JP3986703B2 - Epitaxial wafer and light emitting device for AlGaInP light emitting device - Google Patents

Epitaxial wafer and light emitting device for AlGaInP light emitting device Download PDF

Info

Publication number
JP3986703B2
JP3986703B2 JP12012199A JP12012199A JP3986703B2 JP 3986703 B2 JP3986703 B2 JP 3986703B2 JP 12012199 A JP12012199 A JP 12012199A JP 12012199 A JP12012199 A JP 12012199A JP 3986703 B2 JP3986703 B2 JP 3986703B2
Authority
JP
Japan
Prior art keywords
type
layer
algainp
light emitting
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12012199A
Other languages
Japanese (ja)
Other versions
JP2000312030A (en
Inventor
憲治 柴田
真佐知 柴田
泰一郎 今野
直樹 金田
雅弘 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP12012199A priority Critical patent/JP3986703B2/en
Priority to US09/558,588 priority patent/US20020145146A1/en
Priority to TW089107934A priority patent/TW445659B/en
Priority to CN00108101.2A priority patent/CN1251334C/en
Priority to DE10020612A priority patent/DE10020612A1/en
Publication of JP2000312030A publication Critical patent/JP2000312030A/en
Priority to US10/863,388 priority patent/US20040224434A1/en
Application granted granted Critical
Publication of JP3986703B2 publication Critical patent/JP3986703B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、AlGaInP系発光素子(波長としては650nm(赤色)から550nm(黄緑)の領域)用エピタキシャルウェハ及び発光素子に関する。
【0002】
【従来の技術】
最近、AlGaInP系エピタキシャルウェハを用いて製造する発光素子としての高輝度の赤色及び黄色発光ダイオードの需要が大幅に伸びている。主な需要は、交通信号、自動車のテールランプ、フォグランプ、屋外表示板、フルカラーディスプレイ等である。
【0003】
は発光波長590nmのAlGaInP系発光ダイオード用エピタキシャルウェハの構造図である。
【0004】
同図に示すエピタキシャルウェハは、n型GaAs基板1の上に、n型GaAsバッファ層2、n型(Al0.7Ga0.30.5In0.5Pクラッド層3、アンドープ(Al0.1Ga0.90.5In0.5P活性層4、p型(Al0.7Ga0.30.5In0.5P層5及びp型GaPウィンドウ層6を順次エピタキシャル成長させたものである。
【0005】
全てのエピタキシャル層2〜6は有機金属気相成長法(以下「MOVPE」という。)によって成長させたものである。発光ダイオードのウィンドウ層としては、AlGaAs層(Al組成0.6以上)が用いられることもあるが、光の取り出し効率及び劣化しやすさの観点で考えると、バンドギャップが大きく、酸化され難いGaP層の方がウィンドウ層として適している。
【0006】
【発明が解決しようとする課題】
しかしながら、GaPウィンドウ層には以下のような問題がある。
【0007】
は図に示したAlGaInP系発光ダイオード用エピタキシャルウェハのp型GaPウィンドウ層6とp型AlGaInPクラッド層5のヘテロ界面付近のバンド構造の説明図である。なお、図中矢印Aは順方向電圧を印加したときの正孔の移動方向を示している。
【0008】
p型GaPウィンドウ層6とp型(Al0.7Ga0.30.5In0.5Pクラッド層5とでは、電子親和力の差(バンド不連続)に起因して、ヘテロ界面に大きな電位障壁(破線円B内の電位障壁が正孔の移動の妨げとなる)が発生する。この電位障壁は、発光ダイオード通電時に、p型GaPウィンドウ層6からp型(Al0.7Ga0.30.5In0.5Pクラッド層5への正孔の移動を妨げる要因になる。その結果、発光ダイオードの順方向電圧(動作電圧:20mA通電時の電圧)が高くなってしまう。一般に順方向電圧が高い発光ダイオードは信頼性が低い。p型GaPウィンドウ層6を用いた発光ダイオードにおいては、順方向電圧を低減させることが大きな課題である。
【0009】
そこで、本発明の目的は、上記課題を解決し、順方向電圧の低い発光素子が得られるAlGaInP系発光素子用エピタキシャルウェハ及び発光素子を提供することにある。
【0010】
【課題を解決するための手段】
発明のAlGaInP系発光素子用エピタキシャルウェハは、導電性を有する基板上に、少なくともAlGaInP系化合物半導体からなるn型クラッド層と、n型クラッド層よりバンドギャップエネルギーが小さい組成のAlGaInP系化合物半導体からなるアンドープ(Al 0.1 Ga 0.9 0.5 In 0.5 活性層と、活性層よりバンドギャップエネルギーが大きい組成のp型AlGaInP系化合物半導体からなるp型(Al 0.7 Ga 0.3 0.5 In 0.5 クラッド層と、GaPからなるp型GaPウィンドウ層とを積層したAlGaInP系発光素子用エピタキシャルウェハにおいて、p型クラッド層とp型ウィンドウ層との間に、バンドギャップエネルギーが活性層よりも大きく、p型クラッド層よりも小さい材料からなるp型(Al 0.1 Ga 0.9 0.5 In 0.5 介在層が設けられているものである。
【0011】
上記構成に加え本発明のAlGaInP系発光素子用エピタキシャルウェハは、p型(Al 0.1 Ga 0.9 0.5 In 0.5 介在層のキャリア濃度が5×1017cm-3以上5×1018cm-3以下であるのが好ましい。
【0012】
発明の発光素子は、導電性を有する基板上に、少なくともAlGaInP系化合物半導体からなるn型クラッド層と、n型クラッド層よりバンドギャップエネルギーが小さい組成のAlGaInP系化合物半導体からなるアンドープ(Al 0.1 Ga 0.9 0.5 In 0.5 活性層と、活性層よりバンドギャップエネルギーが大きい組成のp型AlGaInP系化合物半導体からなるp型(Al 0.7 Ga 0.3 0.5 In 0.5 クラッド層と、GaPからなるp型GaPウィンドウ層とを積層した積層体に電極を設けた発光素子において、p型クラッド層とp型ウィンドウ層との間に、バンドギャップエネルギーが活性層よりも大きく、p型クラッド層よりも小さい材料からなるp型(Al 0.1 Ga 0.9 0.5 In 0.5 介在層が設けられているものである。
【0013】
上記構成に加え本発明の発光素子は、p型(Al 0.1 Ga 0.9 0.5 In 0.5 介在層のキャリア濃度が5×1017cm-3以上5×1018cm-3以下であるのが好ましい。
【0014】
【発明の実施の形態】
以下、本発明のAlGaInP系発光素子用エピタキシャルウェハ及び発光素子の一実施の形態を説明する。なお、図に示した従来例と同様の部材については同様の符号を用いた。
【0015】
本発明のAlGaInP系発光素子用エピタキシャルウェハの特徴は、p型AlGaInPクラッド層5とp型GaPウィンドウ層6との間に、p型AlGaInP層よりもバンドギャップの小さい介在層を設けた点にある。
【0016】
【実施例】
図1は本発明のAlGaInP系発光素子用エピタキシャルウェハの一実施例を示す構造図である。本実施例では発光波長625nm付近の赤色発光ダイオード用エピタキシャルウェハの場合で説明する。
【0017】
図1に示すAlGaInP系発光素子用エピタキシャルウェハは、n型GaAs基板1上に、MOVPE法で、n型(Seドープ)GaAsバッファ層2、n型(Seドープ)(Al0.7Ga0.30.5In0.5Pクラッド層3、アンドープ(Al0.1Ga0.90.5In0.5P活性層(以下「活性層」という。)4、p型(Znドープ)(Al0.7Ga0.30.5In0.5Pクラッド層(以下「p型クラッド層」という。)5を順次成長させ、このp型クラッド層5の上に、本発明の主要部である介在層としてのp型(Al0.1Ga0.90.5In0.5P層(以下「順方向電圧低減層」という。)7をMOVPE法により100nm成長させ、p型(Znドープ)GaPウィンドウ層6を10μm成長させたエピタキシャル層2〜7からなるものである。なお比較例として、順方向電圧低減層を形成せずp型(Znドープ)GaPを10μm成長させたものを作製した。
【0018】
全てのエピタキシャル層2〜7の成長は、成長温度700℃、成長圧力50Torr、各エピタキシャル層2〜7の成長速度は0.3〜3.0nm/s、V/III 比は100〜600で行った。その後、エピタキシャルウェハを加工して、発光ダイオードを作製した。
【0019】
発光ダイオードのチップの大きさは、300μm角で、チップ下面全体にn型電極を形成し、チップ上面に直径150μmの円形のp型電極を形成した。n型電極は、金ゲルマニウム、ニッケル、金をそれぞれ60nm、10nm、500nmの順に蒸着し、p型電極は、金亜鉛、ニッケル、金をそれぞれ60nm、10nm、1000nmの順に蒸着した。さらに、このチップをステム組して、樹脂モールドまで行い、発光ダイオードの発光特性、電圧−電流特性を調べた。
【0020】
は本発明の発光素子の発光特性図であり、横軸が順方向電圧を示し、縦軸が順方向電流を示す。
【0021】
同図において実線が本発明の発光素子((Al0.1Ga0.90.5In0.5Pからなる順方向電圧低減層7を設けたもの)の発光特性を示し、破線が従来の発光素子の発光特性を示している。
【0022】
本発明のAlGaInP系発光素子用エピタキシャルウェハを用いた発光ダイオードの順方向電圧は、従来の発光ダイオードの順方向電圧2.40Vに対して1.80Vと大きく低減することができた。
【0023】
発光ダイオードの順方向電圧の最低値は活性層4のバンドギャップで決まるものであり、この順方向電圧1.80Vという値は、本発明のAlGaInP系発光素子用エピタキシャルウェハの活性層4のバンドギャップでの最低値に近い値である(つまりAlGaAsウィンドウ層を用いた場合の順方向電圧と略等しい。)。順方向電圧低減層7を設けることで、従来の発光素子に対して輝度が低下することはなかった。
【0024】
(最適条件についての根拠)
ンドギャップが活性層4よりも小さい順方向電圧低減層7を設けると、活性層4からの光が順方向電圧低減層7により吸収され、LEDの光取り出し効率が極端に悪くなってしまう。したがって、順方向電圧低減層7のバンドギャップは、p型クラッド層5よりもバンドギャップが小さく、かつ、活性層4よりも大きいことが好ましい。
【0025】
順方向電圧低減層7の導電型は、p型クラッド層5及びp型GaPウィンドウ層と同じp型であることが好ましく、そのキャリア濃度は5×1017cm-3以上5×1018cm-3以下であることが好ましい。順方向電圧低減層7のキャリア濃度が5×1017cm-3以下になると、順方向電圧低減層7の抵抗率が高くなって、順方向電圧が高くなってしまう。またキャリア濃度が5×1018cm-3以上になると、結晶中の欠陥が増加し、発光効率の低下が見られるようになってしまう。
【0026】
順方向電圧低減層7は、下地となるp型クラッド層5と格子整合していることが好ましい。格子整合していないと、エピタキシャル層に欠陥が発生し、発光効率の低下や、p型GaPウィンドウ層6の表面の曇りといった問題が発生する。
【0027】
なお、本実施例ではn型導電性を有する基板を用いたエピタキシャルウェハ及び発光素子の場合で説明したが、これに限定されずp型GaAs基板を用いたエピタキシャルウェハ及び発光素子でも同様の効果が得られる。
【0028】
【発明の効果】
以上要するに本発明によれば、次のような優れた効果を発揮する。
【0029】
順方向電圧の低い発光素子が得られるAlGaInP系発光素子用エピタキシャルウェハ及び発光素子の提供を実現できる。
【図面の簡単な説明】
【図1】 本発明のAlGaInP系発光素子用エピタキシャルウェハの一実施例を示す構造図である。
【図2】 本発明の発光素子の発光特性図である。
【図3】 発光波長590nmのAlGaInP系発光ダイオード用エピタキシャルウェハの構造図である。
【図4】 図3に示したAlGaInP系発光ダイオード用エピタキシャルウェハのp型GaPウィンドウ層とp型AlGaInPクラッド層のヘテロ界面付近のバンド構造の説明図である。
【符号の説明】
1 基板(n型GaAs基板)
2 n型GaAsバッファ層
3 n型(Al0.7Ga0.30.5In0.5Pクラッド層
4 アンドープ(Al0.1Ga0.9 0.5 In0.5P活性層(活性層)
5 p型AlGaInPクラッド層(p型クラッド層)
6 p型GaPウィンドウ層
7 介在層(順方向電圧低減層)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epitaxial wafer for an AlGaInP-based light emitting device (having a wavelength of 650 nm (red) to 550 nm (yellowish green)) and a light emitting device.
[0002]
[Prior art]
Recently, the demand for high-intensity red and yellow light-emitting diodes as light-emitting elements manufactured using AlGaInP-based epitaxial wafers has been greatly increased. The main demand is traffic signals, automobile tail lamps, fog lamps, outdoor display boards, full-color displays, etc.
[0003]
FIG. 3 is a structural diagram of an epitaxial wafer for an AlGaInP light emitting diode having an emission wavelength of 590 nm.
[0004]
The epitaxial wafer shown in FIG. 1 has an n-type GaAs buffer layer 2, an n-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer 3, an undoped (Al 0.1 Ga 0.9 ) 0.5 In 0.5 on an n-type GaAs substrate 1. A P active layer 4, a p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P layer 5 and a p-type GaP window layer 6 are epitaxially grown sequentially.
[0005]
All the epitaxial layers 2 to 6 are grown by metal organic chemical vapor deposition (hereinafter referred to as “MOVPE”). As the window layer of the light emitting diode, an AlGaAs layer (Al composition of 0.6 or more) may be used. From the viewpoint of light extraction efficiency and ease of deterioration, GaP has a large band gap and is not easily oxidized. The layer is more suitable as a window layer.
[0006]
[Problems to be solved by the invention]
However, the GaP window layer has the following problems.
[0007]
Figure 4 is an illustration of the band structure in the vicinity of the hetero interface of the p-type GaP window layer 6 and the p-type AlGaInP cladding layer 5 of AlGaInP-based light-emitting diode epitaxial wafer shown in FIG. In the figure, an arrow A indicates the direction of movement of holes when a forward voltage is applied.
[0008]
The p-type GaP window layer 6 and the p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer 5 have a large potential barrier (inside the broken-line circle B) due to the difference in electron affinity (band discontinuity). The electric potential barrier prevents the movement of holes). This potential barrier becomes a factor that hinders the movement of holes from the p-type GaP window layer 6 to the p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer 5 when the light emitting diode is energized. As a result, the forward voltage of the light emitting diode (operating voltage: voltage at 20 mA energization) becomes high. In general, a light emitting diode having a high forward voltage has low reliability. In a light emitting diode using the p-type GaP window layer 6, it is a big problem to reduce the forward voltage.
[0009]
Accordingly, an object of the present invention is to provide an epitaxial wafer for an AlGaInP-based light emitting device and a light emitting device that can solve the above-described problems and obtain a light emitting device having a low forward voltage.
[0010]
[Means for Solving the Problems]
An epitaxial wafer for an AlGaInP-based light-emitting element according to the present invention includes an n-type cladding layer made of at least an AlGaInP-based compound semiconductor on an electrically conductive substrate, and an AlGaInP-based compound semiconductor having a smaller band gap energy than the n-type cladding layer. An undoped (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P active layer, and a p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer made of a p-type AlGaInP compound semiconductor having a composition with a larger band gap energy than the active layer, In an epitaxial wafer for an AlGaInP light emitting element in which a p-type GaP window layer made of GaP is laminated, the band gap energy between the p-type cladding layer and the p-type window layer is larger than that of the active layer, P-type (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P intervening layer is provided.
[0011]
In addition to the above configuration, the epitaxial wafer for an AlGaInP-based light emitting device of the present invention has a p-type (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P intervening layer having a carrier concentration of 5 × 10 17 cm −3 or more and 5 × 10 18 cm −3 or less. Is preferred.
[0012]
The light-emitting element of the present invention includes an n-type cladding layer made of at least an AlGaInP-based compound semiconductor on an electrically conductive substrate, and an undoped (Al 0.1 layer made of an AlGaInP-based compound semiconductor having a smaller band gap energy than the n-type cladding layer. A Ga 0.9 ) 0.5 In 0.5 P active layer, a p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer made of a p-type AlGaInP-based compound semiconductor having a larger band gap energy than the active layer, and a p-type made of GaP. In a light emitting device in which an electrode is provided on a stacked body in which a GaP window layer is stacked, a material having a band gap energy larger than that of the active layer and smaller than that of the p type cladding layer between the p type cladding layer and the p type window layer. der which p-type (Al 0.1 Ga 0.9) 0.5 in 0.5 P intermediate layer is provided consisting of .
[0013]
In addition to the above structure, in the light-emitting element of the present invention, the carrier concentration of the p-type (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P intervening layer is preferably 5 × 10 17 cm −3 or more and 5 × 10 18 cm −3 or less. .
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of an epitaxial wafer for an AlGaInP-based light emitting device and a light emitting device of the present invention will be described. Incidentally, using the same reference numerals are given to the same members as the conventional example shown in FIG.
[0015]
The feature of the epitaxial wafer for an AlGaInP-based light emitting device of the present invention is that an intervening layer having a band gap smaller than that of the p-type AlGaInP layer is provided between the p-type AlGaInP cladding layer 5 and the p-type GaP window layer 6. .
[0016]
【Example】
FIG. 1 is a structural view showing an embodiment of an epitaxial wafer for an AlGaInP light emitting device of the present invention. In the present embodiment, the case of an epitaxial wafer for red light emitting diodes having an emission wavelength of around 625 nm will be described.
[0017]
An epitaxial wafer for an AlGaInP-based light emitting device shown in FIG. 1 is formed on an n-type GaAs substrate 1 by an MOVPE method using an n-type (Se-doped) GaAs buffer layer 2 and an n-type (Se-doped) (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer 3, undoped (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P active layer (hereinafter referred to as “active layer”) 4, p-type (Zn doped) (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer (hereinafter referred to as “active layer”) 5 is sequentially grown, and a p-type (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P layer as an intervening layer which is a main part of the present invention is formed on the p-type cladding layer 5. (Hereinafter referred to as “forward voltage reduction layer”) 7 is formed of epitaxial layers 2 to 7 in which 100 nm is grown by MOVPE and p-type (Zn-doped) GaP window layer 6 is grown by 10 μm. . As a comparative example, a p-type (Zn-doped) GaP film was grown by 10 μm without forming a forward voltage reduction layer.
[0018]
All epitaxial layers 2 to 7 are grown at a growth temperature of 700 ° C., a growth pressure of 50 Torr, a growth rate of each epitaxial layer 2 to 7 is 0.3 to 3.0 nm / s, and a V / III ratio is 100 to 600. It was. Thereafter, the epitaxial wafer was processed to produce a light emitting diode.
[0019]
The chip size of the light emitting diode was 300 μm square, an n-type electrode was formed on the entire lower surface of the chip, and a circular p-type electrode having a diameter of 150 μm was formed on the upper surface of the chip. For the n-type electrode, gold germanium, nickel, and gold were deposited in the order of 60 nm, 10 nm, and 500 nm, respectively, and for the p-type electrode, gold zinc, nickel, and gold were deposited in the order of 60 nm, 10 nm, and 1000 nm, respectively. Furthermore, this chip was assembled into a stem, and resin molding was performed, and the light emission characteristics and voltage-current characteristics of the light emitting diode were examined.
[0020]
FIG. 2 is a light emission characteristic diagram of the light-emitting element of the present invention, in which the horizontal axis indicates the forward voltage, and the vertical axis indicates the forward current.
[0021]
In the figure, the solid line shows the light emission characteristics of the light emitting element of the present invention (with the forward voltage reduction layer 7 made of (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P), and the broken line shows the light emission characteristics of the conventional light emitting element. Show.
[0022]
The forward voltage of the light emitting diode using the AlGaInP-based light emitting element epitaxial wafer of the present invention can be greatly reduced to 1.80 V with respect to the forward voltage of 2.40 V of the conventional light emitting diode.
[0023]
The minimum value of the forward voltage of the light emitting diode is determined by the band gap of the active layer 4, and this value of 1.80 V in the forward voltage is the band gap of the active layer 4 of the epitaxial wafer for AlGaInP-based light emitting device of the present invention. (In other words, it is substantially equal to the forward voltage when the AlGaAs window layer is used) . Providing the forward voltage reduction layer 7 did not lower the luminance as compared with the conventional light emitting device.
[0024]
(Grounds for optimal conditions)
When the bandgap is provided a small forward voltage reduction layer 7 than the active layer 4, the light from the active layer 4 is absorbed by the forward voltage reduction layer 7, LED light extraction efficiency becomes extremely poor. Therefore, the band gap of the forward voltage reduction layer 7 is preferably smaller than that of the p-type cladding layer 5 and larger than that of the active layer 4.
[0025]
The conductivity type of the forward voltage reduction layer 7 is preferably the same p-type as the p-type cladding layer 5 and the p-type GaP window layer, and the carrier concentration thereof is 5 × 10 17 cm −3 or more and 5 × 10 18 cm −. It is preferably 3 or less. When the carrier concentration of the forward voltage reduction layer 7 is 5 × 10 17 cm −3 or less, the resistivity of the forward voltage reduction layer 7 becomes high and the forward voltage becomes high. On the other hand, when the carrier concentration is 5 × 10 18 cm −3 or more, defects in the crystal increase and the light emission efficiency is lowered.
[0026]
The forward voltage reduction layer 7 is preferably lattice-matched with the p-type cladding layer 5 serving as a base. If the lattice matching is not achieved, defects will occur in the epitaxial layer, causing problems such as a decrease in light emission efficiency and clouding of the surface of the p-type GaP window layer 6.
[0027]
In this embodiment, the case of an epitaxial wafer and a light-emitting element using an n-type conductive substrate has been described. can get.
[0028]
【The invention's effect】
In short, according to the present invention, the following excellent effects are exhibited.
[0029]
It is possible to provide an AlGaInP light-emitting element epitaxial wafer and a light-emitting element from which a light-emitting element having a low forward voltage can be obtained.
[Brief description of the drawings]
FIG. 1 is a structural diagram showing an example of an epitaxial wafer for an AlGaInP light emitting element according to the present invention.
FIG. 2 is a light emission characteristic diagram of the light emitting device of the present invention.
FIG. 3 is a structural diagram of an epitaxial wafer for an AlGaInP light emitting diode having an emission wavelength of 590 nm.
4 is an explanatory diagram of a band structure in the vicinity of a heterointerface between a p-type GaP window layer and a p-type AlGaInP clad layer of the epitaxial wafer for AlGaInP-based light emitting diodes shown in FIG. 3;
[Explanation of symbols]
1 Substrate (n-type GaAs substrate)
2 n-type GaAs buffer layer 3 n-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer 4 undoped (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P active layer (active layer)
5 p-type AlGaInP cladding layer (p-type cladding layer)
6 p-type GaP window layer 7 Intervening layer (forward voltage reduction layer)

Claims (4)

導電性を有する基板上に、少なくともAlGaInP系化合物半導体からなるn型クラッド層と、該n型クラッド層よりバンドギャップエネルギーが小さい組成のAlGaInP系化合物半導体からなるアンドープ(Al 0.1 Ga 0.9 0.5 In 0.5 活性層と、該活性層よりバンドギャップエネルギーが大きい組成のp型AlGaInP系化合物半導体からなるp型(Al 0.7 Ga 0.3 0.5 In 0.5 クラッド層と、GaPからなるp型GaPウィンドウ層とを積層したAlGaInP系発光素子用エピタキシャルウェハにおいて、上記p型クラッド層と上記p型ウィンドウ層との間に、バンドギャップエネルギーが上記活性層よりも大きく、上記p型クラッド層よりも小さい材料からなるp型(Al 0.1 Ga 0.9 0.5 In 0.5 介在層が設けられていることを特徴とするAlGaInP系発光素子用エピタキシャルウェハ。An n-type cladding layer made of at least an AlGaInP-based compound semiconductor and an undoped (Al 0.1 Ga 0.9 ) 0.5 In 0.5 made of an AlGaInP-based compound semiconductor having a smaller band gap energy than the n-type cladding layer on a conductive substrate. A P-type active layer, a p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer made of a p-type AlGaInP-based compound semiconductor having a larger band gap energy than the active layer, and a p-type GaP window layer made of GaP. in laminated AlGaInP-based light emitting device epitaxial wafer, between the p-type cladding layer and the p-type window layer, a band gap energy larger than the active layer, made of less material than the p-type cladding layer p provided type (Al 0.1 Ga 0.9) 0.5 In 0.5 P intermediate layer AlGaInP-based light emitting device epitaxial wafer, characterized by being. 上記p型(Al 0.1 Ga 0.9 0.5 In 0.5 介在層のキャリア濃度が5×1017cm-3以上5×1018cm-3以下である請求項1に記載のAlGaInP系発光素子用エピタキシャルウェハ。2. The epitaxial wafer for an AlGaInP-based light emitting device according to claim 1, wherein a carrier concentration of the p-type (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P intervening layer is 5 × 10 17 cm −3 or more and 5 × 10 18 cm −3 or less. . 導電性を有する基板上に、少なくともAlGaInP系化合物半導体からなるn型クラッド層と、該n型クラッド層よりバンドギャップエネルギーが小さい組成のAlGaInP系化合物半導体からなるアンドープ(Al 0.1 Ga 0.9 0.5 In 0.5 活性層と、該活性層よりバンドギャップエネルギーが大きい組成のp型AlGaInP系化合物半導体からなるp型(Al 0.7 Ga 0.3 0.5 In 0.5 クラッド層と、GaPからなるp型GaPウィンドウ層とを積層した積層体に電極を設けた発光素子において、上記p型クラッド層と上記p型ウィンドウ層との間に、バンドギャップエネルギーが上記活性層よりも大きく、上記p型クラッド層よりも小さい材料からなるp型(Al 0.1 Ga 0.9 0.5 In 0.5 介在層が設けられていることを特徴とする発光素子。An n-type cladding layer made of at least an AlGaInP-based compound semiconductor and an undoped (Al 0.1 Ga 0.9 ) 0.5 In 0.5 made of an AlGaInP-based compound semiconductor having a smaller band gap energy than the n-type cladding layer on a conductive substrate. A P-type active layer, a p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer made of a p-type AlGaInP-based compound semiconductor having a larger band gap energy than the active layer, and a p-type GaP window layer made of GaP. In a light emitting device in which an electrode is provided on a stacked laminate, a band gap energy between the p-type cladding layer and the p-type window layer is larger than that of the active layer and smaller than that of the p-type cladding layer. JP that p-type (Al 0.1 Ga 0.9) 0.5 in 0.5 P intermediate layer is provided comprising The light-emitting element to be. 上記p型(Al 0.1 Ga 0.9 0.5 In 0.5 介在層のキャリア濃度が5×1017cm-3以上5×1018cm-3以下である請求項3に記載の発光素子。 4. The light emitting device according to claim 3, wherein the p-type (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P intervening layer has a carrier concentration of 5 × 10 17 cm −3 or more and 5 × 10 18 cm −3 or less.
JP12012199A 1999-04-27 1999-04-27 Epitaxial wafer and light emitting device for AlGaInP light emitting device Expired - Lifetime JP3986703B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP12012199A JP3986703B2 (en) 1999-04-27 1999-04-27 Epitaxial wafer and light emitting device for AlGaInP light emitting device
US09/558,588 US20020145146A1 (en) 1999-04-27 2000-04-26 LED of AlGaInP system and epitaxial wafer used for same
TW089107934A TW445659B (en) 1999-04-27 2000-04-26 LED of AlGaInP system and epitaxial wafer used for same
CN00108101.2A CN1251334C (en) 1999-04-27 2000-04-27 AlGalnP series luminous diode and epitaxial wafer used for making said diode
DE10020612A DE10020612A1 (en) 1999-04-27 2000-04-27 Red to yellow-green aluminum gallium indium phosphide LED, used for traffic signals, vehicle rear and fog lights or full color displays, has a low energy gap layer inserted between p-cladding layer and p-window layer
US10/863,388 US20040224434A1 (en) 1999-04-27 2004-06-09 Method of forming a semiconductor structure for use in a light emitting diode and a semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12012199A JP3986703B2 (en) 1999-04-27 1999-04-27 Epitaxial wafer and light emitting device for AlGaInP light emitting device

Publications (2)

Publication Number Publication Date
JP2000312030A JP2000312030A (en) 2000-11-07
JP3986703B2 true JP3986703B2 (en) 2007-10-03

Family

ID=14778493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12012199A Expired - Lifetime JP3986703B2 (en) 1999-04-27 1999-04-27 Epitaxial wafer and light emitting device for AlGaInP light emitting device

Country Status (1)

Country Link
JP (1) JP3986703B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528417B2 (en) 2003-02-10 2009-05-05 Showa Denko K.K. Light-emitting diode device and production method thereof
WO2004070851A1 (en) * 2003-02-10 2004-08-19 Showa Denko K.K. Light-emitting diode device and production method thereof
JP5251185B2 (en) * 2008-03-17 2013-07-31 信越半導体株式会社 Compound semiconductor substrate, light emitting device using the same, and method of manufacturing compound semiconductor substrate
JP5408487B2 (en) * 2009-08-07 2014-02-05 ソニー株式会社 Semiconductor light emitting device

Also Published As

Publication number Publication date
JP2000312030A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
US7714343B2 (en) Light emitting device
US6169296B1 (en) Light-emitting diode device
US8895958B2 (en) Light emitting element and method for manufacturing same
JP4091261B2 (en) Semiconductor light emitting device and manufacturing method thereof
JPH114020A (en) Semiconductor light-emitting element, manufacture thereof and semiconductor light-emitting device
JP2002353499A (en) Semiconductor light-emitting device
JP3102647B2 (en) Semiconductor light emitting device
JP4569859B2 (en) Method for manufacturing light emitting device
KR102560008B1 (en) infrared light emitting diode
JP3986703B2 (en) Epitaxial wafer and light emitting device for AlGaInP light emitting device
JP4569858B2 (en) Method for manufacturing light emitting device
JP3981218B2 (en) Epitaxial wafer for light emitting device and light emitting device
JP2005235798A (en) Light-emitting diode, and epitaxial wafer for the same
JP2001085742A (en) Semiconductor light emitting element and its manufacturing method
JP3633018B2 (en) Semiconductor light emitting device
JP2003101071A (en) Semiconductor light-emitting device
JP4284862B2 (en) Epitaxial wafer for light emitting device and light emitting device
JP2006032665A (en) Light emitting diode
JP2001015805A (en) AlGaInP LIGHT-EMITTING ELEMENT AND EPITAXIAL WAFER THEREFOR
JPH09129933A (en) Light emitting element
JPH09172198A (en) Light emitting diode and its manufacture
JP3651730B2 (en) Semiconductor light emitting device
JP2009260136A (en) Semiconductor light-emitting element and method for manufacturing the same, and epitaxial wafer
JPH08148716A (en) Semiconductor light-emitting element and its manufacture
JP2002344017A (en) Semiconductor light-emitting element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041125

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050202

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3