JP3986679B2 - Polyurethane elastic fiber and method for producing the same - Google Patents

Polyurethane elastic fiber and method for producing the same Download PDF

Info

Publication number
JP3986679B2
JP3986679B2 JP22609798A JP22609798A JP3986679B2 JP 3986679 B2 JP3986679 B2 JP 3986679B2 JP 22609798 A JP22609798 A JP 22609798A JP 22609798 A JP22609798 A JP 22609798A JP 3986679 B2 JP3986679 B2 JP 3986679B2
Authority
JP
Japan
Prior art keywords
carbon atoms
polyurethane
group
metal compound
polyurethane elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22609798A
Other languages
Japanese (ja)
Other versions
JP2000064121A (en
Inventor
雅憲 土井
明彦 吉里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Fibers Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP22609798A priority Critical patent/JP3986679B2/en
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to US09/762,442 priority patent/US6406788B1/en
Priority to PCT/JP1999/004240 priority patent/WO2000009789A1/en
Priority to DE69938143T priority patent/DE69938143T2/en
Priority to EP99935075A priority patent/EP1123994B1/en
Priority to KR10-2001-7001570A priority patent/KR100396230B1/en
Priority to TW088113574A priority patent/TW464699B/en
Publication of JP2000064121A publication Critical patent/JP2000064121A/en
Application granted granted Critical
Publication of JP3986679B2 publication Critical patent/JP3986679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ポリウレタン弾性繊維及びその製造方法に関する。詳しくは、種々の塩素水環境下で劣化し難い、特に水着として殺菌用塩素を含んだ水泳プール中で使用した場合、劣化し難いポリウレタン弾性繊維及びその安定な製造方法に関する。
【0002】
【従来の技術】
芳香族ジイソシアネート、ポリアルキレングリコール及び多官能性水素含有化合物から得られるポリウレタン弾性繊維は、高度のゴム弾性を有し、引張応力、回復性等の機械的性質、熱的性質に優れているめに、伸縮性機能繊維素材として水着、ファンデーション、ストッキング、スポーツウェア等のストレッチ性を要求される用途に広く用いられている。
【0003】
しかしながら、ポリウレタン弾性繊維が使用された衣料製品を、塩素漂白剤に長時間浸せきし洗濯を行うことを繰り返すと、ポリウレタン弾性繊維の弾性機能が低下することが知られている。
ポリウレタン弾性繊維を使用した水着を、水泳プール等の活性塩素濃度0.5〜3ppmの殺菌用塩素水中に繰り返し暴露すると、ポリウレタン弾性繊維の弾性機能が著しく損われたり、断糸を生じる。特に、ポリアミド繊維とポリウレタン弾性繊維とからなる水着の場合には、染色物の変退色が生じることがある。
【0004】
ポリウレタン弾性繊維の塩素耐久性を改善するため、脂肪族ポリエステルジオールを原料に用いたポリエステル系ポリウレタン弾性繊維が用いられていたが、塩素耐久性は不十分であった。しかも、脂肪族ポリエステルの生物活性が高いため、ポリエステル系ポリウレタンは黴に侵され易いという欠点を有しており、使用中又は保管中に水着の弾性機能が低下したり断糸が生じ易いという問題点があった。生物活性の極めて少ないポリエーテルジオールを原料に用いたポリエーテル系ポリウレタン弾性繊維は、黴による脆化は生じないけれども、塩素耐久性はポリエステル系ポリウレタンよりもさらに劣るという問題点があった。
【0005】
ポリエーテル系ポリウレタン弾性繊維の塩素による劣化を改善するために、各種の添加剤、すなわち塩素劣化防止剤が提案されている。例えば、特公昭60−43444号公報に酸化亜鉛が、特公昭61−35283号公報に酸化マグネシウム、酸化アルミニウム等が、特開昭59−133248号公報に水酸化マグネシウム等が、特開平6−81215号公報に酸化マグネシウムと酸化亜鉛との固溶体が開示されている。
【0006】
特公昭61−35283号公報に開示されている酸化マグネシウム及び酸化アルミニウムの塩素劣化防止性効果は、公報第4頁第1表に示されているように、比較例と比べて高くない。特公昭60−43444号公報に開示された酸化亜鉛は、酸性下での染色(pH3〜6)処理によって酸化亜鉛成分が繊維から溶出し、繊維中の残存量が著しく減少するため、塩素耐久性が大きく低下するという問題点がある。特開平6−81215号公報に開示された酸化マグネシウムと酸化亜鉛との固溶体、及び特開昭59−133248号公報に水酸化マグネシウム等も、酸化亜鉛と同様に改善効果は小さく、満足すべきレベルに達していない。
【0007】
ポリウレタン弾性繊維とポリアミド繊維からなる水着の場合、水着に使用された染料がプールの水中に含まれている塩素により変退色するのを防止するために、染色処理後にタンニン液による染料固着処理が行われている。公知の塩素劣化防止剤、例えば酸化亜鉛、酸化マグネシウム、酸化マグネシウムと酸化亜鉛との固溶体等を含有するポリウレタン弾性繊維は、この染色処理(pH3〜6)によって塩素耐久性の低下を招く。さらに、染色処理後のタンニン液による染料固着処理(pH3〜4.5)を行うと、ポリウレタン弾性繊維の塩素耐久性がより低下する。
【0008】
ポリウレタン弾性繊維を製造する際に、これら公知の塩素劣化防止剤をポリウレタン紡糸原液や溶融ポリウレタンに添加すると、二次凝集が生じて紡糸フィルターの目詰まりや、紡糸時の糸切れが増加する。特公昭60−43444号公報には粒径が0.1〜1μmの酸化亜鉛が、特公昭61−35283号公報には粒径5μm以下の酸化マグネシウムが、特開平6−81215号公報には粒径0.05〜3μmの酸化マグネシウムと酸化亜鉛との固溶体が使用されている。しかし、いずれも十分な改善が達成されていない。
【0009】
【発明が解決しようとする課題】
本発明の目的は、酸性での染色条件下(PH3〜6)や、染色後のタンニン液による染料固着処理(pH3〜4.5)を行った後も、長期間にわたり優れた塩素耐久性を有するポリウレタン弾性繊維及びこのポリウレタン弾性繊維を安定に製造する方法を提供することである。
【0010】
【課題を解決するための手段】
本発明者らは、これらの課題を解決する為に鋭意研究した結果、燐酸エステル化合物を付着させた特定の金属化合物粒子を含有するポリウレタン弾性繊維は、前記公知の塩素劣化防止剤を含有したポリウレタン弾性繊維と比較して一層優れた塩素耐久性を有するばかりでなく、驚くべきことに紡糸原液中の金属化合物の二次凝集によるフィルター目詰まりや紡糸時の糸切れが少なく、極めて安定に製造できることを見出した。
【0011】
すなわち本発明は、下記式で表される燐酸エステル化合物が付着した、少なくともZn、Mgから選択された酸化物、水酸化物、またはZnとMgの複合酸化物のうち少なくとも1種の金属化合物粒子を、ポリウレタンに対し0.5〜10重量%含有させることを特徴とするポリウレタン弾性繊維、
【0012】
【化3】

Figure 0003986679
【0013】
(但し、Rは炭素原子数1〜30の直鎖又は分岐したアルキル基、アルコオキシポリオキシアルキレン基、炭素原子数5〜6のシクロアルキル基、炭素原子数1〜10のアルキル基が置換した炭素原子数5〜6のシクロアルキル基、炭素原子数8〜18のアルキルオキシ基に結合した繰り返し単位1〜10の炭素原子数2〜3のアルキレンオキシ基、nは1〜2の整数を表す)。
【0014】
そして、本発明のポリウレタン弾性繊維は、燐酸エステル化合物が付着した、少なくともZn、Mgから選択された酸化物、水酸化物、またはZnとMgの複合酸化物のうち少なくとも1種の金属化合物粒子を、ポリウレタンに対し0.5〜10重量%含有させたポリウレタン紡糸原液を紡糸することによって製造される。
【0015】
本発明中の金属化合物とは、Zn、Mgから選択された酸化物、水酸化物、またはZnとMgの複合酸化物である。例えば、酸化亜鉛、酸化マグネシウム、水酸化亜鉛、酸化亜鉛と酸化マグネシウムの固溶体、共析物などが挙げられる。これら金属化合物は単独で使用しても良いが、2種以上を混合して使用することもできる。好ましくは、酸化亜鉛、酸化マグネシウムである。
【0016】
本発明の燐酸エステル化合物は、下記式で表せる。
【0017】
【化4】
Figure 0003986679
【0018】
(但し、Rは炭素原子数1〜30の直鎖又は分岐したアルキル基、アルコキシポリオキシアルキレン基、炭素原子数5〜6のシクロアルキル基、炭素原子数1〜10のアルキル基が置換した炭素原子数5〜6のシクロアルキル基、炭素原子数8〜18のアルキルオキシ基に結合した繰り返し単位1〜10の炭素原子数2〜3のアルキレン基、nは1〜2の整数を表す。)
燐酸エステルの具体的な例としては、モノ又はジメチルアシッドホスフェイト、モノ又はジエチルアシッドホスフェイト、モノ又はジプロピルアシッドホスフェイト、モノ又はジイソプロピルアシッドホスフェイト、モノ又はジブチルアシッドホスフェイト、モノ又はジラウリルアシッドホスフェイト、モノ又はジステアリルアシッドホスフェイト、モノ又はジ(2−エチルヘキシル)アシッドホスフェイト、モノ又はジイソデシルアシッドホスフェイト、モノ又はジブトキシエチルアシッドホスフェイト、モノ又はジオレイルアシッドホスフェイト、モノ又はジテトラコシルアシッドホスフェイト、モノ又はジ(2−ヒドロキシルエチル)メタクリレートアシッドホスフェイト、ポリオキシアルキレングリコールアルキレンエーテルアシッドホスフェイト等が挙げられる。これらの燐酸エステル化合物はモノエステル型、ジエステル型を単独または混合して使用することもでき、また異なる数種の燐酸エステル化合物を混合して使用することもできる。
【0019】
燐酸エステル化合物は、前記式中のRの炭素原子数1〜30の内、好ましくは炭素原子数3〜25のものが良い。好ましくは炭素数10〜20の燐酸エステル化合物であり、モノ又はジステアリルアシッドホスフェイト、モノ又はジラウリルアシッドホスフェイト、モノ又はジオレイルアシッドホスフェイトが好適である。
【0020】
本発明中の金属化合物は、特公昭60−43444号公報、特公昭61−35283号公報、特開昭59−133248号公報、特開平6−81215号公報に、ポリウレタン弾性繊維の塩素劣化を防止する添加剤として開示されている。しかし、これらの塩素劣化防止剤は、酸性下での染色処理や、ポリアミド繊維との交編で幅広く行われている染料固着のためのタンニン処理によって、ポリウレタンから溶出したり、添加剤の活性が失活したりして、塩素耐久性の早期低下を招く。例えば、水着として水泳プールで使用される場合、弾性機能が損なわれ着用感が乏しくなったり、着用中に断糸が発生したりする。
【0021】
特公昭60−43444号公報の5頁には、染色下で酸化亜鉛が不活性化または溶解し塩素耐久性が低下することを示唆する記載もある。本発明者らは、前記燐酸エステル化合物を付着させた前記金属化合物粒子を含有するポリウレタン弾性繊維は、染色処理やタンニン処理を行っても塩素耐久性の著しく向上するポリウレタン弾性繊維を得ることができるばかりでなく、紡糸原液中の金属化合物の二次凝集によるフィルター目詰まりや紡糸時の糸切れが極めて少なく、長期安定にポリウレタン弾性繊維が製造できることを初めて明らかにした。
【0022】
本発明中の金属化合物粒子に燐酸エステル化合物を付着させる方法としては、例えば、▲1▼金属化合物と表面処理剤とを加熱混合して付着する方法、▲2▼溶媒に溶解又は分散させた表面処理剤を金属化合物に直接噴霧又は混合処理して付着させた後、溶媒を除去する方法、▲3▼その他各種の公知の方法を挙げることができる。最も好ましくは、燐酸エステルを金属化合物の粒子表面に効率的に均一付着させることのできる▲2▼の付着方法である。
【0023】
付着の具体例としては、金属化合物粒子と、金属化合物粒子に対して4重量%のモノ:ジ=1:2のラウリルアシッドホスフェイトとをヘンシェルミキサーの中に入れ70℃で加熱、撹はんする方法や、金属化合物粒子と、金属化合物粒子に対して2重量%のモノ:ジ=1:1のステアリルアシッドホスフェイトの4重量%メタノール溶液とを室温下でヘンシェルミキサーで混合処理後、そのまま100℃でメタノールを蒸発除去する方法、等がある。
【0024】
表面処理剤の金属化合物への付着は、金属化合物表面へ表面処理剤が物理的又は化学的に吸着し、その表面に強い被膜を作り上げているためと考えられる。この表面被膜は、酸性下にある染色液やタンニン液から、塩基性の金属化合物を保護し、染色液やタンニン液との塩形成による溶出や失活を防止するばかりでなく、ポリウレタン紡糸原液中で金属化合物の粒子同士が分子間力で二次凝集することも抑制するために、本発明の効果を生じさせているものと推定される。
【0025】
表面処理する際、金属化合物粒子に対する燐酸エステル化合物の量は、0.5〜10重量%が好ましい。0.5重量%未満だと付着量が少なく塩素耐久性の向上効果が小さいばかりでなく、紡糸以前の段階で付着させた場合には、金属化合物粒子の凝集によるフィルター詰まりや紡糸時の糸切れに対する効果が大きくない。10重量%を越えると付着量が過剰となり、過剰分の表面処理剤がポリウレタン紡糸原液の粘性低下を招き紡糸時の糸切れを誘発したり、ポリウレタン弾性繊維の弾性機能を悪化させ塩素耐久性が劣る。
【0026】
燐酸エステル化合物が有効量付着している金属化合物粒子は、ポリウレタンに対して0.5〜10重量%含有されていることが好ましい。0.5重量%未満だと塩素耐久性が十分ではない。また、10重量%を越えると塩素耐久性の向上効果は小さく経済的ではない。好ましい含有量は、2〜8重量%である。
燐酸エステル化合物を有効量付着している金属化合物粒子は小さい粒径ほど、ポリウレタン弾性繊維の塩素耐久性に一層効果を有し、フィルター詰まりや紡糸時の糸切れもより少なくなりポリウレタン弾性繊維の製造安定性が高くなる。好ましい平均粒径は5μm以下である。
【0027】
本発明に用いられるポリウレタンは、例えば、両末端にヒドロキシル基を有し、数平均分子量が600〜5000であるポリマーグリコール、有機ジイソシアネート、多官能性活性水素原子を有する鎖延長剤、及び単官能性活性水素原子を有する末端停止剤から製造される。
ポリマーグリコールとしては、例えば、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール、ポリオキシペンタメチレングリコール等のホモポリエーテルジオール、又は炭素原子数2から6の2種以上のオキシアルキレンから構成される共重合ポリエーテルジオール、アジピン酸、セバチン酸、マレイン酸、イタコン酸、アゼライン酸、マロン酸等の二塩基酸の一種または二種以上とエチレングリコール、1,2−プロピレングリコール,1,3−プロピレングリコール,2,2−ジメチル−1,3−プロパンジオール,1,4−ブタンジオール、1,3−ブタンジオール、ヘキサメチレングリコール、ジエチレングリコール、1,10−デカンジオール、1,3−ジメチロールシクロヘキサン、1,4−ジメチロールシクロヘキサン等のグリコールの一種または二種以上とから得られたポリエステルジオール、又は、ポリエステルアミドジオール、ポリエステルエーテルジオール、又はポリ−ε−カプロラクトンジオール、ポリバレロラクトンジオール等のポリラクトンジオール、ポリカーボネートジオール、ポリアクリルジオール、ポリチオエーテルジオール、ポリチオエステルジオール、又はこれらジオールの共重合物、混合物等を挙げられる。
【0028】
有機ジイソシアネートとしては、例えば、メチレン−ビス(4−フェニルイソシアネート)、メチレン−ビス(3−メチル−4−フェニルイソシアネート)、2,4−トリレンジイソシアネート、2、6−トリレンジイソシアネート、m−及びp−キシリレンジイソシアネート、α,α,α’,α’−テトラメチル−キシリレンジイソシアネート、m−及びp−フェニレンジイソシアネート、4,4’−ジメチル−1,3−キシリレンジイソシアネート、1−アルキルフェニレン−2,4及び2,6−ジイソシアネート、3−(α−イソシアネートエチル)フェニルイソシアネート、2,6−ジエチルフェニレン−1,4−ジイソシアネート、ジフェニル−ジメチルメタン−4,4−ジイソシアネート、ジフェニルエーテル−4,4’−ジイソシアネート、ナフチレン−1,5−ジイソシアネート、1,6−ヘキサメチレンジイソシアネート、メチレン−ビス(4−シクロヘキシルイソシアネート)、1,3−及び1,4−シクロヘキシレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、イソフォロンジイソシアネート等、又はこれらの混合物が挙げられる。ポリウレタン弾性繊維用としては、芳香族系のジイソシアナートが好ましい。
【0029】
多官能性活性水素原子を有する鎖延長剤としては、例えば、ヒドラジン、ポリヒドラジン、炭素原子数2〜10の直鎖または分岐した脂肪族、脂環族、芳香族の活性水素を有するアミノ基を持つ化合物で例えばエチレンジアミン、1,2プロピレンジアミン、特開平5−155841号公報に記載されているウレア基を有するジアミン類等のジアミン、ヒドロキシルアミン、水等、また低分子量のグリコール、例えばエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、2,2−ジメチル−1,3−プロパンジオール、1,4−ブタンジオール、1,3−ブタンジオール、ヘキサメチレングリコール、ジエチレングリコール、1,10−デカンジオール、1,3−ジメチロールシクロヘキサン、1,4−ジメチロールシクロヘキサン等を用いることが出来る。
【0030】
好ましくは、エチレンジアミン、1,2プロピレンジアミンである。
単官能性活性水素原子を有する末端停止剤としては、例えば、ジエチルアミンのようなジアルキルアミン等やエタノールのようなアルキルアルコール等が用いられる。これらの鎖伸長剤、末端停止剤は、単独又は、2種以上混合して用いても良い。
【0031】
ポリウレタンは、公知のポリウレタン化反応技術を用いることができる。例えば、ポリアルキレングリコールと芳香族ジイソシアネートとを、芳香族ジイソシアネート過剰の条件下で反応させ、極性溶媒であるジメチルアセトアミド等で溶解しポリウレタンプレポリマー溶液を作成し、次いでこれに鎖伸長剤と末端停止剤を反応させることによってポリウレタン溶液が得られる。
【0032】
本発明中の燐酸エステル化合物を付着させた金属化合物粒子は、通常、ポリウレタン溶液中に添加されるが、ポリウレタン原料中にあらかじめ添加したり又はポリウレタンプレポリマー反応中や鎖伸長反応中に添加することも可能である。
このポリウレタン溶液に、本発明の金属化合物以外に、ポリウレタン弾性繊維に通常用いられる他の化合物、例えば紫外線吸収剤、酸化防止剤、光安定剤、耐ガス安定剤、着色剤、艶消し剤、充填剤等を添加してもよい。
【0033】
このようにして得られたポリウレタン溶液は、公知の乾式紡糸、湿式紡糸等で繊維状に成形し、ポリウレタン弾性繊維を製造することができる。
得られたポリウレタン弾性繊維に、ポリジメチルシロキサン、ポリエステル変性シリコン、ポリエーテル変性シリコン、アミノ変性シリコン、鉱物油、鉱物性微粒子、例えばシリカ、コロイダルアルミナ、タルク等、高級脂肪酸金属塩粉末、例えばステアリン酸マグネシウム、ステアリン酸カルシウム等、高級脂肪族カルボン酸、高級脂肪族アルコール、パラフィン、ポリエチレン等の常温で固形状ワックス等の油剤を単独、又は必要に応じて任意に組み合わせ付与してもよい。
【0034】
本発明のポリウレタン弾性繊維は、そのまま裸糸として使用してもよく、他の繊維、例えばN6、N66等のポリアミド繊維、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリテトラメチレンテレフタレート、各種共重合ポリテレフタレート等のポリエステル繊維、アクリル繊維、ウール、綿、再生繊維、その他従来公知の繊維等で被覆して被覆弾性繊維として使用することもできる。
【0035】
本発明のポリウレタン弾性繊維は、特に水泳プール使用される競泳用水着に好適である。しかし、用途はこれに限定されることなく、一般の水着、タイツ、パンティストッキング、ファンデーション、靴下、口ゴム、コルセット、包帯、各種スポーツ衣料等にも用いることができる。
【0036】
【発明の実施の形態】
次に、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の実施例において行う性能評価のための各種の前処理及び測定方法は、以下に述べる。
[1]破断強度の測定
引張試験機(オリエンテック(株)製商品名UTM−III 100型)を使用し、20℃、湿度65%の条件下で試料長5cmの試験糸を50cm/分の速度で引張破断強度の測定を行う。
[2]有効塩素濃度の測定
塩素水試料25mlを100mlの三角フラスコに秤量し、乾燥済のヨウ化カリウム2gを加えてふり混ぜる。1/100Nのチオ硫酸ナトリウム溶液で滴定し、溶液が橙色から薄黄色に変化した時点で澱粉溶液を加える。ヨウ素澱粉反応による青色が消えるまで1/100Nのチオ硫酸ナトリウム溶液で滴定する。別に、イオン交換水25mlを採取し、同上の操作により滴定しブランク滴定量を求める。有効塩素濃度Hは、下記(1)式で求まる。
【0037】
【数1】
Figure 0003986679
【0038】
但し、Hは有効塩素濃度(ppm)、Vsは塩素水を滴定した時の1/100Nのチオ硫酸ナトリウム溶液の滴定量(ml)、Vbはイオン交換水を滴定した時の1/100Nのチオ硫酸ナトリウム溶液の滴定量(ml)、fは1/100Nのチオ硫酸ナトリウム溶液の力価、Wsは塩素水の重量(g)である。
[3]染色処理
試料(染色される繊維)の量に対し2重量%の染料(Irgalan Black BGL200[バイエル(株)製])と硫安12gを9lイオン交換水に溶解し酢酸でpH4.5の染色液に調整する。50%伸長下の試料を185℃×1分間熱セット処理し、その後95℃×40分間染色処理する。処理後に10分間水道水の流水中で水洗する。この染色処理を行った試料を一昼夜20℃で風乾する。
[4]タンニン処理
イオン交換水6リットルにタンニン酸(商品名:ハイフィックスSLA、大日本製薬(株)製)4.5gに酢酸を加えてpH3.8とし、前述の染色条件処理を施した試料を50%伸長下に、処理液が25℃の時点で投入し、その後処理液を90℃まで昇温し、30分間浸漬処理を行う。この後10分間水道水の流水中で水洗する。このタンニン液処理を行った試験糸を一昼夜20℃で風乾する。
【0039】
この糸の破断強力を測定し、下記(2)式で表される強力保持率ΔT0 を求める。
【0040】
【数2】
Figure 0003986679
【0041】
但し、ΔT0 は強力保持率(%)、Tは処理後強力(g)、T0 は処理前強力(g)である。
この強力保持率が大きいほど、染色処理、タンニン液処理による糸の弾性機能の低下が少ない。
[5]塩素耐久性評価
タンニン液処理を行った試料を、次亜塩素酸ナトリウム液(佐々木薬品製)をイオン交換水で希釈して有効塩素濃度3ppmとし、クエン酸と燐酸水素ナトリウムの緩衝液でpHを7に調整した液中に、水温30℃で、50%伸長下で浸漬し、1サイクル8時間にて経時的に試料を採取し、破断強度を測定し、下記(3)式で表される強力保持率ΔTを求める。
【0042】
【数3】
Figure 0003986679
【0043】
但し、ΔTは強力保持率(%)、TSは処理後強力(g)、TS0 は処理前強力(g)である。
強力保持率が50%になる時間τ1 / 2 (Hr)で塩素耐久性を評価する。
τ1 / 2 (Hr)が大きいほど、塩素耐久性が優れる。
[6]紡糸原液のフィルター詰まり性評価
ポリウレタン紡糸原液を2l/Hrの一定流量で、直径17mmの10μナスロンフィルター(日本精線(株)製)を通過させ、0.1Hr後と1Hr後の送液圧力から下記(4)式で表されるフィルター詰まり圧力上昇率ΔPを求める。
【0044】
【数4】
Figure 0003986679
【0045】
但し、P1 は送液0.1Hr後の送液圧力(Kg/cm2 )、P2 は送液2Hr後の送液圧力(Kg/cm2 )である。
ΔPが大きいほど、フィルター詰まりが大きいことを表す。
[6]紡糸安定性評価
ポリウレタン紡糸原液を40μナスロンフィルター(日本精線(株)製)に通過させ、0.2mmφ×4個のノズルから吐出させ乾式紡糸を行い、40デニール/4フィラメントのポリウレタン弾性繊維を一旦巻き取り速度を300m/分に3分間固定後、巻き取り速度を徐々に上昇させ、紡糸筒内で糸切れが発生した時点の巻き取り速度がXm/分であった場合、(5)式にしたがって算出した1フィラメント当たりの極限単糸デニールで紡糸安定性を評価する。
【0046】
極限単糸デニール(d)=40/4×300/X (5)
1フィラメント当たりのデニール(極限単糸デニール)が小さいほど、そのポリウレタンは紡糸安定性が優れている。
【0047】
【実施例】
〔実施例1〕
平均分子量1,900のポリテトラメチレンエーテルグリコール1500g及び4,4’−ジフェニルメタンジイソシアネート312gを、窒素ガス気流中60℃において90分間撹はんしつつ反応させて、両末端にイソシアネート基を有するポリウレタンプレポリマーを得た。ついで、これを室温まで冷却した後、ジメチルアセトアミド2500gを加え、溶解してポリウレタンプレポリマー溶液を調製した。
【0048】
エチレンジアミン23.4g及びジエチルアミン3.7gを乾燥ジメチルアセトアミド1570gに溶解し、これを前記プレポリマー溶液に室温で添加して、粘度2,500ポイズ(30℃)のポリウレタン溶液を得た。
phoslex A−18(商品名、堺化学(株)製のステアリルアシッドホスフェイト、モノ:ジ=1:1)の5重量%エタノール溶液と、ZnO(白水化学(株)製、平均粒径1μ以下)をヘンシェルミキサーで室温下で混合後、100℃で乾燥して、ステアリルアシッドフォスフェイトが2重量%付着したZnOを得た。
【0049】
ポリウレタン固形分に対して、4,4’−ブチリデンビス−(3−メチル−6−t−ブチルフェノール)を1重量%、2−(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)−5−クロロ−ベンゾトリアゾールを0.5重量%、及び、上記の2重量%付着させたZnO3重量%をジメチルアセトアミドに加え、ホモミキサーで分散させ、20重量%分散液を製造し、上記ポリウレタン溶液と混合し、ポリウレタン紡糸原液を得た。
【0050】
この紡糸原液を脱泡後、紡糸速度600m/分、熱風温度340℃で乾式紡糸して、巻き取る手前で、ステアリン酸マグネシウム1%を分散させた30cst(20℃)のポリジメチルシロキサン油剤をオイリングローラーでポリウレタン弾性繊維に対して6重量%付与し、40デニール/4フィラメントの糸を製造した。
【0051】
〔実施例2,3〕
実施例1のZnOの代わりに、MgO、Mg(OH)2 を用いて実施例1と同様にしてポリウレタン弾性繊維を製造した。
〔実施例4,5〕
実施例1のステアリルアシッドフォスフェイトの代わりに、ラウリルアシッドフォスフェイト(堺化学(株)製、phoslex A−18(商品名、堺化学(株)性ラウリルアシッドフォスフェイト、:ジ=1:1)、phoslex 8(商品名、堺化学(株)製の2−エチルヘキシルアシッドホスフェイト、モノ:ジ=1:1)でZnOに対し3重量%付着させたZnOを用いて、実施例1と同様にしてポリウレタン弾性繊維を製造した。
【0052】
〔比較例1〕
実施例1において、ステアリルアシッドフォスフェイトが付着されてないZnOを用いて、ポリウレタン紡糸原液を作成し、実施例1と同様にポリウレタン弾性繊維を製造した。
〔比較例2〕
実施例1において、ステアリルアシッドフォスフェイトが付着したZnOを添加しないで、実施例1と同様にして、ポリウレタン弾性繊維を製造した。
【0053】
〔比較例3,4〕
実施例1において、ZnOに対して0.1重量%、20重量%のステアリルアシッドフォスフェイトを付着したZnOを各々用いて、実施例1と同様にポリウレタン弾性繊維を製造した。
実施例1〜5及び比較例1〜4で得られたポリウレタン紡糸原液のフィルター詰まり性、紡糸安定性、及びポリウレタン弾性繊維の染色−タンニン液処理後の強力保持率、塩素耐久性の評価結果を表1、2に示す。
【0054】
【表1】
Figure 0003986679
【0055】
【表2】
Figure 0003986679
【0056】
【発明の効果】
本発明のポリウレタン弾性繊維は、塩素が誘発する劣化に対して優れた耐久性を有し、染色後、タンニン液処理を行っても、繰り返し長期にわたって塩素を含有するプール中で使用される水着に極めて好適である。
本発明の燐酸エステル化合物が付着している特定の金属化合物を含有するポリウレタン紡糸原液は、フィルター目詰まりや紡糸時の糸切れが極めて少なく、長期にわたって安定した紡糸を行うことができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyurethane elastic fiber and a method for producing the same. More specifically, the present invention relates to a polyurethane elastic fiber that hardly deteriorates in various chlorinated water environments, particularly when used in a swimming pool containing sterilizing chlorine as a swimsuit, and a stable manufacturing method thereof.
[0002]
[Prior art]
Polyurethane elastic fibers obtained from aromatic diisocyanates, polyalkylene glycols and polyfunctional hydrogen-containing compounds have a high degree of rubber elasticity and are excellent in mechanical and thermal properties such as tensile stress and recoverability. As a stretchable functional fiber material, it is widely used for applications that require stretch properties such as swimwear, foundations, stockings, sportswear and the like.
[0003]
However, it is known that when an article of clothing using polyurethane elastic fibers is repeatedly immersed in a chlorine bleach for a long time and washed, the elastic function of the polyurethane elastic fibers deteriorates.
When a swimsuit using polyurethane elastic fiber is repeatedly exposed to sterilizing chlorine water having an active chlorine concentration of 0.5 to 3 ppm such as a swimming pool, the elastic function of the polyurethane elastic fiber is remarkably impaired or a yarn is broken. In particular, in the case of a swimsuit made of polyamide fiber and polyurethane elastic fiber, discoloration of the dyed product may occur.
[0004]
In order to improve the chlorine durability of the polyurethane elastic fiber, a polyester polyurethane elastic fiber using an aliphatic polyester diol as a raw material has been used, but the chlorine durability is insufficient. In addition, since the aliphatic polyester has high biological activity, the polyester polyurethane has a drawback that it is easily affected by wrinkles, and the problem is that the elastic function of the swimsuit is reduced during use or storage, and yarn breakage is likely to occur. There was a point. Polyether polyurethane elastic fibers using polyether diol with very little biological activity as a raw material have no problem of brittleness caused by wrinkles, but have a problem that chlorine durability is inferior to that of polyester polyurethane.
[0005]
In order to improve the deterioration of polyether-based polyurethane elastic fibers due to chlorine, various additives, that is, chlorine deterioration preventing agents have been proposed. For example, Japanese Patent Publication No. 60-43444 discloses zinc oxide, Japanese Patent Publication No. 61-35283 discloses magnesium oxide, aluminum oxide, etc., Japanese Patent Publication No. 59-133248, magnesium hydroxide, etc., Japanese Patent Publication No. Hei 6-81215. No. 1 discloses a solid solution of magnesium oxide and zinc oxide.
[0006]
As shown in Table 1 on page 4 of the gazette, the effect of preventing magnesium deterioration of magnesium oxide and aluminum oxide disclosed in Japanese Patent Publication No. 61-35283 is not high. Zinc oxide disclosed in Japanese Patent Publication No. 60-43444 is resistant to chlorine because the zinc oxide component is eluted from the fiber by dyeing under acidic conditions (pH 3-6), and the remaining amount in the fiber is remarkably reduced. There is a problem in that it is greatly reduced. The solid solution of magnesium oxide and zinc oxide disclosed in JP-A-6-81215, and magnesium hydroxide and the like in JP-A-59-133248 have a small improvement effect similar to zinc oxide, and a satisfactory level. Not reached.
[0007]
In the case of swimsuits consisting of polyurethane elastic fibers and polyamide fibers, a dye fixing process using a tannin solution is performed after the dyeing process in order to prevent the dye used in the swimsuit from being discolored by the chlorine contained in the pool water. It has been broken. A polyurethane elastic fiber containing a known chlorine degradation inhibitor, such as zinc oxide, magnesium oxide, a solid solution of magnesium oxide and zinc oxide, or the like, causes a decrease in chlorine durability by this dyeing treatment (pH 3 to 6). Furthermore, when the dye fixing treatment (pH 3 to 4.5) with the tannin solution after the dyeing treatment is performed, the chlorine durability of the polyurethane elastic fiber is further lowered.
[0008]
If these known chlorine degradation inhibitors are added to a polyurethane spinning dope or molten polyurethane when producing polyurethane elastic fibers, secondary agglomeration occurs, resulting in clogging of the spinning filter and an increase in yarn breakage during spinning. Japanese Examined Patent Publication No. 60-43444 discloses zinc oxide having a particle size of 0.1 to 1 μm, Japanese Examined Patent Publication No. 61-35283 discloses magnesium oxide having a particle size of 5 μm or less, and Japanese Unexamined Patent Publication No. 6-81215 discloses particles. A solid solution of magnesium oxide and zinc oxide having a diameter of 0.05 to 3 μm is used. However, sufficient improvement has not been achieved.
[0009]
[Problems to be solved by the invention]
The object of the present invention is to provide excellent chlorine durability over a long period of time even under conditions of acidic dyeing (PH 3 to 6) and after dye fixing with a tannin solution after dyeing (pH 3 to 4.5). It is intended to provide a polyurethane elastic fiber having the same and a method for stably producing the polyurethane elastic fiber.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to solve these problems, the present inventors have found that polyurethane elastic fibers containing specific metal compound particles to which a phosphoric acid ester compound is attached are polyurethanes containing the above-mentioned known chlorine degradation inhibitor. Not only has excellent chlorine durability compared to elastic fibers, but surprisingly, it can be manufactured extremely stably with less filter clogging due to secondary aggregation of metal compounds in the spinning dope and yarn breakage during spinning. I found.
[0011]
That is, the present invention provides at least one metal compound particle selected from at least an oxide selected from Zn and Mg, a hydroxide, or a composite oxide of Zn and Mg, to which a phosphate ester compound represented by the following formula is attached. Polyurethane elastic fiber, characterized by containing 0.5 to 10% by weight of polyurethane,
[0012]
[Chemical 3]
Figure 0003986679
[0013]
(However, R is a linear or branched alkyl group having 1 to 30 carbon atoms, an alkoxypolyoxyalkylene group, a cycloalkyl group having 5 to 6 carbon atoms, or an alkyl group having 1 to 10 carbon atoms substituted. A cycloalkyl group having 5 to 6 carbon atoms, an alkyleneoxy group having 2 to 3 carbon atoms having 1 to 10 repeating units bonded to an alkyloxy group having 8 to 18 carbon atoms, and n represents an integer of 1 to 2 ).
[0014]
The polyurethane elastic fiber according to the present invention includes at least one metal compound particle selected from an oxide selected from Zn and Mg, a hydroxide, or a composite oxide of Zn and Mg, to which a phosphate ester compound is attached. It is produced by spinning a polyurethane spinning stock solution containing 0.5 to 10% by weight of polyurethane.
[0015]
The metal compound in the present invention is an oxide selected from Zn and Mg, a hydroxide, or a composite oxide of Zn and Mg. Examples thereof include zinc oxide, magnesium oxide, zinc hydroxide, a solid solution of zinc oxide and magnesium oxide, and a eutectoid. These metal compounds may be used alone or in combination of two or more. Zinc oxide and magnesium oxide are preferable.
[0016]
The phosphate compound of the present invention can be represented by the following formula.
[0017]
[Formula 4]
Figure 0003986679
[0018]
(However, R is a carbon substituted by a linear or branched alkyl group having 1 to 30 carbon atoms, an alkoxypolyoxyalkylene group, a cycloalkyl group having 5 to 6 carbon atoms, or an alkyl group having 1 to 10 carbon atoms. The cycloalkyl group having 5 to 6 atoms, the alkylene group having 2 to 3 carbon atoms having 1 to 10 repeating units bonded to the alkyloxy group having 8 to 18 carbon atoms, and n represents an integer of 1 to 2)
Specific examples of phosphate esters include mono or dimethyl acid phosphate, mono or diethyl acid phosphate, mono or dipropyl acid phosphate, mono or diisopropyl acid phosphate, mono or dibutyl acid phosphate, mono or dilauryl. Acid phosphate, mono or distearyl acid phosphate, mono or di (2-ethylhexyl) acid phosphate, mono or diisodecyl acid phosphate, mono or dibutoxyethyl acid phosphate, mono or dioleyl acid phosphate, mono or Ditetracosyl acid phosphate, mono- or di (2-hydroxylethyl) methacrylate acid phosphate, polyoxyalkylene glycol alkylene ether acid Phosphates, and the like. These phosphate ester compounds can be used alone or in combination as a monoester type or a diester type, and several different types of phosphate ester compounds can also be used in combination.
[0019]
The phosphoric acid ester compound has 1 to 30 carbon atoms of R in the above formula, preferably 3 to 25 carbon atoms. A phosphoric acid ester compound having 10 to 20 carbon atoms is preferable, and mono- or distearyl acid phosphate, mono- or dilauryl acid phosphate, and mono- or dioleyl acid phosphate are preferable.
[0020]
The metal compounds in the present invention are disclosed in JP-B-60-43444, JP-B-61-35283, JP-A-59-133248, and JP-A-6-81215 to prevent chlorine deterioration of polyurethane elastic fibers. Disclosed as an additive. However, these chlorine degradation inhibitors are eluted from polyurethane or have additive activity by dyeing treatment under acidic conditions or tannin treatment for dye fixation widely performed in knitting with polyamide fibers. It may be deactivated, leading to an early decrease in chlorine durability. For example, when it is used in a swimming pool as a swimsuit, the elastic function is impaired and the feeling of wear becomes poor, or yarn breakage occurs during wearing.
[0021]
On page 5 of JP-B-60-43444, there is also a description suggesting that zinc oxide is inactivated or dissolved under dyeing and chlorine durability is lowered. The inventors of the present invention can obtain a polyurethane elastic fiber containing the metal compound particles to which the phosphoric acid ester compound is adhered, and having a significantly improved chlorine durability even when a dyeing treatment or a tannin treatment is performed. In addition, it was revealed for the first time that polyurethane elastic fibers can be produced stably for a long period of time with very little filter clogging due to secondary agglomeration of metal compounds in the spinning dope and yarn breakage during spinning.
[0022]
Examples of the method for attaching the phosphoric ester compound to the metal compound particles in the present invention include (1) a method in which a metal compound and a surface treatment agent are mixed by heating, and (2) a surface dissolved or dispersed in a solvent. Examples thereof include a method in which the treatment agent is directly sprayed or mixed on the metal compound and adhered, and then the solvent is removed, and (3) other various known methods. Most preferably, the deposition method (2) is capable of efficiently and uniformly depositing the phosphate ester on the particle surface of the metal compound.
[0023]
As a specific example of the adhesion, metal compound particles and 4% by weight of mono: di = 1: 2 lauryl acid phosphate with respect to the metal compound particles are placed in a Henschel mixer, heated at 70 ° C., and stirred. And after mixing with a Henschel mixer at room temperature, a metal compound particle and a 4% by weight methanol solution of 2% by weight of mono: di = 1: 1 stearyl acid phosphate with respect to the metal compound particle There is a method of evaporating and removing methanol at 100 ° C.
[0024]
The adhesion of the surface treatment agent to the metal compound is considered to be because the surface treatment agent is physically or chemically adsorbed on the surface of the metal compound to form a strong film on the surface. This surface coating protects basic metal compounds from acidic dyeing solutions and tannin solutions, and prevents elution and inactivation due to salt formation with dyeing solutions and tannin solutions. Therefore, it is presumed that the effect of the present invention is caused in order to suppress secondary aggregation of the metal compound particles by intermolecular force.
[0025]
When the surface treatment is performed, the amount of the phosphate ester compound with respect to the metal compound particles is preferably 0.5 to 10% by weight. If it is less than 0.5% by weight, the adhesion amount is small and the effect of improving the chlorine durability is small, and if it is adhered before spinning, clogging of metal compound particles and thread breakage during spinning The effect on is not great. If the amount exceeds 10% by weight, the amount of adhesion becomes excessive, and the excess surface treatment agent causes a decrease in the viscosity of the polyurethane spinning stock solution and induces yarn breakage during spinning or deteriorates the elastic function of the polyurethane elastic fiber, resulting in chlorine durability. Inferior.
[0026]
The metal compound particles to which an effective amount of the phosphoric acid ester compound is attached are preferably contained in an amount of 0.5 to 10% by weight based on the polyurethane. If it is less than 0.5% by weight, the chlorine durability is not sufficient. On the other hand, if it exceeds 10% by weight, the effect of improving chlorine durability is small and not economical. A preferable content is 2 to 8% by weight.
The smaller the particle size of the metal compound particles to which an effective amount of the phosphate ester compound is attached, the more effective the chlorine durability of the polyurethane elastic fiber, and the less the clogging of the filter and yarn breakage during spinning. Increases stability. A preferable average particle diameter is 5 μm or less.
[0027]
The polyurethane used in the present invention includes, for example, a polymer glycol having hydroxyl groups at both ends and a number average molecular weight of 600 to 5000, an organic diisocyanate, a chain extender having a multifunctional active hydrogen atom, and a monofunctional Manufactured from a terminal terminator having an active hydrogen atom.
Examples of the polymer glycol include homopolyether diols such as polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol, and polyoxypentamethylene glycol, or two or more oxyalkylenes having 2 to 6 carbon atoms. Constituted copolymer polyether diol, adipic acid, sebacic acid, maleic acid, itaconic acid, azelaic acid, malonic acid and one or more dibasic acids and ethylene glycol, 1,2-propylene glycol, 1, 3-propylene glycol, 2,2-dimethyl-1,3-propanediol, 1,4-butanediol, 1,3-butanediol, hexamethylene glycol, diethylene glycol, 1,10-decanediol, 1,3-di Methylolcyclo Polyester diol obtained from one or more of glycols such as xane and 1,4-dimethylolcyclohexane, or polyester amide diol, polyester ether diol, poly-ε-caprolactone diol, polyvalerolactone diol, etc. Examples include polylactone diol, polycarbonate diol, polyacryl diol, polythioether diol, polythioester diol, or a copolymer or a mixture of these diols.
[0028]
Examples of the organic diisocyanate include methylene-bis (4-phenylisocyanate), methylene-bis (3-methyl-4-phenylisocyanate), 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m- and p-xylylene diisocyanate, α, α, α ′, α′-tetramethyl-xylylene diisocyanate, m- and p-phenylene diisocyanate, 4,4′-dimethyl-1,3-xylylene diisocyanate, 1-alkylphenylene -2,4 and 2,6-diisocyanate, 3- (α-isocyanatoethyl) phenyl isocyanate, 2,6-diethylphenylene-1,4-diisocyanate, diphenyl-dimethylmethane-4,4-diisocyanate, diphenyl ether-4, 4'-diisocyanate Naphthylene-1,5-diisocyanate, 1,6-hexamethylene diisocyanate, methylene-bis (4-cyclohexylisocyanate), 1,3- and 1,4-cyclohexylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, penta Examples include methylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, and the like, or a mixture thereof. For polyurethane elastic fibers, aromatic diisocyanates are preferred.
[0029]
Examples of the chain extender having a polyfunctional active hydrogen atom include, for example, hydrazine, polyhydrazine, a linear or branched aliphatic, alicyclic, and aromatic amino group having 2 to 10 carbon atoms. Compounds having ethylenediamine, 1,2 propylenediamine, diamines such as diamines having a urea group described in JP-A-5-155841, hydroxylamine, water, etc., and low molecular weight glycols such as ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 2,2-dimethyl-1,3-propanediol, 1,4-butanediol, 1,3-butanediol, hexamethylene glycol, diethylene glycol, 1,10 -Decanediol, 1,3-dimethylolcyclohexane, 1,4-di It can be used Chi roll cyclohexane.
[0030]
Preferred are ethylene diamine and 1,2 propylene diamine.
Examples of the terminal terminator having a monofunctional active hydrogen atom include dialkylamines such as diethylamine and alkyl alcohols such as ethanol. These chain extenders and terminal terminators may be used alone or in combination of two or more.
[0031]
A known polyurethane-forming reaction technique can be used for the polyurethane. For example, polyalkylene glycol and aromatic diisocyanate are reacted under conditions of excess aromatic diisocyanate and dissolved with dimethylacetamide or the like as a polar solvent to prepare a polyurethane prepolymer solution, which is then chain extended with a chain extender. A polyurethane solution is obtained by reacting the agent.
[0032]
The metal compound particles to which the phosphoric acid ester compound in the present invention is attached are usually added to the polyurethane solution, but are added in advance to the polyurethane raw material or added during the polyurethane prepolymer reaction or chain extension reaction. Is also possible.
In addition to the metal compound of the present invention, other compounds usually used for polyurethane elastic fibers, such as ultraviolet absorbers, antioxidants, light stabilizers, gas stabilizers, colorants, matting agents, and filling, are included in this polyurethane solution. An agent or the like may be added.
[0033]
The polyurethane solution thus obtained can be formed into a fibrous shape by known dry spinning, wet spinning or the like to produce polyurethane elastic fibers.
Polydimethylsiloxane, polyester-modified silicon, polyether-modified silicon, amino-modified silicon, mineral oil, mineral fine particles such as silica, colloidal alumina, talc, etc., higher fatty acid metal salt powder such as stearic acid Oils such as solid waxes such as magnesium and calcium stearate, higher aliphatic carboxylic acids, higher aliphatic alcohols, paraffin, polyethylene, and the like may be used alone or in any combination as necessary.
[0034]
The polyurethane elastic fiber of the present invention may be used as a bare thread as it is, other fibers such as polyamide fibers such as N6 and N66, polyethylene terephthalate, polytrimethylene terephthalate, polytetramethylene terephthalate, various copolymerized polyterephthalates and the like. It is also possible to use it as a coated elastic fiber by coating with polyester fiber, acrylic fiber, wool, cotton, recycled fiber, and other conventionally known fibers.
[0035]
The polyurethane elastic fiber of the present invention is particularly suitable for a swimsuit for swimming used in a swimming pool. However, the application is not limited to this, and it can be used for general swimsuits, tights, pantyhose, foundations, socks, rubber bands, corsets, bandages, various sports clothes, and the like.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. Various pretreatments and measurement methods for performance evaluation performed in the following examples are described below.
[1] Measurement of breaking strength Using a tensile tester (trade name UTM-III 100 type, manufactured by Orientec Co., Ltd.), a test yarn having a sample length of 5 cm is 50 cm / min at 20 ° C. and a humidity of 65%. The tensile rupture strength is measured at a speed.
[2] Measurement of effective chlorine concentration 25 ml of chlorine water sample is weighed into a 100 ml Erlenmeyer flask, and 2 g of dried potassium iodide is added and mixed. Titrate with 1/100 N sodium thiosulfate solution and add starch solution when solution turns from orange to light yellow. Titrate with 1/100 N sodium thiosulfate solution until the blue color from the iodine starch reaction disappears. Separately, 25 ml of ion-exchanged water is collected and titrated by the same operation to obtain a blank titer. The effective chlorine concentration H is obtained by the following equation (1).
[0037]
[Expression 1]
Figure 0003986679
[0038]
Where H is effective chlorine concentration (ppm), Vs is titration (ml) of 1 / 100N sodium thiosulfate solution when titrated with chlorine water, and Vb is 1 / 100N thiol when titrated with ion-exchanged water. The titration amount of sodium sulfate solution (ml), f is the titer of 1 / 100N sodium thiosulfate solution, and Ws is the weight (g) of chlorine water.
[3] 2% by weight of dye (Irgalan Black BGL200 [manufactured by Bayer Co., Ltd.]) and 12 g of ammonium sulfate are dissolved in 9 l ion-exchanged water and adjusted to pH 4.5 with acetic acid based on the amount of the dyed sample (fiber to be dyed). Adjust to staining solution. The sample under 50% elongation is heat-set at 185 ° C. for 1 minute and then stained at 95 ° C. for 40 minutes. Wash in running tap water for 10 minutes after treatment. The dyed sample is air dried at 20 ° C. overnight.
[4] Tannin treatment 6 liters of ion-exchanged water, acetic acid was added to 4.5 g of tannic acid (trade name: Hifix SLA, manufactured by Dainippon Pharmaceutical Co., Ltd.) to pH 3.8, and the above-described staining condition treatment was performed. The sample is added at a time when the treatment liquid is 25 ° C. under 50% elongation, and then the treatment liquid is heated to 90 ° C. and immersed for 30 minutes. Thereafter, it is washed with running tap water for 10 minutes. The test yarn subjected to the tannin solution treatment is air-dried at 20 ° C. overnight.
[0039]
The breaking strength of this yarn is measured to determine the strength retention ΔT 0 represented by the following formula (2).
[0040]
[Expression 2]
Figure 0003986679
[0041]
However, ΔT 0 is the strength retention (%), T is the strength after processing (g), and T 0 is the strength before processing (g).
The greater the strength retention, the less the elastic function of the yarn is reduced by the dyeing process and the tannin solution process.
[5] Chlorine durability evaluation A sample of tannin solution treated was diluted with sodium hypochlorite solution (manufactured by Sasaki Pharmaceutical) with ion-exchanged water to obtain an effective chlorine concentration of 3 ppm, and a buffer solution of citric acid and sodium hydrogen phosphate. The sample was immersed in a solution adjusted to pH 7 with a water temperature of 30 ° C. under 50% elongation, a sample was taken over time in one cycle of 8 hours, the breaking strength was measured, and the following formula (3) The expressed strong retention rate ΔT is obtained.
[0042]
[Equation 3]
Figure 0003986679
[0043]
However, ΔT is the strength retention (%), TS is the strength after processing (g), and TS 0 is the strength before processing (g).
Chlorine durability is evaluated by the time τ 1/2 (Hr) at which the strength retention becomes 50%.
The greater τ 1/2 (Hr), the better the chlorine durability.
[6] Evaluation of filter clogging of spinning stock solution The polyurethane spinning stock solution is passed through a 10 μ Naslon filter (manufactured by Nippon Seisen Co., Ltd.) having a diameter of 17 mm at a constant flow rate of 2 l / hr, and after 0.1 hr and 1 hr. The filter clogging pressure increase rate ΔP expressed by the following formula (4) is obtained from the liquid feeding pressure.
[0044]
[Expression 4]
Figure 0003986679
[0045]
However, P 1 is the liquid feeding pressure (Kg / cm 2 ) after the liquid feeding 0.1 Hr, and P 2 is the liquid feeding pressure (Kg / cm 2 ) after the liquid feeding 2 Hr.
The larger ΔP, the greater the filter clogging.
[6] Spinning stability evaluation The polyurethane spinning stock solution is passed through a 40 μ Naslon filter (manufactured by Nippon Seisen Co., Ltd.), discharged from 0.2 mmφ × 4 nozzles, and subjected to dry spinning to obtain 40 denier / 4 filaments. When the polyurethane elastic fiber is temporarily fixed at a winding speed of 300 m / min for 3 minutes, the winding speed is gradually increased, and when the yarn breakage occurs in the spinning cylinder, the winding speed is Xm / min. (5) Spinning stability is evaluated by the ultimate single yarn denier per filament calculated according to the equation (5).
[0046]
Ultimate single yarn denier (d) = 40/4 × 300 / X (5)
The smaller the denier per filament (extreme single yarn denier), the better the spinning stability of the polyurethane.
[0047]
【Example】
[Example 1]
A polyurethane prepolymer having isocyanate groups at both ends is reacted with 1500 g of polytetramethylene ether glycol having an average molecular weight of 1,900 and 312 g of 4,4′-diphenylmethane diisocyanate while stirring in a nitrogen gas stream at 60 ° C. for 90 minutes. A polymer was obtained. Next, after cooling to room temperature, 2500 g of dimethylacetamide was added and dissolved to prepare a polyurethane prepolymer solution.
[0048]
23.4 g of ethylenediamine and 3.7 g of diethylamine were dissolved in 1570 g of dry dimethylacetamide and added to the prepolymer solution at room temperature to obtain a polyurethane solution having a viscosity of 2,500 poise (30 ° C.).
Phoslex A-18 (trade name, stearyl acid phosphate manufactured by Sakai Chemical Co., Ltd., mono: di = 1: 1) in a 5% by weight ethanol solution and ZnO (manufactured by Hakusui Chemical Co., Ltd., average particle size of 1 μm or less) ) Was mixed with a Henschel mixer at room temperature and then dried at 100 ° C. to obtain ZnO having 2% by weight of stearyl acid phosphate attached thereto.
[0049]
1% by weight of 4,4′-butylidenebis- (3-methyl-6-tert-butylphenol), 2- (2′-hydroxy-3′-tert-butyl-5′-methylphenyl) based on polyurethane solids ) 0.5% by weight of -5-chloro-benzotriazole and 3% by weight of ZnO adhering to the above 2% by weight were added to dimethylacetamide and dispersed with a homomixer to produce a 20% by weight dispersion. Mixing with a polyurethane solution gave a polyurethane spinning dope.
[0050]
After defoaming this spinning dope, dry spinning at a spinning speed of 600 m / min and hot air temperature of 340 ° C. and oiling 30 cst (20 ° C.) polydimethylsiloxane oil dispersed with 1% magnesium stearate before winding. 6% by weight of polyurethane elastic fiber was applied with a roller to produce a 40 denier / 4 filament yarn.
[0051]
[Examples 2 and 3]
A polyurethane elastic fiber was produced in the same manner as in Example 1 using MgO and Mg (OH) 2 instead of ZnO in Example 1.
[Examples 4 and 5]
Instead of the stearyl acid phosphate of Example 1, lauryl acid phosphate (manufactured by Sakai Chemical Co., Ltd., phoslex A-18 (trade name, Sakai Chemical Co., Ltd., lauryl acid phosphate ,: di = 1: 1) , Phoslex 8 (trade name, 2-ethylhexyl acid phosphate manufactured by Sakai Chemical Co., Ltd., mono: di = 1: 1) was used in the same manner as in Example 1 using ZnO attached to ZnO at 3 wt%. A polyurethane elastic fiber was produced.
[0052]
[Comparative Example 1]
In Example 1, a polyurethane spinning dope was prepared using ZnO to which stearyl acid phosphate was not attached, and polyurethane elastic fibers were produced in the same manner as in Example 1.
[Comparative Example 2]
In Example 1, polyurethane elastic fibers were produced in the same manner as Example 1 without adding ZnO to which stearyl acid phosphate was adhered.
[0053]
[Comparative Examples 3 and 4]
In Example 1, polyurethane elastic fibers were produced in the same manner as in Example 1 using ZnO with 0.1% by weight and 20% by weight of stearyl acid phosphate attached to ZnO.
Evaluation results of filter clogging and spinning stability of polyurethane spinning stock solutions obtained in Examples 1 to 5 and Comparative Examples 1 to 4 and dyeing of polyurethane elastic fibers-strength retention after tannin solution treatment and chlorine durability Shown in Tables 1 and 2.
[0054]
[Table 1]
Figure 0003986679
[0055]
[Table 2]
Figure 0003986679
[0056]
【The invention's effect】
The polyurethane elastic fiber of the present invention has excellent durability against deterioration induced by chlorine, and even after being dyed and treated with a tannin solution, it is repeatedly used in a swimsuit used in a pool containing chlorine over a long period of time. Very suitable.
The polyurethane spinning stock solution containing the specific metal compound to which the phosphoric acid ester compound of the present invention is attached has very little filter clogging and yarn breakage during spinning, and can perform stable spinning over a long period of time.

Claims (5)

下記式で表される燐酸エステル化合物が付着した、少なくともZn、Mgから選択された酸化物、水酸化物、またはZnとMgの複合酸化物のうち少なくとも1種の金属化合物粒子を、ポリウレタンに対し0.5〜10重量%含有させることを特徴とするポリウレタン弾性繊維
Figure 0003986679
(但し、Rは炭素原子数1〜30の直鎖又は分岐したアルキル基、アルコオキシポリオキシアルキレン基、炭素原子数5〜6のシクロアルキル基、炭素原子数1〜10のアルキル基が置換した炭素原子数5〜6のシクロアルキル基、炭素原子数8〜18のアルキルオキシ基に結合した繰り返し単位1〜10の炭素原子数2〜3のアルキレンオキシ基、nは1〜2の整数を表す)。
At least one metal compound particle selected from the group consisting of an oxide selected from Zn and Mg, a hydroxide, or a composite oxide of Zn and Mg, to which a phosphate ester compound represented by the following formula is attached, is bonded to polyurethane. A polyurethane elastic fiber containing 0.5 to 10% by weight
Figure 0003986679
(However, R is a linear or branched alkyl group having 1 to 30 carbon atoms, an alkoxypolyoxyalkylene group, a cycloalkyl group having 5 to 6 carbon atoms, or an alkyl group having 1 to 10 carbon atoms. A cycloalkyl group having 5 to 6 carbon atoms, an alkyleneoxy group having 2 to 3 carbon atoms having 1 to 10 repeating units bonded to an alkyloxy group having 8 to 18 carbon atoms, and n represents an integer of 1 to 2 ).
金属化合物粒子が、金属化合物粒子に対して0.5〜10重量%の燐酸エステル化合物で表面処理されていることを特徴とする請求項1記載のポリウレタン弾性繊維。2. The polyurethane elastic fiber according to claim 1, wherein the metal compound particles are surface-treated with 0.5 to 10% by weight of a phosphoric ester compound with respect to the metal compound particles. 金属化合物粒子が酸化亜鉛、酸化マグネシウムの少なくとも1種であることを特徴とする請求項2記載のポリウレタン弾性繊維。The polyurethane elastic fiber according to claim 2, wherein the metal compound particles are at least one of zinc oxide and magnesium oxide. 下記式で表される燐酸エステル化合物が付着した、少なくともZn、Mgから選択された酸化物、水酸化物、またはZnとMgの複合酸化物のうち少なくとも1種の金属化合物粒子を、ポリウレタンに対し0.5〜10重量%含有させたポリウレタン紡糸原液を紡糸することを特徴とするポリウレタン弾性繊維の製造方法。
Figure 0003986679
(但し、Rは炭素原子数1〜30の直鎖又は分岐したアルキル基、アルコオキシポリオキシアルキレン基、炭素原子数5〜6のシクロアルキル基、炭素原子数1〜10のアルキル基が置換した炭素原子数5〜6のシクロアルキル基、炭素原子数8〜18のアルキルオキシ基に結合した繰り返し単位1〜10の炭素原子数2〜3のアルキレンオキシ基、nは1〜2の整数を表す。)
At least one metal compound particle selected from the group consisting of an oxide selected from Zn and Mg, a hydroxide, or a composite oxide of Zn and Mg, to which a phosphate ester compound represented by the following formula is attached, is bonded to polyurethane. A method for producing a polyurethane elastic fiber, comprising spinning a polyurethane spinning stock solution containing 0.5 to 10% by weight.
Figure 0003986679
(However, R is a linear or branched alkyl group having 1 to 30 carbon atoms, an alkoxypolyoxyalkylene group, a cycloalkyl group having 5 to 6 carbon atoms, or an alkyl group having 1 to 10 carbon atoms. A cycloalkyl group having 5 to 6 carbon atoms, an alkyleneoxy group having 2 to 3 carbon atoms having 1 to 10 repeating units bonded to an alkyloxy group having 8 to 18 carbon atoms, and n represents an integer of 1 to 2 .)
燐酸エステル化合物を溶解又は分散させた溶液を、金属化合物粒子に噴霧又は混合することによって、金属化合物粒子に対して0.5〜10重量%の燐酸エステル化合物で金属化合物粒子を表面処理し、これをポリウレタン紡糸原液に混合して紡糸することを特徴とする請求項4記載のポリウレタン弾性繊維の製造方法。By spraying or mixing the solution in which the phosphate ester compound is dissolved or dispersed into the metal compound particles, the metal compound particles are surface-treated with 0.5 to 10% by weight of the phosphate ester compound based on the metal compound particles. The method for producing a polyurethane elastic fiber according to claim 4, wherein the mixture is spun into a polyurethane spinning stock solution.
JP22609798A 1998-08-10 1998-08-10 Polyurethane elastic fiber and method for producing the same Expired - Fee Related JP3986679B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP22609798A JP3986679B2 (en) 1998-08-10 1998-08-10 Polyurethane elastic fiber and method for producing the same
PCT/JP1999/004240 WO2000009789A1 (en) 1998-08-10 1999-08-05 Elastomeric polyurethane fiber
DE69938143T DE69938143T2 (en) 1998-08-10 1999-08-05 ELASTOMER POLYURETHANE FIBERS
EP99935075A EP1123994B1 (en) 1998-08-10 1999-08-05 Elastomeric polyurethane fiber
US09/762,442 US6406788B1 (en) 1998-08-10 1999-08-05 Elastic polyurethane fiber
KR10-2001-7001570A KR100396230B1 (en) 1998-08-10 1999-08-05 Elastomeric polyurethane fiber
TW088113574A TW464699B (en) 1998-08-10 1999-08-09 An polyurethane elastic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22609798A JP3986679B2 (en) 1998-08-10 1998-08-10 Polyurethane elastic fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000064121A JP2000064121A (en) 2000-02-29
JP3986679B2 true JP3986679B2 (en) 2007-10-03

Family

ID=16839787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22609798A Expired - Fee Related JP3986679B2 (en) 1998-08-10 1998-08-10 Polyurethane elastic fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP3986679B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531514B2 (en) * 2000-03-15 2003-03-11 E.I. Du Pont De Nemours And Company Dispersant slurries for making spandex
TW200728529A (en) * 2005-12-27 2007-08-01 Opelontex Co Ltd Polyurethane elastic filament and process for manufacturing the same
KR100780395B1 (en) 2006-09-04 2007-11-29 태광산업주식회사 Chlorine resistant polyurethaneurea elastic fiber and preparation of thereof
JP6467704B2 (en) * 2014-01-21 2019-02-13 東レ・オペロンテックス株式会社 Polyurethane elastic fiber and method for producing the same
WO2020203434A1 (en) * 2019-04-01 2020-10-08 東レ株式会社 Fibrous structure containing elastic polyurethane yarn

Also Published As

Publication number Publication date
JP2000064121A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
JP4585512B2 (en) Polyurethane elastic fiber and method for producing the same
EP3398980B1 (en) Aqueous-dispersion type polycarbonate-based polyurethane resin composition, textile product treated with same, and process for producing aqueous-dispersion type polycarbonate-based polyurethane resin composition
US8691201B2 (en) Deodorant material
US6406788B1 (en) Elastic polyurethane fiber
MXPA05013978A (en) Spandex having low heat-set temperature and materials for their production.
JP2008261071A (en) Method for producing dyed fabric
JPH11315202A (en) Polyurethanes finished so as to show antistatic property and elastan (r) fiber
JP3986679B2 (en) Polyurethane elastic fiber and method for producing the same
JP3909468B2 (en) Method for producing polyurethane elastic fiber
JP4416818B2 (en) Method for producing polyurethane elastic fiber
JP2006342448A (en) Polyurethane-based elastic fiber and method for producing the same
JP3838773B2 (en) Polyurethane elastic fiber and elastic fabric thereof
JP4100769B2 (en) Polyurethane elastic fiber and method for producing the same
JP2963856B2 (en) Polyurethane elastic fiber containing amino-modified silicone
JP3868097B2 (en) Woven knitted fabric and manufacturing method thereof
JP3883278B2 (en) Method for producing polyurethane elastic fiber and its water-wearing elastic fabric
JP3716893B2 (en) Method for producing dyed fabric comprising polyurethane elastic fiber and polyamide fiber
JP2000290836A (en) Polyurethaneurea elastic fiber
JP4439638B2 (en) Antifouling polyurethane elastic fiber and process for producing the same
JPH10292225A (en) Polyurethane elastic fiber and its production
JPH07102485A (en) Polyurethane elastic fiber produced by using copolyether as base
JP4613802B2 (en) Polyurethane elastic fiber, method for producing the same, and use thereof
JP6767574B2 (en) Color inhibitor for polyurethane, its manufacturing method, and polyurethane molded product
JP2004332126A (en) Polyurethane elastic fiber comprising ether-modified silicone
JP2006144192A (en) Soft stretch polyurethane elastic yarn and method for producing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees