin composition A was spin-coated again, dried for 2 minutes on a hot plate at 80 ° C., and further for 2 minutes on a hot plate at 120 ° C., and then irradiated with ultraviolet light at 400 mJ using a high-pressure mercury lamp. / Cm 2 And cured to provide a coat layer. When the water vapor permeability of the film sampled in this step was measured using a water vapor transmission rate measuring device, it was 0.002 g / m. 2 / Day.
[0018]
Next, a silicon oxide film having a thickness of 50 nm was formed on the surface opposite to the surface on which the silicon oxide film was formed, and on the surface outside the display device, using a type sputtering apparatus. The silicon oxide film uses silicon as a raw material target, and the inside of the sputtering apparatus is 10 -3 After reducing the pressure to less than Pa, 0.05 Pa was introduced as a discharge gas at a partial pressure of 0.05 Pa, and oxygen was introduced as a reactive gas at a partial pressure of 0.05 Pa to carry out reactive sputtering to form a film. On this silicon oxide layer, the ultraviolet curable resin composition A was applied again by the same method as described above, and a coating layer was provided to obtain an optical film. In addition, in order to measure the water vapor transmission rate by the silicon oxide film and the coating layer formed the second time, a sample without the first silicon oxide film and the upper coating layer was prepared, and a water vapor transmission rate measuring machine was used. Measured to be 0.8 g / m 2 / Day. Moreover, it was 88% when the light transmittance in wavelength 550nm of this optical film was measured with the spectrophotometer.
[0019]
When the dimensional change was calculated | required like Example 1 about the obtained optical film, it was 0.003%. Next, the outer surface of the display device was subjected to a process for deteriorating the outer barrier property in the same manner as in Example 1.
When the water vapor transmission rate of the substrate subjected to the above treatment was measured using a water vapor transmission rate measuring device, it was 0.002 g / m. 2 / Day.
In addition, in order to see the effect of the treatment for deteriorating the barrier property, a sample without the barrier layer on the inner surface side of the display device was prepared and subjected to the same barrier property deterioration treatment as in Example 1, and then water vapor at 40 ° C. and 90% RH. When the transmittance was measured by the cup method, it was 20.0 g / m. 2 / Day.
Moreover, when the evaluation of the phase difference generation under the high temperature and high humidity condition was performed in the same manner as in Example 1, the maximum value of the phase difference was 1 nm.
[0020]
<Example 4>
UV curing using a continuous coating machine with a coater part, a drying furnace, and a UV irradiation device using a high-pressure mercury lamp on both sides of a polyethersulfone film with a width of 1m, a thickness of 150μm, and a retardation of 4nm ± 2nm produced by the melt extrusion method. 25 parts by weight of an epoxy acrylate resin, 10 parts by weight of a urethane acrylate resin, 1 part by weight of Irgacure 907 (manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator, and γ-mercaptopropyltri as a silane coupling agent A mixed liquid of 0.2 parts by weight of methoxysilane and 65 parts by weight of butyl acetate (hereinafter referred to as UV curable resin composition A) was applied, dried at 120 ° C., and then irradiated with UV light at 350 mJ / cm. 2 Irradiation was performed to provide a coating layer having a thickness of 2 μm. When the water vapor permeability at 40 ° C. and 90% RH of the film sampled in this step was measured by a cup method, it was 80 g / m. 2 / Day. The polyethersulfone used had a photoelastic constant of 100 × 10 -13 cm 2 / Dyn.
Subsequently, a silicon oxide film having a thickness of 50 nm was formed on one surface of the film, that is, the inner surface of the display device, using a continuous sputtering apparatus. The silicon oxide film uses silicon as a raw material target, and the inside of the sputtering apparatus is 10 -3 After reducing the pressure to Pa or lower, 0.08 Pa was introduced as a discharge gas at a partial pressure of 0.08 Pa, and oxygen was introduced as a reactive gas at a partial pressure of 0.06 Pa to form a film by reactive sputtering. On this silicon oxide layer, the ultraviolet curable resin composition A was again coated by the same method as described above to provide a coat layer. When the water vapor permeability of the film sampled in this step was measured using a water vapor permeability meter, it was 0.04 g / m. 2 / Day.
[0021]
Next, a silicon oxide film having a thickness of 50 nm is formed on the surface opposite to the surface on which the silicon oxide film is formed, on the surface that is outside the display device, by a method similar to the above using a continuous sputtering apparatus. Thus, an optical film was obtained. In addition, in order to measure the water vapor transmission rate by the silicon oxide film formed for the second time, a sample without the first silicon oxide film and the coating layer thereabove was prepared and measured using a water vapor transmission rate measuring device. However, 0.05g / m 2 / Day. Further, the light transmittance of this optical film at a wavelength of 550 nm was measured with a spectrophotometer and found to be 90%.
When the dimensional change was calculated | required like Example 1 about the obtained optical film, it was 0.002%.
Next, the substrate was immersed in a hydrogen fluoride solution at 23 ° C. for 10 minutes and subjected to a treatment for deteriorating the outer barrier property by chemical treatment.
When the water vapor transmission rate of the substrate subjected to the above treatment was measured using a water vapor transmission rate measuring device, it was 0.03 g / m. 2 / Day.
In addition, in order to see the effect of the treatment that degrades the barrier property, a sample without the barrier layer on the inner surface side of the display device is prepared and immersed in a hydrogen fluoride solution at 23 ° C. for 10 minutes, and the outer barrier property is chemically treated. The water vapor permeability at 40 ° C. and 90% RH was measured by the cup method after being subjected to a deterioration process at 10.0 ° C./m. 2 / Day.
Further, when the occurrence of retardation was evaluated under the high temperature and high humidity conditions in the same manner as in Example 1, the maximum value of the retardation was 9 nm.
[0022]
<Example 5>
UV curing using a continuous coating machine with a coater part, a drying furnace, and a UV irradiation device using a high-pressure mercury lamp on both sides of a polyethersulfone film with a width of 1m, a thickness of 300μm, and a retardation of 5nm ± 2nm produced by the melt extrusion method. 25 parts by weight of an epoxy acrylate resin, 10 parts by weight of a urethane acrylate resin, 1 part by weight of Irgacure 907 (manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator, and γ-mercaptopropyltri as a silane coupling agent A mixed liquid of 0.2 parts by weight of methoxysilane and 65 parts by weight of butyl acetate (hereinafter referred to as UV curable resin composition A) was applied, dried at 120 ° C., and then irradiated with UV light at 350 mJ / cm. 2 Irradiation was performed to provide a coating layer having a thickness of 2 μm. When the water vapor transmission rate at 40 ° C. and 90% RH of the film sampled in this step was measured by the cup method, 50 g / m 2 / Day. The polyethersulfone used had a photoelastic constant of 100 × 10 -13 cm 2 / Dyn.
Subsequently, a silicon oxide film having a thickness of 50 nm was formed on one surface of the film, that is, the inner surface of the display device, using a continuous sputtering apparatus. The silicon oxide film uses silicon as a raw material target, and the inside of the sputtering apparatus is 10 -3 After reducing the pressure to Pa or lower, 0.08 Pa was introduced as a discharge gas at a partial pressure of 0.08 Pa, and oxygen was introduced as a reactive gas at a partial pressure of 0.06 Pa to form a film by reactive sputtering. On this silicon oxide layer, the ultraviolet curable resin composition A was again coated by the same method as described above to provide a coat layer. When the water vapor permeability of the film sampled in this step was measured using a water vapor permeability meter, it was 0.05 g / m. 2 / Day.
[0023]
Next, a silicon oxide film having a thickness of 30 nm is formed on the surface opposite to the surface on which the silicon oxide film is formed, and on the surface outside the display device by a method similar to the above using a continuous sputtering apparatus. Thus, an optical film was obtained. In addition, in order to measure the water vapor transmission rate by the silicon oxide film formed for the second time, a sample without the first silicon oxide film and the coating layer thereabove was prepared and measured using a water vapor transmission rate measuring device. However, 0.08 g / m 2 / Day. Further, the light transmittance of this optical film at a wavelength of 550 nm was measured with a spectrophotometer and found to be 90%.
When the dimensional change was calculated | required like Example 1 about the obtained optical film, it was 0.003%.
Next, 10% NaOH was applied to the outer barrier side of the substrate, heated to 50 ° C. for 10 minutes on a hot plate, and subjected to a treatment for deteriorating the outer barrier properties by chemical treatment.
When the water vapor transmission rate of the substrate subjected to the above treatment was measured using a water vapor transmission rate measuring device, it was 0.05 g / m. 2 / Day.
In addition, in order to see the effect of the treatment that degrades the barrier properties, create a sample without the barrier layer on the inner surface of the display device, and after performing the treatment to degrade the outer barrier properties by chemical treatment in the same manner as described above, When the water vapor permeability at 40 ° C. and 90% RH was measured by the cup method, 15.0 g / m 2 / Day.
Moreover, when the generation | occurrence | production of the phase difference under high-temperature, high-humidity conditions was evaluated like Example 1, the maximum value of phase difference was 10 nm.
[0024]
<Example 6>
Using a continuous coating machine having a coater part, a drying furnace, and a UV irradiation device with a high-pressure mercury lamp on both sides of a polyethersulfone film with a width of 1 m, a thickness of 200 μm, and a retardation of 3 nm ± 2 nm produced by the melt extrusion method, 25 parts by weight of an epoxy acrylate resin as a curable resin composition, 10 parts by weight of a urethane acrylate resin, 1 part by weight of Irgacure 907 (manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator, and γ-mercaptopropyl as a silane coupling agent A mixed liquid of 0.2 parts by weight of trimethoxysilane and 65 parts by weight of butyl acetate (hereinafter referred to as an ultraviolet curable resin composition A) was applied, dried at 120 ° C., and then irradiated with ultraviolet rays at 350 mJ / cm. 2 Irradiation was performed to provide a coating layer having a thickness of 2 μm. When the water vapor transmission rate at 40 ° C. and 90% RH of the film sampled in this step was measured by the cup method, 50 g / m 2 / Day. The polyethersulfone used had a photoelastic constant of 100 × 10 -13 cm 2 / Dyn.
Subsequently, a silicon oxide film having a thickness of 50 nm was formed on one surface of the film, that is, the surface outside the display device, using a continuous sputtering apparatus. The silicon nitride film uses silicon as a raw material target, and the inside of the sputtering apparatus is 10 -3 After reducing the pressure to Pa or less, 0.08 Pa was introduced at a partial pressure of argon as a discharge gas, and 0.08 Pa was introduced at a partial pressure of oxygen as a reactive gas to perform film formation by reactive sputtering. On this silicon oxide layer, the ultraviolet curable resin composition A was again coated by the same method as described above to provide a coat layer. When the water vapor transmission rate of the film sampled in this step was measured using a water vapor transmission rate measuring device, it was 0.01 g / m. 2 / Day.
[0025]
Next, a silicon oxide film having a thickness of 50 nm is formed on the surface opposite to the surface on which the silicon nitride film has been formed, or on the surface outside the display device, using a continuous sputtering apparatus by the same method as described above. Films were obtained to obtain optical films. In addition, in order to measure the water vapor transmission rate by the silicon oxide film formed for the second time, a sample without the first silicon oxide film and the coating layer thereabove was prepared and measured using a water vapor transmission rate measuring device. However, 0.10 g / m 2 / Day. Further, the light transmittance of this optical film at a wavelength of 550 nm was measured with a spectrophotometer and found to be 89%.
When the dimensional change was calculated | required like Example 1 about the obtained optical film, it was 0.002%.
Next, the outer surface of the display device is 0.5 mm in thickness, 30 mm in length, 4 mm in the length of the conical pointed tip, 4 mm in the tip, and a sewing needle for sewing with an R shape of 2 μm. While paying attention to the insertion depth so as not to make a hole in the barrier surface, a hole was randomly made in the silicon oxide film on the outer surface, and the outer barrier property was deteriorated.
When the water vapor transmission rate of the substrate subjected to the above treatment was measured using a water vapor transmission rate measuring device, it was 0.01 g / m. 2 / Day.
In addition, in order to see the effect of the treatment for deteriorating the barrier property, a sample without the barrier layer on the inner surface side of the display device was prepared, and after performing the same barrier property deterioration treatment as described above, the water vapor permeability at 40 ° C. and 90% RH Was measured by the cup method, 20.0 g / m 2 / Day.
Moreover, when the generation | occurrence | production of the phase difference under high-temperature, high-humidity conditions was evaluated like Example 1, the maximum value of phase difference was 10 nm.
[0026]
<Example 7>
Using a continuous coating machine having a coater part, a drying furnace, and a UV irradiation device with a high-pressure mercury lamp on both sides of a polyethersulfone film with a width of 1 m, a thickness of 200 μm, and a retardation of 3 nm ± 2 nm produced by the melt extrusion method, 25 parts by weight of an epoxy acrylate resin as a curable resin composition, 10 parts by weight of a urethane acrylate resin, 1 part by weight of Irgacure 907 (manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator, and γ-mercaptopropyl as a silane coupling agent A mixed liquid of 0.2 parts by weight of trimethoxysilane and 65 parts by weight of butyl acetate (hereinafter referred to as an ultraviolet curable resin composition A) was applied, dried at 120 ° C., and then irradiated with ultraviolet rays at 350 mJ / cm. 2 Irradiation was performed to provide a coating layer having a thickness of 2 μm. When the water vapor transmission rate at 40 ° C. and 90% RH of the film sampled in this step was measured by the cup method, 50 g / m 2 / Day. The polyethersulfone used had a photoelastic constant of 100 × 10 -13 cm 2 / Dyn.
Subsequently, a silicon nitride film having a thickness of 50 nm was formed on one surface of the film, that is, the surface outside the display device, using a continuous sputtering apparatus. The silicon nitride film uses silicon as a raw material target, and the inside of the sputtering apparatus is 10 -3 After reducing the pressure to Pa or lower, 0.08 Pa was introduced at a partial pressure of argon as a discharge gas, and 0.01 Pa each of oxygen and nitrogen were introduced as reactive gases at a partial pressure, and reactive RF sputtering was performed to form a film. On this silicon nitride layer, the ultraviolet curable resin composition A was applied again by the same method as described above to provide a coating layer. When the water vapor transmission rate of the film sampled in this step was measured using a water vapor transmission rate measuring device, it was 0.01 g / m. 2 / Day.
[0027]
Next, a silicon nitride film having a thickness of 30 nm is formed on the surface opposite to the surface on which the silicon nitride film is formed, or on the surface outside the display device, using a continuous sputtering apparatus in the same manner as described above. Film formation was performed to obtain an optical film. In addition, in order to measure the water vapor transmission rate by the silicon nitride film formed the second time, a sample without the first silicon nitride film and the upper coating layer was prepared, and a water vapor transmission rate measuring machine was used. When measured, 0.06 g / m 2 / Day. Further, the light transmittance of this optical film at a wavelength of 550 nm was measured with a spectrophotometer and found to be 89%.
When the dimensional change was calculated | required like Example 1 about the obtained optical film, it was 0.002%.
Next, the surface which becomes the outer side of the display device is sufficiently loaded with a protrusion with a 100 mmφ metal roll in which conical protrusions having a height of 5 ± 1 μ are arranged at intervals of 3 mm in the circumferential direction and the width direction. The silicon nitride film on the outer surface was pressed down and subjected to a treatment for deteriorating the outer barrier properties.
When the water vapor transmission rate of the substrate subjected to the above treatment was measured using a water vapor transmission rate measuring device, it was 0.01 g / m. 2 / Day.
Further, in order to see the effect of the treatment for deteriorating the barrier property, a sample without the barrier layer on the inner surface side of the display device was prepared, and after performing the barrier property deterioration treatment as in Example 2, water vapor at 40 ° C. and 90% RH When the transmittance was measured by the cup method, it was 20.0 g / m. 2 / Day.
Further, when the occurrence of retardation was evaluated under the high temperature and high humidity conditions in the same manner as in Example 1, the maximum value of the retardation was 9 nm.
[0028]
<Example 8>
A liquid crystal display device was produced using the optical film before deterioration of the barrier layer on the outer surface of the display device obtained in Example 1 as a substrate. As a first step, a color filter layer was formed. The color filter layer uses a resin black matrix material, three types of pigment-dispersed color resists of R, G, and B, and a water vapor transmission rate of 0.06 g / m by photolithography. 2 The film was formed on the / day barrier layer film-forming surface and on the inner surface side of the display device. The dimensions of the color resists of R, G, and B were 70 μm × 200 μm, and a black matrix was formed between them with a width of 10 μm. The outer dimensions of the black matrix were 40 mm × 60 mm, and the color filter formation range was 30 mm × 50 mm. Further, a color filter overcoat material was applied by a spin coater and cured in an oven at 170 ° C. for 1 hour.
[0029]
As a second step, a transparent electrode was formed. On the substrate on which the color filter is formed, the substrate on which the color filter used in combination on the color filter forming surface is not formed has a water vapor transmission rate of 0.06 g / m. 2 A film of indium tin oxide (ITO) is deposited to a thickness of 130 nm by a single-wafer sputtering system on the / day barrier layer film forming surface and the inner surface of the display device, and patterned into stripes by photolithography and etching. And made a transparent electrode.
An orientation agent was printed and formed on the patterned transparent electrode, and rubbed so as to obtain a twist orientation of 240 degrees, followed by washing and drying. Next, a sealing material was screen printed on a substrate on which no color filter was formed, and prebaked. Meanwhile, spacers were dispersed on the side of the substrate on which the color filter was formed. The spacer used was an adhesive coating. Subsequently, the two substrates were bonded together, and the sealing material was completely cured to obtain a cell. After cell formation, a flat plate was pressed against the barrier layers on both sides corresponding to the outside of the cell in the same manner as in Example 1 to deteriorate the barrier property. Then, the composition which added the chiral agent to ZLI2293 made from Merck as a liquid crystal was inject | poured into the cell, and it sealed using the sealing material, and obtained the liquid crystal cell. Further, a retardation film and a polarizing film were attached to the liquid crystal cell to obtain a liquid crystal display device.
[0030]
A drive waveform generator was connected to the manufactured liquid crystal display device for display. Even when the entire surface was lit and when it was not lit, display unevenness was not seen and was good. Further, when the liquid crystal display device was placed in a constant temperature and humidity chamber at 60 ° C. and 90% RH and tested whether the display was changed by the processing, the processing time was 1000 hours. As a result, no display unevenness occurred.
[0031]
<Example 9>
A liquid crystal display device was produced using the optical film before deterioration of the barrier layer on the outer surface of the display device obtained in Example 1 as a substrate. As a first step, a color filter layer was formed. The color filter layer uses a resin black matrix material, three types of pigment-dispersed color resists of R, G, and B, and a water vapor transmission rate of 0.06 g / m by photolithography. 2 The film was formed on the / day barrier layer film-forming surface and on the inner surface side of the display device. The dimensions of the color resists of R, G, and B were 70 μm × 200 μm, and a black matrix was formed between them with a width of 10 μm. The outer dimensions of the black matrix were 40 mm × 60 mm, and the color filter formation range was 30 mm × 50 mm. Further, a color filter overcoat material was applied by a spin coater and cured in an oven at 170 ° C. for 1 hour.
[0032]
As a second step, a transparent electrode was formed. On the substrate on which the color filter is formed, the substrate on which the color filter used in combination on the color filter forming surface is not formed has a water vapor transmission rate of 0.06 g / m. 2 A film of indium tin oxide (ITO) is deposited to a thickness of 130 nm by a single-wafer sputtering system on the / day barrier layer film forming surface and the inner surface of the display device, and patterned into stripes by photolithography and etching. And made a transparent electrode.
An orientation agent was printed and formed on the patterned transparent electrode, and rubbed so as to obtain a twist orientation of 240 degrees, followed by washing and drying. Next, a sealing material was screen printed on a substrate on which no color filter was formed, and prebaked. Meanwhile, spacers were dispersed on the side of the substrate on which the color filter was formed. The spacer used was an adhesive coating. Subsequently, the two substrates were bonded together to completely cure the sealing material to form a cell. At that time, a roughened flat plate was used and pressed against the barrier layers on both sides corresponding to the outside of the cell to deteriorate the barrier property. It was. Then, the composition which added the chiral agent to ZLI2293 made from Merck as a liquid crystal was inject | poured into the cell, and it sealed using the sealing material, and obtained the liquid crystal cell. Further, a retardation film and a polarizing film were attached to the liquid crystal cell to obtain a liquid crystal display device.
[0033]
A drive waveform generator was connected to the manufactured liquid crystal display device for display. Even when the entire surface was lit and when it was not lit, display unevenness was not seen and was good. Further, when the liquid crystal display device was placed in a constant temperature and humidity chamber at 60 ° C. and 90% RH and tested whether the display was changed by the processing, the processing time was 1000 hours. As a result, no display unevenness occurred.
[0034]
<Comparative Example 1>
In the same manner as in Example 1, a coating layer having a thickness of 2 μm was provided on both surfaces of a polyethersulfone film having a width of 1 m and a thickness of 200 μm and a retardation of 4 nm ± 2 nm produced by the melt extrusion method. When the water vapor transmission rate at 40 ° C. and 90% RH of the film sampled in this step was measured by the cup method, 50 g / m 2 / Day. The polyethersulfone used had a photoelastic constant of 100 × 10 -13 cm 2 / Dyn.
Subsequently, a silicon oxide film having a thickness of 50 nm was formed on one surface of the film, that is, the surface outside the display device, using a continuous sputtering apparatus. The silicon oxide film uses silicon as a raw material target, and the inside of the sputtering apparatus is 10 -3 After reducing the pressure to Pa or less, 0.08 Pa was introduced as a discharge gas at a partial pressure of 0.08 Pa, and oxygen was introduced as a reactive gas at a partial pressure of 0.08 Pa to form a film by reactive sputtering. On this silicon oxide layer, the ultraviolet curable resin composition A was again applied in the same manner as in Example 1 to provide a coating layer. When the water vapor permeability of the film sampled in this step was measured using a water vapor permeability meter, it was 0.06 g / m. 2 / Day.
[0035]
Next, a silicon oxide film having a thickness of 20 nm is formed on the surface opposite to the surface on which the silicon oxide film is formed, and on the inner surface of the display device by using a continuous vacuum deposition apparatus. A film was obtained. In addition, in order to measure the water vapor transmission rate by the silicon oxide film formed the second time, a sample without the first silicon oxide film and the coating layer thereabove was prepared and measured using a water vapor transmission rate measuring machine. However, 15g / m 2 / Day. Further, the light transmittance of this optical film at a wavelength of 550 nm was measured with a spectrophotometer and found to be 89%.
[0036]
When the dimensional change was calculated | required like Example 1 about the obtained optical film, it was 0.01%. Moreover, when the deterioration treatment of the barrier layer on the outer surface of the display device using a flat plate was not performed, the occurrence of retardation under high temperature and high humidity conditions was evaluated in the same manner as in Example 1, The maximum value of the phase difference was 7 nm.
An attempt was made to produce a liquid crystal display device using this optical film as a substrate. When the color filter layer was formed in the same manner as in Example 2, a positional deviation occurred when photolithography was repeated, and a gap was formed between the black matrix and the R, G, B color resists. There was a defect such as partly overlapping.
[0037]
<Comparative example 2>
In the same manner as in Example 1, a coating layer having a thickness of 2 μm was provided on both surfaces of a polyethersulfone film having a width of 1 m and a thickness of 300 μm and a retardation of 4 nm ± 2 nm produced by the melt extrusion method. When the water vapor transmission rate at 40 ° C. and 90% RH of the film sampled in this step was measured by the cup method, 50 g / m 2 / Day. The polyethersulfone used had a photoelastic constant of 100 × 10 -13 cm 2 / Dyn.
Subsequently, a silicon oxide film having a thickness of 50 nm was formed on one surface of the film, that is, the surface outside the display device, using a continuous sputtering apparatus. The silicon oxide film uses silicon as a raw material target, and the inside of the sputtering apparatus is 10 -3 After reducing the pressure to Pa or less, 0.08 Pa was introduced as a discharge gas at a partial pressure of 0.08 Pa, and oxygen was introduced as a reactive gas at a partial pressure of 0.08 Pa to form a film by reactive sputtering. On this silicon oxide layer, the ultraviolet curable resin composition A was again applied in the same manner as in Example 1 to provide a coating layer. When the water vapor permeability of the film sampled in this step was measured using a water vapor permeability meter, it was 0.06 g / m. 2 / Day.
[0038]
Next, a silicon oxide film having a thickness of 50 nm is formed on the surface opposite to the surface on which the silicon oxide film is formed and on the inner surface of the display device by using a continuous vacuum deposition apparatus. A film was obtained. In addition, in order to measure the water vapor transmission rate by the silicon oxide film formed for the second time, a sample without the first silicon oxide film and the coating layer thereabove was prepared and measured using a water vapor transmission rate measuring device. However, 0.08 g / m 2 / Day. Further, the light transmittance of this optical film at a wavelength of 550 nm was measured with a spectrophotometer and found to be 89%.
[0039]
When the dimensional change was calculated | required like Example 1 about the obtained optical film, it was 0.003%. Moreover, when the deterioration treatment of the barrier layer on the outer surface of the display device using a flat plate was not performed, the occurrence of retardation under high temperature and high humidity conditions was evaluated in the same manner as in Example 1, The maximum value of the phase difference was 45 nm.
A liquid crystal display device was produced in the same manner as in Example 2 except that this optical film was used as a substrate, and the deterioration treatment of the barrier layer on the outer surface of the display device using a flat plate was not performed. A drive waveform generator was connected to the manufactured liquid crystal display device for display. Even when the entire surface was lit and when it was not lit, display unevenness was not seen and was good. When this liquid crystal display device was placed in a constant temperature and humidity chamber at 60 ° C. and 90% RH and tested for changes in display due to the treatment, display unevenness occurred from the four corners of the display portion in about 50 hours.
[0040]
In Examples 1 to 5, when a color filter is formed, an optical film sheet suitable for a display device substrate with a small dimensional change and a low retardation caused by a high-temperature and high-humidity process is obtained by performing a barrier property deterioration process. Among them, even when the display device was produced using the optical film of Example 1 having the largest phase difference, good display could be performed (Example 6).
[0041]
On the other hand, in Comparative Example 1, the water vapor permeability is 0.1 g / m on one surface. 2 Although it has a single layer or a composite layer that is less than / day, the water vapor permeability is 15 g / m on the other side. 2 The color filter could not be formed well because of the large / day. In Example 2, the water vapor permeability is 0.002 g / m on both sides. 2 / Day or less, and because the barrier property deterioration treatment was not performed, the occurrence of a phase difference due to the high-temperature and high-humidity treatment was large, and display unevenness occurred under high-temperature and high-humidity conditions when used as a display device. .
[0042]
【The invention's effect】
As described above, the display device manufacturing method and the display device using the display device according to the present invention are generated on a conventional plastic substrate after the display device is manufactured while maintaining good dimensional stability at the time of manufacturing the display device. The display unevenness at the four corners of the display portion can be eliminated, and the display performance can be remarkably improved.

Claims (12)

プラスチックフィルムシートを基板として用いる表示装置の製造方法において、プラスチックフィルムシートの両側に、水蒸気透過度が1g/m2/day以下のバリア層を積層し、表示装置作成工程中に、表示装置とした際に外面となる側のバリア層の40℃90%RHにおけるカップ法により測定した水蒸気透過度を10g/m2/day以上50g/m2/day以下となるように低下させる工程を含む、表示装置の製造方法。In a manufacturing method of a display device using a plastic film sheet as a substrate, a barrier layer having a water vapor transmission rate of 1 g / m 2 / day or less is laminated on both sides of the plastic film sheet, thereby forming a display device during the display device manufacturing process. Including a step of reducing the water vapor permeability of the barrier layer on the outer surface side measured by the cup method at 40 ° C. and 90% RH so as to be 10 g / m 2 / day to 50 g / m 2 / day. Device manufacturing method. バリア層の水蒸気透過度を低下させる工程が少なくともカラーフィルター形成工程の後である請求項1記載の表示装置の製造方法。  The method for manufacturing a display device according to claim 1, wherein the step of reducing the water vapor permeability of the barrier layer is at least after the color filter forming step. バリア層の水蒸気透過度を低下させる工程がバリア層に凸形状を有する部材を刺入するものである請求項1または2記載の表示装置の製造方法。  The method for manufacturing a display device according to claim 1, wherein the step of reducing the water vapor permeability of the barrier layer inserts a member having a convex shape into the barrier layer. バリア層の水蒸気透過度を低下させる工程がバリア層を化学的に劣化させるものである請求項1または2記載の表示装置の製造方法。  3. The method for manufacturing a display device according to claim 1, wherein the step of reducing the water vapor permeability of the barrier layer chemically degrades the barrier layer. バリア層の水蒸気透過度を低下させる工程が微小な粒を衝突させてバリア層を劣化させるものである請求項1または2記載の表示装置の製造方法。  3. The method for manufacturing a display device according to claim 1, wherein the step of reducing the water vapor permeability of the barrier layer causes the barrier layer to deteriorate by colliding fine particles. バリア層の水蒸気透過度を低下させる工程がバリア層を電気的に劣化させるものである請求項1または2記載の表示装置の製造方法。  The method for manufacturing a display device according to claim 1, wherein the step of reducing the water vapor permeability of the barrier layer electrically degrades the barrier layer. バリア層の水蒸気透過度を低下させる工程がバリア層にエネルギー線を照射するものである請求項1または2記載の表示装置の製造方法。  3. The method of manufacturing a display device according to claim 1, wherein the step of reducing the water vapor permeability of the barrier layer irradiates the barrier layer with energy rays. バリア層の水蒸気透過度を低下させる工程がバリア層に超音波を照射するものである請求項1または2記載の表示装置の製造方法。  3. The method for manufacturing a display device according to claim 1, wherein the step of reducing the water vapor permeability of the barrier layer irradiates the barrier layer with ultrasonic waves. バリア層が酸化珪素または窒素化珪素または酸化インジウム錫(ITO)の何れかを含む層を少なくとも一層有する請求項1〜8何れか一項記載の表示装置の製造方法。  The method for manufacturing a display device according to claim 1, wherein the barrier layer has at least one layer containing any one of silicon oxide, silicon nitride, and indium tin oxide (ITO). 前記プラスチックフィルムシートの位相差が20nm以下であり、且つ、波長550nmにおける光線透過率が80%以上であることを特徴とする請求項1〜9何れか一項記載の表示装置の製造方法。  The method for manufacturing a display device according to claim 1, wherein the phase difference of the plastic film sheet is 20 nm or less, and the light transmittance at a wavelength of 550 nm is 80% or more. 前記プラスチックフィルムシートの光弾性定数が10×10-13cm2/dyn以上である請求項1〜10何れか一項記載の表示装置の製造方法。The method for manufacturing a display device according to claim 1, wherein the plastic film sheet has a photoelastic constant of 10 × 10 −13 cm 2 / dyn or more. 前記プラスチックフィルムシートが(1)エステル結合で結合された繰り返し単位を有する高分子、(2)カーボネート結合で結合された繰り返し単位を有する高分子または(3)スルホン結合で結合された繰り返し単位を有する高分子を主成分とする請求項1〜11何れか一項記載の表示装置の製造方法。  The plastic film sheet has (1) a polymer having a repeating unit bonded by an ester bond, (2) a polymer having a repeating unit bonded by a carbonate bond, or (3) a repeating unit bonded by a sulfone bond. The manufacturing method of the display apparatus as described in any one of Claims 1-11 which have a polymer as a main component.
JP2001354207A 2001-11-20 2001-11-20 Optical film sheet and display device manufacturing method using the same Expired - Fee Related JP3986802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001354207A JP3986802B2 (en) 2001-11-20 2001-11-20 Optical film sheet and display device manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001354207A JP3986802B2 (en) 2001-11-20 2001-11-20 Optical film sheet and display device manufacturing method using the same

Publications (2)

Publication Number Publication Date
JP2003157019A JP2003157019A (en) 2003-05-30
JP3986802B2 true JP3986802B2 (en) 2007-10-03

Family

ID=19166099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001354207A Expired - Fee Related JP3986802B2 (en) 2001-11-20 2001-11-20 Optical film sheet and display device manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP3986802B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919596B2 (en) * 2004-12-06 2012-04-18 住友ベークライト株式会社 Color filter for display device, color filter member, and method for manufacturing color filter for display device

Also Published As

Publication number Publication date
JP2003157019A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
TWI529463B (en) Liquid crystal display and manufacturing method thereof
TWI356246B (en) Retardation film having a homeotropic alignment li
CN102099732B (en) Liquid crystal display
EP1574882B1 (en) Transparent conductive laminate, touch panel and liquid crystal display unit with touch panel
EP2520972B1 (en) Liquid crystal display device alignment film, and method for manufacturing the same
US7329434B2 (en) Polarizing layer with adherent protective layer
CN1289957C (en) Flexible tube
CN102770789B (en) Polarizing plate, method for fabricating same, and image display apparatus using same
CN102099716A (en) Polarization plate and liquid crystal display
KR20130048297A (en) Liquid crystal device alignment layer and methods for manufacturing the same
JP2000227603A (en) Liquid crystal display device and transparent conductive substrate suitable for the same
KR20100057654A (en) Elliptically polarizing plate, method for producing the same, and liquid crystal display device using the same
EP0232422A1 (en) Transparent conductive film integrated with polarizing membrane
JP4779241B2 (en) Optical film sheet and display device using the same
JP2003191371A (en) Gas barrier transparent film
KR101845128B1 (en) Polarizing plate and optical display apparatus comprising the same
CN112099125B (en) Method for manufacturing liquid crystal polymer multidirectional film
JP3986802B2 (en) Optical film sheet and display device manufacturing method using the same
JP4821061B2 (en) Optical film sheet and display device manufacturing method using the same
KR20220132510A (en) Polarizing plate, liquid crystal panel, and display apparatus
JPH08160222A (en) Substrate for optical compensating film
JP4066020B2 (en) Method for producing polymer film
JP2003280550A (en) Method for producing display device
JP4701561B2 (en) Display element and manufacturing method thereof
JPH09254303A (en) Transparent electrically conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140720

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees